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Abstract The availability of pulmonary nodules in CT scan
image of lung does not completely specify cancer. The noise in
an image and morphology of nodules, like shape and size has
an implicit and complex association with cancer, and thus, a
careful analysis should be mandatory on every suspected nod-
ules and the combination of information of every nodule. In this
paper, we introduce a “denoising first” two-path convolutional
neural network (DFD-Net) to address this complexity. The in-
troduced model is composed of denoising and detection part
in an end to end manner. First, a residual learning denoising
model (DR-Net) is employed to remove noise during the pre-
processing stage. Then, a two-path convolutional neural net-
work which takes the denoised image by DR-Net as an input to
detect lung cancer is employed. The two paths focus on the joint
integration of local and global features. To this end, each path
employs different receptive field size which aids to model local
and global dependencies. To further polish our model perfor-
mance, in different way from the conventional feature concate-
nation approaches which directly concatenate two sets of fea-
tures from different CNN layers, we introduce discriminant cor-
relation analysis to concatenate more representative features.
Finally, we also propose a retraining technique that allows us to
overcome difficulties associated to the image labels imbalance.
We found that this type of model easily first reduce noise in an
image, balances the receptive field size effect, affords more rep-
resentative features, and easily adaptable to the inconsistency
among nodule shape and size. Our intensive experimental re-
sults achieved competitive results.
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1 Introduction
Globally, as the 2018 World Health Organization (WHO) ev-
idence, 1.76 million deaths were estimated as a result of lung
cancer. In the United States of America alone, 83,550 deaths
were predicted where lung cancer is considered as a reason [1].
Figure 1 reveals the major cancer varieties for the estimated
deaths in the USA, where lung cancer ranked first in both males
and females. This figure is likely bigger in developing coun-
tries, especially in African countries. Overall, lung cancer is a
serious cause of death among the death related to cancer.

With timely diagnosis and treatment, the probability that one
can cure from lung cancer is much higher. Therefore, lung can-
cer screening is the first and crucial step, with better identifica-
tion approaches leading to the improved patient result. Accord-
ing to [2], in high-risk demographics, early detection of lung
cancer from computed tomography image of lung decreased
mortality rate by 20% compared to single view radiography.
But, detecting cancer from lung image prone to false positive
and true negative, which vulnerable a patient for additional in-
vestigation, cost, and tension and a doctor for additional bur-
den [3]. The recent involvement of computer-aided diagnosis
(CAD) in lung cancer detection reveals that there have been ob-
served a great achievement that CAD is improving lung cancer
detection accuracy than human, timely.

The immense success of deep learning methods in natural
image detection and recognition are also transformed to dif-
ferent medical imaging problems and modalities. Deep convo-
lutional neural network model is a deep learning model that
provides enormous success over the other state of the art meth-
ods in various medical image challenges [4–6]. For instance, in
the area of medical image, convolutional network achieved bet-
ter sensitivity and accuracy result than human expert and other
methods in skin cancer metastases classification [5], gaining
noticeably better sensitivity performance than human. Further-
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Fig. 1 An estimated percentages of death due to cancer in USA, 2018

more, [6] introduced a three dimensional convolutional network
to detect lung cancer and achieved encouraging results, where
this model however limited when the issue of memory and time
complexity is taking into consideration. However, due to sev-
eral motives explained in this work, the existing lung cancer
detection CNN based models have not revealed sufficiently ac-
curate and robust outcome for real time employment. Consider-
ing a computed tomography image of lung, we identified three
lung cancer detection challenges. These are:

1) The intricacy information’s that nodule is made of. Nod-
ule is found anywhere in a lung. They might be normal or
abnormal. It is hard to model or characterize their nearby
pixel, because their nearby pixel’s is highly correlated.
Thus, because of their highly correlated nature of nearby
pixel nodule, the existing detection methods encounter the
problem of accuracy, and usually hard for experts.

2) The innate morphology of nodules across a computed to-
mography image of a lung. Nodules shape are inconsis-
tent. Some nodules are circular, some are elliptical, and
some are shapeless. Their shape is not absolutely repre-
senting the normality or abnormality of a nodule. Simi-
larly, nodules sizes are not constant; some are extremely
small, some are medium sized, and some are larger. Their
size does not absolutely reveal the normality or abnor-
mality of a nodule. Most of the time, this create ambi-
guity among expert, and thus, further investigations are
recommended like intensive care, blood examination, and
surgery, and as a result, it becomes a load for patients. It
is not only difficult for an expert alone, CAD faces simi-
lar situations. Figure 2 demonstrates the pointed inconsis-
tency among nodules.

3) The predominance of noise. It is known that medical
imaging quality getting better and better through time,
however, with the development of medical imaging tech-
nology that produces high resolution medical images,
noise remains the predominant issue. This makes an im-

age quality somehow deteriorated, create misunderstand-
ing, and complicate the overall subsequent medical image
analysis task such as the detection task. That is why “de-
noising first” detection (DFD) strategy is considered in
this paper.

Detecting lung cancer via deep learning model is depending
on how much the nearby pixel values are designed, i.e., the bet-
ter local and global range dependencies are well designed, the
better the model achieves better performance. Majority of re-
searches that were devoted for lung cancer detection used 3×3,
5×5, or 7×7 kernel size to design a nearby pixel and follow one
path, through the model [6–8]. With one path and fixed ker-
nel size, even if those methods noticeably achieved better per-
formance compared to the conventional lung cancer detection
methods, none of those methods were focused on the integra-
tion of local (nearby pixels) and global range dependencies to-
gether, instead they independently emphases on local or global
dependencies. Due to this, during designing the nearby pixels
or global pixels, the fixed kernel size puts some impact on both
dependencies. This implies, those aforesaid difficulties are not
jointly reflected, as the size, shape, global, and local dependen-
cies are all about how better designing nearby pixels. From Fig.
3, if we see what would Ri, R j, and Rk outputs using convolu-
tion is somehow different, because of their receptive field size
utilized. The best size depends on the problem at hand. Thus,
it is significant to design a model which balance the impact of
receptive field size.

The other challenge that lead cancer detection result to false
positive via convolutional neural network model is: (1) a short-
age of dataset — it has been proved by researchers that deep
learning models are benefitted from large number of dataset
than small dataset during training [7,8]. However, when we
come to medical image field, one of the greatest challenge is to
find large number of dataset and (2) the labelled dataset class
imbalance- even if we found certain medical image dataset, we
usually face the problem of labelled data class imbalance. For

Fig. 2 Nodules with different morphology (zoomed from the original images)
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Fig. 3 Demonstration of different receptive field size: Ri, R j, and Rk are distinct receptive field size and gi1, gj1, and gk1 are their corresponding
output through convolution

instance, in the collection of Kaggle Data science Bowl Chal-
lenge 2017, the number of labelled data has a ratio of 1 to 7, i.e.,
the ratio of normal (cancer) to abnormal (No-cancer). Clearly
this class imbalance benefits the larger target while disfavour-
ing the lower target during learning process which in turn re-
duce model accuracy.

To address these aforesaid encounters, taking the denoised
computed tomography lung image as an input, this paper in-
troduces a two-path convolutional neural network with efficient
features fusion approach. Contested to the three dimensional
convolutional neural networks that cost much time and mem-
ory during training, we used the two dimensional convolutional
network that move forward in two-path, which lead the cancer
detection task one step forward. What make our proposed con-
volutional network diflerent from the convensional model are:

One, our model is differ in structure. The model has two
paths, where each path is designed in such a way that the ef-
fect of receptive field sizes are to be minimized during mod-
elling short and long range dependencies. This is very impor-
tant since the morphology of a nodule is highly determined by
the integration of nearby pixels. In this two-path model, the aim
of the first path is to model local dependencies, whilst, the aim
of the second path is to model long-range dependencies.

Two, our model is the first to use feature fusion mechanism
in two path convolutional networks. Instead of directly con-
catenating features from different layers like the conventional
feature fusion approach, we introduce discriminative correla-
tion analysis to fuse more important features extracted from the
images by the two paths together. The features resulted from
the discriminative correlation mechanism is more discrimina-
tive and informative than the initially estimated features and it
has immense advantage for a CNN model.

Three, our method is focused on denoised computed tomog-
raphy image of lung. Contrary to the usual lung cancer detec-
tion approach which directly leverage cancer detection from
raw images, we first add noise to a computed tomography lung
image with additive White Gaussian noise (noise level σ = 10)
at some stage. To achieve the intended objective, we denoise
these images first. For this purpose, we introduced DR-Net
model which removes noise first. This model is proposed by
our research group first in [9]). Here, one could ask why we
add noise while detection is possible from raw CT scan images.
Since noise is the most predominant in medical images and no

medical image is free of noise, our goal is that: (1) to show
the research communities that to what extent one could detect
lung cancer from denoised images and (2) practically, denois-
ing is the primary step for detection which most of the time left
from the detection task and hence in this work, we motivated to
combine and introduce the two tasks together. So, this method
is intended to introduce lung Cancer detection model from de-
noised computed tomography image of lung and at the same
time focuses on designing robust detection model.

Four, the use of retraining strategy makes our model differ.
Several researchers have proposed different CNN training strat-
egy when there is a shortage in dataset and labelled dataset class
imbalance, such as transfer learning [6] and fine tuning [7] the
whole model. However, these methods do not provide intended
detection accuracy. Thus, in this work, we used a retraining
strategy where the first training is similar with the conventional
one, but the retraining is based on fine-tuning only some part
of the model. In general, our network is designed in a unified
form to circumvent the effect of distant dependencies, and pro-
vide competitive performance. We summarize our method as
follows:

1) We introduce a two-path convolutional network that is
trained with denoised Computed Tomography image of
lung to detect lung cancer. The aim of this model is to
characterize and learn different morphology of nodule
features contextual information. To the best of our knowl-
edge, this is the first work that integrate denoising and
detection tasks. Details of the contribution are found in
Section 3.

2) To better polish our model accuracy, we also deal with
discriminant correlation analysis strategy. It concatenates
more representative features than features estimated by
the two paths, where we found better accuracy with
this approach. The details contribution is found in Sec-
tion 3.3.1.

3) To deal with the critical class difference problem, we pro-
pose two stage training where all model layers’ parame-
ters are fine-tuned after the first training stage, except the
output layer in which we employ retraining strategy. De-
tails of the contribution are found in Section 3.4.2

The rest of this work is arranged as: Section 2 briefly review
related works. In Section 3, details of the introduced two-path
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convolutional network model (descriptions of the two paths,
dataset used and the conducted preprocessing) is presented. We
present the experimental results and discussions in Section 4
and finally, Section 5 gives a conclusion.

2 Related work
The primary goal of automatic lung cancer detection methods
is to aid a professional to give better decision during diagnosis.
It minimizes energy and time of an expert, and reduces cost of a
patient. The investigation made by [10], indicates that the num-
ber of research conducted on lung cancer detection has rapidly
increasing in the recent time. This observation highlights auto-
matic lung cancer detection methods are very significant and it
is still a task in progress.

Several medical image detection approaches have been pro-
posed by researchers in general and for lung cancer detection
in particular. We categorize them into two major approaches.
These are discriminative models and handcrafted models. Dis-
criminative models construct detail information about lung
anatomy. It digs out low level features and automatically mod-
els the relation of original features and its corresponding label.
On the other side, different from the discriminative methods,
the hand crafted methods are immensely focus on domain spe-
cific understanding about the identification of labels. Nodule
presence is challenging to describe, and previous handcrafted
methods commonly misscreening the true labels, i.e., the pre-
dicted label is not akin with the ground truth [11,12].

Since a comprehensive analysis is away from the range of
our work, we only give some current discriminative methods.
Majority of an image detection models are focused on two di-
mentional image. For instance, faster-RCNN was introduced
by [13], where the proposed model suggested some bounding
boxes during an initial stage and the class decision estimated
during second stage. Moreover, the current methods extend to
a single stage, where class probabilities as well as bounding
boxes are forecasted immediately [14] or without generating the
proposal, the class probabilities can be predictable for default
boxes [15]. Generally, single stage methods are faster nonethe-
less two-step methods are better perfect. Recently, [16] pro-
posed a new partially supervised training paradigm, together
with a novel weight transfer function, that enables training in-
stance segmentation models on a large set of categories all of
which have box annotations, but only a small fraction of which
have mask annotations. Following this, the new batchnormal-
ization technoque called group normalization [17] is incorpo-
rated in deep learning and for example [18] employed for image
detection in cascaded way.

Very sooner, medical image detection model based on three
dimensional convolutional networks were also introduced.
Some of these work are found at [3,7,8,19]. Considering small
sample size, [19] proposed fast CapsNet for lung cancer screen-
ing. The method achieved better result than the tradition CNN
and three times faster as well. Taking a computed tomography
scan lung image, [3, 5, 6] proposed three dimensional convolu-
tional network and [20] proposed a multi path CNN for lung
cancer detection to detect Cancer and have obtained reason-
ably encouraging results. However, the time needed to train
this model is very expensive and the memory need to process

is very huge. Assume how it is so challenging if the task is to
be daily work. In addition, these approaches do not take into
consideration those previously elaborated challenges and never
perform the detection task from the denoised image, but in this
paper, we address those challenges.

3 Methodology
3.1 The preprocessing stage

3.1.1 Dataset

The datasets used are taken from Kaggle Data Science Bowl
2017 challenge (KDSB) and LUNA 16. These datasets are a
collection of Computed Tomography scan images, in DICOM
format. For each individual patient, in both datasets, there are
about 100–400 axial slice of size 512 height and 512 width.
The two datasets are not similarly labelled. The Kaggle Data
Science Bowl dataset contains 2,101 labeled data. It is labelled
as 0 and 1. The label 0 represents the negative outcome (normal
or cancer free) and 1 represents the label of positive outcome
(abnormal or with cancer).

3.1.2 Segmentation of the lung

In addition to a lung tissue, a lung image obtained by CT modal-
ity contains other substances like water, air, bone and blood.
Their presence is irrelevant for cancer detection, but their ex-
istence disturb the capability that the model labels the nodules
accurately, and hence we omit those substances.

First, we convert pixel values of each CT scan into
Hounsfield Unit (HU). HU is a quantitative measurement which
is used to represent Radio density of substances that are found
in CT scan images of lung. For instance, lung has –500, bone
has 700, Blood has 0, Kidney has 30, and Water has 0 Radio
density in HU [21]. After HU conversion, each CT scan com-
prising several slices, where each pixel value is corresponding
to HU and found between [–1024, 3071].

Next, we omit those tissues. To omit those tissues, a common
method used by scholars are k-means [21], thresholding [22],
watershed [23] and clustering [24]. In this work, thresholding
is employed. To this end, Gaussian filter is used and then we
normalize the pixel value is to be between [0, 1]. We used –600
as a threshold. Figure 4 shows a slice of CT scan image of a
patient and its segmentation result based on thresholding.

Finally, in order to use the proposed network, we transform
the HU values of each slice into UINT8, i.e., the raw data that
were initially transformed within [–1024, 3071] are linearly
transformed within [0, 255]. And then, the mask used to seg-
ment the lung tissue is multiplied with these values. Substances
that are out of the mask is set to 170, representing a common
tissue of luminance.

Fig. 4 Some segmentation results by thresholding
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3.1.3 Suspicious nodule detection
To effectively and efficiently segment some suspicious nodules
from CT scan image of a lung, we used U-Net initially pro-
posed by [23]. It is a two dimensional network that has been
extensively functioned for many Bio-medical image segmenta-
tion problems like for brain nodules localization and segmenta-
tion. By modifying some parameters, like depth of the model,
filter size, the size of an input patch, we train a U-Net. To this
end, we employed LUNA 16 dataset. The detail of U-Net is
found at [23].

After training U-Net with LUNA 16 dataset, we then used
the network to segment the KDSB dataset, i.e., LUNA 16 is
used during training and KDSB dataset is used for testing. In
such a way, we determine suspicious nodule region which in-
crease the degree that our model will predict Cancer nodule
from the normal one. We then used these images (image having
suspicious nodules) to train our proposed DFD-Net by dividing
them into training set, validation set, and test set. These suspi-
cious candidates have variable size and shape. Figure 5 shows
some samples of an image generated by U-Net.

3.2 DR-Net
In this section, we give brief explanation of the denoising
model, DR-Net. The purpose of this model is to denoise lung
CT scan images before these images are used to be processed by
the detection part of the model. First, the model is trained with
LUNA 16 dataset, and then the model is evaluated with KDSB
dataset. Both datasets are CT scan images of lung, they have
similar characteristics except their Cancer location and Cancer
status, where LUNA 16 has Cancer location but no Cancer sta-
tus and KDSB has Cancer status but no Cancer location. The
one we used for detection is the denoised one, i.e., the denoised
KDSB images.

To train the model, we follow the residual learning approach
proposed by [9]. The model is illustrated in Fig. 6 and the
parameters of the model’s are given in Table 1. To obtain the

Fig. 5 Segmented and detected sample of suspecious nodules by U-Net

trainable parameters of the DR-Net, the loss function between
the desired residual image {(zk−xk)} and predicted one {�(zk; κ)}
is formulated as

l(κ) =
1

2M

M∑

k=1

‖ �(zk; κ) − (zk − xk) ‖2F , (1)

where κ denotes the parameters to be trained, {zk, xk}Mk=1 are
M noise-clean image pairs, respectively and ‖.‖2F is Frobenius
norm. We initialize the weights as in [25] and use Adam [26]
algorithm with ε = 10−8, α = 0.01, β1 = 0.9, and β2 = 0.999.
The size of image batch is set to 10. The model is trained for
50 epochs. For the 50 epoches the learning rate is decayed ex-
ponentially from 0.01 to 0.0001. To conduct this experiment
MatConvNet framework [27] is employed to train the network.
Since the data is small in number, we also used data augmen-
tation strategy. This part of the experiment is carried out in
the Matlab (R2015b) language on a computer with Intel(R)
Xeon(R) CPU E3-1230v3 3.30GHz and NVIDIA Tesla K40c
GPU.

While the training detail of this method is found at [9], in our
detection model, we used the reconstruction part, i.e., given a
noisy CT scan image of lung (particularly after preprocessing),
we used the reconstruction phase of DR-Net to reconstruct the
noise free images. These reconstructed image are then directly
used in the detection part. So, for the detection part, we can as-
sume DR-as a pretrained model which denoise a noisy images.

3.3 Two-path CNN with feature fusion
In the introduction section, we presented that the inconsistency
of nodule morphology, and relationship of the nearby pixels are
among the crucial factors when detecting lung Cancer using
deep learning methods. Because of these factors, a lung can-
cer detection models using deep learning is not providing suf-
ficiently greater accuracy. One of the motives is the effect of
receptive field size during modeling local context and global
context and the fixed number of path corresponding to these re-
ceptive field sizes. For instance, most CNN centered detection
networks are so limited to fixed receptive field size throughout

Table 1 DR-Net parameters

Layers 1 2–14 15

Types conv+relu conv+BN+relu conv+relu
#kernel/Kern. 64/3×3×1 64/3×3×64 1/3×3×64

stride 1 1 1

Learned 
residual 

Input noisy CT 
scan image

Reconstructed/
Denoised image

Fig. 6 DR-Net framework
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all layers (for instance, the use of 3×3, 5×5 or 7×7 size in the
entire model) and one-way path (path that only rely on fixed
receptive field size). This influence the nearby pixels and high
level information during feature extraction.

To overcome the challenges, we have introduced a two-path
CNN that consider different receptive field sizes correspond-
ingly. Each path is with unique kernel size, where we named
these two-paths as, first path and second path. The first path
used a receptive filed of size 3×3 and that of the second path is
5×5. At this position, one could raise a question as if 5×5 size
is larger enough or 3×3 is suitable enough? Reply may vary;
it might rely on a specific challenge. To investigate the stated
challenges, we just emphasis on the mentioned kernel sizes and
two-paths. The model parameters are given in Table 2.

Furthermore, in the proposed model we incorporate various
feature fusion strategy. For both paths (first and second path),
apart from the traditional concatenation approach, we have in-
troduced an efficient way to concatenate their feature map from
the fourth and third convolutional layer respectively. First, we
transform the fourth convolutional layer of the first path and

Table 2 DFD-Net parameters setup, ReLu activation function is used after
each convolution except the conv. after concatenation layer (where soft-max is
used)

First path Second path

Layers
w.size/

#weights
Input Layers

w.size/
#weights

Input

conv. 3×3/64 128×128×1 conv. 5×5/64 128×128×1
maxp. 2×2 64×126×126 maxp. 2×2 64×124×124
conv. 3×3/64 64×125×125 conv. 5×5/64 64×123×123
maxp. 2×2 64×123×123 maxp. 2×2 64×119×119
conv. 3×3/64 64×122×122 conv. 5×5/64 64×118×118
maxp. 2×2 64×120×120 maxp. 2×2 64×115×115
conv. 3×3/64 64×119×119
maxp. 4×4 64×117×117

Concatenation (primary or secondary) layer

conv. 114×114 192×114×114
Output 2×1×1

the third convolutional layer of the second path features and
then, after this transformation, we concatenate them together.
For three reasons, we inspired for such type of model. These
are, the prediction of the label is clearly determined by how
nearby pixel values are well modeled, the use of concatenation
benefits in modelling more representative features and model-
ing long and short-term dependencies, and the selection of more
important features from the last CNN layer boost the prediction
accuracy, where we used DCA strategy in our case. Inspired by
these, we relatively overcome the lung Cancer detection chal-
lenges. Figure 7 shows the network of the proposed model,
where the overall algorithm of our model is illustrated in Ta-
ble 3. We name this network as “denoising first” detection with
two-path CNN (DFD-Net).

3.3.1 Feature fusion in two-path CNN
In this sub-section, since the concatenation layer is mainly fo-
cuses on discriminant correlation analysis (DCA), we provide
the details of DCA. Several feature fusion mechanism has been
exploited in convolutional network aiming at obtaining more

Table 3 The overall algorithm of DFD-Net

Input: KDSB, LUNA16.

Step 1: Convert the input data to HU.
Step 2: Segment the lung using thresholding as proposed in Section

3.1.2.
Step 3: Train U-Net with LUNA16 dataset for segmentation.
Step 4: Test the trained U-Net with KDSB dataset to determine the sus-

picious nodule region.
Step 5: Add Gaussian noise to LUNA16 dataset with noise level σ = 10.
Step 6: Train DR-Net with the data in Step 5.
Step 7:Add Gaussian noise to the outputs of Step 4 with noise level

σ = 10.
Step 8: Test DR-Net with Step 7 outcomes.
Step 9: Train DFD-Net with some outputs of Step 8 (as some are used

in Step 10).
Step 10: Test DFD-Net with data that are not included during perform-

ing Step 9.

Output: Prediction (as Cancer or No-Cancer ).

Fig. 7 DFD-Net framework. The figure reveals the input patch undergoes some preprocessing steps, then through two paths of convolutional layers
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helpful descriptor. For instance, serial features fusion strategy
[28] and parallel features fusion strategy [29, 30] mechanism
are immensely employed.

Serial features fusion strategy easily concatenates two inde-
pendent features into one feature. Assumes that f1 and f2 are
two set of features having a, b dimension, respectively. Using
serial feature fusion mechanism, this two features are trans-
formed to a single feature l having size (a + b). Similarly, par-
allel strategy transforms the two sets of features into a single
feature, but the transformed feature became a complex vector.

Canonical correlation analysis (CCA) feature mechanism has
been introduced by [31] to better provide better informative fea-
tures than the initially estimated features. We briefly explain the
idea of this method as follows.

Canonical feature fusion: Assume that F1 ∈ Ra×n and F2 ∈
R

b×n represents set of features, with n representing total num-
ber of feature set and a and b denotes the dimension of F1 and
F2, respectively. Again, assume C f1 f1 ∈ Ra×a and C f2 f2 ∈ Rb×b

represent the covariance matrices (κm) of F1 and F2, respec-
tively, and C f1 f2 ∈ Ra×b is the intermediate covariance, where
C f2 f1 = CT

f1 f2
. The general covariance matrix C ∈ R(a+b)×(a+b) is

then calculated as

C =

⎛⎜⎜⎜⎜⎝
κm(F1) κm( f1, f2)

κm( f2, F1) κm( f2)

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝

C f1 f1 C f1 f2

C f2 f1 C f2 f2

⎞⎟⎟⎟⎟⎠ , (2)

As pointed in [32], it is tough to apprehend the relationship
between these two features from matrix C. The main objective
of canonical correlation analysis is that to introduce two linear
combination F∗1 = XT

f1
F1 and F∗2 = XT

f2
F2 , which optimizes the

correlation (cr) between the two features F1 and F2.

cr(F∗1, F
∗
2) =

κm(F∗1, F
∗
2)

σ2(F∗1).σ2(F∗2)
, (3)

where κm(F∗1, F
∗
2) = XT

f1
C f1 f2 X f2 is a correlation between

(F∗1, F
∗
2), σ2(F∗1) = XT

f1
C f1 f1 X f1 is variance of (F∗1), and

σ2(Y∗) = XT
f2

C f2 f2 X f1 f2 is a variance of (Y∗). To satisfy the con-

straint σ2(F∗1) = σ2(F∗2) = 1, the optimization problem of the
c(F∗1) and c(F∗2) is given in [32] via Lagrange multipliers.

At the end, as introduced in [31], the transformed features
are computed by concatenation as

Z =

⎛⎜⎜⎜⎜⎝
F∗1
F∗2

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝

XF1 0

0 XF2

⎞⎟⎟⎟⎟⎠
T ⎛⎜⎜⎜⎜⎝

F1

F2

⎞⎟⎟⎟⎟⎠ , (4)

or summation as

Z = F∗1 + F∗2 =
⎛⎜⎜⎜⎜⎝

XF1

XF2

⎞⎟⎟⎟⎟⎠
T ⎛⎜⎜⎜⎜⎝

F1

F2

⎞⎟⎟⎟⎟⎠ . (5)

This type of concatenating features is termed as canonical cor-
relation discriminant (CCD). The CCA fuse different layer fea-
tures to construct representative features. However, CCA ap-
proach was not considered the relation or the correlation be-
tween various features and thus in this paper, we interested to
optimize the correlation between features before concatenation.
Recently, to circumvent CCA weakness, [32] introduced the

discriminant correlation analysis (DCA). We give the brief idea
of DCA as follows:

Discriminant feature fusion: Assume that E represents an in-
put data, k is the number of classes in E, F1 denotes features
obtained from the data E and f1i j ∈ F1 represents the fea-
tures extracted from the ith image of the jth class. Also, let
f̂ 1i =

1
ni

∑n
j=1 f1i j and f̂1 = 1

ni

∑k
i=1 ni f1i represent the mean of

the f1i j under the ith category and the whole feature set, respec-
tively, with n denotes the number of data that belong to the ith
class. In [33], the intermediate-class scatter matrix is formu-
lated as:

Cx f1(a×b) = Ωx f1Ω
T
x f1
, (6)

where

Ωx f1(a×k)
= [
√

n1( f̂11− f̂1),
√

n2( f̂12− f̂1), ...,
√

nk( f̂1k− f̂1)]. (7)

According to [32], the substantial eigenvectors of (Ωx f1Ω
T
x f1

)a×a

can be calculated by mapping the eigenvector of (ΩT
x f1
Ωx f1 )k×k.

To greatly isolate the categories, matrix (ΩT
x f1
Ωx f1) should be a

diagonal matrix [33] as:

LT(ΩT
x f1
Ωx f1)L = Γ, (8)

where L is positive definite eigenvalues which are in the main
diagonal matrix, Γ is the eigenvectors matrix and is orthogonal,
and m is the non-zero eigenvectors matrix that is denoted by
ω(k×m) and is the highest values. Given a matrix L, we can have

ωT(ΩT
x f1
Ωx f1)ω = Γ(m×m). (9)

As suggested in [32], the substantial eigenvectors of Cx f1 can
be computed by mappingΩ→ Ωx f1ω as:

(Ωx f1ω)TCx f1 (Ωx f1ω) = Γ(m×m), (10)

yx f1 = Ωx f1ωΓ
−1/2 is the transformation of the matrix F1 that

unitizes Cx f1 and decreases the dimensionality of F1 from a to
m where

XT
x f1

Cx f1 Xx f1 = Id, (11)

F′1(m×n) = XT
x f1(m×a)

F1(a×n) , (12)

similarly for the second feature F2, the transformation matrix
Xx f2 is calculated, which unitizes Cx f2 and decreases the dimen-
sionality of F2 from b to r.

XT
x f2

Cx f2 Xx f2 = Id, (13)

or
XF′2(m×n) = XT

x f2m×b
F2(b×n) , (14)

where m is the feature length of the changed features

m � min(k − 1, rank(F1), rank(F2)). (15)

Now, at this stage our goal in this work is to optimize (clearly
maximization) the correlation between features throughout the
two feature sets. To this end, we need to diagonalize the
intermediate-set covariance matrix of changed feature, C′ f1 f2 =

F′1F′T2 . According to [32], it can be achieved by singular value
decomposition

C′ f1 f2(m×m)
= VΦUTVTC′ f1 f2 U = Φ, (16)
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setting Xk f1VΦ
−1/2 and Xk f2 = UΦ−1/2, we have

V(Φ−1/2)TC′ f1 f2 (UΦ−1/2) = Id, (17)

which unitizes matrix C′ f1 f2 and this equation has the same
form with 14. Thus, similar to Eq. (15), the transformation of
the feature set can be written as,

F∗1 = XT
k f1

F′1 = XT
k f1

XT
x f1

F1 = X f1 F1, (18)

F∗2 = XT
k f2

F′2 = XT
k f2

XT
x f2

F2 = X f2 F2. (19)

Finally, after applying this transformation, using desecrate
correlation analysis approach, fusing of features can be exe-
cuted by either summation or concatenation. Though the use of
summation approach provides features with lower dimensions
and also reduces computational time, we found that this ap-
proach provides less accuracy than the concatenation approach,
and thus we used concatenation approach instead of summa-
tion in this work. That is, first, we used feature sets of the last
convolutional layers of the two paths and compute the transfor-
mation using Eqs. (18) and (19). Then, we apply concatenation
approach on the transformed features. We named the concate-
nation layer considering the traditional approach (without the
introduced transformation) as primary concatenation layer and
the one considering DCA approach as secondary concatenation
layer, and they are discussed as follows.

3.3.2 Primary concatenation layer
Basically the proposed network constitutes primary and sec-
ondary concatenation layer where both concatenation layer is
independent of one another. The secondary concatenation layer
is employed with discriminant correlation analysis and ex-
plained in the next section. To explicitly average the effect of
receptive field size, the primary concatenation layer concate-
nates the output of the fourth convolutional layer of the first
path and the output of the third convolutional layer of second
path together. Next, convolution operation is once applied on
the concatenated features with 192 filters where each filter is of
size 114×114. The output of this last convolution is then fol-
lowed by soft max classifier for the final Cancer nodule esti-
mation as shown in Table 2. Compared to the traditional CNN
detection models that have only one path, the computational
complexity of this model is higher, however, it achieved better
detection accuracy. In our future work, we will focus toward
this challenge.

3.3.3 Secondary concatenation
As we have explained earlier, the secondary concatenation is
based on discriminative correlation analysis presented above.
This layer helps us to select more representative features from
the first and the second path. Contrary to the primary concate-
nation layer which directly concatenate features of the fourth
convolutional layer of the first path and features of the third
convolution layer of second path, the secondary concatenation
layer concatenates the transformed features where the trans-
formation is based on discriminant correlation analysis as in
Eqs. (18) and (19). Similar to the primary concatenation layer,
convolution operation is once applied on the concatenated fea-
tures with 192 filters where each filter is of size 114×114. The

output of this last convolution is then followed by soft max clas-
sifier for the final Cancer nodule estimation. In general, the em-
ployment of discriminant correlation analysis in two path model
improves the efficiency of convolutional networks and at the
same time it effectively models nearby pixels in the Cancer de-
tection challenges.

3.4 Training stage
In this section, first we give the general training procedure and
then, to further deal with the improvement of the proposed
model, we consider two training stage. We call the first train-
ing phase, first-training stage, and the second training phase,
re-training stage. We give the details of both training stages one
by one as follows.

3.4.1 General training rule
To train a convolutional network for a detection task, a common
optimization rule used by many researchers is either maximiz-
ing the probability of all labels in training set or minimizing the
probability of the negative logarithm.

− log p(M|N) =
∑

i, j

− log(Mi, j|N), (20)

for every labeled lung slices.
Through frequent selection of labels Mi, j at an arbitrary sub-

set of patches within each lung, we employed stochastic gra-
dient method. Instead of processing the whole patches for pa-
rameter updates, we made an updates only on some subset of
patches. This method makes the training process faster; at the
same time, it provides adequate updates for learning. Above all,
this approach is executed through creating mini batches dataset
of smaller slices of lungs image patches, matching with the sim-
ilar detection label as the objective.

It has been proved by researchers that the momentum method
has been fruitful [21], we used it to improve our model. We used
this method as

vi+1 = η ∗ vi − γ ∗ ∇Wi, (21)

Wi+1 = Wi + vi+1, (22)

where Wi is the CNN parameters at step i, η is the
momentum,∇Wi is the gradient at Wi, vi is the combined ve-
locity and γ is the learning rate. The value of initial and final
momentum η is initialized to 0.05 and 0.009, respectively. Fi-
nally, in our model, we set γ=0.0005 and it is decayed expo-
nentially with decay factor 0.1.

3.4.2 First and re-training stage
Earlier in the introduction part, we pointed that intra-dataset la-
bel imbalance in medical images field is one of the great chal-
lenges. The reason is that deep learning models are highly bene-
fitted from large volume of data. As a result, in imbalanced class
label, a model highly favors the higher target during training,
while disfavoring a small target. For example, in KDSB 2017
challenge, about 26 % of the patient are labelled as 1 (Cancer)
and about 74% of the patients are labelled as 0 (free of cancer).
Figure 8 shows this class imbalance problem. During training,
a patch having 0 label is highly favored because of their size in
the dataset, while the patch having label 1 is disfavored by the
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Fig. 8 The number of cancer to non-cancer in KDSB 2017 challenge

model. However, the overall result disturbs the training accu-
racy of CNN models.

To solve this, we increase the lower target by data augmen-
tation technique until the number of lower target patches (those
labelled as one) are equivalent to higher target patches (those la-
belled as zero). Data augmentation is first proposed by [34] and
is highly used technique in natural image segmentation. We call
this training stage first training stage.

Then, considering the original dataset (i.e., the imbalanced
dataset), we apply a fine tuning strategy and train the output
layer only. That is, by maintaining the optimized parameters
of the first training phase (except the parameters of the output
layer), we only train the output layer. We refer to this training
stage as re-training stage. In this manner, we obtain the best
outcome.

4 Experimental results and discussion
4.1 Experimental setup
We used Tensor flow [35] with Kera backend for the implemen-
tation of our proposed method. Tensor flow backend with Kera
is one of the deep learning library that support graphical pro-
cessing unit (GPU). The use of Tensor flow backend with GPU
is to speed up a machine learning algorithm.

The number convolutional layer of the first path was set to
four and the number of convolutional layer of the second path
was set to three. By conducting various experiments (by alter-
ing number of hidden layer sizes), we fixed the depth of our
model to the existing size. During experimentation, we iden-
tified that appending additional layers to both first and second
path was not improved our results. Also, we identified that re-
ducing the number of layers from both first and second path
was not improved our results. In this way, we fixed the size of
the proposed model to the existing size.

We also fix the parameters of each layer as shown in Table 2.
The parameters shown in this table is the one for which our
model achieved best result on validation set. For both paths,
each pooling and convolutional layers’ stride were set to 1.
It benefits us to maintain the per-pixel accuracy. We initialize
the filters of all layers randomly from the uniform distribution
U(–0.005, 0.005) except the parameters of the softmax layer.
For the softmax layer, we initialize the filter to the log of the
label. Finally, the bias of our network was set to zero.

4.2 Performance evaluation
Many medical image detection performance evaluation has
been proposed by researchers. Among those metrics, accuracy,
recall, and specificity are commonly employed. We also em-
ployed these metrics to see how our model well perform on the

testing set. These metrics are defined as follows

S =
TP

TN + FP
, (23)

R =
TP

TP + FN
, (24)

A =
TP + TN

TP + FP + FN + TN
, (25)

where S, R, and A shows specificity, recall, and accuracy, re-
spectively and TP, FP, FN, and TN, denotes the number of true
positives, false positives, false negatives, and true negative, re-
spectively.

4.3 Two-path CNN
Most convolutional neural networks model that are designed to
detect lung cancer is in feed forward manner, which we refer as
one-way path. Apart from those methods, the proposed DFD-
Net has two pathways. These paths aimed to better estimate lo-
cal and global dependencies of the nearby pixels, where the first
path aimed to model the details and the second path aimed to
model the contextual information. Experimental results reveal
that our motivation on both context and detail greatly achieved
better accuracy compared to the recent lung cancer detection
work.

To reveal how the combination of the first path and second
path is so relevant in detecting lung cancer, we provide the per-
formance results of each path and results of the two path with
both primary concatenation layer and secondary concatenation
layer, independently. As the label class imbalance challenge is
also considered in this work with first and retraining technique
presented earlier in Section 3.4.2, we provide the results of our
model with both first and retraining stage. To make our work
more visible, we denote our proposed convolutional neural net-
work made of first path alone as DFD-f and the one made of the
second path alone as DFD-s. Also, we denote our convolutional
network model with primary concatenation layer as DFD-tp and
the overall two path CNN with secondary concatenation layer
as DFD-Net. The superscript “s” append to those notation indi-
cates the retraining stage.

Table 4 illustrates the results of various version of our mod-
els. As one can observe from the table, the results of the DFD-
Net, DFD-tp, and DFD-f are given with both single stage and
retraining stage, and the results of DFD-s with only retrain-
ing phase is presented. Accordingly, the first path with retrain-
ing stage (DFD-fs) ranked as third performer model, however,
using the first training stage, the model (DFD-f) ranked as
seventh. Moreover, with retraining stage, DFD-fs has gained
18.2% recall, 16.8% specificity and 17.8% accuracy values over
DFD-f. On the other hand, if we see the results of DFD-tp and
DFD-Net, it achieved less accuracy, specificity and recall val-
ues than DFD-fs, but after the retraining stage, DFD-Net and
DFD-tp ranked first and second, respectively. This shows how
the introduced retraining stage tactic is so relevant for the class
imbalance problem, and the combination of the two path is so
significant to alleviate lung Cancer detection challenges. If we
consider the effect of the primary (i.e., without DCA) and sec-
ondary (i.e., with DCA) concatenation layers, DFD-Nets pro-
vides better performance. More specifically, without DCA fea-
ture fusion strategy, i.e., with only primary concatenation layer,
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Table 4 DFD-Net model and its variation performance

Methods R S A

DFD-Nets 0.874 0.891 0.878
DFD-tps 0.865 0.891 0.871
DFD-fs 0.855 0.851 0.854
DFD-ss 0.830 0.821 0.828

DFD-Net 0.789 0.782 0.788
DFD-tp 0.768 0.762 0.766
DFD-f 0.673 0.683 0.676

our model has still shown better performance, however with
DCA strategy, the overall performance of the model is boosted.
As shown in Table 4, DFD-Nets has gained about 0.9% recall
and 0.7%accuracy values over DFD-tps. Overall, DFD-Nets is
the best performer model. This shows how the proposed DCA
feature strategy is important in our model.

To make our best performer model more visible, we have
shown the Confusion Matrix results in Table 5. The proposed
method is also compared with some other recent state of the
art lung cancer detection methods. Table 6 shows the results
of our best performer model compared to other state of the art
lung cancer detection approaches. As shown in the table, DFD-
Nets achieved better accuracy, specificity and recall values. It
achieved 0.014 accuracy, 0.016 recall, and 0.010 specificity val-
ues over [6]. For the rest mentioned approaches in the table,
it achieved higher accuracy, recall, and specificity values. The
second performer model DFD-tps, even achieved better recall,
accuracy, and specificity values over [22, 24, 36]. Those meth-
ods are different compared to our two path network in many
ways, for example, those models follows one way convolutional
networks. To make more feasible comparison, we have imple-
mented DR-Net and DCA method in [22,24,36] and compared
its results with our proposed method. Figure 9 shows the re-
sults achieved after DR-Net and DCA strategy implementation.
The result shows that still our proposed network outperformed
those methods. In some methods, (e.g., [6, 36]), there is some
improvement with DR-Net and DCA, and in some of the meth-
ods, (e.g., [22,24]), the performance of the model reduced with
DR-Net and DCA strategy. We believe this is for various rea-
sons (e.g., the difference of the network structure, the retraining
strategy employed, the employed preprocessing technique, and
many other).

Table 5 Confusion matrix results of DFD-Net using test image

Predicted
Actual class

Cancer Non-cancer

Cancer 0.8746 0.1254
Non-cancer 0.1089 0.8911

Table 6 Contestation of our best performer model DFD-Nets with other meth-
ods

Methods R S A

DFD-Nets 0.874 0.891 0.878
Kuan et al. [6] 0.858 0.881 0.864

Chon et al. [22] 0.840 0.841 0.840
Rao et al. [24] 0.815 0.801 0.811

Huang et al. [36] 0.724 0.742 0.728

4.4 The preprocess stage
As we have mentioned earlier, a Computed Tomography im-
age of lung is composed of many substances. These substances
are not important to detect lung cancer from lung image. To
see its effect, firstly, we experiment the proposed model with
KDSB without conducting any preprocessing. However, the re-
sult obtained was very low. Secondly, we removed non rele-
vant substances such as bone, blood, water, and trained our best
performer model (DFD-Nets), again the achieved results were
not satisfactory. Thirdly, as most lung cancer detection models,
we perform lung segmentation and nodules detection from raw
lung images. We applied thresholding to segment the lung, and
then, we used U-Net to detect suspicious nodules.

Table 7 shows the results of the proposed DFD-Nets when
preprocessing (lung segmentation and suspicious nodule detec-
tion) are applied and preprocessing are not performed. From
the table, one can observe that the performance of DFD-Nets

boosted when lung segmentation and suspicious nodule detec-
tion is considered. The proposed DFD-Nets trained with the
preprocessing stage has 0.101 accuracy, 0.218 specificity, and
0.105 recall values than DFD-Nets that is not trained with the
aforesaid preprocessing. Similar result has been achieved with
DFD-tps. In general, we observed that the use of segmentation
via thresholding and suspicious nodule detection via U-Net as a
preprocessing strategy were enhanced the DFD-Nets accuracy.

4.5 Analysis of DR-Net impact
The denoising network used (DR-Net) is the recent model in-

Fig. 9 Comparison of our method with other methods (when DR-Net and DCA strategy is employed in [6, 22, 24, 36])
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Table 7 DFD-Net and DFD-fs performances with preprocessing (wpp) and
without preprocessing (wtpp) stage

A S R
Model

wpp wtpp wpp wtpp wpp wtpp

DFD-Nets 0.874 0.773 0.891 0.673 0.878 0.773
DFD-fs 0.865 0.643 0.891 0.663 0.871 0.623

troduced by [9]. It used residual learning approach using CNN
to denoise medical images. Particularly, it was designed for
lung images denoising. According to this paper, it outper-
formed the well know image denoising methods like BM3D
and KSVD. Thus, we prefer this model to use in our DFD-Net
to first denoise lung CT scan image for cancer detection pur-
pose.

In medical image analysis, interpretation, and detection task,
the first step to be considered is that noise removal or reduc-
tion. It makes the result of those tasks more realistic, otherwise,
those tasks are complicated [13]. Therefore, denoising strategy
is very crucial step for the other tasks and also irrespective of
those tasks. To this end, we used DR-Net to first denoise lung
CT scan image of lung before the detection task. However, dur-
ing our experimentation, we observed that the overall result of
DFD-Net is affected by the use of DR-Net compared to the re-
sults of DFD-Net without DR-Net. The reason is that during
denoising CT scan image of lung with DR-Net, we lost some
details about an images. More or less, the result obtained is
promising. Without using DR-Net, we obtained better accuracy
results. It has about 0.125 accuracy higher. In our future work,
we work on it to obtain the same or greater accuracy value with
the denoised images.

4.6 The subject of morphology
To see how our model is robust enough toward a nodule size
and shape variations, we identified 300 images and test our best
performer model. The experimental results obtained are shown
in Table 8. Among the 300 images, 150 images has relatively

bigger sizes (in diameter) and has multi shapes, and the rest 150
images has relatively smaller nodules size (in diameter) with in-
consistent shape. All these images are taken from KDSB 2017
challenge.

From Table 8, one can observe that of 150 larger nodule nom-
inated, only 3.33% were wrongly predicted with our proposed
DFD-Nets, and of 150 smaller nodules nominated, only 4.66%
were wrongly predicted. From the experiment, we observed that
DFD-Nets best perform on larger nodules than on smaller nod-
ules. This observation is also valid when the nodules is screened
by an expert, i.e., when nodule screening is made by an expert,
the accuracy of larger nodules is higher than that of smaller nod-
ules. Contested to the other state of the art, our best performer
model DFD-Nets has achieved better performance results. For
example, while [6] predicts 95.33% cancer nodules correctly,
DFD-Nets predicts 96.66% cancer nodules correctly, which is
about 1.33% larger. Overall, the proposed DFD-Net better ad-
dress the contextual and morphological challenge during lung
cancer detection is conducted.

5 Conclusion
This paper presented the detection of lung cancer from the de-
noised Computed Tomography images of lung with two path
CNN. Different architecture has been considered aiming to ob-
tain best lung cancer detection results. The conducted Exper-
iment on Kaggle Data Science bowl 2017 challenge with our
proposed DFD-Net revealed better lung cancer detection results
than the recently introduced approach on accuracy, sensitivity
and specificity.

The first training and retraining strategy proposed has im-
proved the model accuracy. We also suggest this strategy can be
used in other detection tasks where there is a problem of class
imbalance within the data. Since we used GPU technology, we
found the time the model cost during training is reasonable,
where the test time is so faster even with CPU.

Table 8 Morphological context performance of our model and its contestation with other approaches (No. S: number of samples, No.cp: number of correctly
predicted, No. wp: number of wrongly predicted, %cp: percentage of correctly predicted, and %wp: percentage of wrongly predicted)

Approaches No. S No. cp %cp No. wp %wp

Bigger(150) 145 96.66 5 3.33
DFD-Nets Smaller(150) 143 95.33 7 4.66

Bigger(150) 144 96 6 4
DFD-tps Smaller(150) 143 95.33 7 4.66

Bigger(150) 143 95.33 7 4.66
Kuan et al. [6] Smaller(150) 141 94 9 6

Bigger(150) 140 93.33 10 6.66
Chon et al. [22] Smaller(150) 141 94 9 6

Bigger(150) 139 92.66 11 7.33
Rao et al. [24] Smaller(150) 136 90.66 14 9.33

Bigger(150) 134 89.33 16 10.66
Huang et al. [36] Smaller(150) 132 88 18 12

Bigger(150) 144 96 6 4
Kuan et al. [6] +DR-Net+DCA Smaller(150) 143 95.33 7 4.66

Bigger(150) 139 92.66 11 7.33
Chon et al. [22] +DR-Net+DCA Smaller(150) 139 92.66 11 7.33

Bigger(150) 134 89.33 16 10.66
Rao et al. [24] +DR-Net+DCA Smaller(150) 132 88 18 12

Bigger(150) 139 92.66 11 7.33
Huang et al. [36] +DR-Net+DCA Smaller(150) 136 90.66 14 9.33
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Feature fusion strategy called DCA is introduced to combine
more important features. We examined the new transformation
with concatenation and this strategy improved the model per-
formance greatly.

Overall, contested to the recently proposed lung Cancer de-
tection approaches with convolutional neural networks, our
proposed DFD-Net can be easily adopted to variation among
nodules size and also it can be easily adopted for other medi-
cal image detection task even with the denoised data that loses
some details during denoising process.
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