
Front. Comput. Sci., 2021, 15(3): 153104
https://doi.org/10.1007/s11704-020-9387-3

Fault-tolerant hamiltonian cycles and paths embedding into locally
exchanged twisted cubes

Weibei FAN1, Jianxi FAN 2, Zhijie HAN3, Peng LI1, Yujie ZHANG1, Ruchuan WANG3

1 College of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
2 School of Computer Science and Technology, Soochow University, Suzhou 215006, China

3 Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Jiangsu Province, Nanjing 210003, China

c© Higher Education Press 2020

Abstract The foundation of information society is computer
interconnection network, and the key of information exchange
is communication algorithm. Finding interconnection networks
with simple routing algorithm and high fault-tolerant perfor-
mance is the premise of realizing various communication al-
gorithms and protocols. Nowadays, people can build complex
interconnection networks by using very large scale integration
(VLSI) technology. Locally exchanged twisted cubes, denoted
by (s + t + 1)-dimensional LeTQs,t, which combines the mer-
its of the exchanged hypercube and the locally twisted cube. It
has been proved that the LeTQs,t has many excellent properties
for interconnection networks, such as fewer edges, lower over-
head and smaller diameter. Embeddability is an important indi-
cator to measure the performance of interconnection networks.
We mainly study the fault tolerant Hamiltonian properties of
a faulty locally exchanged twisted cube, LeTQs,t − ( fv + fe),
with faulty vertices fv and faulty edges fe. Firstly, we prove
that an LeTQs,t can tolerate up to s−1 faulty vertices and edges
when embedding a Hamiltonian cycle, for s � 2, t � 3, and
s � t. Furthermore, we also prove another result that there is
a Hamiltonian path between any two distinct fault-free vertices
in a faulty LeTQs,t with up to (s − 2) faulty vertices and edges.
That is, we show that LeTQs,t is (s−1)-Hamiltonian and (s−2)-
Hamiltonian-connected. The results are proved to be optimal in
this paper with at most (s − 1)-fault-tolerant Hamiltonicity and
(s − 2) fault-tolerant Hamiltonian connectivity of LeTQs,t.

Keywords interconnection network, fault-tolerant, LeTQs,t,
hamiltonian cycle, hamiltonian path

1 Introduction
Interconnection network is an important factor, which directly
affects the performance of parallel computing system. It con-
sists of a network of switching elements with a certain topology
and control mode. It is used to realize the interconnection of
multiple processors or multiple functional components within a
computer system. With the gradual increase of network scale,
its connection mode becomes more complex [1].
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Large-scale integrated circuit technology can be used to build
complex Internet and predict the next generation of super-
computer systems. While adopting faster processors, it also
achieves high speed and rapidity by increasing the number of
processors [2, 3]. Therefore, how to design an excellent inter-
connection network to connect these processors is a technical
difficulty in building supercomputer systems. Hypercube is one
of the most commonly used interconnection structures. It has
many good properties, such as regularity, recursive, low vertex
degree and so on. Due to its powerful computing function and
high efficiency, it is very important to run parallel algorithms
on it. Almost all algorithms on linear arrays, cycles and trees
can be effectively simulated on hypercubes with only constant
factor delay.

Not all properties of hypercube are optimal, such as large
diameter, which will cause large communication delay in com-
munication. Therefore, many important variants are proposed
based on hypercubes, such as crossed cubes [4], twisted cubes
[5], locally twisted cubes [6, 7], alternating group graphs [8],
exchanged hypercubes [9], exchanged crossed cubes [10] etc.
Locally twisted cube, denoted by LTQn [11,12], which is a reg-
ular graph with the same number of vertices as hypercubes, but
its diameter is only half of that of hypercubes. Exchanged hy-
percube [13, 14], denoted by EHs,t, with s + t + 1 = n. EHs,t

is obtained by symmetrically deleting some edges of hyper-
cubes. It has the same diameter as the hypercube, but the link
overhead is only half that of the hypercube. Exchanged hyper-
cubes have been used in the construction of P2P networks [15].
Chang et al. [16] proposed a novel interconnection network
which is called locally exchanged twisted cube LeTQs,t. This
new interconnection network combines the advantages of lo-
cally twisted cubes and exchanged hypercubes. For example, its
diameter is the same as that of a locally twisted cube, which is
much smaller than that of an exchanged hypercube. Moreover,
its hardware overhead is the same as that of exchanged hyper-
cubes, but much less than that of locally distorted cubes. In
addition, it has good scalability, isomorphism and strong con-
nectivity. Therefore, locally exchanged twisted cube becomes
an effective logic structure for parallel computing processors.

Since interconnection network has a strong practical applica-
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tion, and the vertices and links of the network may fail, the fault
tolerance of the network attracts a lot of researches [17–19].
Network fault tolerance means that when some components and
connections fail at the same time, the remaining subnetworks
still have some special functions [20–22]. Paths and cycles are
two basic network topology for parallel computing. They can be
used in the design of parallel algorithms, and they are suitable
for designing simple and effective algorithms with low com-
munication costs. The algebraic problems, graph problems and
some parallel applications can be solved by using efficient al-
gorithms on cycles and paths. Paths and cycles can also be used
as control (or data) flow structures in parallel and distributed
computing systems. What’s more, if an interconnection net-
work contains paths (or cycles) of different lengths, it can ef-
fectively simulate many algorithms designed on linear arrays
(or cycles). The number of analog processors can also be ad-
justed in time to meet flexible requirements. In particular, the
use of Hamilton paths in network multicast routing algorithms
can effectively reduce or avoid deadlocks and congestion.

The ability of fault-tolerance is a crucial parameter in mea-
suring performance of an interconnection network [23–26].
Thus, it is natural to consider how to tolerate as many faults as
possible in the network. Numerous research has been studied on
the Hamiltonicity in different special interconnection networks.
In [27], Li et al. studied the embedding of many-to-many dis-
joint paths in hypercube with vertex failure. Zhou et al. [10]
studied the embedding of the optimal path in the ECQs,t of the
switched intersection cube, and obtained the following conclu-
sions: For any integer s � 3) and t � 4), there is a path of
length l between any two different vertices in ECQs,t, where
� s+1

2 �� t+1
2 � + 4 � l � 2s+t+1 − 1. Lu and Wang [28] studied

the embedding of Hamiltonian paths in balanced hypercubes.
In [29], Liu et al. proved that if the number of fault vertices
or edges does not exceed n − 3 in n-dimensional twisted hy-
percube Hn, there is a fault-free Hamiltonian path between any
two fault-free vertices. Xu et al. [30] studied the vertex pan-
cyclicity of locally twisted cubes under fault conditions. They
proved that in LTQn with locally twisted cube, if fv is the num-
ber of fault vertices in LTQn, and if n > 3 and |F | � n − 3,
LTQn contains fault-free cycles of arbitrary length l, of which
4 � l � 2n − fv. Cheng and Hao [31] studied the cycle embed-
ding of n-dimensional balanced hypercube BHn in the case of
edge faults. They proved that when the fault edge |Fe| � 2n− 3,
BHn − Fe contains a cycle of length l, of which 6 � L � 22n.
EH1,t and EH2,2 are not even pancyclicity, but except EH2,2,
EHs,t(2 � s � t) are even-pancyclicity, and EHs,t(3 � s � t)
are vertex even-pancyclicity. Cheng and Hsieh [32] studied the
pancyclicity and even-pancyclicity of cartesian product graphs
in the case of edge faults. Lv et al. [33] studied the embedding
of Hamiltonian cycles and Hamiltonian paths in 3-ary n-cubes
with structure faults K1,3.

In this paper, we focus on the robustness capability of LeTQs,t

in Hamiltonian properties despite the faulty vertices or edges.
The results are proved to be optimal in this paper with at
most s−1-fault-tolerant Hamiltonicity and (s−2) fault-tolerant
Hamiltonian connectivity of LeTQs,t. So far, this is the first re-
sult reported about the fault-tolerant Hamiltonian properties of
LeTQs,t. The original results of this paper are obtained as fol-

lows.
(i) We prove that an LeTQs,t can tolerate up to s − 1 faulty

vertices and edges when embedding a Hamiltonian cycle, for
s � 2, t � 3, and s � t.

(ii) We prove another result that there is a Hamiltonian path
between any two distinct fault-free vertices in a faulty LeTQs,t

with up to (s−2) faulty vertices and edges, for s � 2, t � 3, and
s � t.

The rest of this paper is organized as follows: Section 2
presents some useful related definitions and lemmas. Section 3
discusses the fault-tolerant Hamiltonicity of LeTQs,t. Eventu-
ally, our work is summarized in Section 4.

2 Preliminaries
For a simple graph G = (V, E), The path from vertex x to
vertex y is a vertex sequence x = v0v1 · · · vn = y, where
vk ∈ V(0 � k � n), 〈vi, j−1, vi, j〉 ∈ E, (1 � i, j � n). We also
denote path P by 〈x0, x1, . . . , xi〉+ P1 + 〈x j, x j+1, . . . , xk〉, where
P1 is the subpath 〈xi, xi+1, . . . , x j〉 and 0 � i < j � k. If the
vertices on the path do not repeat each other, such a path is
called a simple path. If the first vertex on the path coincides
with the last vertex, such a path is called a cycle. In a simple
connected graph G, we call a cycle that has passed every vertex
once and only once as a Hamiltonian cycle. If there are Hamil-
tonian cycles in graph G, we call this graph Hamiltonian or
Hamiltonicity. Similarly, we call the Hamilton path that passes
every vertex once and only once. For any two vertices u and v
in graph G, if there are Hamiltonian paths connecting u and v,
then G is called Hamiltonian connected graph or Hamiltonian-
connectivity. For any faulty elements F ⊂ {V(G) ∪ E(G)} in
graph G, if and only if |F | < f , G \ F is Hamiltonian graph,
then we call G is f -fault-tolerant Hamiltonian. For any faulty
elements F ⊂ {V(G) ∪ E(G)} in graph G, if and only if |F | < f ,
G \ F is Hamiltonian connected graph, then we call G is f -
fault-tolerant Hamiltonian connectivity. Graph G1 = (V1, E1) is
a subgraph G2 = (V2, E2) (written by G1 ⊆ G2) if V1 ⊆ V2

and E1 ⊆ E2. G1 and G2 is isomorphic if and only if there is a
bijection Θ : V1 → V2 and Φ : E1 → E2.

Definition 1 [12]. For n � 2, the n-dimensional locally
twisted cube LTQn, which is defined recursively as follows:

(1) LTQ2 is a graph with four vertices, which labeled as 00,
01, 10, and 11. Four edges (00, 01), (00, 10), (01, 11), and (10,
11), which formed by these vertices.

(2) LTQn is constructed by two disjoint copies of LTQn−1, for
n � 3. Let LTQ0

n−1 to denote the subgraph of LTQn, where ver-
tex prefix of LTQn−1 is 0, and let LTQ1

n−1 to denote the subgraph
of LTQn, where vertex prefix of LTQn−1 is 1. Connect each ver-
tex u = 0u2u3 . . . un of LTQ0

n−1 to the vertex 1(u2 + un)u3 . . . un

of LTQ1
n−1 with one edge, where ‘+’ denotes the modulo 2 ad-

dition.

Figures 1(a) and 1(b) demonstrate LTQ3, LTQ4 and LTQ5.

Definition 2 [16]. For s, t � 1, the locally exchanged twisted
cube, denoted by LeTQs,t, where the vertex set V = {u =
ut+s . . .ut+1ut . . . u1u0|ui ∈ {0, 1} for 0 � i � t + s}, and the
edge set E consists of three disjoint sets E1, E2 and E3:

E1 = {(u, v) ∈ V × V |u ⊕ v = 20}, where ⊕
is the exclusive − OR operator,
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Fig. 1 Locally twisted cube (a) LTQ3; (b) LTQ4

E2 = {(u, v) ∈ V × V : u0 = v0 = 1, u1 = v1 = 0 and u ⊕ v =
2h for h ∈ [3, t]} ∪ {(u, v) ∈ V × V |u0 = v0 = u1 = v1 =

1 and u⊕ v = 2h +2h−1 for h ∈ [3, t]}∪ {(u, v) ∈ V ×V |u0 = v0 =

1 and u ⊕ v ∈ {21, 22}},
and
E3 = {(u, v) ∈ V × V |u0 = v0 = ut+1 = vt+1 = 0 and u ⊕ v =

2h for h ∈ [t + 3, t + s]} ∪ {(u, v) ∈ V × V |u0 = v0 = 0, ut+1 =

vt+1 = 1 and u ⊕ v = 2h + 2h−1 for h ∈ [t + 3, t + s]} ∪ {(u, v) ∈
V × V |u0 = v0 = 0 and u ⊕ v ∈ {2t+1, 2t+2}}.

By the definition of LeTQs,t, the number of vertex is 2s+t+1

and the number of edge is (s + t + 2)2s+t−1. As illustrated by
Fig. 2, the 6-dimensional LeTQ2,3, where E1 edges are denoted
by dashed lines, E2 edges are denoted by bold lines, and E3 are

denoted by and solid lines.
LeTQs,t is partitioned into two disjoint sub-

graphs LeTQ0
s,t and LeTQ1

s,t, where V(LeTQλs,t) =

{as−1 · · · a0λbt−2 · · · b0d|a j, bk, d ∈ {0, 1}, j ∈ [0, s − 1], k ∈
[0, t − 2]}, for ω ∈ {0, 1}. It is clear that both LeTQ0

s,t and
LeTQ1

s,t are isomorphic to LeTQs,t−1. The edges among LeTQ0
s,t

and LeTQ1
s,t, which are named crossing edges, be geared to

E3. LeTQs,t can also be partitioned into 2t disjoint subgraphs
isomorphic to LTQs, which are denoted by LTQs[L] and 2s

disjoint subcubes isomorphic to LTQt, which are denoted by
LTQt[R]. An edge between LTQs and LTQt, belongs to E1.

3 Hamiltonian cycle and path embedding
Networks with Hamiltonian paths (cycles) can communicate

Fig. 2 Locally exchanged twisted cube LeTQ1,3
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linearly efficiently. For example, the deadlock free and ad-
ditional resource free multicast routing algorithm based on
Hamilton model is more efficient than the traditional multicast
routing algorithm based on multicast tree. The problem of find-
ing Hamiltonian paths or cycles is NP-Completeness [34].

In this section, we will study the fault-tolerant Hamiltonian
of the locally exchanged twisted cube, LeTQs,t-( fv + fe), with
faulty vertices fv and faulty edges fe. Specifically, LeTQs,t is
(s−1)-Hamiltonian and (s−2)-Hamiltonian connected. To prove
the main results, we first give the basic lemmas as follows.

Lemma 1 [12]. LTQn is Hamiltonian connected, for n � 3.

Lemma 2 [35]. LTQn is (n − 2)-Hamiltonian and (n − 3)-
Hamiltonian connected, for n � 3.

Lemma 3 [16]. LeTQs,t is partitioned into 2t disjoint sub-
cubes Qs, which Qs � LTQs and 2s disjoint subcubes Qt, which
Qt � LTQt.

Lemma 4 [36]. For any integer k ∈ {2s+t+1 − 2, 2s+t+1 − 1},
there is an 〈u, v〉-path of length k between two arbitrary distinct
vertices u and v in LeTQs,t, for s � 2 and t � 3.

The following lemma can be obtained directly from
Lemma 1.

Lemma 5 LeTQ2,3 is 1-Hamiltonian and Hamiltonian con-
nected.

Lemma 6 LeTQ3,3 is 2-Hamiltonian.

Proof By Lemma 3, LeTQ3,3 can be seen as the dis-
joint union of 8 copies of LTQ3[L] and 8 copies of LTQ3[R].
Hence, we can denote LTQ3[L1], LTQ3[L2], . . . , and LTQ3[L8]
as 8 copies of LTQ3 that contain the edges E2, and LTQ3[R1],
LTQ3[R2], . . . , and LTQ3[R8] as 8 copies of LTQ3 that contain
the edges E3. We denote u1

1, u2
1, . . . , and u8

1 as 8 vertices of
LTQ3[L1], u1

2, u2
2, . . . , u8

2 as 8 vertices of LTQ3[L2], . . . , and u1
8,

u2
8, . . . , and u8

8 as 8 vertices of LTQ3[L8]. And we denote v1
1, v2

1,
. . . , and v8

1 as 8 vertices of LTQ3[R1], v1
2, v2

2, . . . , and v8
2 as 8

vertices of LTQ3[R2], . . . , and v1
8, v2

8, . . . , and v8
8 as 8 vertices of

LTQ3[R8]. What’s more, each vertex of LTQ3[Li] has only one
neighbour in LTQs[R j] and each vertex of LTQs[R j] has only
one neighbour in LTQ3[Li] (1 � i � 8, 1 � j � 8). Let F0 and
F1 be the two faults in LeTQ3,3. By the location of F0 and F1.

Case 1 Both F0 and F1 are in the same copy of LTQ3. Sup-
pose that F0, F1 ∈ V(LTQ3[L1]). Imaging that F0 is fault-free,
there is a fault-free Hamiltonian cycle HC[L1] in LTQ3[L1] by
Lemma 2. In fact, F0 is faulty. Thus, there is a Hamiltonian
path HP(u1

1, u
2
1) in HC[L1]. Suppose that v1

1 is the neighbour of
u1

1 and v2
8 is the neighbour of u2

1. Select v1
2 ∈ V(LTQ3[R1])−{v1

1}

Fig. 3 Illustrations for the proof of Cases 1 (a) and 2.1 (b)
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and u1
2 ∈ V(LTQ3[L2]) − {u2

2} such that u2
2 and v1

2 are the neigh-
bours of v2

1 and u1
2, respectively. Using the similar method, se-

lect u2
3, v1

8, u2
4, v1

4, . . . , v2
8, v1

8 such that v2
2, u1

3, v2
3, u1

4, . . . , v2
7,

v1
8 are the neighbours of v2

3, v1
8, u2

4, v1
4, . . . , u2

8, v1
8, respectively.

By Lemma 1, there is a Hamiltonian path in each copy LTQ3

except for LTQ3[L1]. Thus, a required fault-free Hamiltonian
cycle HP(u1

2, u
1
1) + (u1

1, v
1
1) + Q1 + (v2

1, u
2
2) + P2 + , . . . , +Q8

+ (v2
8, u

2
1) can be constructed by linking the Hamiltonian paths

with the edges E1 in Fig. 3(a).
Case 2 F0 and F1 are in different copies of LTQ3.
Case 2.1 F0 and F1 are in different copies of LTQ3[L].

Suppose that F0 ∈ V(LTQ3[L1]) and F1 ∈ V(LTQ3[L2]). By
Lemma 2, there exist fault-free Hamiltonian cycle HC[L1] in
LTQ3[L1] and HC[L2] in LTQ3[L2], respectively. Select the
edges (u1

1, u
2
1) in HC[L1] and (u1

2, u
2
2) in HC[L2] such that the

neighbours of u1
1 and u2

2 (u1
2 and u1

2, respectively) are in the
same copy of LTQ3[R]. Suppose that the neighbours of u1

1,
u2

2, u1
2 and u2

1 are v1
1, v2

1, v1
2 and v2

8. By Lemma 1, There ex-
ists a Hamiltonian path Q1 between v1

1 and v2
1 in LTQ3[R1].

Using the similar method, it can be constructed Hamiltonian
path Q j in LTQ3[R j] (2 � j � 8) and Hamiltonian path Pi in
LTQ3[Li] (3 � i � 8). Then, HC[L1] − (u1

1, u
2
1) + (u1

1, v
1
1) +

Q1 + (v2
1, u

2
2) + HC[L2] − (u1

2, u
2
2) +(u1

2, v
1
2)+Q2 + (v2

2, u
2
3)+P3+,

. . . , +Q8+(v2
8, u

2
1) is a required fault-free Hamiltonian cycle in

LeTQ3,3 (refer to Fig. 3(b)).
Case 2.2 F0 and F1 are in different copies of LTQ3[R]. The

proof is the same as Case 2.1.
Case 2.3 F0 is in LTQ3[L] and F1 is in LTQ3[R]. Suppose

that F0 ∈ V(LTQ3[L1]) and F1 ∈ V(LTQ3[R2]). By Lemma 2,
there is a fault-free Hamiltonian cycle HC[L1] in LTQ3[L1] and
HC[R2] in LTQ3[R2], respectively. Select the edges (u1

1, u
2
1) in

HC[L1] and (v1
2, v

2
2) in HC[R2] such that the neighbours of u1

1
or u2

1 are not in LTQ3[R2] and the neighbours of v1
2 or v2

2 are not
in LTQ3[L1]. Suppose that the neighbours of u1

1, u2
1, v1

2 and v2
2

are v1
1 in LTQ3[R1], v2

8 in LTQ3[R8], u1
3 in LTQ3[L3] and u2

4 in
LTQ3[L4], respectively. The desired fault-free Hamiltonian cy-
cle HC[L1] - (u1

1, u
2
1 + (u1

1, v
1
1) + Q1 + (v2

1, u
2
2) + P2 +, . . . , +Q8

+ (v2
8, u

2
1) can be obtained by Case 2.1 in Fig. 4(a).

Case 3 Both F0 and F1 are in E1. Since the number of edges
E1 is 64 > 2, we can select 16 fault-free edges E1 between
LTQ3[Li] and LTQ3[R j] (1 � i � 8, 1 � j � 8). By Lemma 1,
there is a Hamiltonian path in each copy LTQ3. Thus, a desired
fault-free Hamiltonian cycle P1 + (u1

1, v
1
1) + Q1 +, (v2

1, u
2
2) + P2

+ (u1
2, v

1
2) + Q2 + . . . , + Q8 + (v2

8, u
2
1) can be constructed by

linking the Hamiltonian paths with the edges E1.
Case 4 F0 is in LTQ3[L] and F1 is in E1. Suppose that

F0 ∈ V(LTQ3[L1]). By Lemma 2, there is a fault-free Hamil-
tonian cycle HC[L1] in LTQ3[L1]. Select an edge (u1

1, u
2
1) in

Fig. 4 Illustrations for the proof of Cases 2.3 (a) and 4 (b)
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HC[L1] such that the edges who are composed by u1
1, u2

1 and
their neighbours in LTQ3[R j] (1 � j � 8) are all fault-free.
Suppose that the neighbours of u1

1 and u2
1, v1

2 are v1
1 and v2

8, re-
spectively. Using the similar method, it can be found other 14
fault-free edges E1 between LTQ3[Li] and LTQ3[R j] (1 � i � 8,
1 � j � 8). By Lemma 1, There exists a fault-free Hamiltonian
path in every copies of LTQ3 except for LTQ3[L1]. A desired
fault-free Hamiltonian cycle HC[L1] - (u1

1, u
2
1) + (u1

1, v
1
1) + Q1

+ (v2
1, u

2
2) + P2 +, . . . , +Q8 + (v2

8, u
2
1) can be obtained by Case

2.1 in Fig. 4(b). �

Lemma 7 For s � 4, LeTQs,s is (s − 1)-Hamiltonian

Proof By Lemma 3, LeTQs,s can see as the disjoint union of
2s copies of LTQs[L] and 2s copies of LTQs[R]. Hence, we can
denote LTQs[L1], LTQs[L2], . . . , and LTQs[L2s ] as 2s copies
of LTQs that contain the edges E2, and LTQs[R1], LTQs[R2],
. . . , and LTQs[R2s ] as 2s copies of LTQs that contain the edges
E3. Let F be a faulty set of LeTQs,s with Fl = F ∩ LTQs[L],
Fr = F∩LTQs[R], and F1 = F∩E1. Among them, let fl = |Fl|,
fr = |Fr|, and f1 = |F1|. By the location of faults, we have the
following cases.

Case 1 All faults are located in the the same copy of LTQs.
Suppose that all of the faults are located in LTQs[L1], Then,
fl = s − 1. Since LTQs is (s − 2)-Hamiltonian by Lemma 2,
there exist two vertices u1

1 and u2
1 such that there is a Hamilto-

nian path P1 between u1
1 and u2

1 in LTQs[L1].
Suppose that v1

1 is the neighbour of u1
1 in LTQs[R1] and v2

2s is
the neighbour of u2

1 in LTQs[R2s ]. Select v2
1 ∈ V(LTQs[R1]) −

{v1
1} such that u2

2 is the neighbour of v2
1 in LTQ3[L2]. Select

u1
2 ∈ V(LTQs[L2]) − u2

2, v2
2 ∈ V(LTQs[R2]) − v1

2, u1
3, v2

3, . . . ,
v2

2s−1 , u1
2s ∈ V(LTQs[L2s ]) − {u2

2s} such that v1
2, u2

3, v1
3, u2

4, . . . ,
u2

2s , v1
2s are the neighbours of u1

2 ∈ V(LTQs[L2]) − u2
2, v2

2 ∈
V(LTQs[R2]) − {v1

2}, u1
3, v2

3, . . . , v2
2s−1 , u1

2s ∈ V(LTQs[L2s ]) − u2
2s ,

respectively. Since LTQs is Hamiltonian connected by Lemma
2, there is a Hamiltonian path in each copy fault-free LTQs.
Thus, a required fault-free Hamiltonian cycle P1 + (u1

1, v
1
1) +

Q1 + (v2
1, u

2
2) + P2 + (u1

2, v
1
2) + Q2 +, . . . , +Q2s + (v2

2s , u2
1) can

be constructed by linking the Hamiltonian paths with the edges
E1 (refer to Fig. 3(a)).

Case 2 Faults are dispersed in LTQs[L], LTQs[R], and E1.
Suppose that fl is the greatest of fl, fr and f1. Since at least two
of fl, fr and f1 are greater than zero, then fl � s − 2, fr � s − 3
and fr+ f1 � s−2(s � 4). Without loss of generality, we assume
that Fl is in LTQs[L1]. Because LTQs is (s − 2)-Hamiltonian,
there is a Hamiltonian cycle HC[L1] with at least 2s − (s − 2)
edges. Also because 2s − (s − 2) > 2(s − 2), we can select a
fault-free edge (u1

1, u
2
1) in HC[L1] such that the edges E1 who

are composed by u1
1, u2

1 and their neighbours are all fault-free.
Without loss of generality, we assume that v1

1 is the neighbour
of u1

1 in LTQs[R1] and v2
2s is the neighbour of u2

1 in LTQs[R2s ].
Since LTQs is (s− 3)-Hamiltonian connected, there is a Hamil-
tonian path in each copy LTQs except for LTQs[L1]. Then, a
desired fault-free Hamiltonian cycle HC[L1] -(u1

1, u
2
1) + (u1

1, v
1
1)

+ Q1 + (v2
1, u

2
2) + P2 +, . . . , +Q2s + (v2

2s , u2
1) can be constructed

by linking the Hamiltonian paths and the path HC[L1]− (u1
1, u

2
1)

with the fault-free edges E1 (refer to Fig. 3(b)).
Case 3 All of the faults are in the E1. The discussion for the

situation is the same as Case 3 of Lemma 6. �

Lemma 8 LeTQ3,3 is 1-Hamiltonian connected.

Proof By Lemma 3, LeTQ3,3 can be divided into 8 copies
of LTQ3[L] and 8 copies of LTQ3[R]. Hence, we can denote
LTQ3[L1], LTQ3[L2], . . . , and LTQ3[L8] as 8 copies of LTQ3

that contain the edges E2, and LTQ3[R1], LTQ3[R2], . . . , and
LTQ3[R8] as 8 copies of LTQ3 that contain the edges E3. We
denote u1

1, u2
1, . . . , and u8

1 as 8 vertices of LTQ3[L1], u1
2, u2

2,
. . . , u8

2 as 8 vertices of LTQ3[L2], . . . , and u1
8, u2

8, . . . , and u8
8

as 8 vertices of LTQ3[L8]. And we denote v1
1, v2

1, . . . , and v8
1

as 8 vertices of LTQ3[R1], v1
2, v2

2, . . . , and v8
2 as 8 vertices of

LTQ3[R2], . . . , and v1
8, v2

8, . . . , and v8
8 as 8 vertices of LTQ3[R8].

What’s more, each vertex of LTQ3[Li] has only one neighbour
in LTQs[R j] and each vertex of LTQs[R j] has only one neigh-
bour in LTQ3[Li] (1 � i � 8, 1 � j � 8). According to the loca-
tion of the faulty vertex z, we have the following three cases:

Case 1 z ∈ LTQ3[L]. There are four subcases:
Case 1.1 x, y, and z are in the same copy of LTQ3[L]. Sup-

pose that x = u1
1, y = u1

8, and z are in LTQ3[L1]. Imaging that
z is fault-free, there is a fault-free Hamiltonian path HP[L1]
between x and y by Lemma 1. Find the neighbours ui

1 and
ui+2

1 (1 � i � 6) of z in HP[L1]. Suppose that the neighbour of ui
1

is v1
2 in LTQ3[R2] and the neighbour of ui+2

1 is v1
1 in LTQ3[R1].

Select v2
1 ∈ V(LTQ3[R1]) − {v1

1}, v2
2 ∈ V(LTQ3[R2]) − {v1

2},
u1

3 ∈ V(LTQ3[L3]) − u2
3, . . . , v2

8 ∈ V(LTQ3[R8]) − {v1
8} such

that u2
2, u2

3, v1
3, . . . , u1

2 are the neighbours of v2
1, v2

2, u1
3, . . . , v

2
8,

respectively. By Lemma 1, there is a Hamiltonian path in each
copy LTQ3. Thus, a required fault-free Hamiltonian path be-
tween x and y can be constructed by linking the Hamiltonian
paths with the edges E1 in Fig. 5(a). That is, 〈x, ui

1〉 + 〈ui
1, v

1
2〉 +

Q2 + 〈v2
2, u

2
3〉 + P3 +, . . . , +Q8 + 〈v2

8, u
1
2〉 + P2 + 〈u2

2, v
2
1〉 + Q1

+ 〈v1
1, u

i+2
1 〉 + 〈ui+2

1 , y〉.
Case 1.2 x (or y), z are in the same copy of LTQ3[L]. Sup-

pose that x = u1
1, z ∈ V(LTQ3[L1]) and y = u1

2 ∈ V(LTQ3[L2]).
By Lemma 2, there is a fault-free Hamiltonian cycle HC[L1] =
〈x, u2

1, . . . , u
7
1, x〉 in LTQ3[L1]. Find u8

2 ∈ V(LTQ3[L2]) − {u1
2},

then, there is a fault-free Hamiltonian path HP(u8
2, y) between

u8
2 and y. Select an edge (u2

2, u
i+1
2 ) (2 � i � 6) in HP(u8

2, y) such
that the neighbours of u2

1 (u7
1) and ui+1

2 are in the same copy of
LTQ3[R]. Suppose that the neighbours of u2

1, ui+1
2 , ui

2, and u8
2 are

v2
1, v1

1, v1
2 and v1

3, respectively. Select v2
2 ∈ V(LTQ3[R2]) − {v1

2},
v2

3 ∈ V(LTQ3[R3]) − {v1
3}, u1

8 ∈ V(LTQ3[L8]) − {u2
8}, . . . , u1

3 ∈
V(LTQ3[L3]) − {u2

3} such that u2
3, u

2
4, v

1
8, . . . , v

2
8 are the neigh-

bours of v2
2, v

2
3, u

1
8, . . . , u

1
3, respectively. By Lemma 1, there ex-

ists a Hamiltonian path in each copy LTQ3[L j](2 � j � 8) and
LTQ3[Rk](1 � k � 8). Thus, a desired fault-free Hamiltonian
path between x and y can be constructed by linking the Hamil-
tonian paths, 〈x, u2

1〉-path, 〈ui+1
2 , u

8
2〉-path, and 〈ui

2, y〉-path with
the edges E1 in Fig. 5(b). That is, HC[L1] − 〈x, ui+1

2 + 〈u2
1, v

2
1〉

+ Q1 + 〈v1
1, u

i+1
2 〉 + P(ui+1

2 , u
8
2) +, . . . , +Q8 + 〈v2

8, u
1
3〉 + P3 +

〈u2
3, v

2
2〉 + Q2 + P(v1

2, y).
Case 1.3 x and y are in the same copy of LTQ3[L], x

and z are in different copy of LTQ3[L]. Suppose that x = u1
1,

y = u8
1 ∈ V(LTQ3[L1]) and z ∈ V(LTQ3[L2]). By Lemma

1, there is a Hamiltonian path HP[L1] between x and y in
LTQ3[L1]. By Lemma 2, there exists a fault-free Hamiltonian
cycle HC[L2] in LTQ3[L2]. Select an edge (ui

1, u
i+1
1 ) (1 � i � 6)

in HP[L1] and an edge (b, c) in HC[L2] such that the neigh-
bours of ui

1 and (b, c) are in the same copy LTQ3[R]. Suppose
that the



Weibei FAN et al. Fault-tolerant hamiltonian cycles and paths embedding into locally exchanged twisted cubes 7

Fig. 5 Illustrations for the proof of Cases 1.1 (a) and 1.2 (b) of Lemma 8

neighbours of ui
1, c, ui+1

1 , and b are v1
2, v2

2, v1
3 and v2

1, respec-
tively. Select v1

1, v2
3, u1

4, . . . , u1
8, u2

3 such that u1
3, u2

4, v1
4, . . . , v1

8,
v2

8 are the neighbours of v1
1, v2

3, u1
4, . . . , u1

8, u2
3, respectively. By

Lemma 1, there is a Hamiltonian path in each copy LTQ3 ex-
cept for LTQ3[L2]. Thus, a desired fault-free Hamiltonian path
between x and y can be constructed by linking the Hamilto-
nian paths, 〈x, ui

1〉-path, and 〈ui+1
1 , y〉-path with the edges E1 in

Fig. 6(a). That is, P(x, ui
1) + 〈ui

1, v
1
2〉 + Q2 + 〈v2

2, c〉 + HC[L2]
-〈b, c〉 + 〈b, v2

1〉 + Q1 + 〈v1
1, u

1
3〉 + P3 + P(u2

3, v
1
8) + Q8 + 〈v1

8, u
1
8〉

+ P8 + 〈u2
8, v

2
7〉 + Q7+, · · · ,+P(v1

3, y).
Case 1.4 x, y, and z are in different copy of LTQ3[L]. Sup-

pose that x = u1
1 ∈ V(LTQ3[L1]), y = u1

2 ∈ V(LTQ3[L2]), and
z ∈ V(LTQ3[L3]). Imaging that z is fault-free. Since LTQ3 is
Hamiltonian connected, it can be selected a Hamiltonian path
〈u1

3, u
2
3, . . . , u

8
3〉 in LTQ3[L3] such that z = ui

3 (3 � i � 6).
Suppose that the neighbours of u1

3, ui
3 − 1, ui+1

3 and u8
3 are

v1
3, v1

1, v1
2, and v2

8, respectively. Select u2
1 ∈ V(LTQ3[L1]) − {x}

in LTQ3[L1], u2
2 ∈ V(LTQ3[L2]) − {y} in LTQ3[L2], u2

4, v1
4,

. . . , v1
8 such that v2

1, v2
2, v

2
3, u

1
3, . . . , u1

8 are the neighbours of
u2

1, u
2
2, u

2
4, v

1
3, . . . , v

1
8, respectively. (if the neighbours of x or y

are in LTQ3[R1] or LTQ3[R8], we can choose other Hamilto-
nian path which meet the condition z = ui

3 (3 � i � 6)).
By Lemma 1, there is a Hamiltonian path in each copy LTQ3

except for LTQ3[L3]. Thus, a desired fault-free Hamiltonian
path between u and v can be constructed by linking the Hamilto-
nian paths, 〈u1

3, u
i−1
3 〉-path, and 〈ui+1

3 , u
8
3〉-path with the edges E1

in Fig. 6(b). That is, P1 + 〈u2
1, v

2
1〉 + Q1 + 〈v1

1, u
i−1
3 〉 + P(ui−1

3 , u
1
3)

+ 〈u1
3, v

1
3〉 + Q3+, · · · ,+Q8 +〈v2

8, u
8
3〉 + P(u8

3, u
i+1
3 ) + 〈ui+1

3 , v
1
2〉 +

Q2 + P(v2
2, y).

Case 1.5 x and z are in different copy of LTQ3[L], y ∈
V(LTQ3[R]). Without loss of generality, suppose that x = u1

1 ∈
V(LTQ3[L1]), y = v8

1 ∈ V(LTQ3[R1]), and z ∈ V(LTQ3[L2]). By
Lemma 2, there exists a fault-free Hamiltonian cycle HC[L2] =
〈u1

2, u2
2, . . . , u7

2, u1
2〉 in LTQ3[L2]. Select a vertex u1

2 in HC[L2]
and a vertex u2

1 in V(LTQ3[L2])−{x} such that the neighbours of
u1

2 and u2
1 are in the same copy of LTQ3[Ri] (2 � i � 8). Suppose

that the neighbours of u1
2, u2

1, and u2
2 are v2

2, v1
2, and v1

3, respec-
tively. Select v1

1, u
2
3, u

2
4, v

1
4, . . . , u

1
8 such that u1

3, v
2
8, v

2
3, u

1
4 . . . , v

1
8

are the neighbours of v1
1, u

2
3, u

2
4, v

1
4, . . . , u

1
8, respectively. By

Lemma 1, there is a Hamiltonian path in each copy LTQ3 ex-
cept for LTQ3[L2]. Thus, a desired fault-free Hamiltonian path
between x and y can be constructed by linking the Hamilto-
nian paths and u1

2, u
2i

2 -path with the edges E1 in Fig. 7(a). That
is, P1 + 〈u2

1, v
2
2〉+Q2 +〈v1

2, u
1
2〉+HC[L2]-〈u1

2, u
2
2〉+hu2

2, v
1
3〉+ . . . ,

+Q8 +〈v2
8, u

2
3〉+P3 + P(u1

3, y).
Case 2 z ∈ LTQ3[R]. There are four subcases:
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Fig. 6 Illustrations for the proof of Cases 1.3 (a) and 1.4 (b) of Lemma 8

Case 2.1 x, y are in the same copy of LTQ3[L]. Suppose that
x = u1

1, y = u8
1 ∈ V(LTQ3[L1]), z ∈ V(LTQ3[R3]). By Lemma

2, there is a fault-free Hamiltonian cycle HC[R3] in LTQ3[R3]
and a fault-free Hamiltonian path HP[L1] in LTQ3[L1]. There
exists a vertex v in HC[R3] such that the neighbour of v is not
in LTQ3[L1]. Select an edge (v, v1

3) (or (v, v2
3)) in HC[R3] such

that the neighbour of v1
3 (v2

3) is not in LTQ3[L1]. Select an edge
(u3

1, u
4
1) in HP[L1] such that the neighbours of u3

1 and u4
1 are not

in LTQ3[R3]. Suppose that the neighbours of u3
1, u3

1, v, and v1
3

are v1
1, v1

2, u1
3, and u1

4, respectively. Select u2
2, u2

3, v1
4, . . . , and v2

8
such that v2

1, v2
2, u1

2, . . . , and u2
4 are the neighbours of u2

2, u
2
3, v

1
4,

. . . , and v2
8, respectively. By Lemma 1, there is a Hamiltonian

path in each copy LTQ3 except for LTQ3[R3]. Thus, a desired
fault-free Hamiltonian path between u and v can be constructed
by linking the Hamiltonian paths, 〈x, u3

1〉- path, 〈v1
3, v〉-path, and

〈u4
1, y〉-path with the edges E1 in Fig. 7(b). That is, P(x, u3

1) +
〈u3

1, v
1
1〉 + Q1 + 〈v2

1, u
2
2〉 + P2 + . . . , +Q8 + 〈v2

8, u
2
4〉 + P4+ 〈u1

4, v
1
3〉

+ HC[R3] - 〈v, v1
3〉+ P(v, y).

Case 2.2 x, y are in different copy of LTQ3[L]. Sup-
pose that x = u1

1 ∈ V(LTQ3[L1]), y = u1
2 ∈ V(LTQ3[L2]),

z ∈ V(LTQ3[R2]), and u2
1 is the neighbour of v2

1. By Lemma
2, there is a fault-free Hamiltonian cycle 〈v1

2, v
2
2, . . . , v

7
2, v1

2〉
in LTQ3[R2]. Since LTQ3 is Hamiltonian connected, we can
choose a Hamiltonian path 〈y, u2

2, . . . , u
8
2〉 in LTQ3[L2] such that

the neighbours of u3
2 and u4

2 are not in LTQ3[R2]. Suppose that
the neighbours of u3

2, u4
2 and u8

2 are v2
3, v2

4 and v2
5, respectively.

Find an edge (v3
2, v

4
2) in HC[R2] such that the neighbours of

v3
2 and v4

2 are not in LTQ3[L1] and LTQ3[L2]. Suppose that the
neighbours of v3

2 and v4
2 are u2

3 and u2
4, respectively. Select v1

1,
v1

3, v1
4, . . . , v1

8, and u2
5 such that u1

3, u1
5, u1

4, . . . , u1
8, and v2

8 are
the neighbours of v1

1, v1
3, v1

4, . . . , v1
8, and u2

5, respectively. By
Lemma 1, there is a Hamiltonian path in each copy LTQ3 ex-
cept for LTQ3[R2]. Thus, a desired fault-free Hamiltonian path
between u and v can be constructed by linking the Hamiltonian
paths, 〈u4

2, u
8
2〉-path, 〈v3

2, v
4
2〉-path, and P(u3

2, y) with the edges
E1 in Fig. 8(a). That is, P(x, u2

1) + 〈u2
1, v

2
1〉 +Q1 + 〈v1

1, u
1
3〉 + P3

+ P(u2
3, v

4
2) + P(v4

2, u
8
2) + 〈u8

2, u
2
5〉 +, . . . , +Q8+ P(v2

8, y).
Case 2.3 x is in LTQ3[L], y and z are in different copy

of LTQ3[R]. Suppose that x = u1
1 ∈ V(LTQ3[L1]), y ∈

V(LTQ3[R1]), and z ∈ V(LTQ3[R2]). By Lemma 2, there exists
a fault-free Hamiltonian cycle 〈v1

2, v
2
2, . . . , v7

2, v1
2〉 in LTQ3[R2].

Find an edge (v1
2, v

2
2) ((v2

2, v
7
2)) in HP[R2] such that the neigh-

bour of v1
2 and v2

2(v7
2) are not in LTQ3[L1]. Without loss of

generality, suppose that the neighbour of v1
2 and v2

2 are u1
2 and

u1
3, respectively. Select v1

1 ∈ {V(LTQ3[R1]) − y} and u2
1 ∈{V(LTQ3[L1]) − x} such that the neighbours of v1

1 are not in
LTQ3[L1], LTQ3[L2], and LTQ3[L3] and the neighbours of u2

1
are not in LTQ3[R1] and LTQ3[R2]. Suppose that the neigh-
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Fig. 7 Illustrations for the proof of Cases 1.5 (a) and 2.1 (b) of Lemma 8

bours of v1
1 and u2

1 are u1
4 and v1

3 in LTQ3[R3], respectively.
Select v2

3, u2
4, . . . , v2

8 such that u2
3, u2

2, . . . , u2
4 are the neigh-

bours of u2
3, v

2
4, . . . , v2

8, respectively. Since LTQ3 is Hamilto-
nian connected, a desired fault-free Hamiltonian path between
x and y can be constructed by linking the Hamiltonian paths and
〈v1

2, v
2
2〉-path with the edges E1 in Fig. 8(b). That is, P(x, u2

1) +
〈u2

1, v
1
3〉 + Q3 + 〈v2

3, u
2
3〉 + P3 + P(u1

3, u
1
2) + P2 + 〈u2

2, v2
4〉 +, . . . ,

+Q8 + P(v2
8, y).

Case 2.4 x is in LTQ3[L], y is in LTQ3[R]. And y, z are in the
same copy of LTQ3[R]. Suppose that x = u1

1 ∈ V(LTQ3[L1]),
y = v1

1, z ∈ V(LTQ3[R1]). Select a vertex u2
1 in V(LTQ3[L1])−{x}

such that the neighbours of u2
1 are not in LTQ3[R1]. By Lemma

2, there exists a fault-free Hamiltonian cycle 〈y, v2
1, . . . , v7

1, y〉 in
LTQ3[R1]. Then, the neighbours of v2

1(v7
1) are not in LTQ3[L1].

Suppose that the neighbours of v2
1 and u2

1 are u2
2 and v2

2, respec-
tively. Select u1

2v1
2, . . . , u1

8, and v2
8 such that v1

8, u
1
3, . . . , v1

7, and u2
8

are the neighbours of u1
2v1

2, . . . , u1
8, and v2

8, respectively. Since
LTQ3 is Hamiltonian connected, a desired fault-free Hamilto-
nian path between x and y can be constructed by linking the
Hamiltonian paths and 〈v2

1, y〉-path with the edges E1 in Fig.
9(a). That is, P(x, u2

1) + 〈u2
1, v

2
2〉 + Q2 +, . . . , +Q8 + P(v1

8, y).

Case 2.5 x, y, and f are in the same copy of LTQ3[R]. The
case is the same as Case 1.1.

Case 3 z ∈ E1. There exists 63 fault-free E1 edges between
LTQ3[L] and LTQ3[R]. By the location of x and y, we have the
following cases.

Case 3.1 x and y are in the same copy of LTQ3. Suppose
that x = u1

1, y = u8
1 ∈ V(LTQ3[L1]). There is a Hamiltonian

path HP[L1] between x and y in LTQ3[L1] by Lemma 1. Select
an edge (ui

1, u
i+1
1 ) (1 � i � 6) in HP[L1] such that the edges

who are composed by ui
1 and its neighbour which is in LTQ3[R]

and ui+1
1 and its neighbour which is in LTQ3[R] are fault-free.

Suppose that the neighbours of ui
1 and ui+1

1 are v1
1 and v1

2. Using
the similar method to Case 1.3, it can be constructed a desired
fault-free Hamiltonian path between x and y. That is, P(x, ui

1) +
〈ui

1, v
1
1〉 + Q1 +, . . . , +Q8 + P(v2

8, y) (refer to Fig. 9(b)).
Case 3.2 x and y are in different copy of LTQ3. Without

loss of generality, suppose that x = u1
1, y = v8

1 ∈ V(LTQ3[R8]).
We can select 16 fault-free edges E1 between LTQ3[Li] and
LTQ3[R j] (1 � i � 8, 1 � j � 8). By Lemma 1, there ex-
ists a Hamiltonian path in each copy LTQ3. A desired fault-free
Hamiltonian path between x and y can be constructed by linking
the Hamiltonian paths. The method of constructing is similar to
Case 2.3. Thus, we omit it. �

Lemma 9 For s � 4, LeTQs,s is (s − 2)-Hamiltonian con-
nected.
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Fig. 8 Illustrations for the proof of Cases 2.2 (a) and 2.3 (b) of Lemma 8

Proof By Lemma 3, LeTQs,s can be seen as the disjoint
union of 2s copies of LTQs[L] and 2s copies of LTQs[R]. Hence,
we can denote LTQs[L1], LTQs[L2], . . . , and LTQs[L2s ] as
2s copies of LTQs that contain the edges E2, and LTQs[1],
LTQs[2], . . . , and LTQs{R2s }] as 2s copies of LTQs that con-
tain the edges E3. Let F be a faulty set of LeTQs,s with Fl =

F ∩ LTQs[L], Fr = F ∩ LTQs[R], and F1 = F ∩ E1. Among
them, let fl = |Fl|, fr = |Fr |, and f1 = |E1|. By the location of
faults, we have the following cases.

Case 1 All the faults are located in E1 or the same copy of
LTQs. The proof is the same as LeTQ3,3 in Lemma 13.

Case 2 The faults are scattered in LTQs[L], LTQs[R], and
E1. Suppose that fl is the greatest of fl, fr and fl. Since at least
two of fl, fr and fl are greater than zero, then fl � s−3, fr � s−3
and fr + f1 � s − 3(s � 4). By the location of x and y, we have
the following cases.

Case 2.1 x and y are in the same copy of LTQs. Suppose
that x = u1

1 and y = u2s

1 are in LTQs[L1]. By Lemma 2, there
is a fault-free Hamiltonian path HP(x, y) in LTQs[L1]. Since
2s − 1 − 2 − (s − 3) > 2(s − 3), there is an edge (uk

1, u
k
1 + 1)

(1 � k � 2s − 1) such that the neighbours of uk
1 and uk

1 + 1 are
in LTQs[Ri] and LTQs[R j] (1 � i � 2s, 1 � j � 2s, and i, j),
respectively. And both LTQs[Ri] and LTQs[R j] are fault-free.
Since LTQs is (s − 3)- Hamiltonian connected, by the Case 1.3

of Lemma 13, a desired fault-free Hamiltonian path between x
and y is constructed by linking the Hamiltonian paths, 〈x, uk

1〉-
path, and 〈uk+1

1 , y〉-path with the edges E1 (refer to Fig. 6(a)).
Case 2.2 x and y are in different copy of LTQs. We have the

following cases.
Case 2.2.1 x and y are in different copy of LTQs[L]. Sup-

pose that x = u1
1 ∈ V(LTQs[L1]) and y = u1

2 ∈ V(LTQs[L2]).
Since 2s − 2 > s − 3, we can select a fault-free LTQs[Ls]
(s � 1, 2). Suppose that LTQs[L3] is fault-free. By Lemma
6, there is a Hamiltonian path HP(u1

3, u
2s

3 ) in LTQs[L3]. Since
2s − 3 > 2(s − 3), there is an edge (uk

3, u
k+1
3 ) (2 � k � 2s − 1)

such that the neighbours of uk
3 and uk+2

3 are in LTQs[Ri] and
LTQs[R j] (1 � i � 2s, 1 � j � 2s, and i, j), respectively.
And both LTQs[Ri] and LTQs[R j] are fault-free. Select a ver-
tex u2

1 in V(LTQs[L1]) − Fl − {x} such that the fault-free neigh-
bours of u2

1 and uk
3 are in the same copy of LTQs[Ri]. Select

a vertex u2
2 in V(LTQs[L2]) − Fl − {y} such that the fault-free

neighbours of u2
2 and uk+1

3 are in the same copy of LTQs[R j].
Without loss of generality, suppose that the neighbours of i = 1
and j = 2. Since LTQs is (s − 3)-Hamiltonian connected, by
the construction method of Case 1.4 of Lemma 13, a desired
fault-free Hamiltonian path between x and y can be constructed
by linking the Hamiltonian paths, 〈u1

3, uk
3〉-path, and 〈uk+1

3 , u
2s

3 〉-
path with the edges E1 (refer to Fig. 6(b)).
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Fig. 9 Illustrations for the proof of Cases 2.4 (a) and 3.1 (b) of Lemma 8

Case 2.2.2 x and y are in different copy of LTQs[R]. The
case is the same as Case 2.2.1.

Case 2.2.3 x is in LTQs[L] and y is in LTQs[R]. Suppose
that x = u1

1 ∈ V(LTQs[L1]) and y = v1
1 ∈ V(LTQs[R1]). Since

2s−2 − (s − 3) > s − 3, it can be selected a fault-free vertex u2
1

in V(LTQs[L1]) − {x} such that the neighbour of u2
1 is in fault-

free LTQs[Ri] (1 � i � 2s). Since 2s−2 − (s − 3) > s − 3, it
can be selected a fault-free vertex v2

1 in V(LTQs[R1]) − {y} such
that the neighbours of v2

1 is in fault-free LTQs[L j] (1 � j � 2s).
Suppose that the neighbours of u2

1 and v2
1 are v2

2 and u2
2. Select

v1
2, v

2
3, u1

4, . . . , v1
2s such that u1

3, u
2
3, v

1
3, . . . , u

1
2 are the neighbours

of v1
2, v

2
3, u

1
4, . . . , v

1
2s , respectively. By Lemma 2, there is a fault-

free Hamiltonian paths in each copy LTQs. Thus, a required
fault-free Hamiltonian path between x and y can be constructed
by linking the Hamiltonian paths with the edges E1 (refer to the
construction method of Case 1.5 of Lemma 13 in Fig. 7(a)). �

Theorem 1 If LeTQs,k is (s − 1)-Hamiltonian and (s − 2)-
Hamiltonian connected for s � 2, k � 3 and s � k, then
LeTQs,k+1 is (s − 1)-Hamiltonian.

Proof Let Ec be the set of crossing edges and Ec =

{(u0, u1)|(u0, u1) ∈ E3, u0 ∈ LeTQ0
s,k+1 and u1 ∈ LeTQ1

s,k+1}.
Let F be a faulty set of LeTQs,k+1 with Fl = F ∩ LeTQ0

s,k+1,
Fr = F ∩ LeTQ1

s,k+1, and F1 = F ∩ E1. And let fl = |Fl|,

fr = |Fr |, and fc = |Ec|. By the location of faults, we have the
following cases.

Case 1 All the faults are located in the same copy of
LeTQi

s,k+1(i ∈ 0, 1). Suppose that all of the faults are in
LeTQ0

s,k+1 and |Fl| = s−1. Since LeTQs,k is (s−1)-Hamiltonian
and LeTQs,k+1 at least have 2s+k − (s − 1) � 2 fault-free Ec

edges, there exist a fault-free edge (u0, v0) ∈ E3 in LeTQ0
s,k+1

such that there is a Hamiltonian path HP(x0, y0) between x0 and
y0. Let x1 and y1 be the neighbours of x0 and y0 in LeTQ1

s,k+1.
Since LeTQ1

s,k+1 is (s − 2)-Hamiltonian connected, there is a
Hamiltonian path HP(u1, v1) between u1 and v1. Thus, 〈u0,
HP(u0, v0), v0, v1,HP(u1, v1), u1, u0〉 is a fault-free Hamiltonian
cycle.

Case 2 All of the faults are located in Ec. Since LeTQs,k+1

has at least 2s+k − (s − 1) � 2 fault-free crossing edges
where s � 2 and k � 3. We always can choose two
fault-free crossing edges (u0, u1) and (v0, v1). Because both
LeTQ0

s,k+1 and LeTQ1
s,k+1 are Hamiltonian connected, there ex-

ists a Hamiltonian path HP(u0, v0) in LeTQ0
s,k+1 and Hamil-

tonian path HP(u1, v1) in LeTQ1
s,k+1. Thus, 〈x0,HP(x0, y0),

y0, y1, HP(x1, y1), x1, x0〉 is a fault-free Hamiltonian cycle in
LeTQs,k+1.

Case 3 The faults are scattered in LeTQ0
s,k+1, Ec and
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Algorithm 1 Fault-tolerant hamiltonian cycle (a, b)

Input: LeTQs,t and an edge e = (a, b); Faulty elements F.
Output: A Hamiltonian cycle in LeTQs,t-F.

1: if (s, t) ∈ {(2, 2)} then
2: return A Hamiltonian cycle in LeTQ2,2-F;
3: end if
4: if (s � 2 and t � 2 then
5: return LeTQHPs,t,a,b+(b, a);
6: end if
7: if (s = 1 and t � 1 then
8: return HC(1, t, e);
9: end if

10: if (1, t) ∈ (1, 1), (1, 2), (1, 3) then
11: return A Hamiltonian cycle in LeTQ1,t-F;
12: else
13: C∗ = HC(1, t − 1, e);
14: C0 = C∗i;
15: C1 = C∗i(1 − i);
16: Select (x0 , y0) ∈ E3) on C0 and (x1 , y1) ∈ E3) on C1, such that (x0 , y0)

and (x1 , y1) are all belong to the crossing edges of E3;
17: return (C0 − (x0 , y0)) + (C1 − (x1 , y1));
18: end if

LeTQ1
s,k+1. Then 3 � s � k. Suppose that fl is the greatest of

fl, fr and fc. Since at least two of fl, fr and fc greater than
zero, then fr � fl � s − 2 and fr + fc � s − 2. Because
2s+k − (s − 2) � 2, it can be found two fault-free crossing
edges (u0, u1) and (v0, v1). Since both LeTQ0

s,k+1 and LeTQ1
s,k+1

are (s − 2)-Hamiltonian connected, there is a Hamiltonian path
HP(u0, v0) in LeTQ0

s,k+1 and a Hamiltonian path HP(u1, v1) in
LeTQ1

s,k+1. Thus, 〈u0,HP(u0, v0), v0, v1, HP(u1, v1), u1, u0〉 is a
faultfree Hamiltonian cycle in LeTQs,k+1.

The theorem is thus proved. �

Theorem 2 For s � 2, t � 3, and s � t, LeTQs,t is (s − 1)-
Hamiltonian.

Proof We prove this by induction on t. It is clearly holds
for LeTQs,s (s � 3) by Lemma 6 and Lemma 7. Suppose
that LeTQs,k (3 � t = k) is (s − 1)-Hamiltonian and (s − 2)-
Hamiltonian connected. By Theorem 1, the conclusion holds
for t = k + 1. Since LeTQ2,3 is 1-Hamiltonian and Hamilto-
nian connected by Lemma 5, we can easily obtain that LeTQ2,t

is 1-Hamiltonian by Theorem 1. Therefore, LeTQs,t is (s − 1)-
Hamiltonian. �

Lemma 10 If LeTQs,k is (s − 1)-Hamiltonian and (s − 2)-
Hamiltonian connected for 3 � s � k, then LeTQs,k+1 is (s− 2)-
Hamiltonian connected.

Proof Let Ec be a class of crossing edges and Ec =

{(u0, u1)|(u0, u1) ∈ E3, u0 ∈ LeTQ0
s,k+1 and u1 ∈ LeTQ1

s,k+1}.
Let F be a faulty set of LeTQs,k+1 with Fl = F ∩ LeTQ0

s,k+1,
Fr = F ∩ LeTQ1

s,k+1, and F1 = F ∩ E1. And let fl = |Fl|,
fr = |Fr |, and fc = |Ec|. By the location of faults, we have the
following cases.

Case 1 All faults are located in the same copy of
LeTQi

s,k+1(i ∈ {0, 1}). Suppose that all of the faults are in
LeTQ0

s,k+1 and fl = s − 2. There are three subcases.

Case 1.1 x and y are in different LeTQi
s,k+1(i ∈ {0, 1}).

Suppose that x ∈ V(LeTQ0
s,k+1) and y ∈ V(LeTQ1

s,k+1). Select
a fault-free vertex u ∈ V(LTQt) in V(LeTQ0

s,k+1) − {x} such
that its neighbour u′ in LeTQ1

s,k+1 is different from y. Since
LeTQs,k is (s−2)-Hamiltonian connected, there is a Hamiltonian
path HP(x, u) in LeTQ0

s,k+1 and a Hamiltonian path HP(u′, y) in
LeTQ1

s,k+1. Thus, 〈x,HP(x, u), u, u′, HP(u′, y), y〉 is a fault-free
Hamiltonian path between x and y in LeTQs,k.

Case 1.2 Both x and y are in LeTQ0
s,k+1. Since LeTQs,k is

(s − 2)-Hamiltonian connected, there is a fault-free Hamilto-
nian path HP(x, y) in LeTQ0

s,k+1. Since 2s+k−1 − 3 − (s − 2) > 1,
there exists an edge (u0, v0) ∈ E3 in HP(x, y) such that their
neighbours u1 and v1 are in LeTQ1

s,k+1. By the condition of the
lemma, there is a Hamiltonian path HP(u1, v1) between u1 and
v1 in LeTQ1

s,k+1. Thus, 〈x, u0〉 + 〈u0, u1〉 + HP(u1, v1) + 〈v1, v0〉
+ 〈v0, y〉 is a fault-free Hamiltonian path between x and y in
LeTQs,k+1.

Case 1.3 Both x and y are in LeTQ1
s,k+1. By the condition

of the lemma, there is a Hamiltonian path HP(x, y) between
x and y in LeTQ1

s,k+1. Since 2s+k−1 − 3 > 2(s − 2), there is
an edge (u1, v1) ∈ E3 in LeTQ1

s,k+1 such that the neighbours
u0 and v0 are fault-free in LeTQ0

s,k+1. Since LeTQs,k is (s − 2)-
Hamiltonian connected, there is a fault-free Hamiltonian path
HP(u0, v0) in LeTQ0

s,k+1. Thus, 〈x, u1〉 + 〈u1, u0〉 + HP(u0, v0) +
〈v0, v1〉 + 〈v1, y〉 is a fault-free Hamiltonian path between x and
y in LeTQs,k+1.

Case 2 All of the faults are located in Ec. There are two
subcases.

Case 2.1 x and y are in different LeTQi
s,k+1(i ∈ {0, 1}).

Suppose that x ∈ V(LeTQ0
s,k+1) and y ∈ V(LeTQ1

s,k+1). Since
2s+k − (s− 2) � 3, we can select a fault-free vertex u ∈ V(LTQt)
in V(LeTQ0

s,k+1) − {x} such that its neighbour u′ in LeTQ1
s,k+1

is different from y. Since LeTQs,k is Hamiltonian connected,
there is a Hamiltonian path HP(x, u) in LeTQ0

s,k+1 and a Hamil-
tonian path HP(u′, y) in LeTQ1

s,k+1. Thus, 〈x,HP(x, u), u, u′,
HP(u′, y), y〉 is a fault-free Hamiltonian path between x and y
in LeTQs,k+1.

Case 2.2 Both x and y are in LeTQi
s,k+1(i ∈ 0, 1). Sup-

pose that x, y ∈ V(LeTQ0
s,k+1). There exists a Hamiltonian path

HP(x, y) between x and y in LeTQ0
s,k+1. Since 2s+k−1−2(s−2)�2,

we always can choose an edge (u0, v0) in HP(x, y) such that
the two crossing edges (u0, u1) and (v0, v1) are fault-free.
Since LeTQ1

s,k+1 is Hamiltonian connected, there is a fault-free
Hamiltonian path HP(u1, v1) between u1 and v1 in LeTQ1

s,k+1.
Thus, 〈x, u0〉, 〈u0, u1〉, HP(u1, v1), 〈v1, v0〉, 〈v0, y〉 is a fault-free
Hamiltonian path between x and y in LeTQ(s, k + 1).

Case 3 The faults are scattered in LeTQ0
s,k+1, Ec and

LeTQ1
s,k+1. Without loss of generality, suppose that fl is the

greatest of fl, fr and fc. Then fl � s − 3 and fr + fc � s − 3. We
have the following cases.

Case 3.1 x and y are in different LeTQi
s,k+1(i ∈ {0, 1}).

Suppose that x ∈ V(LeTQ0
s,k+1) and y ∈ V(LeTQ1

s,k+1). Se-
lect a fault-free vertex u ∈ V(LTQt) in V(LeTQ0

s,k+1) − {x}
such that the neighbour u′(u′ � y) in LeTQ1

s,k+1 and the
edge (u, u′) are both fault-free. Since LeTQs,k is (s − 2)-
Hamiltonian connected, there is a Hamiltonian path HP(x, u) in
LeTQ0

s,k+1 and a Hamiltonian path HP(u′, y) in LeTQ1
s,k+1. Thus,
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〈x,HP(x, u), u, u′,HP(u′, y), y〉 is a fault-free Hamiltonian path
between x and y in LeTQs,k+1.

Case 3.2 Both x and y are in LeTQi
s,k+1 (i ∈ {0, 1}).

Suppose that x, y ∈ V(LeTQ0
s,k+1). Since LeTQs,k is (s − 2)-

Hamiltonian connected, there is a fault-free Hamiltonian path
HP(x, y) in LeTQ0

s,k+1. Because 2s+k−1 − 3 − (s − 3) > 2(s −
3), there is an edge (u0, v0) in HP(x, y) such that u′0s and
v′0s neighbours u1 and v1 in LeTQ1

s,k+1, (u0, u1), and (v0, v1)
are all fault-free. By the condition of the lemma, there is a
Hamiltonian path HP(u1, v1) between u1 and v1 in LeTQ1

s,k+1.
Thus, 〈x, u0〉+〈u0, u1〉+ HP(u1, v1)+〈v1, v0〉+〈v0, y〉 is a fault-
free Hamiltonian path between x and y in LeTQs,k+1. �

Theorem 3 For s � 2, t � 3, and s � t, LeTQs,t is (s − 2)-
Hamiltonian connected.

Proof We prove this by induction on t. It is clearly holds
for LeTQs,s (s � 3) by Lemmas 8 and 9. Suppose that LeTQs,k

(3 � t = k) is (s−1)-Hamiltonian and (s−2)- Hamiltonian con-
nected. By Lemma 10, the conclusion holds for t = k + 1. We
easily obtain that LeTQ2,t is Hamiltonian connected by Lemma
4. Thus LeTQs,t is (s − 2)-Hamiltonian connected. �

Theorem 4 For s � 2, t � 3, and s � t, let a and b be two
different vertices in LeTQs,t. There exists an (NlogN) time algo-
rithm which can construct a Hamiltonian path and Hamiltonian
cycle between a and b in LeTQs,t, where N is the number of
vertices of LeTQs,t.

Proof In a graph LeTQs,t with fault elements, given a
source vertex a = (an−1, an−2, . . . a0) and a target vertex b =
(bn−1, bn−2, . . . b0). Our algorithm needs to output a fault-free
Hamilton path from a to b. We first select a as the starting ver-
tex and record the vertices in the path with the linear table P.
Add vertices a and b to P, and then find any vertex a1 that is
adjacent to a but does not join path P. Next, vertex a1 is added
to P to further find any vertex a2 adjacent to a1 but not added
to path P. Until a vertex v is reached, all its fault-free adjacent
vertices have been added to P. In this case, if P contains all
fault-free vertices and vertex b is adjacent to vertex b, then the
construction is successful. P is a Hamiltonian path from a to
b. Otherwise, other fault-free adjacent vertices of vertex a are
selected to perform the above process. Until the construction is
successful or all the fault-free adjacent vertices of vertex b are
searched, the return fails.

We use T (n) to represent the time complexity of Algorithm 1
(Algorithm 2), for n = s+t+1. In the algorithm description, iP∗0
(or jP∗1) means adding 1 bit i (or j) to each vertex on the path
P∗0 (or P∗1), where P∗0 and P∗1 represent the Hamiltonian
path on LeTQs−1,t. Therefore, statement 14 of Algorithms takes
O(N). It takes 2T (n1) to find the Hamiltonian Path P∗0 (Hamil-
tonian cycle) and Hamiltonian Path P∗1 (Hamiltonian cycle). It
is easy to verify that when s = 2 and t = 3, T (6) = O(1).

From the above discussion, the following recursive equation
can be obtained:

T (n) = 2(T (n − 1)) + O(2n), (n � 6).

Therefore, T (n) = O(NlogN). �

4 Simulations and experiments
In this section, we will verify the effectiveness of the algorithm

Algorithm 2 Fault-tolerant hamiltonian path (a, b, A, P)

Input: Starting node a, ending node b; Available node set A; Node set P.
Output: A Hamiltonian path P in LeTQs,t-F or return failure;

1: if A = ∅ then
2: if a is the neighbour of b then;
3: return (true, P);
4: else
5: return (false, P);
6: end if
7: else
8: while there exists a neighbor a′ of a such that a′ ∈ A do;
9: A = A − {a′};

10: P = P ∪ {a′};
11: (v, P∗)=conHC(a′ , b, A, P)
12: if A = ∅ then
13: if w is a neighbor of t then
14: return (true�P);
15: else
16: return (false�P);
17: end if
18: else
19: while there exists a neighbor w′ of w such that w′ ∈ A do
20: A = A − {w′};
21: P = P ∪ {w′};
22: (b, P′)=conPath(w′ , t, A, P)
23: if b==true then
24: return (true�P′);
25: else
26: A = A ∪ {w′};
27: P = P − {w′};
28: end if
29: end while
30: end if
31: if v==true then
32: return (true,P∗);
33: else
34: A = A ∪ {a′};
35: P = P − {a′};
36: end if
37: end while
38: end if
39: return (false,P);

Hamiltonian Cycle through simulation experiments. Our exper-
imental platform consists of three CPUs with Intel (R) Xeon
(R) E5420/8 core/2.50GHz and 32GB memory. The operating
system is Ubuntu 16.04 Linux. Based on the algorithm Hamil-
tonian Cycle, we also write the corresponding C language pro-
gram, and generate an executable program through the GCC
compiler. The simulation experiment shows how to constructs
Hamiltonian cycles on LeTQs,t network.

In a faulty LeTQs,t, we first select a fault free vertex s as the
starting vertex, and record the vertices in the cycle with vertex
set C. Add a vertex s to C, and then find any vertex s1 adjacent
to s but not joined in cycle C. Next, add vertex s1 to C, and
further find any vertex s2 that is adjacent to s1 but does not join
cycle C. Until a vertex t is reached, all its fault free adjacency
vertices have been added to C. In this case, if C contains all the
fault free vertices and vertex t is the adjacency vertex of vertex
s, then the construction is successful, and C is the Hamilto-
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nian cycle. Otherwise, select other fault free adjacent contacts
of vertex s to perform the above process. Until the construction
is successful or all the fault free adjacency vertices of vertex s
are found, return failure.

In the experiment, we first simulate LeTQ1,1, LeTQ1,2,
LeTQ1,3, LeTQ1,4, LeTQ1,5, LeTQ2,2, LeTQ2,3 networks accord-
ing to the definition of locally exchanged twisted cube net-
works. Then we run the corresponding programs of the algo-
rithm Hamiltonian Cycle to construct corresponding Hamilto-
nian cycles on LeTQ1,1, LeTQ1,2, LeTQ1,3, LeTQ1,4, LeTQ1,5,
LeTQ2,2, LeTQ2,3 networks (See Fig. 10). The experimental re-
sults further verify the validity of the algorithm Hamiltonian
cycle.

We compare the time consumption of N from 1-Dimension
to 10-Dimension by using Algorithms 1 and 2, for N = s+ t+1.
The results are illustrated in Fig. 11. It shows that the time con-
sumption for constructing a Hamiltonian path is approximately
equal when N = 3, 5 or N = 6, 8. The trend of time consump-
tion of constructing a Hamiltonian path is similar to that of con-
structing a Hamiltonian cycle. It can be explained by the proof
of Theorems 2 and 3. For s � 2 and t � 3, a Hamiltonian
path is constructed by calling the function HC in Algorithm 2.
Compared with the construction of Hamiltonian cycles, the
time consumption of constructing Hamiltonian paths is slightly
higher in the same dimension. The experimental results show
that the algorithms have good performance and simulation re-
sults indicate that both the time complexity of Algorithms 1
and 2 meet O(NlogN).

5 Conclusions
We studied the tolerant Hamiltonian properties of a faulty lo-
cally exchanged twisted cube, LeTQs,t − ( fv + fe), with fv faulty
vertices and fe faulty edges. We showed that an LeTQs,t can

Fig. 11 Time consumptions of Algorithms 1 and 2

tolerate a set F of up to s − 1 faulty vertices and edges when
embedding a Hamiltonian cycle provided that s � 2, t � 3,
and s � t. We have also showed another result that there is a
Hamiltonian path between any two distinct fault-free vertices
in a faulty LeTQs,t with up to s − 2 faulty vertices and edges
provided that s � 2, t � 3, and s � t. The results are optimal
that the fault-tolerant Hamiltonicity of LeTQs,t is at most s − 1,
and the fault-tolerant Hamiltonian connectivity is at most s− 2.
This paper reveals the fact that faulty LeTQs,t nearly remains
the fault-tolerant Hamiltonicity although it has about one half
edges of LTQn. Although the architecture of locally exchanged
twisted cube has not been really applied in practice, it brings
opportunities for future parallel systems.
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Fig. 10 Hamiltonian cycles in LeTQs,t
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