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Abstract The World Wide Web generates more and more
data with links and node contents, which are always modeled
as attributed networks. The identification of network communi-
ties plays an important role for people to understand and utilize
the semantic functions of the data. A few methods based on
non-negative matrix factorization (NMF) have been proposed
to detect community structure with semantic information in at-
tributed networks. However, previous methods have not mod-
eled some key factors (which affect the link generating pro-
cess together), including prior information, the heterogeneity
of node degree, as well as the interactions among communities.
The three factors have been demonstrated to primarily affect
the results. In this paper, we propose a semi-supervised com-
munity detection method on attributed networks by simultane-
ously considering these three factors. First, a semi-supervised
non-negative matrix tri-factorization model with node popu-
larity (i.e., PSSNMTF) is designed to detect communities on
the topology of the network. And then node contents are inte-
grated into the PSSNMTF model to find the semantic commu-
nities more accurately, namely PSSNMTFC. Parameters of the
PSSNMTFC model is estimated by using the gradient descent
method. Experiments on some real and artificial networks illus-
trate that our new method is superior over some related state-
of-the-art methods in terms of accuracy.

Keywords community detection, non-negative matrix trifac-
torization, node popularity, attributed networks

1 Introduction
With the development of Internet, online social networks gener-
ate more and more data with both links and semantic contents,
such as user blogs, research papers, etc. These datasets are al-
ways modeled as attributed networks [1], where links form the
topology of a graph and contents are modeled as attributes of
nodes in the graph. It is of great significance to detect the se-
mantic communities of these networks. For example, in a paper
citation network, each node represents a paper, and the papers
contain hyperlinks from one to another, and each paper has its
contents. Identifying communities of these papers according
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to the links and contents among them helps researchers under-
stand the fields of the current frontiers. Thus, how to integrate
links and contents in attributed networks to identify more accu-
rate semantic community structures is a challenging and mean-
ingful problem.

In the past few decades, some methods have been proposed
to detect semantic communities in attributed networks [2–9].
Based on the data types used for this task, they are mainly
classified into four categories, i.e., topological-based meth-
ods [10–14], attributed-based methods [15,16], ensemble meth-
ods [17–20] and model-based methods [21–24]. The first type
transforms community detection on the attributed network into
graph clustering on a new reconstructed network (where nodes’
attributes are modeled as topological information). The sec-
ond type transforms community detection on the attributed net-
work into a traditional vector data clustering task (where links
and contents are merged to compute similarities or dissimilar-
ities between all pair of nodes). Ensemble methods combine
the results of different clustering. Model-based methods jointly
model links and contents by some statistical models such as
NMF [25] and probabilistic model [26]. By doing so, they can
make full use of links and contents and formulate the clustering
problem as an optimization process.

Topological-based community detection is mainly based on
some early approaches. While a large number of approaches in
this realm have been provided for network community detec-
tion in recent years [7,8], NMF based methods have attracted
many interests due to its good performance and strong inter-
pretability. They are able to cluster data with different distribu-
tions and detect non-overlapping and overlapping communities.
There are also some variants introducing different factors to im-
prove the performance of community detection on networks.
On the other hand, semi-supervised community detection meth-
ods integrate priors to improve the performance of community
detection [27–29]. For example, Liu et al. [13] introduced node
popularity to a semi-supervised NMF model (PSSNMF) for
community detection, which utilized the heterogeneity of node
degree and the prior constraints at the same time. The literature
[30] incorporated the community structure into network embed-
ding, which jointly optimized NMF-based representation learn-
ing model and modularity-based community detection model in
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a unified framework. Generally speaking, the existing commu-
nity detection methods based on NMF were more efficient than
unsupervised NMF-based methods, since they took one or two
of the three factors into considerations, i.e., priors, node het-
erogeneity and interactions among communities. But it is more
reasonable that all of these three factors should be considered in
the topological-based community detection methods together.
In addition, these NMF-based methods just utilize the topology
of a network, and thus are not able to detect semantic commu-
nities directly on attributed networks As the best of our knowl-
edge, there is no research that extends the above community
detection methods from topological networks to attributed net-
works. Thus, it is necessary to design a new community detec-
tion model based on links and contents on attributed networks,
and the model for the topology should also consider the three
important factors (i.e., prior information, degree heterogeneity
and interactions among communities) simultaneously

Model-based methods for community detection on attributed
networks are believed to have a good performance due to own-
ing the solid theoretical foundation (compared with other type
of methods). For example, Zhu et al. [25] formalized commu-
nity detection as an optimization problem based on the factor-
ization of link matrix and content matrix. But this model did
not consider the interactions among different communities. In
addition, it ignored the factors of node degrees and prior infor-
mation based on the topology. Lately, Wang et al. [31] proposed
a model based on NMF for detecting semantic communities on
attributed networks by integrating priors and attributed network
information. As we all know, this is the only semi-supervised
community detection model on attributed networks. It does not
consider the heterogeneity of node degrees and the interactions
among communities (which are demonstrated to be important
for community detection).

Based on the above discussions, it is concluded that these
three important factors, including node priors, node heterogene-
ity and interactions among communities, should be considered
together for semantic community detection via integrating links
and contents on attributed networks. In this paper, we propose
a Semi-Supervised community detection Non-negative matrix
Tri-Factorization (NMTF) model with node Popularity for at-
tributed networks based on links and node contents, namely
PSSNMTFC. It can not only combine the links and contents
of nodes seamlessly based on the NMTF model to detect se-
mantic community, but also utilize the pairwise constraints, the
heterogeneity of node degrees and the interactions among com-
munities together to enhance the performance of community
detection.

The contributions of this work are as follows:
•We propose a semi-supervised community detection model

for attributed networks. By combining links and node contents
based on the NMTF model, the semantic communities are de-
tected more accurately, and the interactions among communi-
ties can also be inferred. By utilizing a few priors and consid-
ering the node popularity, the proposed model owns a better
performance, especially on networks with degree heterogeneity
of the nodes or the network with fuzzy community structure.
• Parameter estimating of our PSSNMTFC model is inferred

using gradient descent, leading to an efficient algorithm.

• The experiments on several networks demonstrate that the
algorithm based on our PSSNMFC model derive network com-
munities with a higher accuracy

The remainder of the paper is organized as follows. A brief
review of the related works on community detection based on
NMF is given in Section 2. Section 3 provides a detailed de-
scription of our PSSNMTFC model which integrates the topo-
logical information and node contents based on NMTF with
node popularity. Section 4 shows in details the experiment re-
sults of our model on artificial and real networks. Section 5
concludes the contributions of this paper and looks forward to
the future work.

2 Related work
Our work is to design a semi-supervised community detection
method for attributed network. It is related on unsupervised
community detection methods and semi-supervised community
detection methods based on the topology of a network, and is
also associated with community detection methods based on
links and contents of attributed networks.

A large number of approaches have been provided for com-
munity detection on a network [7,8], such as modularity-based
methods, statistical inference methods, NMF based methods
[32], network embedding based methods [33], etc. Modularity-
based methods detect communities by improving the optimiza-
tion of modularity measure. Statistical inference methods iden-
tify different types of structures based on flexible generating
model, such as the stochastic block model. NMF based meth-
ods captain node memberships or community labels by factor-
izing link matrix. Recently, many network embedding methods
are used to detect community. Some methods learn an effec-
tive low dimensional vectors of nodes by preserving the net-
work structure, and then clustering algorithms use the embed-
ding vectors to captain communities. Some methods incorpo-
rated the community structure into network embedding, and
jointly optimized representation learning model and modular-
ity based community detection model in a unified framework.
The results of these methods are always inaccuracy, especially
on a network with unclear community structure.

Recently, researchers have proposed many semi-supervised
community detection approaches to improve the performance
of community detection by labeling a few priors [27–29]. There
are mainly two kinds of priors: the individual labels and the
pairwise constraints. Compared with the first kind of priors, the
latter is easier to get. For example, in a paper citation network, it
is easier to know whether two papers belong to the same topic.
On the contrary, it is difficult to label the category of a paper.
These methods are mainly based on modularity [34] or NMF
[11–13]. For example, Eaton and Mansbach [34] developed a
semi-supervised automated community detection model, which
incorporated background knowledge in the forms of individual
labels and pairwise constraints to guide the process of com-
munity detection. This model was demonstrated to be equiv-
alence to modularity which existed the resolution limit prob-
lem. Yang et al. [11] integrated the must-link constraints with
network topology to obtain a unified semi-supervised commu-
nity detection framework based on NMF. Shi et al. [12] built a
nonnegative symmetric matrix factorization (PCSNMF) model
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with the pairwise constraints to enhance the community detec-
tion. Liu et al. [13] developed the PSSNMF model for semi-
supervised community detection, which considered the hetero-
geneity of node degree and the prior constraints at the same
time. Different from other NMF-based methods, the PSSNMF
model preserved that the Euclidean distance of two nodes with
degree heterogeneity in the same community was small. How-
ever, the distance based on other NMF models was larger Thus,
the PSSNMF model was able to use the priors more accurately
on this kind of nodes, which had better accuracy performance
than other semi-supervised community detection methods. The
PSSNMF model used two matrices factorization and did not
consider the interactions among communities. The GNMTF
model [35] incorporated the graph structure as a regularization
term into the objective function of the symmetric three factor
matrices factorization. It explicitly modeled the node member-
ships and the interactions among communities. But the node
degree heterogeneity was not considered. In a word, the existed
topological community detection methods mainly considered
some of the three factors, i.e., the priors, degree heterogene-
ity and the interactions among communities. But these methods
are not able to directly use to detect semantic communities on
attributed networks.

Some classical model-based methods for community detec-
tion on attributed networks are provided. For example, Yang
et al. [26] proposed a discriminative model for combining the
link and content analysis for community detection. It designed
a probabilistic model to generate directed links by consider-
ing the popularity and productivity of nodes, and inferenced
node memberships by maximizing the likelihoods of generat-
ing links. Pei et al. [36] proposed a nonnegative matrix tri-
factorization (NMTF) clustering framework to combine three
types of graph regularization in a social network which em-
ploy the user relations, user-words and message-words together.
This method modeled the interactions among communities and
utilized three kinds of local similarities to improve the per-
formance of user clustering. Zhu et al. [37] performed matrix
factorization on the term-document matrix and the adjacency

matrix of citation networks. The two factorizations shared a
common base and the discovered latent factors represented the
memberships of nodes based on both contents and links of ci-
tation networks. Wang et al. [38] defined two different ma-
trices, i.e., the community membership matrix based on net-
work topology and community attribute matrix based on node
attribute to identify network community structure and seman-
tic annotation. Although some methods [25,36,38] also used
NMF-based model to detect communities on attributed net-
works, they are different from our model. Our model for links
not only considers the priors and node degree heterogeneity fac-
tors, but also interactions among communities. While the ex-
isted methods did not consider them at the same time.

3 The method
In this section, we first propose a semi-supervised NMTF
model with node popularity (PSSNMTF) for community detec-
tion according to the network topology. The PSSNMTF model
is then extended to combine links and node contents of at-
tributed networks for community detection. The main frame-
work is shown in Fig. 1. Finally, a gradient descent method is
inferred to update the model parameters and optimizes the ob-
jective function of the proposed model.

Assume a given attribute network, represented as G =

(V, E,C), and our method aims to detect semantic communi-
ties Table 1 gives the principal notations used in this paper.

Table 1 Attributed networks: notations

Notation Interpretation

V The set of nodes, V = {v1, v2, . . . , vn}, n is the number of nodes
E The set of edges
C The content information of attributed graph G
A Adjacency matrix its element equals to 1 if there is an edge

from vi to vj , and 0 otherwise
X Represents the membership matrix of nodes and communities
U The relationship matrix between communities
M Must link matrix
W Node popularity matrix
V Attribute matrix in k-dimensional potential space

Fig. 1 Proposed semi-supervised framework which incorporates the topology and content information, as well as prior information for community
detection on attributed networks. After dimensional reduction in the same latent space, we can obtain the membership matrix X of nodes and the
relationship matrix U between communities. Furthermore, by introducing the node popularity matrix W to adjust the model (based on degree
heterogeneity), the clearer community structure will be obtained on attributed networks
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3.1 The NMTF model
The NMF is a powerful clustering technology for expressing
data, and has obvious advantages in community detection. The
NMF [39,40] and SNMF [41,13] models are able to learning
a high-quality and low dimensional features of nodes in a net-
work, and then communities are detected by clustering nodes
based on these new features. However, both NMF and SNMF
do not consider the interactions among communities. While the
NMTF model explicitly models the interactions among com-
munities, which generates networks that are more similar to
real networks. Thus, here the NMTF model is used to uncover
underlying communities based on the network topology as fol-
lows:

min
X�0,U�0

F (X,U) = ‖A − XUXT‖2F + η‖U‖2F . (1)

The NMTF model generates links between two nodes of any
two clusters by terms X and U. X ∈ Rn×k

+ is a n × k matrix, and
its element xiz represents the possibility that node vi belongs
to community z. U ∈ Rk×k

+ represents the interactions among
communities. And ‖ · ‖F denotes the Frobenius norm. Since the
adjacency matrix A is positive, the nonnegative constraints are
also added to matrix X and U simultaneously. η is a parameter
to control the proportion of the Frobenius norm in optimization

3.2 The Semi-Supervised NMTF model
In order to improve the performance of the NMTF model, we
combine the must-link constraints with the NMTF model to in-
fer the community structure on attributed networks. Here, we
denote the must-link constraints set as Cml, and each element
(vi, v j) ∈ Cml indicates that two nodes vi and v j belong to the
same community. Cml is formalized as a must-link matrix M in
the following.

(M)i j =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if i = j,

ε, if (vi, v j) ∈ Cml,

0, others.

Intuitively, if two nodes vi and v j belong to the same commu-
nity, their distance in the latent low-dimensional space should
be small. i.e., the distance based on vectors xi and x j should
be small in the latent space. The Euclidean distance is usually
used to measure the distance between two vectors. Combining
the must-link constraints with the distance constants in the la-
tent space, a graph regularization is formulated as:

D(X) =
∑

i j

‖Xi − X j‖2 Mi j

=
∑

i j

∑

z

(xiz − x jz)
2 Mi j

= 2
∑

i

∑

z

x2
izQii − 2

∑

i j

∑

z

xizx jz Mi j

= 2Tr(XTQX) − 2Tr(XT MX), (2)

where Q is a diagonal matrix (Qii =
∑

j Mi j and Qi j = 0 if
(i � j), and Tr(·) denotes the trace of the matrix.

Incorporating the graph regularization term with prior infor-
mation into the NMTF model, a semi-supervised NMTF model

(SSNMTF) for community detection are built as:

O(X,U) = ‖A − XUXT‖2F + η‖U‖2F +
λ

2
D(X)

= ‖A − XUXT‖2F + η‖U‖2F
+λTr(XTQX) − λTr(XT MX). (3)

where λ is a balance constant parameter and its value will be
analyzed in details in Section 4.

However, there is a serious flaw in the above model of
Eq. (3), which cannot minimize the graph regularization term
that embeds the must-link prior information due to the de-
gree heterogeneity of any two nodes with a must-link con-
straint., Take a network which is divided into four communi-
ties as an example We select two sampled nodes with hetero-
geneous degrees which belong to the four communities with
different propensities, i.e., (0.2, 0.4, 0.6, 0.2) and (0.1, 0.2, 0.3,
0.1) respectively. According to the propensities, the two nodes
should be both assigned to the third community with the maxi-
mal propensity. But their Euclidean distance in low dimensional
space is 0.55, which is very large. If a must-link constraint be-
tween the two nodes is used on the two nodes, the distance
on them according to their regularization term is large. When
the objective function Eq.(3) is optimized, this regularization
term will be minimized and then wrong memberships of the two
nodes are captained. The two nodes may be assigned to differ-
ent communities although they have a must-link constraint.

3.3 The SSNMTF with Popularity model
In order to solve the serious flaw mentioned above and avoid af-
fecting the results of community detection we adjust our model
by introducing the popularity parameters of nodes. By defin-
ing the popularity of nodes vi as wi, the popularity vector of all
nodes is denoted as w = (w1,w2, . . . ,wn). Then, the SSNMTF
with popularity model (PSSNMTF) is modified as follows:

O(X,U,W) =
∑

i j

⎛
⎜⎜⎜⎜⎜⎝Ai j −

∑

z

wi xizuzwjx jz

⎞
⎟⎟⎟⎟⎟⎠

2

+
λ

2

∑

i j

∑

z

(xiz − x jz)
2Mi j + η

∑

z

uizuz j

=
∑

i j

⎛
⎜⎜⎜⎜⎜⎝Ai j − wiwj

∑

z

xizuzx jz

⎞
⎟⎟⎟⎟⎟⎠

2

+ η
∑

z

uizuz j

+
λ

2

∑

i j

∑

z

(x2
iz − 2xizx jz + x2

jz)Mi j

=
∑

i j

⎛
⎜⎜⎜⎜⎜⎝Ai j − wiwj

∑

z

xizuzx jz

⎞
⎟⎟⎟⎟⎟⎠

2

+ η
∑

z

uizuz j

+λ
∑

i

∑

z

x2
izQii − λ

∑

i j

∑

z

xizx jzMi j

= ‖A − (WX)U(WX)T‖2F + η‖U‖2F
+λTr(XTQX) − λTr(XT MX)

‖Xi‖1 = 1, i = 1, 2, . . . , n. (4)

The popularity of nodes is mainly used to solve the increase
of Euclidean distance between nodes caused by degree hetero-
geneity. The normalization of X rows can then be taken as a
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special case of node popularity. Considering the example in
Section 2.2 again, the former Euclidean distance between two
nodes, whose propensities xi, x j are (0.2, 0.4, 0.6, 0.2) and (0.1,
0.2, 0.3, 0.1), is 0.55. After normalizing the rows of X, i.e., the
sum of rows of matrix X equals to 1, the two nodes propensities
both become (1/7, 2/7, 3/71/7), and the Euclidean distance be-
tween the two nodes turns to zero. The row normalizing of X is
equivalent to set wi = 1.4 and wj = 0.7. Thus, the normalization
of X is a special case of node popularity w. This illustrates that
the popularity of nodes plays an important role in minimizing
the distances between. But the normalization of X is not able to
model the degree heterogeneity. Therefore, not only node pop-
ularity but also the normalization of X are modeled in Eq. (4).

Based on the above analysis, we have combined the must-
link constraint information with topological information and in-
troduced the node popularity matrix X to adjust the degree het-
erogeneity. Consequently, our objective function can be sum-
marized as:

min
X,U,W

O(X,U,W) = ‖A − (WX)U(WX)T‖2F + η‖U‖2F
+λT′br(XTQX) − λTr(XT MX),

s.t. X � 0,U � 0,W � 0,

‖Xi‖1 = 1, i = 1, 2, . . . , n. (5)

3.4 Jointing the PSSNMTF model with content model
In attribute networks, nodes not only connect with each other,
but also contain rich semantic contents. Two nodes with similar
contents may belong to the same community. Taking the con-
tent information of nodes into account. In order to combine the
topological information between nodes with the content infor-
mation on nodes, we want to use the same potential space to
approximate the potential space of connection between nodes.
Using the bag-of-words approach, the content matrix of the at-
tributed network can be denote as C, which is an n × m ma-
trix, where m is the number of keyword features in a document.
Similar to the latent semantic indexing (LSI), the k-dimensional
latent space of words is expressed by an m × k matrix V. Thus,
to identify the semantic representation of the node, we consider
the approximation of matrix C by XVT, defined as follow:

min
X,V
‖C − XVT‖2F + β‖V‖2F ,
s.t. X � 0, (6)

where β is a small positive number, and β‖V‖2F serves as a reg-
ularization term to improve the robustness.

There are many ways to employ both links and contents in
attributed networks. Our model combines them into a single,
consistent, and compact feature representation in a low dimen-
sional space, which is formalized in the following, noted as
PSSNMTFC:

min
X,U,W,V

O(X,U,W,V)
def
= ‖A − (WX)U(WX)T‖2F
+λTr(XTQX) − λTr(XT MX)

+α‖C − XVT‖2F + β‖V‖2F + η‖U‖2F
s.t. X � 0,U � 0,W � 0,V � 0,

‖Xi‖1 = 1, i = 1, 2, . . . , n. (7)

3.5 Optimization
Since the objective function in Eq. (7) is not convex, it is im-
practical to obtain the optimal solution. In this paper, we use
the gradient descent method to optimize our objective function
(7) and obtain the global minimum.

Here, let the Ψ , Ω, Φ and Θ be the Lagrange multipliers for
constraints X � 0,U � 0,W � 0, and V � 0, respectively. We
then define the Lagrange function L as:

L = ‖A − (WX)U(WX)T‖2F + λTr(XTQX)

−λTr(XT MX) + η‖U‖2F + α‖C − XVT‖2F + β‖V‖2F
+Tr(ΨXT) + Tr(ΩUT) + Tr(ΦWT) + Tr(ΘVT). (8)

Correspondingly, the partial derivatives of L with respect to X,
U, W and V are as follow:

∂L
∂X
= −2W ATWXU − 2W AWXUT + 2WXUXTWWWXUT

+2WXUXTWWWXU − 2αCV + 2αXVTV

+2λQX − 2λMX +Ψ , (9)
∂L
∂U
= −2XTW AWX + 2XTWWXUXTWWX + 2ηU +Ω,

(10)
∂L
∂W
= 2WXUTXTWXUXW + 2WXUTXTWWXUXT

−2AWXUTXT − 2XUTXTW AT +Φ, (11)
∂L
∂V
= −2αCTX + 2αVXTX + 2βV + Θ. (12)

Using the KKT conditions (Ψ ik xik = 0,Ωizuiz = 0,ΦiiWii =

0,Θikvik = 0), we obtain the following update rules:

xik ← xik · (W ATWXU +W AWXUT + αCV + λMX)ik

(WXUXTWWWXUT +WXUXTWWWXU + λQX + αXVTV)ik
, (13)

uiz ← uiz · (XTW AWX)iz

(XTWWXUXTWWX + ηU)iz
, (14)

wii ← wii · (AWXUTXT + XUT XTW AT)ii

(WXUTXTWXUXW +WXUT XTWWXUXT)ii
,

(15)

vik ← vik · (αCTX)ik

(αVXT X + βV)ik
. (16)

However, the above update rules on X do not take into ac-
count the constraint of ‖Xi‖1 = 1, i = 1, 2, . . . , n. That is, the
sum of each row of X should equal to 1. So we define the loss
function for this constraint as: S = γ

∑

i(
∑

z xiz − 1)2.
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The partial derivatives on S with xiz is:

∂S
∂xiz
= 2γ

⎛
⎜⎜⎜⎜⎜⎝

∑

z

xiz − 1

⎞
⎟⎟⎟⎟⎟⎠ = 2γ

∑

z

xiz − 2γ = 2γH − 2γE.

Here, both H and E are n × k matrices, and the element Hi j

of H equals
∑

z xiz, j = 1, 2, . . . , k All the element of matrix E
are 1.

Then the update rule about X becomes:

xik ← xik · (W ATWXU +W AWXUT + L)ik

(WXUXTWWWXUT +WXUXTWWWXU + T)ik
,

(17)
where L = αCV + λMX + γE,T = λQX + αXVTV + γH.
Finally, the whole algorithm that estimates parameters of the
PSSNMTFC model is described in Algorithm 1.

3.6 Complexity analysis
The time complexity of our algorithm PSSNMTFC is com-
posed of two parts. The first is the computational costs for the
updating of X, U and W in Eq. (5). According to the multiplica-
tion law and the multiplication rule of diagonal matrix, we have
that the time complexity of updating of X, U and W once needs
O(n2+n2k+nk2+nk), O(k2) and O(n2k+nk2+nk), respectively.
Thus the time complexity of the first part is O(tn2k + tnk2),
where t, n, k denote the number of iterations, the number of
nodes, and the number of communities, respectively. The sec-
ond part is the computational costs of updating V, which is
O(tnk2). Consequently, the total time complexity of the algo-
rithm is O(tn2k + tnk2).

However, we all know that most of the networks in real life
are sparse, i.e., m << n2, so considering the sparsely of the real
networks, our algorithm’s time complexity can be further re-
duced to O(tmk+ tnk2), where m is the number of edges. More-
over, the number of communities k is often much smaller than
m, leading to that the algorithm’s time complexity approximates
linearity.

4 Experiments
In this section, we will evaluate the proposed approach PSSN-
MTFC on both artificial and real networks. First, we describe
the datasets, evaluation measures and the baseline algorithms.
Then, we compare our method with some baselines on artificial
and real networks. Finally, the involved hyper-parameters are
analyzed in detail.

Algorithm 1 The procedure of PSSNMTFC

Input: adjacency matrix A, content matrix C, and the prior information
Output: the community label li of each node vi (i = 1, 2, . . . , n)
1 Obtain the must-link matrix M according to the definition of must-link

constraints;
2 Compute the diagonal matrix Q;
3 Initialize the matrix X,U,V and W randomly;
4 For t = 1: iter do

Updating X,U,W,V according to Eqs. (17), (14)–(16);
5 End For
6 (vi, li) = arg max j�k xi j .

4.1 Datasets description
4.1.1 Artificial networks
First, we describe the features of synthetic networks that are
used to test the algorithms. The synthetic network includes
link and attribute information together. The links are generated
based on the SBM model [42]. And attributes are generated
according to Gauss model, whose central nodes are all gener-
ated in [–10,10] and covariance of off-diagonal elements are
randomly generated between [–1,1], and the diagonal elements
are a random number generated by the sum of off-diagonal ele-
ments [0, 20∗ √m] (m is the dimension of attributes). According
to this rule, several artificial networks are generated, shown in
Table 2.

4.1.2 Real-world networks
Here, we introduce eight real attributed networks, including
the Cornell, Texas, Washington, Wisconsin, Cora, Citeseer,
DBLP, Pubmed, and a real large scale network, i.e., Flickr.
The Cornell, Texas, Washington and Wisconsin are four We-
bKB subnetworks gathered from four different universities, re-
spectively. Moreover, these four datasets represent the link re-
lationships between webpages. Each sub-network is divided
into five communities. There are total 877 webpages with
1,608 edges. Each webpage is annotated by 1,703-dimensional
binary-valued word attributes. The Cora, Citeseer and DBLP
datasets are paper citation datasets and nodes represent pa-
pers and edges indicate that one paper is cited by another pa-
per. Pubmed network consists of 19,717 scientific publications
with three classes from Pubmed database and 44,338 links
between publications. Flickr is an image hosting and video
hosting website, web services suite and online community.
It includes 80513 users. The relationship between users and
friends is represented by edges, with a total of 5899882 edges.
Some specifically features of these real networks are shown in
Table 3.

4.2 Evaluation measures
We use normalized mutual information (NMI) and accuracy
(AC) to measure the performance of different algorithms. The
NMI Index [43] is a commonly used index to measure the accu-
racy of community detection. It indicates the similarity between
the actual community partition and the partition obtained by the

Table 2 Description of artificial networks

Networks Nodes Edges Attributes Communities

artificial network1 220 4,356 4 5
artificial network2 500 25,691 4 5

Table 3 Description of real-world networks

Datasets Nodes Edges Attributes Communities

Texas 187 328 1,703 5
Cornell 195 304 1,703 5
Washington 230 446 1,703 5
Wisconsin 265 530 1,703 5
Cora 2,708 5,429 1,433 7
Citeseer 3,312 4,732 3,706 6
DBLP 6,936 12,353 500 5
Pubmed 19,717 44,338 500 3
Flickr 80,513 5,899,882 195
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proposed algorithm. Assume a and b are the sets of the ground-
truth labels and the detected labels respectively. The value of
NMI is formulated as:

NMI(a, b) =
−2
∑ca

i=1

∑cb

j=1 Ni j log
(

Ni jn
Ni.N. j

)

∑ca

i=1 Ni. log
(

Ni.
n

)

+
∑cb

j=1 N. j log
(N. j

n

) ,

where ca is the real number of communities, and n denotes the
number of nodes, and cb denotes the number of the derived
communities, and the entities Ni j of the matrix N denotes the
number of nodes belonging to group i in set a, which is also
treated as the size of group j in set b. If the partition obtained
by the running algorithm perfectly matches the actual commu-
nity partition, the value of NMI equals to 1, and 0 otherwise.

AC [43] is another measurement used to evaluate the per-
formance of community detection algorithms, where a is the
ground-truth labels of the nodes and b is the labels of the nodes
derived from the algorithm. AC is defined as the accuracy rate
of the tested algorithm as follows:

AC(a, b) = 1 −
∑|a|

i=1 II(ai � bi)

|a| ,

where ai is the label of node i, and II(x) is 1 if x is true and 0
otherwise.

4.3 Baselines
In order to evaluate the performance of our PSSNMTFC al-
gorithm and study the influence of prior information, content
information and the node popularity for community detection,
we compare it with five types of methods:
• Topology-based methods UNMF [44] is a standard com-

munity detection method which is based on the unsupervised
symmetric NMF, and considers only the link information. Some
network embedding methods are also used to tested, including
DeepWalk [45], LINE [46], and Node2Vec [47].
• Content-based method SMR [38] is a method which

only use content information to cluster objects.
• Methods using both network topology and prior infor-

mation GNMF [11] utilizes the prior information and topol-
ogy information together to obtain a unified semi-supervised
community detection framework based on NMF. The PSSNMF
[13] algorithm is a semi-supervised NMF algorithm with node
popularity, which combines the must-links prior and node pop-
ularity to guide the process of community detection. The SS-
NMF is a semi-supervised algorithm based on NMF without

considering node popularity[13]. The FSSNMF [48] is a semi-
supervised NMF framework, which embeds the must-links con-
straints and cannot-links constraints into the adjacency matrix,
and modifies the topological structure to make the community
structure of the network clearer.
• Methods using both network topology and node con-

tents The SCI [38] method is based on NMF, which contains
two set of parameters, i.e., the community membership matrix
and community attribute matrix without prior information.
• Methods using network topology, node contents and

prior together WSCDSM [31] integrates network topology
and node content with the prior information.

The parameters involved in all algorithms are set to 1.

4.4 Experiment results
In the artificial datasets, we compare our algorithm with these
five types of algorithms and measure by NMI and AC. As
shown in Table 3, Table 4 and Fig. 2, our algorithm PSSN-
MTFC is overall superior to the baselines.

To be specific, Table 3 shows the comparison results between
our PSSNMTFC and five types of algorithms on two artificial
networks, and the priori ratio is set as 2%. Results in term of
NMI and AC illustrate that the performance of our algorithm
is superior to other algorithms. In order to test how the prior
affects the performance, the third type of methods are further
compared with our PSSNMTFC in Table 4 and Fig. 2. Results
show our algorithm is also superior to other algorithms with
different prior ratios, which illustrates that our algorithm is ef-
fective.

Here we further compare these methods on real-world net-
works. First, we compare our algorithm PSSNMTFC with other
algorithms on two attributed networks, Washington and Cora,
and results are shown in Table 5. As shown, our algorithm has
better performance compared with other types of algorithms.

Tables 6 and 7 show the results of our algorithm compared
with other algorithms at different prior ratios in term of NMI on

Table 4 Comparison results on artificial networks in term of NMI and AC

Information
Artificial
network1

Artificial
network2Methods

used
NMI AC NMI AC

UNMF Links only 0.1854 0.3455 0.2922 0.4400
SMR Content only 0.1264 0.2541 0.1132 0.2256
SCI Links+content 0.2556 0.2631 0.2263 0.5432
GNMF Links+prior 0.2052 0.3300 0.3465 0.3813
WSCDSM Links+content 0.3540 0.3320 0.2110 0.3210
PSSNMTFC +prior 0.2442 0.4023 0.4116 0.4896

Table 5 Experiment results on artificial networks with prior information ranging from 1% to 30% in term of NMI

Artificial network1 Artificial network2
Prior

PSSNMTFC PSSNMF SSNMF FSSNMF PSSNMTFC PSSNMF SSNMF FSSNMF

1% 0.2299 0.2448 0.3141 0.2609 0.2955 0.3415 0.1463 0.2221
4% 0.5636 0.6652 0.3218 0.3444 0.7196 0.7215 0.3493 0.4752
6% 0.7465 0.6494 0.4912 0.5931 0.7235 0.7622 0.3556 0.5802
8% 0.8105 0.8390 0.4579 0.6926 0.8734 0.8693 0.3610 0.6127
10% 0.8709 0.8425 0.4821 0.8042 0.9179 0.8792 0.3989 0.6479
20% 0.8768 0.8416 0.4952 0.8001 0.9353 0.8940 0.3867 0.8561
30% 0.9101 0.8691 0.5200 0..8455 0.9567 0.9114 0.4654 0.8782
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Fig. 2 Comparison results with prior 5% in term of AC

Table 6 Comparison results on Washington and Cora in terms of NMI

Information used method Washington Cora

links only UNMF 0.0535 0.0963

content only SMR 0.0632 0.0078

links+content SCI 0.1257 0.1780

2% 8% 2% 8%
links+prior GNMF

0.0225 0.6552 0.3256 0.8555

links+content WSCDSM 0.2564 0.5552 0.5254 0.8083
+prior PSSNMTFC 0.2225 0.7072 0.8556 0.8999

attributed networks. As shown in Table 6, our PSSNMTFC per-
forms better than the other two methods on the small attributed
networks WebKB. Table 7 also illustrates that our method PSS-
NMTFC not only performs better than the other methods, but
also achieves a high accuracy with the prior of 10%. For exam-
ple, the accuracy achieves 0.8906 when the prior is only 2% for
Cora. When the prior ranges from 2% to 10%, the accuracy of
our algorithm PSSNMTFC is improved by 6.21% and 9.77%
respectively for the Cora and Citeseer

For larger networks, Citeseer, DBLP and PubMed, our algo-
rithm PSSNMTFC still has advantages. We further use AC to
validate the superiority of our algorithm on the three networks,
and the results are shown in Fig. 3. It further proves that our
method is more suitable on larger datasets with few prior infor-
mation, such as 5% prior information. The reason is that our

algorithm considers the node popularity, node contents and pri-
ors at the same time

Moreover, our algorithm PSSNMTF is compared with other
embedding methods on a larger data set (Flickr), and results in
Table 8 shows the superiority of our algorithm.

4.5 Parameter analysis and convergence analysis
In this paper, our proposed model involves several parameters,
including the must-link matrix parameter ε, the balancing pa-
rameters α, β, λ, η and the Lagrange multiplier γ. For the pa-
rameter ε, we set it to 2 on all the experiments in this paper,
just as did in most other semi-supervised community detection
papers [38].

The function of the Lagrange multiplier γ (introduced in the
optimization process) is to mitigate the constraints of ‖Xi‖1 =
1, i = 1, 2, . . . , n. It is only related to the updating rule of matrix
X. As shown in the updating rule of formula (17), the correla-
tion term of γ in molecule of formula (17) is an independent
matrix, which is independent of any information on attributed
networks, while the correlation term of γ in denominator of for-
mula (17) is closely related to matrix X. For the value of γ, if
we set the same value for all network datasets, it may bring
some fluctuations on X, just because there is a huge difference
between the denominator and the molecule in formula (17).
Therefore, in order to alleviate this problem, we need to al-
locate the size of the parameters according to the scale of the
attribute networks. Therefore, a relatively large value is set for

Fig. 3 Comparison results with prior 5% in term of AC

Table 7 Experiment results on WebKB with prior information ranging from 4% to 20% in term of NMI

PSSNMTFC PSSNMF FSSNMF PSSNMTFC PSSNMF FSSNMF
Prior

Texas Cornell

4% 0.2952 0.3011 0.1653 0.3809 0.4016 0.2390
8% 0.7735 0.8053 0.5210 0.8562 0.7216 0.5129
10% 0.8210 0.8002 0.6661 0.9006 0.8174 0.5793
15% 0.8438 0.8416 0.6735 0.8244 0.8094 0.6090
20% 0.8677 0.8599 0.7053 0.8850 0.8710 0.6125

Washington Wisconsin
4% 0.2533 0.2116 0.3281 0.5924 0.5621 0.3137
8% 0.7072 0.6871 0.4138 0.8530 0.7363 0.3977
10% 0.7003 0.9279 0.4498 0.9370 0.8858 0.6271
15% 0.8546 0.8249 0.4400 0.9088 0.8216 0.6510
20% 0.8604 0.9566 0.4683 0.9535 0.9760 0.6932
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Table 8 Experiment results on Cora, Citeseer, DBLP, Pubmed with prior information ranging from 2% to 10% (NMI.)

PSSNMTFC PSSNMF FSSNMF PSSNMTFC PSSNMF FSSNMF
Prior

Texas Cornell

2% 0.8906 0.5361 0.6631 0.8611 0.8315 0.3033
4% 0.9399 0.8066 0.6699 0.9265 0.9177 0.3359
6% 0.9401 0.9362 0.7615 0.9411 0.9224 0.3382
8% 0.9670 0.9430 0.7661 0.9524 0.9300 0.3679
10% 0.9527 0.9362 0.7745 0.9588 0.9568 0.4020

DBLP Pubmed
2% 0.8378 0.8383 0.8879 0.7753 0.7331 0.6653
4% 0.8617 0.8930 0.8889 0.7916 0.7336 0.7034
6% 0.8882 0.9028 0.8890 0.8882 0.8836 0.8567
8% 0.9347 0.9053 0.8902 0.9254 0.8836 0.8974
10% 0.9651 0.9264 0.8941 0.9321 0.9041 0.9241

Table 9 results compared with some embedding methods on Flickr dataset
(NMI, AC)

DeepWalk LINE Node2Vec PSSNMTF

NMI 0.3257 0.4628 0.3357 0.4965
AC 0.4673 0.5328 0.4732 0.5573

small data sets and a relatively small value is set for large data
sets. Specifically, for the 4 small WebKB network datasets, we
set a larger value of 10; and for the two larger network datasets
(Cora and Citeseer), we set a smaller value of 0.5.

As for the balancing parameter α, β, λ and η, we analyse their
effects on the Wisconsin dataset with the proposed algorithm
PSSNMTFC. From 1 to 10, we search for the best parameter
by binary search as shown in Fig. 4. For each balance parame-
ter, the optimal parameters of the objective function are set as
α = 1, β = 5, λ = 1, η = 10.

The convergence of the algorithm is proved on the Wiscon-
sin dataset, shown in Fig. 5. As the iterations increase, our al-
gorithm is convergent, which is due the convergence of our loss
function.

5 Conclusion and future work
In this paper, we develop a novel method (i.e., PSSNMTFC) for
semantic community detection in attribute networks. We find
semantic communities by incorporating the content and link in-
formation as well as the prior information altogether, by giving
a new semi-supervised model based on the NMTF model. At
the same time, we further consider the node popularity hidden
in networks to better utilize the prior information to enhance
this model. The extensive experiments illustrate that the new

Fig. 4 NMI with different values for parameters α, β, λ and η

Fig. 5 Convergence curve that loss function changes with iteration times in
our algorithm

algorithm owns a higher accuracy for community detection
compared with some state-of-the-art baselines on networks
with different scales.

In order to maintain the original geometric structure of the
attribute networks, in this work we only incorporate the must-
link prior information into the model while do not employ
the cannot-link constraints. We plan to further improve the
effectiveness of the algorithm by introducing the cannot-link
constraint to our model in the future.
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