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Abstract Graph coloring has a wide range of real world ap-
plications, such as in the operations research, communica-
tion network, computational biology and compiler optimiza-
tion fields. In our recent work [1], we propose a divide-and-
conquer approach for graph coloring, called VColor. Such an
approach has three generic subroutines. (i) Graph partition sub-
routine: VColor partitions a graph G into a vertex cut parti-
tion (VP), which comprises a vertex cut component (VCC) and
small non-overlapping connected components (CCs). (ii) Com-
ponent coloring subroutine: VColor colors the VCC and the
CCs by efficient algorithms. (iii) Color combination subroutine:
VColor combines the local colors by exploiting the maximum
matchings of color combination bigraphs (CCBs). VColor has
revealed some major bottlenecks of efficiency in these sub-
routines. Therefore, in this paper, we propose VColor*, an
approach which addresses these efficiency bottlenecks with-
out using more colors both theoretically and experimentally.
The technical novelties of this paper are the following. (i) We
propose the augmented VP to index the crossing edges of the
VCC and the CCs and propose an optimized CCB construc-
tion algorithm. (ii) For sparse CCs, we propose using a greedy
coloring algorithm that is of polynomial time complexity in
the worst case, while preserving the approximation ratio. (iii)
We propose a distributed graph coloring algorithm. Our ex-
tensive experimental evaluation on real-world graphs confirms
the efficiency of VColor*. In particular, VColor* is 20X
and 50X faster than VColor and uses the same number of
colors with VColor on the Pokec and PA datasets, respec-
tively. VColor* also significantly outperforms the state-of-
the-art graph coloring methods.

Keywords graph coloring, approximation algorithm, dis-
tributed algorithm

1 Introduction
The graph coloring problem is to color the vertices of a graph
using the fewest colors such that no two adjacent vertices are
having the same color. For quick reference, we present two ex-
ample graphs and their possible colorings in Fig. 1.

The importance of graph coloring has long been recog-
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Fig. 1 Example graphs and their possible colorings

nized in the literature of operations research, communication
network, computational biology and compiler optimization,
among others:

• Nucleic acid sequence design. Given a set of nucleic
acids, a dependency graph [2] is a graph, where each ver-
tex is a nucleotide and two vertices have an edge if and
only if the two nucleotides form a base pair in at least one
of the nucleic acids. A coloring of the dependency graph
is a nucleic acid sequence that is compatible with the set
of nucleic acids.
• Frequency assignment. A cellular phone network is mod-

eled as a graph, where a vertex is a base station and two
vertices are neighbors iff the two base stations are in com-
munication range. When assigning frequencies to the base
stations, the neighbors that are close to each other need to
be assigned to different frequencies to avoid interference.
A frequency assignment is exactly a graph coloring of the
network [3].

• Compiler optimization. The register allocators of almost
all modern production compilers are based on graph col-
oring [4]. Specifically, given a set of registers and values,
one may construct an interference graph, where a vertex is
the live range of values, and an edge indicates that the two
live ranges have overlaps and interfere with each other.
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Register allocation is equivalent to coloring the interfer-
ence graph.
• Scheduling. Assume that we have to schedule a set of in-

terferencing jobs (e.g., scheduling aircrafts to flights). We
can construct a conflict graph, where the vertices are jobs,
and two vertices have an edge iff the corresponding jobs
cannot be executed at the same time. Let colors denote
available time slots and each job needs a time slot. The
coloring of the conflict graph with a minimum number of
colors is the schedule with the smallest time span [5].
• Community detection. Community detection on a large

social network that may have millions of nodes is chal-
lenging. Graph coloring is often used to compute a set of
seed vertices, from which high quality overlapping com-
munities of the social network can be constructed [6].
• Clique computation. Graph coloring also plays a crucial

role in computing cliques of a large grpah [7].

Graph coloring has known to be an NP-hard problem and no-
table efforts have been spent on establishing its heuristic or ap-
proximation algorithms (e.g., [8–13]). Halldrsson [9] have pro-
posed SampleIS, which has currently the best-known approx-
imation ratio |G|(log log |G|)2/ log3 |G|, where G is the input
graph and |G| is the number of vertices in G. However, its time
complexity is O(|G|3). It is hence impractical to cope with the
scale of real graphs nowadays. For example, in our preliminary
experiments running on a commodity machine, SampleIS
took 2,381 seconds to color a Latin Square graph LS with just
0.9K vertices, and did not finish after running for one week to
color a road network (having 260K vertices).

In our recent work [1], we propose a vertex-cut based color-
ing method (VColor). VColor is a novel divide-and-conquer
framework. Such a framework has three generic subroutines, as
illustrated in Fig. 2.

However, the three subroutines reveal three efficiency bottle-
necks of the divide-and-conquer framework (marked by bold in
Fig. 2). Firstly, the construction of the Color Combination Bi-
graph (CCB) in the subroutine-(iii) is inefficient as the edges
crossing the VCC and the CCs are scanned redundantly for
many times. Suppose G is partitioned to a VCC and k CCs

and let IVCC and ICCi denote the colors (i.e., Independent Sets
(ISs)) of the VCC and the CCi, respectively. Constructing the
CCBs for the VCC and k CCs takes time O(|IVCC ||E(G)| +
∑k

i=1 |ICCi ||VCC|). Our experiments on Pokec shows that the
construction of the CCB for all the 54,345 CCs can take more
than 90% of the total runtime of VColor. Secondly, VColor
enumerates all Maximal ISs (MISs) of each CC to color the
CC in the subroutine-(ii). It is inefficient as the time complex-
ity of enumerating all MISs of a CC is O(3|CC|/3). Thirdly, the
subroutine-(ii) colors the CCs sequentially and the subroutine-
(iii) computes the CCBs sequentially. However, each CC can
be colored independently from other CCs and the construction
of each CCB can be computed independently from other CCBs.
For example, on Pokec, at least half of the CCs can be colored
independently. Therefore, the subroutine-(ii) and subroutine-
(iii) can be processed in a distributed manner.

In this paper, we propose VColor*, which significantly op-
timizes VColor. Firstly, we index the edges crossing the VCC
and the CCs, such that the crossing edges only need to be
scanned for one time. Given the colors of the VCC and the CC,
we first construct a complete CCB X. Then, for each crossing
edge (u, u′), we delete the edge (I, I′) from X, where u ∈ I
and u′ ∈ I′. In this way, determining the edges of X just needs
one scan on the crossing edges of the VCC and the CC. The
time complexity of the optimized CCB construction is reduced
to O(|V(G)| + |Ecross| + ∑k

i=1(|ICCi ||IVCC |)), where Ecross is the
set of crossing edges. Our experiments on Pokec and PA show
that the construction of X can be 10X faster.

Secondly, we propose a theorem that when a CC is sparse
(i.e., log |CC| � Δ and Δ is the largest vertex degree of the CC),
we can color the CC using Greedy [14]. The time complex-
ity is reduced from O(3|CC|/3) to polynomial of |CC| and the
approximation ratio is no worse than that of the MIS enumera-
tion based method. Based on the theorem, a hybrid algorithm is
proposed to optimize the coloring of the CCs. Our experiments
show that this optimization can reduce running time by ∼10%.

Thirdly, we propose a distributed graph coloring algorithm.
The master holds the color of the VCC. The slaves color the
CCs, and compute the CCBs and MMs. The colors of the CCs
and the Maximum Matchings (MMs) are returned to the master.

Fig. 2 Overview of three subroutines (the bold sentences show the bottlenecks)
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The master combines the colors of the VCC and the CCs using
the MMs. Our algorithm significantly outperforms the state-of-
the-art distributed graph coloring method KW [15]. Our exper-
iments on Pokec and PA show that given roughly the same
coloring time, we use 10000X fewer colors than KW.

The contributions of this paper are as follows.

• We review the recent vertex-cut based graph coloring ap-
proach VColor [1]. We analyze the three generic subrou-
tines and present three efficiency bottlenecks of VColor.
• For the efficiency bottleneck of the color combination

subroutine, we propose an index (augmentation of VP),
which can optimize the CCB construction.
• For the efficiency bottleneck of the component coloring

subroutine, we propose using the greedy algorithm to
color the sparse CCs. We analyze that the time complexity
is reduced and the approximation ratio is preserved.
• We propose a distributed graph coloring algorithm. It

significantly outperforms the state-of-the-art distributed
methods KW and JP.
• Our experiments verify the effectiveness and efficiency of

our techniques on real-world graphs that have up to mil-
lions of nodes. In particular, VColor* is 20X and 50X
faster than VColor and uses the same number of colors
with VColor on the Pokec and PA datasets, respectively.

Organizations The rest of this paper is organized as fol-
lows. Section 2 provides the background of this paper. Sec-
tion 3 reviews VColor. Section 4 presents the techniques of
VColor*. The experiment results are reported in Section 5.
Section 6 discusses the related works, and Section 7 concludes
this paper.

2 Preliminaries and problem definition
We start by recalling some relevant notations for graph col-
oring. This paper studies undirected graphs, or simply called
graphs. A graph is denoted as G = (V, E), where V(G) and E(G)
are the vertex set and the edge set of G, respectively. |G| denotes
the size of G and |G| = |V(G)|. N(v) and N(S ) denote the neigh-
bors of v ∈ V(G) and S ⊆ V(G), respectively. N(v) and N(S )
denote the non-neighbors of v and S , respectively. Δ denotes
the largest degree of vertices in G. A vertex cut of G is a set of
vertices of G whose removal makes G disconnected. An inde-
pendent set (IS) I of G is a subset of V(G), such that ∀u, v ∈ I,
(u, v) � E(G). A maximal independent set (MIS) M of G is an
IS, such that M ∪ {v} is not an IS, for any v ∈ V(G)\M.M(G)
denotes the set of all MISs of G. An independent set partition
I of G is a set of non-empty subsets of V(G), where ∀I ∈ I is
an IS of G, ∀I, I′ ∈ I, I ∩ I′ = ∅ and ∪I∈II = V(G). The size
of an IS partition I is the number of ISs in it. An IS partition
I is minimal, if ∀I1, I2 ∈ I, (I\{I1, I2}) ∪ (I1 ∪ I2) is not an IS
partition of G.

Definition 1 A coloring of G is an assignment of a color to
each vertex of G such that no two neighboring vertices are as-
signed the same color.

If a graph G can be colored using α colors, G is called α-
colorable. The minimum value of α is called the chromatic
number of G, denoted by χG. The set of vertices assigned with

the same color is called a color class.

Proposition 1 An α-coloring of G is equivalent to an IS par-
tition of G of size α, where each IS is a color class.

Problem definition Given a graph G, color G with the fewest
colors.

3 Vertex-cut Based Graph Coloring (VColor)
In this section, we briefly review the VColor framework pro-
posed in [1]. This facilitates our discussions on the efficiency
bottleneck of such a framework. The frequently used symbols
of VColor are summarized in Table 1. The VColor frame-
work unleashes the divide-and-conquer approach to graph col-
oring and has three main subroutines as follows.
(i) Graph partition subroutine We partition the input graph
G into a set of connected components (CCs) of a small size s
by removing a vertex cut component (VCC). Such a partition
is called the vertex cut partition (VP). The rationale of VP is as
follows.

• Since a CC is small, we can afford a method of expo-
nential time complexity to color a CC to provide a better
approximation ratio than SampleIS;
• If the CCs totally account for the majority of G, we can

obtain a better coloring of G than SampleIS;
• There is no crossing edge between the CCs. Therefore,

we can color the CCs independently and the colors of the
CCs can be efficiently combined.

The VP is defined as follows.

Definition 2 Given a graph G and a parameter s, a
Vertex Cut Partition (VP) of G is a graph partition
P={CC1,CC2, ...,CCk,VCC}, where VCC is the vertex cut
component, removing which leads to connected components
{CC1, ...,CCk} of size s. V(G) = (∪k

i=1V(CCi)) ∪ V(VCC).

Note that there may often exist CCs that are smaller than s,
but such cases are omitted for the simplicity of presentation and
analysis. We use VCC(P) to denote the VCC of P and CC(P)
to denote the CC’s {CC1, ...,CCk} of P.

Example 1 Suppose the size of CC is s = 3. Figure 3(a)
presents the VP of G1 of Fig. 1.

(ii) Component coloring subroutine We color the VCC and
each CC separately, as shown in Fig. 4. For the VCC, we sim-
ply adopt SampleIS (Line 01). For the CC, we propose an
MIS enumeration based method colorCC_by_MISE (Lines
02–03).

Specifically, for each CCi in the VP P of G, colorCC_by_
MISE first enumerates all the MISs of CCi, using the MIS enu-

Table 1 Frequently used symbols of VColor

|G| The size of G, given by the number of vertices in G

P, PG The vertex cut partition (VP) of G

VCC(P) The vertex cut component (VCC) in P
CC(P) The set of connected components (CCs) in P
s The size of a connected component (CC)
Δ, ΔG The largest degree of the vertices of G

IVCC , ICCi The color of VCC and CCi , resp.
X The color combination bigraph (CCB)
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Fig. 3 Examples of vertex cut partitions of G1 and G2. (a) VP P1 of G1; (b) VP P2 of G2

Fig. 4 Procedure Color

meration algorithms (e.g., [16,17]). Then, colorCC_by_MISE
computes a minimal IS partition of CCi by ISPartition
to cover CCi. ISPartition is based on the heuristic of
SetCover (Lines 07-12).

Efficiency bottleneck analysis. Firstly, VColor uses the MIS
enumeration (MISE) based method on each CC. It can take an
exponential time of the size of the CC to provide a better ap-
proximation ratio than SampleIS. But, the structure of the CC
has not been studied. In particular, we may not use the MISE
based method on very sparse CCs. Secondly, VColor colors
the CCs sequentially. However, the CCs can be colored inde-
pendently in a distributed manner.
(iii) Color combination subroutine Since the colors of the
CCs can be combined easily as there is no edge of G crossing

the CCs, we just need to study how to combine the colors of the
VCC and the CCs.

The main idea is that for an IS I in VCC and an IS I′ of CCi,
if there is no edge of G crossing I and I′, I and I′ can be com-
bined. We first define the color combination bigraph as follows.
Given the coloring of VCC and that of CCi, we construct a color
combination bigraph (CCB) X = (IVCC∪ICCi , EX), where each
IS in IVCC and ICCi is a vertex of X. IVCC is one part of X
and ICCi is the other part of X. For I ∈ IVCC and I′ ∈ ICCi ,
(I, I′) ∈ EX iff G has no edge (v, v′) satisfying v ∈ I, v′ ∈ I′.
Then, computing the optimum combination of the colorings of
VCC and CCi is equivalent to computing the maximum match-
ing (MM) of X.

The function comb of Fig. 4 constructs the CCB for VCC
and each CCi and uses the MM of the CCB to combine the
colors of the VCC and CCi. The final combination result is an
optimal color of G.

Efficiency bottleneck analysis. Firstly, the construction al-
gorithm of the CCB X (Function comb Lines 14–19) can be
inefficient due to the redundant scanning of the crossing edges
of the VCC and CCs. Secondly, the CCBs and the MMs of the
CCBs are computed sequentially. However, they can be com-
puted independently in a distributed manner.

Example 2 We illustrate the three subroutines by coloring the
graph G1 in Fig. 1.

We use the vertex cut partition shown in Fig. 3(a).
We color VCC using SampleIS and obtain IVCC =

{{v4, v5, v9}, {v8, v10}}.
We color each CC using colorCC_by_MISE and obtain the

following.

• ICC1 = {{v1, v3}, {v2}},
• ICC2 = {{v7, v11}, {v6}}, and
• ICC3 = {{v12, v14}, {v13}}.

We combine the colors of the VCC and each CC as follows.

• Initially, IVCC = {{v4, v5, v9}, {v8, v10}};
• After combining ICC1 , IVCC becomes {{v4, v5, v9}, {v2, v8,

v10}, {v1, v3}};
• After combining ICC2 , IVCC becomes {{v4, v5, v9}, {v2, v6,

v8, v10}, {v1, v3, v7, v11}};
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• Finally,IVCC = {{v4, v5, v9}, {v2, v6, v8, v10, v13}, {v1, v3, v7,
v11, v12, v14}} after combining ICC3 .

Proposition 2 [1] Given a VP P = {CC1, ...,CCk,VCC} of
a graph G, the approximation ratio of Procedure Color is
log s + 1 + |VCC|(log log |VCC|)2/ log3 |VCC|.

We remark that the approximation ratio of Procedure Color
is dependent on |VCC| and s, and equals to that of SampleIS
in the worst case.

Proposition 3 Given a VP P = {CC1, ...,CCk,VCC} of a
graph G, the time complexity of ProcedureColor is O(s23s/3+

|VCC|3 + ktCCB + k
√

2(ΔG)2.5), where ΔG is the largest vertex
degree of G and tCCB is the time to construct the CCB.

The vertex cut partition construction Proposition 3 presents
that when s is fixed, it is desirable to minimize the size of the
VCC of the VP of G. However, computing the optimum VP is
an NP-hard problem.

Theorem 1 Given a graph G and a parameter s, it is NP-hard
to construct a VP P of G such that the size of VCC in P is
minimized.

Proof (Sketch) The problem is clearly in NP. We then prove
that the minimum balanced α-vertex separator (MBVS) prob-
lem, which is NP-hard [18], can be reduced to it. Specifically,
given a MBVS instance with a graph G and a value of α, an
instance of the minimum VCC problem can be constructed on
G and set s=α|V |. Then, a VP with the minimum VCC is a so-
lution of MBVS. �

We hence propose a heuristic algorithm to compute a VP of
G with a minimal VCC. The algorithm is presented in Fig. 5.
The main idea is that in each iteration we use the subgraphs of
G that have the minimal neighborhood as the CCs. Specifically,
we use the logic of BFS on G to explore a subgraph S of size s
(Lines 03-07). To minimize the neighborhood N(S ,G) of S , in
each iteration of BFS, we pick the vertex v ∈ G that can mini-
mize N(v,G)\S . (Lines 04,06). S is added to P and N(S ,G′) is
added to VCC (Lines 08-09). S and N(S ,G′) are removed from
G′ for the next iteration (Line 10).

Example 3 Consider the graph G1 in Fig. 1, we show how to
compute the VP P1 shown in Fig. 3(a). Let s = 3. CC1 is com

Fig. 5 Procedure VP_cons

puted as follows. We first add v1 to CC1 because it is one of
the vertices of the smallest degree in G1 and VCC = {v2}. Since
|CC1| < 3, we need to add neighbors of CC1 into CC1. Since v1

only has one neighbor v2, we add v2 to CC1 and VCC becomes
{v3, v5}. We need to pick one more node in N(CC1) to CC1. v2

has two neighbors, v3 and v5, and we need to compare them. If
we add v3 to CC1, VCC = {v4, v5}. If we add v5 to CC1, VCC =
{v3, v6, v8}, which is larger than that of v3. Therefore, v3 is bet-
ter and we add v3 to CC1. CC1 = {v1, v2, v3} and VCC = {v4, v5}
and the computation of CC1 finishes. The same logic is applied
to G1\(CC1 ∪ VCC). Finally, we have CC2 = {v6, v7, v11} and
CC3 = {v12, v13, v14} and VCC = {v4, v5, v8, v9}.

Note that if the VCC is still large, we can recursively parti-
tion the VCC and construct a VP Hierarchy (VPH) of L levels.
The details of VPH are presented in [1]. The optimal values of s
and L can be decided by preliminary experiments on the certain
graphs.

4 Optimized vertex-cut based graph coloring
(VColor*)
In this section, we propose VColor* to optimize VColor.
Figure 6 presents an overview of VColor*. VColor* fol-
lows the three subroutines of the divide-and-conquer frame-
work of VColor yet addressing the major performance bottle-
necks of the framework. Specifically, firstly, the construction of
the bigraph X (for computing MM) is optimized by indexing.
Secondly, sparse CCs are colored by Greedy for efficiency.
Thirdly, we propose a distributed graph coloring algorithm.
The frequently used symbols of VColor* are summarized in
Table 2.

4.1 Optimizing the construction of the color combination bi-
graph X
In subroutine-(iii), to combine the colors of a given VCC
and CCi of G, a natural approach is to construct a bigraph
Xi = (IVCC∪ICCi , E), whereIVCC is the set of independent sets

Fig. 6 An overview of VColor*
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Table 2 Frequently used symbols of VColor*

Symbol Meaning

P+ Augmented VP of G

Li = label(VCC,CCi) The label between VCC and CCi in P+
BI The boundary information of VCC

m The number of slaves
S j The j-th slave
M2S j The message from the master to S j

S j2M The message from S j to master
msvcc The size of the messages for coloring the VCC
tvcc The time to color the VCC
MM Maximum matching
I, X, VCC, CC Refer to Table 1

(ISs) of VCC, ICCi is the set of ISs of CCi and Xi has an edge
between two ISs in E iffG has edges crossing the two ISs. (Re-
call that all vertices in one IS have the same color and differ-
ent ISs have different colors.) Then, the maximum matching
(MM) of Xi is computed. If two ISs are matched, they can be
combined/merged to one IS and the number of colors used is
reduced by one. However, we observe that the construction of
the Xi’s of the CCi’s (Lines 13–19 of comb of Fig. 4) dominates
the overall coloring time.

The main reason is that when combining the colors of VCC
and CCi, the subroutine requires to scan the crossing edges of
VCC and CCi many times. More specifically, for each IS I ∈
IVCC , the subroutine scans I and N(I′) to check if I ∩N(I′) = ∅
for each IS I′ ∈ ICCi . Scanning all the ISs of VCC is to scan
VCC. Scanning N(I′) for all ISs I′’s of CCi is to scan CCi and
the crossing edges of VCC and CCi. Therefore, the subroutine
requires to scan CCi and the crossing edges of VCC and CCi

for |IVCC | times.

Example 4 Consider the VCC and CC2 in Fig. 7. The ISs of
VCC and CC2 are shown in Fig. 10(a). To construct the bigraph
X2 shown in Fig. 10(c), the crossing edges of VCC and CC2

need to be scanned for two passes by VColor (the function
comb of Fig. 4).

Such repeated scanning on the crossing edges of VCC and
CCi (in order to determine if I ∩ N(I′) � ∅ for the I’s of VCC
and the I′’s of CCi) results in a high time complexity, as fol-
lows.

Proposition 4 Given a VP P = {CC1,CC2, ...,CCk, VCC} of
G, the total time to construct the bigraphs for VCC and each
CC is O(|IVCC ||E(G)| +∑k

i=1 |ICCi ||VCC|).

Fig. 7 Augmented VP

Proof Let ICC1 , ICC2 , ..., ICCk , IVCC denote the colorings
(i.e., the IS partitions) of CC1,CC2, ...,CCk,VCC, respectively.

Consider CCi. To construct the bigraph Xi for VCC and CCi,
comb examines I ∩ N(I′) for each I ∈ IVCC , I′ ∈ ICCi . The
time complexity is

O(
∑

I′∈ICCi
(
∑

I∈IVCC
(|I| + |N(I′)|)))

= O(
∑

I′∈ICCi
(|VCC| + |IVCC ||N(I′)|)).

The total time for all CCs is

O(
∑k

i=1
∑

I′∈ICCi
(|VCC| + |IVCC ||N(I′)|))

= O(|IVCC ||E(G)| +∑k
i=1
∑

I′∈ICCi
|VCC|)

= O(|IVCC ||E(G)| +∑k
i=1 |ICCi ||VCC|).

�

It is important to note that given a VCC and a CC of a graph
G, the edges crossing them in G are fixed. We hence index the
crossing edges to optimize the construction of X by augment-
ing the VP. Using the augmented VP, we can use one scan on
the crossing edges (Line 09 in Fig. 9) to determine all the pairs
(I, I′) satisfying I ∩ N(I′) � ∅ for all I’s of the VCC and all I′’s
of the CC. The time complexity can be significantly reduced.

The idea of the augmented VP is to represent the VCC and
each CC as a supernode and label the superedge between the
VCC and each CC by the list of crossing edges in G between
the VCC and the CC. The augmented VP is defined as follows.

Definition 3 Given a VP P = {CC1,CC2, ...,CCk, VCC} of
G, the augmented VP is a bigraphVP+ = (Vvcc∪Vcc, E, label).

• Vcc = {VCC} and Vvcc = {CC1,CC2, ...,CCk};
• (VCC,CCi) in E for each CCi in Vcc;
• Each edge (VCC,CCi) is associated with a label

label(VCC,CCi) = {(u, v)|u ∈ VCC, v ∈ CCi, (u, v) ∈ G}.
Example 5 Figure 7 shows the augmented VP P+1 of the VP
P1 in Fig. 3. The difference betweenP+1 andP1 is that there is a
labeled edge between the VCC and each CC. label(VCC,CC1),
label(VCC,CC2) and label(VCC,CC3) are shown in Fig. 7.

Based on Definition 3, the construction algorithm of the aug-
mented VP is shown in Fig. 8.
Optimized bigraph construction algorithm using P+ The
label label(VCC, CCi) in the augmented VP stores the edges of

Fig. 8 Procedure AugVP_cons
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Fig. 9 Procedure bigraph_cons

G crossing VCC and CCi. Consider an edge (u, v) of G, if an
IS I of VCC contains u and an IS I′ of CCi contains v, I and I′
cannot be merged. Therefore, our main idea is to use the edges
in label(VCC,CCi) to filter the ISs that cannot be merged.

In Fig. 9, we show the construction algorithm of the bigraph
using the augmented VP. Given the augmented VP P+ and the
colors of VCC and CCi, Lines 01-04 map a vertex v of G to the
ID of the IS containing v. IDIS

VCC(v) is the ID of the IS of VCC
that contains v; and IDIS

CCi
(v) is the ID of the IS of CCi that con-

tains v. Lines 06-10 compute Xi of IVCC and ICCi . For each IS
Ia and Ib in IVCC and ICCi , we add a vertex a and a vertex b
to Xi, respectively (Lines 06-07). Line 08 inserts an edge (a, b)
to Xi for each Ia ∈ IVCC and Ib ∈ ICCi . (Line 08 constructs
a complete bigraph, but the edges in the complete bigraph are
just candidates to be filtered.) For each edge (u, v) stored in
label(VCC,CCi), we delete the edge (IDIS

VCC(u), IDIS
CCi

(v)) from
Xi (Lines 09-10). Finally, Line 11 returns Xi.

We use the following example to show how the redundant
scans of the crossing edges of the VCC and the CC can be elim-
inated using the augmented VP.

Example 6 Consider the VCC and CC2 in Fig. 7. The ISs of
VCC and CC2 are shown in Fig. 10(a). To construct the bi-
graph X2, we first construct a complete bigraph X2, as shown
in Fig. 10(b). For (v10, v11) in label(VCC,CC2), we delete the
edge (IVCC

1 , ICC2

1 ) from X2. For (v5, v6) in label(VCC,CC2), we
delete the edge (IVCC

0 , ICC2
0 ) from X2. The final bigraph X2 is

shown in Fig. 10(c). The crossing edges of VCC and CC2 are
canned for one pass.

Proposition 5 Given a VP P = {CC1,CC2, ...,CCk, VCC} of
G, the total time to construct the bigraphs for VCC and each
CC is O(|V(G)| + |Ecross| +∑k

i=1 |ICCi ||IVCC |).
Proof Consider a CC CCi of P, the time complexity is

Fig. 10 The process of generating X2 for the color of VCC IVCC and the
color of CC2 ICC2 . (a) Colors of VCC and CC2; (b) complete bigraph X2; (c)
bigraph X2

O(|VCC| + |CCi| + |label(VCC,CCi)| + |IVCC ||ICCi |), where
O(|VCC|) is for Lines 01-02, |CCi|) is for Lines 03-04,
O(|IVCC ||ICCi |) is for Lines 05-08 and O(|label(VCC,CCi)|) is
for Line 10.

Note that Lines 01-02 do not need to repeat for each CC.
Therefore, for all CCs of P, the total time complexity is

O(|VCC| +∑k
i=1 |CCi| + |Ecross| +∑k

i=1 |ICCi ||IVCC |)
= O(|V(G)| + |Ecross| +∑k

i=1 |ICCi ||IVCC |)
�

Remarks We can see that the time complexity is much smaller
than that of the CCB construction in Lines 14-19 of comb of
Fig. 4 (Proposition 4).

4.2 CC coloring optimization
This subsection optimizes the coloring of each connected com-
ponent (CC), which is the bottleneck of the subroutine-(ii).
In Procedure Color, for each connected component CC, we
use the MIS enumeration based coloring method (the func-
tion colorCC_by_MISE shown in Fig. 4). It may take expo-
nentially long running time of |CC|, despite a small theoreti-
cal approximation ratio. However, in this subsection, we illus-
trate that when CC is small and sparse, we can readily adopt
Greedy [14] that has time complexity O(|CC|), and at the same
time preserve the approximation ratio. Therefore, we propose a
hybrid algorithm that optimizes colorCC_by_MISE without
a loss of approximation performance.

We propose a hybrid algorithm on the basis of this observa-
tion as presented below.

Proposition 6 Given a graph component C, when log |C| �
ΔC , the approximation ratio of using Greedy on C is no worse
than that of using the function colorCC_by_MISE.

Proof The approximation ratio of colorCC_by_MISE for
coloring C is 1 + log |C|. The approximation ratio of the greedy
algorithm is 1 + ΔC . Therefore, when log |C| � ΔC , the ap-
proximation ratio of Greedy on C is no worse than that of
colorCC_by_MISE. �

Figure 11 shows the pseudo-code of the hybrid algorithm.
The time complexity of Procedure ColorCC is the same as
colorCC_by_MISE. In practice, the hybrid algorithm is al-
most always more efficient than the previous algorithm. In our
experiments, the running time of graph coloring is reduced by
∼10% on average.

Example 7 Consider the VP P2 of G2, shown in Fig. 3. P2

has four CCs: CC1, CC2, CC3 and CC4. Procedure ColorCC
will color CC1 using colorCC_by_MISE as log |CC1| =
log 3 < ΔCC1 = 2. Similarly, CC2 and CC3 are also colored

Fig. 11 Procedure ColorCC
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Fig. 12 Illustration of the distributed graph coloring steps

by colorCC_by_MISE. Procedure ColorCC will color CC4

by Greedy as log |CC4| = log 4 = ΔCC4 = 2.

4.3 Distributed algorithm
Since each CC can be colored independently from other CCs
and each MM can be computed independently from other MMs,
we distribute them across multiple slave machines. The overall
idea is that the coloring is CPU bounded in our framework. The
network transfer just requires L−1 rounds, where L is the height
of VPH, and the messages are not very large. Therefore, there
are benefits to distribute the coloring task.

Specifically, for the subroutine-(ii) (i.e., the component col-
oring subroutine), we color the CCs using different slaves. The
VCC can be colored by the existing distributed graph coloring
algorithms. For the subroutine-(iii) (i.e., the color combination
subroutine), we split the subroutine to two tasks: (1) construct-
ing CCB X and computing the maximum matching (MM) of X,
which is computed by the slaves; and (2) combining the colors
of the VCC and the CC using the MM, which is computed by
the master.
Overview The overview of the distributed graph coloring
algorithm is illustrated with Fig. 12. It is implemented as a
master-slave architecture. The circled numbers in Fig. 12 de-
note the operation steps. Given a VP P of G, 1© the VCC is
colored by the classical distributed coloring method and the
master holds the coloring of the VCC. 2© The CCs and the in-
formation of the coloring of the VCC are sent to the slaves. 3©
The slaves color the CCs (as presented in Section 2), and com-
pute the CCBs between the colors of the VCC and the CCs (as
presented in Section 1) and compute the maximum matchings
(MMs) of the CCBs. 4© The colorings of the CCs and the MMs
are sent to the master. 5© The master combines the colorings of
the VCC and the CCs using the MMs.
Procedure on the master side Figure 13 is the procedure
for the master. The master has two tasks. The first task is to
send messages to the slaves. The second task is to process the
messages from the slaves. We will explain the procedure with
a running example. In the example, we assume a cluster con-
sisting of one master and two slaves S 1 and S 2 for simplicity of
presentation.

The first task (Lines 03–06): the master first allocates the
CCs to the slaves (Lines 18–22). Suppose CC is the set of CCs

Fig. 13 Procedure Master

allocated to the slave sid. For each CCi in CC, the master (Lines
04,05,23–25) adds CCi, label(VCC,CCi) to M2S sid. The mas-
ter also adds the number of the ISs of VCC and the boundary
information of the ISs of VCC (denoted by BI) to the slave sid.
For BI, instead of sending all ISs of VCC, the master just sends
the boundary vertex v and the ID of the IS containing v to the
slave. The boundary vertices are the vertices of VCC that hav-
ing edges outgoing VCC.
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For example, consider the VP P2 of G2 shown in Fig. 3.
We assume IVCC = {{v4, v8, v13}, {v9}} is the coloring of VCC,
which is computed by the existing distributed coloring al-
gorithm. For the first task, the master allocates {CC1,CC3}
and {CC2,CC4} to S 1 and S 2, respectively. The master
sends the message M2S 1 = (CC1, label(VCC,CC1), CC3,
label(VCC,CC3), 2, BI) to S 1, where 2 is the number of ISs
in IVCC and BI = {(v4, 0), (v8, 0), (v9, 1), (v13, 0)}, as v4, v8, v9

and v13 have edges outgoing VCC, and v4, v8 and v13 are in
the 0-th IS of IVCC and v9 is in the 1st IS of IVCC . The mas-
ter sends to S 2 the message M2S 2 = (CC2, label(VCC,CC2),
CC4, label(VCC,CC4), 2, BI).

The second task (Lines 07–17): the master extracts the ISs of
the CCs and the MMs in the messages S2M’s from the slaves,
and merges the ISs of the VCC and the CCs using MMs. Specif-
ically, after receiving the message S sid2M from the slave sid,
for each pair (ICCi ,MCCi ) in S sid2M, the master (Lines 09–12)
merges the ISs of IVCC and ICCi marked by the MM MCCi . The
ISs of the CCi that cannot be merged with the ISs of VCC are
added to a list listCCi (Line 13). Then, Lines 14–17 retrieve the
next IS I j from listCC j of each CC j in P+ and add the union
of the I j’s to the merged result. Note that the union can be ef-
ficiently computed, because any two ISs I j in listCC j and I j′ in
listCC j′ for j � j′ are non overlapping.

We continue the above example. Let S 12M denote the
message from the slave S 1, and let IVCC

i and ICC
i de-

note the ith IS of VCC and CC, respectively. S 12M =

((ICC1 ,MCC1 ), (ICC3 ,MCC3 )), where ICC1 = {{v1, v3}, {v2}},
ICC3 = {{v14, v16}, {v15}}, MCC1 = {(IVCC

1 , ICC1
0 )}, MCC3 =

{(IVCC
0 , ICC3

1 ), (IVCC
1 , ICC3

0 )}. Using MCC1 , the master combines
IVCC and ICC1 . IVCC becomes {{v4, v8, v13}, {v1, v3, v9}} and
listCC1 = {{v2}}. Using MCC3 , the master combines IVCC and
ICC1 . IVCC becomes {{v4, v8, v13, v15}, {v1, v3, v9, v14, v16}} and
listCC3 = ∅. Finally, after processing listCC1 and listCC2 , IVCC

becomes {{v4, v8, v13, v15}, {v1, v3, v9, v14, v16}, {v2}}. The pro-
cessing of the message from S 2 is similar.
Procedure on the slave side Figure 14 is the procedure of the
slave. The slave receives the message M2S from the master.
M2S contains the information of the VCC and a set of CCs.
For each CCi, the slave constructs the bigraph Xi to compute
the MM MCCi of the colorings of VCC and CCi. The slave adds
|IVCC | vertices to one part of Xi, where each vertex denotes
an IS of VCC (Line 04); the slave adds a vertex to the other

Fig. 14 Procedure Slave

part of Xi for each IS ID of CCi (Line 05); and the slave adds
all possible edges to Xi (Line 06). Then, label(VCC,CCi) in
M2S is used to compute the edges of Xi (Lines 07–09). Fi-
nally, the maximum matching of Xi is returned (Lines 10–
12). We continue with the example above. S 1 receives M2S 1

from the master. S 1 colors CC1 and CC3 and obtains ICC1

and ICC3 . For CC1 and CC3, S 1 constructs the bigraphs XCC1

and XCC3 , and computes the maximum matching MCC1 and
MCC3 of XCC1 and XCC3 , respectively. The message S 12M =

{(ICC1 ,MCC1 ), (ICC3 ,MCC3 )} is returned to the master. The pro-
cessing of S 2 is similar.
Analysis of time complexity. Using Procedures Master and
Slave, the subroutines (ii) and (iii) are computed by the slaves
in a distributed manner.

Proposition 7 Given the augmented VP P+ of a graph G, the
time complexity of Procedure Master and Procedure Slave
for coloring G is O(tvcc+ x(s23s/3+ topt

CCB+
√

2Δ2.5
G )+ |G|), where

tvcc is the time complexity of the classical distributed algorithm
for coloring the VCC, x is the number of CCs processed by a
slave and topt

CCB is the time of the optimized CCB construction
shown in Proposition 5.

Proof The time complexities of three parts are analyzed as
follows. The time to color the VCC of P+ is simply tvcc.

Suppose each slave processes x CCs. It takes O(xs23s/3) to
color the CCs, O(xtopt

CCB) to construct the CCBs, and O(x
√

2Δ2.5
G )

to compute the MMs of the CCBs.
The master computes the union of the ISs of the VCC and

the ISs of the CCs. It takes O(|G|) time.
Therefore, the total time complexity is O(tvcc + x(s23s/3 +

topt
CCB +

√
2Δ2.5

G ) + |G|). �

Proposition 7 shows that the time complexity of our dis-
tributed graph coloring algorithm is smaller than that of the
centralized algorithm (Proposition 3), as x is smaller than the
number of CCs.

5 Experimental evaluation
In this section, we present an experimental evaluation of
VColor*.
Experiment settings The experiments of the centralized algo-
rithms are conducted on a server with an Intel Xeon 2.67GHz
CPU and 32GB RAM, running CentOS 5.6. For distributed al-
gorithms, we use five servers with the above configuration in
this experiment, where one server is used as the master and
four servers are used as the slaves. We implement the algorithm
in Java 1.7. The popular graph library jgrapht is used in our
implementation.
Benchmark datasets We use four datasets in our experiments:
two graphs of small size (LS and Yeast) and two graphs of
large size (PA and Pokec). LS is a latin square graph, which
is often used in graph coloring works [19]. Yeast is a biolog-
ical network of Yeast [20]. Pokec is a social network. PA and
NY are two road networks. They are available at Stanford Large
Network Dataset Collection. As the original graph of Pokec is
directed, we convert it into an undirected graph, by removing
the directions of all edges. Table 3 reports some statistics of the
graphs.

The running time is the total time of the VP construction and
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Table 3 Some statistics of benchmarked datasets

|V(G)| |E(G)| ΔG

Pokec 1.63M 22.30M 8,784
PA 1.09M 1.54M 9
NY 264K 733K 8
Yeast 3.1K 12.5K 168
LatinSquare 0.9K 307.4K 683

the coloring. For a graph G, if the VCC of the VP of G is still
large, we construct a VPH of L levels by recursively partitioning
the VCC. In this case, the running time is the total time of the
VPH construction and the coloring.

5.1 Comparison with existing centralized algorithms
In this subsection, we compare VColor∗ with VColor [1],
SampleIS [9], Greedy [14] and JP [21]. VColor is our re-
cent work. SampleIS is the algorithm that currently has the
best-known approximation ratio. Greedy is a greedy coloring
algorithm. The idea of JP is summarized in Section 6. Since we
focus on the centralized algorithms in this subsection, the tech-
niques in Section 1 and Section 2 of VColor∗ are used in this
experiment and the techniques in Section 3 are not. Similarly,
the distribution technique of JP is not used as well.

5.1.1 Comparison on graphs of small size
We first show the comparison results on the small graphs
Yeast and LS, as SampleIS cannot finish on other graphs.
Experiments on the coloring time Figures 15(a)–(b) show
the comparison of the running time on Yeast and LS, respec-
tively. We can observe that Greedy is the fastest. However,
VColor* is close to Greedy. Moreover, VColor* is about
30% and 50% faster than VColor on Yeast and LS, respec-
tively.
Experiments on the number of colors Figures 15(c)–(d)
show the comparison of number of colors on Yeast and LS,
respectively. We can observe that VColor* uses the same

number of colors with Greedy on Yeast, but uses fewer col-
ors than Greedy on LS.

In sum, VColor* can use slightly longer time than but use
fewer colors than Greedy on graphs of small size.

5.1.2 Comparison on large graphs
In this subsection, we compare VColor*, VColor, Greedy
and JP on large graphs Pokec, PA and NY. For VColor*
and VColor, we show the smallest color number (obtained
by tuning s and L) and the corresponding coloring time. Ta-
ble 4 shows the result. We can observe that Greedy is always
the fastest. However, VColor* can use fewer colors by us-
ing more time. In particular, on Pokec, VColor* uses extra
483 seconds to save 13 colors in comparison with Greedy. On
PA and NY, VColor* just saves 1 color in comparison with
Greedywith the cost of using 18 and 28 more seconds, respec-
tively. VColor* can be used in the scenario where the number
of colors is very critical and tens of seconds is affordable. We
also observe that VColor* uses the same number of colors
with VColor, but VColor* is hundreds of times faster.

5.1.3 Detailed comparison of VColor* and VColor
For VColor* and VColor, we construct VPHs as the graphs
are large. We tune both s and L of the VPHs in this experiment.
Experiments on the coloring time In this experiment, we
examine L = 15 and 20 on Pokec and L = 3 and 4 on PA,
as the sizes of the VCC are small enough to be colored by
SampleIS.

Table 4 Comparison of coloring result on large graphs

Color number Coloring time/s
Pokec PA NY Pokec PA NY

VColor* 35 5 5 522 22 30
VColor 35 5 5 45300 4500 116
Greedy 48 6 6 39 3.7 1.4
JP 41 5 5 266.7 6.8 3.3

Fig. 15 Results on LS and Yeast. (a) Coloring time on Yeast; (b) coloring time on LS; (c) color number on Yeast; (d) color number on LS
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Fig. 16 Time of coloring large graphs. (a) Coloring time on Pokec; (b) coloring time on PA

From Figs. 16(a)–(b), we observe that the coloring time first
reduces and then increases with the growth of s. The main rea-
son for this is that although the number of CCs decreases with
the growth of s but the time to color a CC increases. Figure
16(a) also shows that the coloring times for L = 15 and 20 are
very close on Pokec. The reason is that the VPH for L = 15
is very close to that for L = 20. For example, when s = 20,
the VPBs B16, B17, ..., B20 contain only 1,851 vertices in total,
which is very small compared with the size of Pokec. A sim-
ilar observation is found for PA as shown in Figure 16(b). Fig-
ures 16(a)-(b) show that VColor* is significantly faster than
VColor. In particular, on Pokec, when L = 15 and s = 20,
VColor* is 20X faster than VColor. On PA, when L = 3 and
s = 20, VColor* is 50X faster than VColor.
Experiments on the number of colors Following the above
experiment, we also set L = 15 and 20 on Pokec and L = 3
and 4 on PA. The results are shown in Figure 17.

Figure 17(a) shows that the number of colors increases with
the growth of s, but the marginal increase reduces on the so-
cial network. Figure 17(a) also shows that the number of col-
ors slightly increases with the growth of L. The reason is that
the VCC of B15 is further partitioned for L = 20, and hence
the VCC of B15 can be colored using slightly more colors by
VColor than by directly applyingSampleIS on it. From Fig.
17(b), we observe that the number of colors is very stable with
the growth of s and L on the road network PA. Figures 17(a)–
(b) show that VColor* uses the same number of colors as
VColor.

5.2 Performance of the optimizations on centralized
VColor*
In this experiment, we focus on the centralized VColor* to
show the effectiveness of the optimization techniques in Sec-

tion 1 and Section 2. We use opt1 and opt2 to denote the
optimization for constructing the CCB (Section 1) and that for
coloring CCs (Section 2), respectively.

5.2.1 Effectiveness of opt1
Speedup ratio The speedup ratio of opt1, SRopt1, is defined
as 1− topt1/t, where topt1 and t are the running time of VColor
with and without opt1, respectively.

Figure 18(a) shows SRopt1 on Pokec. From Fig. 18(a), we
can observe that opt1 can significantly reduce the running
time on Pokec. In particular, Figure 18(a) shows that SRopt1

exceeds 95% and can be up to 99%.
Figure 18(a) also shows that SRopt1 reduces as s increases.

The reason is that the number of crossing edges between the
VCCs and the CCs reduces as s increases. The main effect of
opt1 is to reduce the time spent on the crossing edges. Hence,
the speedup ratio reduces with s.

We can observe a gap between the speedup ratio of L = 15
and that of L = 20 from Fig. 18(a). The reason for this is that
the VPH of L = 20 has more crossing edges between the VCCs
and the CCs than the VPH of L = 15, as the VCCs of the 15th
level of the VPH of L = 15 are further partitioned to the levels
16-20 of the VPH of L = 20.

We further observe from Fig. 18(a) that the gap between
L = 15 and L = 20 increases with the growth of s. The rea-
son for this is that the reduction of the number of the crossing
edges of L = 15 is faster than that of L = 20.
Coloring time Figure 18(b) shows the running time of
VColor+opt1 on Pokec. We can observe that the running
time first decreases and then increases with the growth of s. It
is consistent with the trend of VColor.

Figure 18(b) also shows that the best value of s that produces
the smallest running time becomes 20. Recall that the best value

Fig. 17 Color number on large graphs. (a) Color number on Pokec; (b) color number on PA
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Fig. 18 Time performance of opt1. (a) SRopt1 on Pokec; (b) time of VColor+opt1 on Pokec; (c) SRopt1 on PA; (d) time of VColor+opt1 on PA

of s is 30 without opt1 as shown in Figure 16(a). The reason
for this is that opt1 has effects on the crossing edges between
the VCCs and the CCs, and the VPH of a smaller s has more
crossing edges. Therefore, the best value of s can be smaller
when using opt1.

Similar observations are found for PA as shown in
Figs. 18(c)–(d).

5.2.2 Effectiveness of opt2
Speedup ratio The speedup ratio of opt2, SRopt2, is de-
fined as 1 − topt1,opt2/topt1, where topt1,opt2 is the running time
of VColor+opt1+opt2.

Figure 19(a) shows SRopt2 on Pokec. Figure 19(a) shows
that SRopt2 is relatively small when compared to SRopt1. It is
reasonable as opt2 is a very light-weight optimization. Figure
19(a) shows that SRopt2 increases with the growth of s. The rea-
son is that the difference between the running time of Greedy
and the MIS enumeration based method is larger when CCs are
larger.

We can also observe from Fig. 19(a) a gap between the
speedup ratio of L = 15 and L = 20. It is because that the
VPH of L = 20 has more CCs than the VPH of L = 15. Fig-
ure 19(a) shows that the gap increases with the growth of s as
Greedy is more efficient on larger CCs.
Coloring time Figure 19(b) shows the running time of
VColor+opt1+opt2 on Pokec. We can observe that the
trend of the running time is consistent with the running time
of opt1 shown in Fig. 18(b). Different from opt1 that can
change the best value of s, Figure 19(b) shows that opt2 does
not change the best value of s, as the effect of opt2 is too small
to change it.

Similar observations are found for PA as shown in
Figs. 19(c)–(d).

5.2.3 Color number
Figure 20 shows the color number after using the optimizations.
We can observe that using theopt1 and opt2will not increase
the number of colors used.

5.3 Performance of distributed techniques in VColor*
In this experiment, VColor* involves the techniques in Sec-
tion 1, Section 2 and Section 3. We compare VColor* with
the widely used distributed graph coloring algorithm KW [15].
Since KW is based on the BSP model, we run KW on Apache Gi-
raph, which is a popular system supporting the BSP model. We
also compare with the distributed JP [21], where we use the
technique in [22] to color the boundary nodes and then color
the components independently by slaves.
Results of VColor* Figures 21(a)–(b) show the running time
of our distributed graph coloring algorithm on Pokec and PA,
respectively. From Fig. 21(a), we can observe that the running
time reduces with the growth of the number of slaves. When
one slave is used, the running time is longer than that of the
centralized algorithm (Fig. 19). It is reasonable due to the net-
work communication cost. However, when two or more slaves
are used, the running time is smaller than that of the central-
ized algorithm. We can make similar observations on PA from
Fig. 21(b). The number of colors used by our distributed graph
coloring algorithm is the same as that used by the centralized
algorithm.
Results of KW Figure 22 shows the running time and the num-
ber of colors used by KW on Pokec and PA. Figures 22(a)–(b)
show that the running time reduces with the growth of the slave
number, but increases with more iterations. We fix the slave
number to be 4 and study the color number used. Figures 22(c)–
(d) show that the color number reduces with the growth of the
number of iterations.

From Fig. 22, we can observe that our distributed method-
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Fig. 19 Time performance of opt2. (a) SRopt2 on Pokec; (b) time of VColor+opt1+opt2 on Pokec; (c) SRopt2 on PA; (d) time of
VColor+opt1+opt2 on PA

Fig. 20 Color number performance of opt1 and opt2. (a) Color number on Pokec; (b) color number on PA

Fig. 21 Time performance of distributed coloring. (a) Time on Pokec; (b) time on PA

outperforms KW in both the color number and the running time.
For example, on Pokec, when we use 4 slaves and set the it-
eration number to be 100, KW uses 1,541,511 colors and takes
about 844 seconds. In contrast, our distributed method just uses
about 50 colors and takes about 400 seconds. Although we can
reduce the color number of KW by using more iterations, the
running time increases greatly and the color number reduces

slightly with the growth of the number of iterations, as shown
in Figs. 22(a) and (c). We can make similar observations on PA
from Figs. 22(b) and (d).
Results of JP Figure 23 shows the running time and the num-
ber of colors used by JP on Pokec and PA. Figures 23(a)–(b)
show that the running time reduces with more slaves. However,
the running time of JP is much longer than that of VColor*
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Fig. 22 Performance of KW. (a) Time on Pokec; (b) time on PA; (c) color number on Pokec; (d) color number on PA

Fig. 23 Performance of JP. (a) Time on Pokec; (b) time on PA; (c) color number on Pokec; (d) color number on PA

(Fig. 21). One reason is that when coloring the boundary nodes,
JP needs to repeatedly send the colors of the already col-
ored boundary nodes over network for several times. Moreover,
the marginal reduction of the running time reduces with more
slaves.

Figures 23(c)–(d) show the number of colors used on Pokec
and PA, respectively. We can observe that JP uses more colors

than VColor* (Fig. 20). One reason is that JP first colors the
vertices in the boundary subgraph and then colors the vertices
in the CCs, where the coloring of the CCs depends on the col-
oring of the boundary subgraph. However, such order may be
far from the best order. In addition, the color of a vertex can-
not change once the vertex is colored. In contrast, we color the
boundary subgraph and the CCs independently. In addition, the
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color combination step of VColor* can modify the colors of
vertices.

6 Related work
In this section, we present the works that are closely related to
this paper. We mainly discuss the inexact methods and the read-
ers who are interested in exact solutions may refer to decent
surveys [11, 13]. There are works study coloring the dynamic
graphs (e.g., [23,24]). However, VColor* focuses on coloring
the static graphs. It is possible that using VColor* to color a
graph and using the dynamic algorithm to maintain the color-
ing after the graph is updated. However, it can be inefficient to
use the dynamic algorithm to color a graph from scratch (i.e.,
starting from the coloring of an empty graph and maintain the
coloring after the insertion of each edge), as shown in the ex-
periments of [23].

We first discuss JP [21] as it is the most similar to our work.
The similarity relies on that JP also partitions the graph into
components, and colors the boundary subgraph and the compo-
nents separately. Then, we discuss other related works.

The main idea of JP is as follows. Given a graph, JP first
partitions the graph into components by an edge cut. Then, it
colors the boundary nodes. Finally, for each component, the
boundary nodes of the component has been colored and the
remaining nodes of the component are colored by the first fit
method (see Section 1). However, JP has two disadvantages as
verified in our experiments. On one hand, JP uses more colors
than our VColor*. On the other hand, while JP can be dis-
tributed, the distributed JP takes more time than VColor* as
it repeatedly sends the color information of the already colored
nodes several times over network.

6.1 Centralized graph coloring methods
Most existing approximation algorithms fall into three frame-
works: the first fit approach, the local search approach, the evo-
lutionary approach and the independent set extraction approach.
They are discussed as follows.
First fit The main idea of the first fit method is to color a ver-
tex using the smallest valid color, where the vertices are picked
in a certain order. There are several well-known orders in the
literature such as the arbitrary order, the largest degree first or-
der, the smallest degree last order, the incidence degree order
and the saturation degree order, etc. The first fit method guar-
antees to color a graph with at most Δ+1 colors. However, [21]
argues that it is hard to be computed in a distributed way.
Local search The main idea of local search is to iteratively
change the color of a vertex that can decrease the value of a
cost function, until a local optimum is reached. A tabu algo-
rithm TABUCOL [8] is a seminal work of local search and there
are many innovative variations. For example, Blöchliger and
Zufferey [25] design a dynamic tabu algorithm to better capture
the neighborhood changes throughout the search. Porumbel et
al. [26] modify the cost function of TABUCOL by assigning dif-
ferent costs to different edge violations. Hertz et al. [27] design
a hybrid method, which integrates TABUCOL and its two varia-
tions. The hybrid method outperforms the individual variations
in many circumstances. There are also some simulated anneal-
ing algorithms [28]. While the local search algorithms generally
support coloring on small and modest size graphs well, their re-

sults are often far from the optimum on large graphs [11].
Evolutionary approach The main idea is to use colorings as
individuals of a generation of candidate solutions and to cross
the individuals to pass good information to the offsprings. The
crossing operator and the fitness function are crucial. Earlier
works use the standard uniform crossover for crossing. For ex-
ample, Fleurent and Ferland [29] assign to a vertex the color of
either the first parent or the second parent. However, the evo-
lutionary approach has not been as competitive as local search,
until the GPX method [10] is proposed. Instead of using the
color of a vertex as an individual, GPX proposes to use a color
class as an individual and passes the color classes to offsprings
in an alternating manner. This idea is effective and many re-
cent works follow it. For example, Galinier et al. [30] propose
to combine conflict-free color classes from parents. When se-
lecting color classes to pass to offsprings, Porumbel et al. [31]
propose to consider both the sizes of color classes and the con-
flicts. Lu and Hao [32] propose to use several parents in evolu-
tion. Evolutionary methods can produce good coloring results
on large graphs. But, they are often time consuming.
Independent set (IS) extraction It is the most widely adopted
framework for coloring large graphs [11]. SampleIS [9] used
in our experiments follows this framework. This framework
comprises two phases: a preprocessing phase and a coloring
phase. The preprocessing phase is to iteratively extract a large
IS from the input graph until the residual graph is small enough.
Each IS extracted is assigned a unique color. The coloring phase
uses existing methods (e.g., TABUCOL) to color the residual
graph. The color classes of the residual graph and the ISs ex-
tracted give a coloring of the input graph. Many methods for
computing large ISs have been proposed, such as simple greedy
[33], tabu search [29], XRLF heuristic [34] and sampling [9].
To obtain a smaller residual graph, Wu and Hao [35] propose
to extract a set of disjoint independent sets in each iteration,
instead of extracting one independent set in each iteration. Re-
cently, there is a trend of introducing a post processing phase,
which reconsiders the color of each vertex [36, 37]. The main
idea is to add back the ISs extracted to the residual graph and
re-color the residual graph starting with its current coloring ex-
tended with the added ISs as new color classes.

Some works do not belong to the three frameworks. Karger
et al. [12] model the graph coloring problem by semidef-
inite programming. It can color an α-colorable graph with
min{Õ(Δ1−2/α), Õ(|G|1−3/(α+1))} colors. Although the bound is
better than SampleIS, it is not definite. Karger et al. mainly
focus on α-colorable graphs and acknowledge that SampleIS
has the best approximation ratio for general graphs.

6.2 Distributed graph coloring methods
Distributed graph coloring algorithms have also attracted a lot
of attention in recent decades. There are randomized distributed
algorithms (e.g., [38]) and deterministic algorithms in the liter-
ature. In this paper, we focus on the deterministic algorithms.
JP can be distributed by first coloring the boundary nodes

distributedly and then color each component independently
[22, 39]. However, the distributed JP has a high network com-
munication cost. Cole and Vishkin [40] propose a 3-coloring
algorithm with time complexity O(log∗ n) for oriented cycles,
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where n is the size of the input graph. Linial et al. [41] pro-
pose a log∗ n + O(1) time O(Δ)-coloring algorithm on general
graphs. Linial et al. propose a lower-bound 1

2 log∗ n − O(1) for
the time complexity of the f (Δ)-coloring algorithms, for any
function f (Δ). Szegedy and Uishwanathan [42] improve the
lower-bound to 1

2 log∗ n + O(1) and propose a O(Δ2)-coloring
algorithm. For the locally iterative algorithms, Szegedy et al.
argue that no (Δ + 1)-coloring algorithm can terminate in less
than Ω(Δ logΔ) time. Most of the currently known determin-
istic distributed graph coloring algorithms are locally iterative
algorithms. KW [15] is the best known iterative algorithm. KW
can color a graph with Δ + 1 colors in O(Δ logΔ + log∗ n)
time. Other coloring method includes the follows. Panconesi
and Srinivasan [43] propose a (Δ + 1)-coloring algorithm with

time complexity 2O(
√

log n). However, the network message cost
is high [44]. Barenboim et al. [44] propose a (Δ + 1)-coloring
algorithm with time complexity O(Δ) + 1

2 log∗ n. However, it
only has an advantage on the graphs of Δ = o(log n). Checco
and Leith [45] study the distributed graph coloring algorithm to
address the allocation task in the wireless network. However,
the graph coloring algorithm studied in [45] is imposed strong
constraints due to the physical limitations of the wireless equip-
ment. For example, the access points in the wireless network
cannot communicate with each other reliably, and hence ver-
tices in the graph cannot share messages in the coloring algo-
rithm. VColor* studies the general graph coloring problem and
has no such constraint. [45] and VColor* have different focus.

7 Conclusion
In this paper, we propose VColor* that optimizes the divide-
and-conquer framework of graph coloring [1]. The framework
partitions a graph G into a set of CCs and a VCC. The CCs and
the VCC are colored separately. VColor* combines the lo-
cal colors by an optimized maximum matching based method.
VColor* proposes to color the sparse CCs by a greedy algo-
rithm, which preserves the approximation ratio. VColor* also
proposes a distributed graph coloring algorithm. Our experi-
ments verify that VColor* is more efficient than the method
in [1], while it does not use more colors.
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