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Abstract Information networks provide a powerful represen-
tation of entities and the relationships between them. Informa-
tion networks fusion is a technique for information fusion that
jointly reasons about entities, links and relations in the presence
of various sources. However, existing methods for information
networks fusion tend to rely on a single task which might not
get enough evidence for reasoning. In order to solve this issue,
in this paper, we present a novel model called MC-INFM (in-
formation networks fusion model based on multi-task coordi-
nation). Different from traditional models, MC-INFM casts the
fusion problem as a probabilistic inference problem, and collec-
tively performs multiple tasks (including entity resolution, link
prediction and relation matching) to infer the final result of fu-
sion. First, we define the intra-features and the inter-features re-
spectively and model them as factor graphs, which can provide
abundant evidence to infer. Then, we use conditional random
field (CRF) to learn the weight of each feature and infer the re-
sults of these tasks simultaneously by performing the maximum
probabilistic inference. Experiments demonstrate the effective-
ness of our proposed model.

Keywords information networks fusion, multi-task coordina-
tion, conditional random field, inference

1 Introduction
Nowadays, a large number of information networks (e.g.,
IMDB, Rotten Tomatoes, DBLP, LiveJournal etc.) have ap-
peared, which can provide users with a powerful representa-
tion of entities and the relationships between them. In the real
world, the same entities are often included by multiple informa-
tion networks simultaneously. For example, there are the same
movies in both IMDB and Rotten Tomatoes, also there are the
same papers in both DBLP and LiveJournal. These informa-
tion sources are usually separated in different places. Informa-
tion networks fusion is a technique for information fusion that
jointly reasons about entities, links and relations in the presence
of various sources [1]. Via information networks fusion, people
can understand the entities and the relationships among them
more comprehensively. The technique of information networks
fusion can be applied in several areas. For example, it can fa-
cilitate the discovery of the hidden knowledge graph in the area
of knowledge graph identification [2–6]. It can also help users
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identify the same entities and predict the formation of social
links across multiple social networks [7–17].

1.1 Motivating scenario
The goal of information networks fusion is to find the hidden
information network underlying multiple observed information
networks. So we must infer the nodes and the edges of the hid-
den network based on the evidence provided by the observed
networks. The problem can be casted as performing a series
of tasks including entity resolution, link prediction, relation
matching, community detection, information diffusion and net-
work embeddding etc. [1] However, existing methods for in-
formation networks fusion tend to rely on a single task which
might not get enough evidence for reasoning.

Let us consider the following motivating scenario.
Suppose there are two information networks (shown in

Fig. 1). In information network 1, it includes four entities with
the relationships such that Wenfei Fan writes a paper pressed
in ACM Sigmod2016. Also there is an independent entity, San
Fran, with the type of location. In information network 2, it
includes four entities with the relationships such that Fan W.
publishes a paper which is accepted by Sigmod’16 held in San
Francisco.

In order to infer the hidden network underlying the observed
information networks, some work has been done by perform-
ing a task such as entity resolution, link prediction or relation
matching.

• The task of entity resolution is to infer the potential an-
chor links among the shared entities across multiple in-
formation networks. For example, Wenfei Fan and Fan W.
are inferred to refer to the same person in the real world.
Via entity resolution, they will be merged into one node
in the hidden information network.

• The task of link prediction is to infer the unknown links
between nodes based on the observed information net-
works. For example, via link prediction, we can infer
whether there is a link between ACM Sigmod2016 and
San Fran.

• The task of relation matching is to find the sets of equiva-
lent relations. For example, via relation matching, we can
infer that the relation “Write” and the relation “Publish”
match (i.e., are equivalent), which will be represented as
a uniform label in the hidden information network.
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Fig. 1 An illustration of information networks fusion

While previous work has addressed each of these tasks sepa-
rately, we can only acquire partial inference results. On the con-
trary, if these tasks are considered together as a coherent task,
we can obtain better results. For example, determining whether
Wenfei Fan and Fan W. refer to the same entity and determin-
ing whether the relation “Write” and “Publish” match can make
us more certain whether these two papers are the same entity.
Also, determining whether these two conferences refer to the
same entity and predicting whether a link between ACM Sig-
mod2016 and San Fran exists can ascertain whether San Fran
and San Francisco are the same entity. Finally, via fusion we
can infer a more complete hidden network shown in Fig. 1.
Therefore, based on multi-task coordination, the information
can be propagated among them, which can give us more evi-
dence to infer.

1.2 Challenges
However, information networks fusion based on multi-task co-
ordination is a highly challenging problem. The major chal-
lenges are as follows:

(1) For multiple tasks, how to capture the interaction between
their predicted results? Each predicted result means the result
of one task. Traditional work defines the features only to cap-
ture the dependencies between a single predicted result and the
evidence within one task. The interaction among multiple tasks
are often ignored. Therefore, we need to extract more features
to disseminate information among the predicted results of dif-
ferent tasks.

(2) How to reason jointly to generate the hidden information
network? Some probabilistic models (e.g., Markov Logic Net-
works (MLN) [18] and Conditional Random Field (CRF) [19])
have been proposed to perform probabilistic inference. There-
fore, we need to cast the fusion problem as a probabilistic infer-
ence problem, and use these models to learn the weight of each
feature and infer the results of these tasks simultaneously.

1.3 Contributions and organization
In this paper, we present a novel model called MC-INFM (In-
formation networks fusion model based on multi-task coordi-
nation). Different from traditional models, MC-INFM casts the
fusion problem as a probabilistic inference problem, and collec-
tively processes multiple tasks (in this paper, we focus on three
tasks: entity resolution, link prediction and relation matching)

to infer the final result of fusion. More specifically, we make
the following contributions:

(1) We define both the intra-features for each task and the
inter-features based on multi-task coordination. We also model
them as a series of factor graphs, which can provide abundant
evidence to infer.

(2) Based on CRF model, we propose a weight learning al-
gorithm and an iterative inference algorithm respectively. On
the one hand, we use CRF to learn the weight of each feature.
On the other hand, we infer the results of these tasks simultane-
ously by performing the maximum probabilistic inference.

(3) We conduct experimental studies based upon two pairs of
information networks. Experiments demonstrate the effective-
ness of our proposed model.

The rest of this paper is organized as follows. Section 2 re-
views the related work. Section 3 formulates the main prob-
lem and gives an overview of our model. Section 4 defines the
features we need. Section 5 and Section 6 propose a weight
learning algorithm and an iterative inference algorithm respec-
tively. Section 7 shows the experimental result and Section 8
concludes.

2 Related work
Various approaches for information networks fusion have been
studied over the years, which mainly include the tasks of en-
tity resolution, link prediction, relation matching, community
detection, information diffusion and network embedding etc. In
this paper, we only focus on the first three tasks. First, we briefly
review techniques for them one by one. Then we introduce the
related work about information networks fusion by jointly per-
forming multiple tasks.

As for entity resolution across multiple information net-
works, it is also called network alignment [7]. There are lots of
work which has been proposed to solve this problem. For exam-
ple, in [8] a fast alignment algorithm is proposed to align two
bipartite graphs. In [9] based on various node attributes (e.g.,
username, typing patterns and language patterns) a matching
method is proposed to match entities across social networks.
In [7], by using heterogeneous information in the networks, a
two-step supervised method is proposed to infer potential an-
chor links across networks. In [10] a partial network alignment
method is proposed to solve the problem of lacking anchor
users. In [11], based on a small amount of positive set and a
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large unlabeled set, a model is built to train the anchor link data.
In [12] an unsupervised network alignment model is designed
for the case of no available training data. In [13] a concurrent
alignment model is designed.

Most link prediction methods aim at solving the problem of
link prediction in one single target network, which are catego-
rized into unsupervised link prediction (e.g., [20–22]), super-
vised link prediction (e.g., [23]) and matrix factorization based
link prediction(e.g., [24–26]). As for link prediction across
multiple information networks, some research work has also
been done. In [14] a method is proposed to transfer useful in-
formation across multiple information networks to help predict
links for new entities. In [15] a method is proposed to pre-
dict multiple kinds of links for new networks with information
transferred across partially networks. In [16] a survey about link
prediction problems and methods across information networks
is given. In [17] a model called MLI is proposed which includes
two parts: metapath based feature extraction and iterative PU
link prediction across multiple networks.

There has been less work on relation matching than on en-
tity matching or entity resolution. Some techniques for relation
matching have been proposed in the field of knowledge graph
identification. For example, in [27] a system called RESOLVER
uses HAC to cluster Open IE relations in TextRunner data. The
probability that two relations are equivalent is computed based
on counting the number of entity pairs that they had in common.
In [28] matching different ways representing the same relation
between entities is considered as one task of knowledge fusion.
A rules-based relation matching method is proposed to identify
situations where one relation implies another.

More recently, there is some work about information net-
works fusion by jointly performing multiple tasks. For example,
in [1] the task of information networks fusion is decomposed
into five subtasks, i.e., network alignment, link prediction, com-
munity detection, information diffusion and network embed-
ding. However, these tasks are considered as inter-dependent
procedures, which are executed sequentially. In [2], three tasks
(i.e., entity resolution, link prediction and node labeling) are
performed simultaneously to infer the hidden network. In [29],
a two-stage approach is proposed, which performs entity res-
olution first and then discovers equivalences between synony-
mous relations. But they mainly rely on some rules predefined.

The differences between our work and existing work are as
follows:

(1) Most methods for information networks fusion tend to
rely on a single task. They define the features only to capture
the dependencies between a single predicted result and an evi-
dence. The coordination among multiple tasks are ignored. Dif-
ferent from the existing work, we take into account the interac-
tions between tasks and extract more features to disseminate
information among the predicted results of different tasks. So
we can get enough evidence for reasoning.

(2) Although some work by jointly performing multiple tasks
has been proposed, they usually execute the tasks sequentially,
or rely on ontology rules or domain knowledge. While we use
CRF model to learn the weight of each feature and infer the re-
sults of these tasks simultaneously by performing the maximum
probabilistic inference.

3 Model overview
In this section, we first give some definitions, and then for-
mulate the main problem. Finally we give an overview of our
model.

3.1 Problem statement
The information networks considered by us are heterogeneous,
that is, they contain multiple kinds of nodes and links.

Definition 1 (Information network) An information net-
work is a graph G=(V , E), where V is the vertex set (i.e., the
entity set), E ⊆ V × V is the edge set (i.e., the relationship
among entities).

Let’s define the task of information networks fusion.

Definition 2 (Information networks fusion) Given a set of
information networks (G1, . . . , Gn), the goal of information net-
works fusion is to find a hidden network GH=(VH, EH) such
that: (1) VH ⊆ V1 ∪ · · · ∪ Vn and ∀vi, v j (vi, v j ∈ VH) such
that vi and v j might not correspond to the same entity. (2)
EH ⊆ E1 ∪ · · · ∪ En and ∀ei, e j (ei, e j ∈ EH) such that if ei

and e j are labeled as different relations, then they might not
refer to the same relation in the real world.

In the above definition, VH is the subset of all the nodes in
(G1, . . . , Gn). While EH contains the edges of these networks,
because besides these edges, some new edges might be pre-
dicted during fusion and will be added to GH . Conditions (1)
and (2) are to ensure the uniqueness of nodes and relations in
GH respectively. Therefore, in this paper, we decompose the
task of information networks fusion into three subtasks: entity
resolution, link prediction and relation matching across multi-
ple information networks.

Definition 3 (Entity resolution across multiple information
networks) Given a set of information networks (G1, . . . , Gn),
the goal of entity resolution across them is to find the sets of
anchor links (A12, A13, . . . , A1n, A23, . . . , A(n−1)n) where Apq (p,
q ∈ {1, . . ., n}) is the set of undirected anchor links between Gp

and Gq.

Here each anchor link means an undirected link between two
nodes from different networks, which represents they refer to
the same entity. We use a random variable xER(vi, v j) to repre-
sent whether the link between two nodes vi and v j is an anchor
link. If so, the value of xER(vi, v j) is 1. Otherwise, its value is 0.
Therefore, the aim of entity resolution is to compute the value
of a random vector XER containing all such xER s.

Definition 4 (Link prediction across multiple information
networks) For each information network Gk (k ∈ {1, . . ., n}),
the goal of link prediction across multiple information networks
is to predict the existence of one link in Gk by using the infor-
mation disseminated from (G1, . . . , Gk−1, Gk+1, . . . , Gn).

We use a random variable xLP(vi, v j) to represent whether
there is a link between two nodes vi and v j. If so, the value of
xLP(vi, v j) is 1. Otherwise, its value is 0. Here the edge (vi, v j)
is from the unconnected link set V × V − E. We use a random
vector XLP containing all such xLP s to store the result of the
task of link prediction.
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Definition 5 (Relation matching across multiple informa-
tion networks) Given a set of information networks (G1, . . . ,
Gn), the goal of relation matching across them is to find the
sets of equivalent relations (R12, R13, . . . , R1n, R23, . . . , R(n−1)n)
where Rpq (p, q ∈ {1, . . ., n}) is the set of equivalent relations
between Gp and Gq.

We use a random variable xRM((vi, v j), (v′i , v′j)) to represent
whether the relation between vi and v j, and the relation between
v′i and v′j match with each other. If so, the value of xRM((vi, v j),
(v′i , v′j)) is 1. Otherwise, its value is 0. We use a random vector
XRM containing all such xRM s to store the result of the task of
relation matching.

For simplicity, in the remainder of this paper, we denote
xER(vi, v j), xLP(vi, v j) and xRM((vi, v j), (v′i , v′j)) as xER

i j , xLP
i j

and xRM
(i j,i′ j′) respectively.

Frequently used notations in this paper are summarized in
Table 1.

3.2 Overview of our model
In this paper, we present a novel model called MC-INFM. It
casts the problem of information networks fusion as a proba-
bilistic inference problem, and collectively processes multiple
tasks to infer the hidden network. Given a set of information
networks (G1, . . . , Gn) and a group of random vectors to be
predicted, MC-INFM is to predict the values of these vectors
(shown in Fig. 2). It mainly includes three parts.

(1) Feature extraction (see Section 4). We classify the fea-
tures into two categories: the intra-features and the inter-
features, which are used to represent the local features within
one task and the coordination among different tasks respec-
tively.

(2) Weight learning (see Section 5). We cast the problem of
information networks fusion as a probabilistic inference prob-
lem. The extracted features are modeled as factor graphs, which
can provide abundant evidence to infer. Based on CRF model,

Table 1 Notations

Notation Meaning

(G1, . . . , Gn) A set of information networks
GH The hidden information network
xER

i j A random variable for entity resolution

xLP
i j A random variable for link prediction

xRM
(i j,i′ j′) A random variable for relation matching

XER, XLP or XRM A random vector containing all xER s, xLP s
or xRM s, respectively

we propose a weight learning algorithm to train the weights of
both intra-features and inter-features.

(3) Iterative Inference (see Section 6). Based on the trained
weights, we propose an iterative inference algorithm to infer the
results of these tasks simultaneously by performing the maxi-
mum probabilistic inference.

4 Feature extraction
In this section, we first define the intra-features for each
task�then define the inter-features by taking into account mul-
tiple tasks simultaneously. For simplicity, in the remainder of
this paper, we denote the task of entity resolution, link predic-
tion and relation matching as ER, LP and RM respectively.

4.1 Intra-feature extraction
The intra-features are extracted to propagate information
among random variables within a certain task. For each task,
we define the following intra-features. Here we use superscript
form to indicate which task the feature belongs to.

Entity similarity ( f ER
sim or f LP

sim): Entity similarity is measured
by a variety of attribute similarities between two nodes. There
are lots of similarity measures having been proposed [30]. In
this paper, we use Jaccard to measure the similarity between
two entities (denoted as f ER

sim(vi, v j) or f LP
sim(vi, v j)).

Neighbor similarity ( f ER
N−sim): We also consider the similar-

ity between the neighbor sets of two nodes as one of the intra-
features. We use f ER

N−sim(vi, v j) to denote the similarity between
the neighbor sets of vi and v j.

Common neighbors ( f LP
CN ): We also consider the number of

common neighbors of vi and v j.
Similarity transferred ( f ER

T−sim, f LP
T−sim or f RM

T−sim): Suppose
there are three entities vi, v j and vk. If vi and v j are identified as
the same entity, and v j and vk are identified as the same entity,
then there is a higher probability that vi and vk refer to the same
entity as well. That is, if the values of xER for all three pairs
of them are 1, they are mutually reinforcing. If the values of
xER for only two pairs of them are 1, they contradict each other.
Otherwise, the feature f ER

T−sim has no effect on the final result.
We use f ER

T−sim(xER
i j , xER

jk , xER
ik ) to denote this kind of transitivity

(Eq. (1)). Similarly, we can define f LP
T−sim and f RM

T−sim.

f ER
T−sim(xER

i j , x
ER
jk , x

ER
ik ) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if xER
i j + xER

jk + xER
ik = 3,

−1, if xER
i j + xER

jk + xER
ik = 2,

0, Otherwise.

(1)

Fig. 2 Overview of MC-INFM model
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Outgoing degree ( f LP
Out) and incoming degree ( f LP

In ): We con-
sider outgoing edges from vi and incoming edges to v j. For-
mally we use f LP

In (v j) to denote the number of incoming edges
to v j and use f LP

Out(vi) to denote the number of outgoing edges
from vi.

Relation similarity ( f RM
sim ): Suppose we predict whether the

relation (vi, v j) and the relation (v′i , v′j) match with each other.
We consider the similarity between (vi, v j) and (v′i , v′j) in their
labels. We use Jaccard to measure their similarity.

4.2 Inter-feature extraction
Besides the intra-features, we also extract the inter-features to
disseminate information among variables of different tasks. In
this paper, we take into account the inter-features between two
tasks of ER, LP and RM.

(1) Inter-feature for ER+LP
As shown in Fig. 3(a), suppose there is an anchor link be-

tween vi and v j, and there is a link between v j and vk in G2. Our
task is not only to predict the link between vi and vm in G1, but
also to identify whether there is an anchor link between vm and
vk. First, let’s consider the effect of ER on LP. Suppose via ER,
the link between vm and vk is identified as an anchor link (i.e.,
xER

mk =1). Then this will facilitate the existence of the link be-
tween vi and vm (i.e., xLP

im =1). Similarly, as for the effect of LP
on ER, if the value of xLP

im is 1, there will be a higher probability
that the value of xER

mk is 1 as well.
We use f ER+LP to denote the inter-feature between ER and LP

(Eq. (2)). If it conforms to the above rule, it will be rewarded
with a value of 1. If it violates the rule, it will be punished with
a value of –1. Otherwise, it will be 0.

f ER+LP(xER
i j , x

ER
mk , x

LP
jk , x

LP
im ) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if (xER
i j , x

ER
mk , x

LP
jk , x

LP
im ) = (1, 1, 1, 1),

−1, if (xER
i j , x

ER
mk , x

LP
jk , x

LP
im ) = (1, 0, 1, 1) or (1, 1, 1, 0),

0, Otherwise.

(2)

(2) Inter-feature for ER+RM
As shown in Fig. 3(b), suppose there is a relation (vi, vm) in

G1, and there is a relation (v j, vk) in G2. Also there is an anchor
link between vi and v j. Our task is not only to identify whether
there is an anchor link between vm and vk, but also to match two
relations (i.e., (vi, vm) and (v j, vk)). For the effect of ER on RM,
if via the task of ER, vm and vk are identified as the same entity
(i.e., xER

mk =1), obviously this will promote the matching degree
between (vi, vm) and (v j, vk) (i.e., xRM

(im, jk)=1), and vice versa.

We use f ER+RM to denote the inter-feature between ER and
RM (Eq. (3)). Similarly, setting the value of f ER+RM to 1 indi-
cates reward, while –1 indicates punishment.

Fig. 3 Examples of inter-features. (a) ER+LP; (b) ER+RM; (c) LP+RM

f ER+RM(xER
i j , x

ER
mk , x

RM
(im, jk)) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if (xER
i j , x

ER
mk , x

RM
(im, jk)) = (1, 1, 1),

−1, if (xER
i j , x

ER
mk , x

RM
(im, jk)) = (1, 0, 1) or (1, 1, 0),

0, Otherwise.

(3)

(3) Inter-feature for LP+RM
As shown in Fig. 3(c), suppose there are two relations (vi, v j)

and (vi, vk) in G1, also there are two relations (v′i , v′j) and (v′i , v′k)
in G2. Assume that (vi, v j) and (v′i , v′j) match. Our task includes
matching (vi, vk) and (v′i , v′k), and predicting the link between v′j
and v′k. For the effect of LP on RM, if via LP, the value of xLP

j′k′
is 1, there will be a higher probability that (vi, vk) and (v′i , v′k)
can match with each other (i.e., xRM

(ik,i′k′)=1), and vice versa.

We use f LP+RM to denote the inter-feature between LP and
RM (Eq. 4). If they promote each other, the value of f LP+RM is
set to 1. Otherwise, the value of f LP+RM is set to –1 or 0.

f LP+RM(xLP
jk , x

RM
(i j,i′ j′), x

LP
j′k′ , x

RM
(ik,i′k′)) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if (xLP
jk , x

RM
(i j,i′ j′), x

LP
j′k′ , x

RM
(ik,i′k′)) = (1, 1, 1, 1),

−1, if (xLP
jk , x

RM
(i j,i′ j′), x

LP
j′k′ , x

RM
(ik,i′k′)) = (1, 1, 0, 1) or (1, 1, 1, 0),

0, Otherwise.
(4)

5 Weight learning
In this section, we use CRF model to learn the weight of each
feature. CRF is a graphical model encoding the conditional
probability of a set of output variables X given a set of evidence
variables Y [19]. In this paper, X is the union of the results of
three tasks, i.e., XER ∪XLP ∪XRM , Y is a collection of observed
entities and relationships among them in the information net-
works (G1, . . . , Gn). We use P(XER, XLP, XRM |Y) to represent
the joint probability distribution over all the random variables
in XER ∪ XLP ∪ XRM (Eq. (5)). Here ZY is a normalizer. Each
potential function φ is represented more compactly as a log-
linear combination over a set of features extracted in Section 4
(Eq. (6)). Here fl means the value of the l-th feature for φQ with
the weight wl. These potential functions together determine a
joint probability distribution over all the random variables in
the potential functions (i.e., XER ∪ XLP ∪ XRM).

P(XER, XLP, XRM|Y) =
1

ZY

∏

Q∈N
φQ(XER

Q , X
LP
Q , X

RM
Q , YQ), (5)

φQ(XER
Q , X

LP
Q , X

RM
Q , YQ) = exp(

∑

l

wl fl(xER
Q , x

LP
Q , x

RM
Q , YQ)).

(6)

5.1 Factor graph construction
A CRF can be viewed as a template for constructing factor
graphs. As defined in [31], a factor graph is a set of factors
Φ = {φ1, . . ., φN}, where each factor φi is a potential function
defined in Eq. (6) to indicate the causal relationships among the
random variables in XER ∪ XLP ∪ XRM. For each factor, a fac-
tor graph is constructed, in which a factor is represented as a
square with its variables represented by its neighboring circles.
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Fig. 4 Factor graph construction

Based on the extracted features in Section 4, we take into ac-
count nine types of factor graphs, each of which corresponds
to one kind of factor. For each task, based on its intra-features
(except for f ER

T−sim, f LP
T−sim, and f RM

T−sim), we can construct a fac-
tor graph respectively, which includes only one factor, one ran-
dom variable (xER, xLP , or xRM) and the evidence variables Y.
These are simple cases because there is no joint probability dis-
tribution. Due to space, we only focus on introducing the factor
graphs for the other six cases (Fig. 4). For presentation simplic-
ity, we uniformly use Y (denoted as a double circle in factor
graphs) to represent the observed evidence variables for each
potential function (In fact, they may be different.).

(1) Factor graph based on f ER
T−sim

As shown in Fig. 4(a), based on the feature f ER
T−sim, we can

construct a factor graph including one factor (i.e., φ(xER
i j , xER

jk ,

xER
ik , Y)), three random variables (i.e., xER

i j , xER
jk , and xER

ik ) and
the evidence variables Y. We use the factor graph to represent
the associated potential, i.e., the joint probability distribution
over xER

i j , xER
jk , and xER

ik .

(2) Factor graph based on f LP
T−sim

Similar to the factor graph based on f ER
T−sim, the factor graph

based on f LP
T−sim includes one factor (i.e., φ(xLP

i j , xLP
jk , xLP

ik , Y)),

three random variables (i.e., xLP
i j , xLP

jk and xLP
ik ) and the evidence

variables Y (shown in Fig. 4(b)). We use it to represent the asso-
ciated potential, i.e., the joint probability distribution over xLP

i j ,
xLP

jk , and xLP
ik .

(3) Factor graph based on f RM
T−sim

The factor graph based on f RM
T−sim includes one factor (i.e.,

φ(xRM
(i j,i′ j′), xRM

(i′ j′,i′′ j′′), xRM
(i j,i′′ j′′), Y)), three random variables (i.e.,

xRM
(i j,i′ j′), xRM

(i′ j′ ,i′′ j′′), and xRM
(i j,i′′ j′′)) and the evidence variables Y

(shown in Fig. 4(c)). We use the value of the factor to mea-
sure the joint probability distribution over xRM

(i j,i′ j′), xRM
(i′ j′,i′′ j′′), and

xRM
(i j,i′′ j′′).

(4) Factor graph based on f ER+LP

The above factor graphs are based on the intra-features
within one task, which are used to represent the interaction
among the random variables within the same task. Besides

them, we can construct some factor graphs to represent the in-
teraction among the random variables across different tasks. As
shown in Fig. 4(d), the factor graph based on f ER+LP is used
to represent the interaction between ER and LP, which includes
one factor φ(xER

i j , xER
mk , xLP

jk , xLP
im , Y), four random variables (xER

i j ,

xER
mk , xLP

jk , and xLP
im ) and the evidence variables Y. The factor is

used to measure the joint probability distribution over xER
i j , xER

mk ,
xLP

jk , and xLP
im .

(5) Factor graph based on f ER+RM

As shown in Fig. 4(e), the factor graph based on f ER+RM is
used to represent the interaction between ER and RM. There
are one factor φ(xER

i j , xER
mk , xRM

(im, jk), Y), three random variables

(xER
i j , xER

mk , and xRM
(im, jk)) and the evidence variables Y. Similarly,

the factor is used to measure the joint probability distribution
over xER

i j , xER
mk , and xRM

(im, jk).

(6) Factor graph based on f LP+RM

Based on the inter-feature f LP+RM , we can construct the fac-
tor graph to represent the interaction between LP and RM.
As shown in Fig. 4(f), there are one factor φ(xLP

jk , xRM
(i j,i′ j′),

xLP
j′k′ , xRM

(ik,i′k′), Y), four random variables (xLP
jk , xRM

(i j,i′ j′), xLP
j′k′ , and

xRM
(ik,i′k′)) and the evidence variables Y. It is used to measure the

joint probability distribution over xLP
jk , xRM

(i j,i′ j′), xLP
j′k′ , and xRM

(ik,i′k′).
In addition, by combining the above factor graphs, we can

also construct more complex factor graphs. Due to space, here
we will not list them all.

5.2 CRF-based weight learning algorithm
Based on the factor graphs constructed above, a conditional
probability distribution over these random variables can be cal-
culated. However, it is a hard problem to maximize P in Eq. (5).
And it requires time that is exponential in |XER| × |XLP| × |XRM |.
So we adopt an approximation method proposed in [2] to es-
timate the joint probability distribution (Eq. (7)). Here X\xER

means the remainder random variables after we get rid of xER

from X. So do X\xLP and X\xRM. Note we only sum over the
possible values of (xER , xLP , xRM). Hence evaluating the nor-
malization constants of all terms only requires time that is linear
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in |XER| × |XLP| × |XRM|.

P∗(XER, XLP, XRM |Y) =

⎛
⎜⎜⎜⎜⎜⎜⎝

∏

xER∈XER

P(xER |X\xER, Y)

⎞
⎟⎟⎟⎟⎟⎟⎠
×

⎛
⎜⎜⎜⎜⎜⎜⎝

∏

xLP∈XLP

P(xLP|X\xLP, Y)

⎞
⎟⎟⎟⎟⎟⎟⎠
×

⎛
⎜⎜⎜⎜⎜⎜⎝

∏

xRM∈XRM

P(xRM |X\xRM, Y)

⎞
⎟⎟⎟⎟⎟⎟⎠
. (7)

For each term in Eq. (7), the weights for features can be
learned by maximizing the marginal (Eq. (8)), where XP and XN

are the positive instance set and the negative instance set respec-
tively, i.e., the correct prediction and the incorrect prediction re-
spectively. The weights should maximize the ratio between the
conditional probability of the correct prediction and the condi-
tional probability of the incorrect prediction. It is equivalent to
maximize the margins of log-linear combination over a set of
features.

W = argmaxW

⎛
⎜⎜⎜⎜⎜⎜⎝

∏

x∈XP ,x′∈XN

P(x|X\x, Y)/P(x′|X\x′, Y)

⎞
⎟⎟⎟⎟⎟⎟⎠

= argmaxW

(
∑

l,Q,xQ∈XP ,x′Q∈XN

wl( fl(xQ, X\xQ, YQ) −

fl(x′Q, X\x′Q, YQ))

)

. (8)

We propose a CRF-based weight learning algorithm to learn
the weights of features, which is shown in Algorithm 1. Given a
set of intra-features fintra, a set of inter-features finter , a positive
instance set XP, a negative instance set XN , a set of predicted
variables XR and a set of evidence variables Y, the goal is to
return a set of weights W for both fintra and finter .

Step 1 Learn the initial weights for the intra-features. In this
step, we only assign the weights for the intra-features because
the ground truth values are usually seldom available resulting in
being impossible to calculate the weights for the inter-features.

Step 2 Based on the learned weights for the intra-features,
the values of random variables in XR are assigned by maxi-
mizing the joint probability (Eq. (9)). Here we use maximum
a posteriori (MAP) [19] to estimate the values of the random
variables (see Section 6). For the fourth equation in Eq. (9), the
first term can be solved based on maximum likelihood estima-
tion [32], and the second term represents the prior probability
of x which can be estimated according to the distribution of the
observed data. The variables x to be learned should be a vector
made up of binary integers, but MAP algorithm cannot handle

Algorithm 1 CRF-based weight learning

Input: fintra, finter, XP, XN , XR and Y

Output: W

1 Wintra ← maxMargin( fintra , XP, XN , XR, Y);
2 for each x in XR do
3 x ←MAP(x, XR, Y , fintra , Wintra);
4 W ← maxMargin( fintra ∪ finter , XP, XN , XR, Y ∪ XR);
5 return W;

the integer constraints on the variables. Therefore, here we re-
lax the variables x as real values to denote the probabilities. We
consider these estimated values as the ground truth values too,
so that we can acquire more ground truth values.

x̂MAP = argmaxxP∗(x|X\x, Y)

= argmaxx log(P∗(x|X\x, Y))

= argmaxx log(P∗(X\x, Y |x)P∗(x))

= argmaxx log(P∗(X\x, Y |x)) + log(P∗(x)). (9)

Step 3 Learn the weights for both the intra-features and the
inter-features. Due to more ground truth values, we can acquire
more evidence to learn the weights for features. On the one
hand, the initial weights for the intra-features are refined. On
the other hand, the weights for the inter-features can be learned
with the aid of abundant evidence.

6 Iterative inference
In this section, we propose an iterative inference algorithm to
infer the final results of three tasks (i.e., ER, LP, and RM) si-
multaneously by performing MAP inference in a CRF. We use
MAP inference to estimate the values of the random variables
in X (i.e., X = XER ∪ XLP ∪ XRM).

The pseudocode is shown in Algorithm 2, denoted iterative
inference. Given a set of intra-features fintra with their weights
Wintra, a set of inter-features finter with their weights Winter , a
set of target variables X, a set of evidence variables Y, the max-
imum number of iterations maxIter and the converging thresh-
old ε, the goal is to return the values of the random variables in
X.

Step 1 Infer the values of the random variables in X based
on the intra-features fintra and their weightsWintra. In this step,
we only use fintra and the evidence Y to infer the values of the
variables in XER, XLP, and XRM.

Step 2 Iteratively infer the values of the random variables
in X based on all the features including both fintra and finter. In
this step, we use not only Y but also the inferred variables in
Step 1 as the evidence. For each iteration, we consider the in-
ferred variables in the previous iteration as new evidence which
will be applied to the current iteration. As the iterative infer-
ence progresses, the values of the variables in XER, XLP, and
XRM tend to converge. When the variables values converge (i.e.,
diff(X, X′) � ε) or when a user-specified maximum number of
iterations is reached (i.e., i � maxIter), the algorithm termi-
nates.

The basic idea of iterative inference is shown in Fig. 5. We
perform ER, LP, and RM at the same time. Each iteration uses

Algorithm 2 Iterative inference

Input: fintra, finter, Wintra, Winter , X, Y , maxIter and ε
Output: X

1 for each x in X do
2 x ←MAP(x, X, Y , fintra , Wintra);
3 for (i=0; i < maxIter && diff(X,X′) > ε; i++)
4 X′ ← X;
5 for each x in X do
6 x←MAP(x, X, Y ∪ X′, fintra ∪ finter, Wintra ∪Winter);
7 return X;
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Fig. 5 The basic idea of iterative inference

the result of its previous iteration as evidence and makes MAP
inference to generate the new result which will be applied to the
next iteration. Via disseminating information iteratively among
different tasks, the predicted result is refined gradually.

Based on the inferred values of the random variables in XER,
XLP, and XRM, we can construct the hidden network GH . First,
based on the values of the random variables in XER, we can
construct the node set VH of GH by merging the nodes in (G1,
. . . , Gn) referring to the same entity. Second, besides the orig-
inal edges in (G1, . . . , Gn), based on the values of the random
variables in XLP, we can add some new edges to GH which are
predicted via the task of LP. Finally, based on the values of the
random variables inXRM, the equivalent relations are labeled as
the same relation type.

7 Experimental evaluation
7.1 Dataset
We implement the experiments on a PC with Intel Core i7-2600
@ 3.40GHZ and 8GB main memory. We use two datasets, each
of which contains two information networks with intersections.
Our goal is to fuse them for each dataset.

For the first dataset, the information networks contained by
it are constructed based on ReVerb [33] and Freebase. Twenty
percent of triples in ReVerb have been mapped to Freebase re-
lation triples. Therefore we can model ReVerb as a graph and
divide it into two information networks (denoted as ReVerbI
and ReVerbII respectively). The process of constructing the in-
formation networks is as follows. We choose 150 entities from
FreeBase, each of which has at least two different representa-
tions in ReVerb. We put these different representations and their
neighbor nodes within 3 hops into two information networks
respectively. The links between these different representations

constitute a set of anchor links. Finally we get two information
networks which include 8500 nodes and 34000 nodes respec-
tively. Not only the anchor links, but also the ground truth of
relation matching between these two information networks can
be known according to the mappings from ReVerb to Freebase.
So the ground truth for ER and RM is available. We also ran-
domly remove some edges from the information networks. The
removed edges are considered as the links to be predicted and
they constitute the ground truth for LP.

For the second dataset, we choose 2795289 nodes from
YAGO [34] and 2365777 nodes from DBPEDIA [35] to con-
struct an information network respectively. Both of them use
WIKIPEDIA identifiers for their instances, so the ground truth
for ER can be available. As for the ground truth for RM, it is
generated by manually labeling. The generation of the ground
truth for LP is the same as that for the first dataset.

7.2 Evaluation
We varied the percentage of evidence, that is, the percentage
of observed anchor links for ER, observed matching relations
for RM and observed links for LP (set as 20%, 40%, 60% and
80% respectively). The model is trained according to the ob-
served part of the network and the remaining parts of the net-
work is predicted. We use precision, recall and F1 performance
to evaluate the quality of the results produced by the follow-
ing different models. These models take into account different
combination of features (shown in Table 2).

(1) Baseline1: It considers each task as an independent indi-
vidual. For each task„ it is also independent for the predictions
aiming at different node pairs, links or relations. For each task,
we only use their intra-features except for the features repre-
senting similarity transferred.

Table 2 Combination of features considered by each model

Model ER LP RM

Baseline1 f ER
sim , f ER

N−sim f LP
sim , f LP

CN , f LP
Out , f LP

In f RM
sim

SingleTask f ER
sim , f ER

N−sim , f ER
T−sim f LP

sim , f LP
CN , f LP

Out , f LP
In , f LP

T−sim f RM
sim , f RM

T−sim
SequenceTasks f ER

sim , f ER
N−sim , f ER

T−sim , f ER+LP, f ER+RM f LP
sim , f LP

CN , f LP
Out , f LP

In , f LP
T−sim , f ER+LP, f LP+RM f RM

sim , f RM
T−sim , f ER+RM , f LP+RM

Baseline2 f ER
sim , f ER

N−sim Meta-path based features f RM
sim

MC-INFM f ER
sim , f ER

N−sim , f ER
T−sim , f ER+LP, f ER+RM f LP

sim , f LP
CN , f LP

Out , f LP
In , f LP

T−sim , f ER+LP, f LP+RM f RM
sim , f RM

T−sim , f ER+RM , f LP+RM
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(2) SingleTask: Within each task, SingleTask performs col-
lective prediction. Therefore, based on Baseline1, SingleTask
also uses f ER

T−sim, f LP
T−sim, and f RM

T−sim to transfer similarity from
other node pairs, links or relations. That is, while processing a
pair of nodes (or links, or relations), it also considers the influ-
ence from other node pairs (or links, or relations) on it. How-
ever, SingleTask still considers multiple tasks as separate ones.

(3) SequenceTasks: SequenceTasks considers both the intra-
features and the inter-features. Also it considers the multiple
tasks as related ones. But it performs tasks one at a time in a
fixed order. In our experiment, we performs them in such an
order: first ER, then LP, finally RM. The later tasks can use the
predictions of earlier tasks. But the reverse is not true.

(4) Baseline2: Besides the above variants of our proposed
model, we also compare our model against previous work on
each task respectively. As for ER, we choose the method pro-
posed in [7] as Baseline2, which formulates the inference prob-
lem for anchor links as a stable matching problem between
the two sets of user accounts in two different networks. As
for LP, Baseline2 represents the meta-path based multi-network
link prediction method proposed in [17]. Here we randomly se-
lect three relations from relation set. For each relation, some
inter-network meta paths and inter-network meta paths are con-
structed. As for RM, Baseline2 is based on the idea proposed in
[27] which matches the relationships by clustering them.

(5) MC-INFM (our model): Both the intra-features and the
inter-features are used in MC-INFM. Based on CRF model, the
weight of each feature is learned and the results of these tasks
are inferred simultaneously.

The precision, recall and F1 performance of different mod-
els are illustrated in Fig. 6, Fig. 7 and Fig. 8, respectively. The
variation trend of experimental result on two datasets is simi-
lar. Baseline1 just makes a simple similarity comparison. Sin-

gleTask improves upon Baseline1 by taking into account the
effects within one task, i.e., performing collective prediction.
But it considers the multiple tasks as separate ones, resulting in
ignoring the mutual promotion between tasks. SequenceTasks
improves upon SingleTask by taking into account both the ef-
fects within one task and the effects among tasks. However, it
does not allow earlier tasks to use the result of later ones, re-
sulting in lower performance. Baseline2 improves some of the
variants of our proposed model, but it greatly depends on the
setting of meta-paths or the number of clusters. Also it does not
take into account either the effects within one task or the ef-
fects between multiple tasks. MC-INFM further improves upon
SequenceTasks by adopting our CRF-based weight learning al-
gorithm and iterative inference algorithm. It also makes full use
of the mutual promotion between tasks, leading to the best per-
formance.

As for ER, because it is the first task performed in Sequenc-
eTasks which is not affected by the tasks performed later, Se-
quenceTasks gets the same result as SingleTask. As for LP and
RM on the second dataset, when the percentage of evidence is
lower, the performance of SingleTask, SequenceTasks and MC-
INFM is lower than those of Baseline1 and Baseline2. That is
because the lack of evidence at this time makes the interac-
tion between tasks (or the collective prediction within one task)
may have little effects (even side effects) on the predicted re-
sult. But with the increase of the percentage of evidence, the
performance increases gradually.

8 Conclusion
In this paper, we present a novel information networks fusion
model based on multi-task coordination, which casts the fu-
sion problem as a probabilistic inference problem, and collec-
tively processes multiple tasks (including entity resolution, link

Fig. 6 Comparison of different models on precision. (a) Fusion of ReVerbI and ReVerbII; (b) fusion of YAGO and DBPEDIA
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Fig. 7 Comparison of different models on Recall. (a) Fusion of ReVerbI and ReVerbII; (b) fusion of YAGO and DBPEDIA

Fig. 8 Comparison of different models on F1. (a) Fusion of ReVerbI and ReVerbII; (b) fusion of YAGO and DBPEDIA

prediction and relation matching) to infer the final result of fu-
sion. First, we define the intra-features and the inter-features re-
spectively and model them as factor graphs, which can provide
abundant evidence to infer. Second, we propose a CRF-based
weight learning algorithm to learn the weight of each feature.
Then we propose an iterative inference algorithm to infer the re-
sults of these tasks simultaneously by performing the maximum
probabilistic inference. Experiments demonstrate the effective-
ness of our proposed model.

At present, our fusion model is based on the premise that the
data from each information network is correct. In fact, there
may be some wrong data in these information networks, which
needs to be discarded during fusion. Therefore, in our future
work, we will work on the fusion model on more complex in-
formation networks, especially on the networks including dirty
data. In addition, now we focus on the coordination among
the tasks of ER, LP, and RM. And we have not consider the
problem of time consuming. Next we will further improve the
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quality and efficiency of fusion by considering more tasks and
performance optimization strategies.
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