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Abstract We consider image transformation problems, and
the objective is to translate images from a source domain to a
target one. The problem is challenging since it is difficult to pre-
serve the key properties of the source images, and to make the
details of target being as distinguishable as possible. To solve
this problem, we propose an informative coupled generative ad-
versarial networks (ICoGAN). For each domain, an adversarial
generator-and-discriminator network is constructed. Basically,
we make an approximately-shared latent space assumption by a
mutual information mechanism, which enables the algorithm to
learn representations of both domains in unsupervised setting,
and to transform the key properties of images from source to
target. Moreover, to further enhance the performance, a weight-
sharing constraint between two subnetworks, and different level
perceptual losses extracted from the intermediate layers of the
networks are combined. With quantitative and visual results
presented on the tasks of edge to photo transformation, face at-
tribute transfer, and image inpainting, we demonstrate the ICo-
GAN’s effectiveness, as compared with other state-of-the-art
algorithms.

Keywords generative adversarial networks, image transfor-
mation, mutual information, perceptual loss

1 Introduction

Image-to-image transformation aims to translate available
source images into desired targets. The problem has attracted
much attention with its wide applications in many tasks includ-
ing de-noising [1-3], super resolution [4, 5], inpainting [6, 7],
colorization [8]. etc. It is difficult since most tasks involve gen-
erating target images by utilizing degraded or corrupted source
images [9]. Thus ensuring the quality of the target images, as
well as keeping the consistency between the source and target
images are ongoing challenges.

The progress on image-to-image transformation has been
based on convolutional neural networks (CNNs), which fol-
low end-to-end frameworks to map source images into targets
by optimizing objectives that evaluate the results in paired
data setting [9-11] or unpaired data setting [12—15]. In many
applications, the tasks are conducted in unsupervised settings,
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i.e., paired training examples showing how source images are
translated into the corresponding targets are not available. Due
to the lack of paired data, the transformation problems become
more difficult. From the probabilistic perspective, the challenge
is how to infer a joint distribution of images from the marginal
distributions in the source and target domain. A generally ac-
cepted assumption is that latent paired images in different do-
mains share high-level semantics and exhibit different low-level
details. Thus, it is straightforward to enforce weight-sharing
constraint on CNNs, with the weight-sharing layers and indi-
vidual layers encoding the semantics and the details, respec-
tively.

One issue in CNN for image transformation is to design
proper loss functions. A straightforward approach is to adopt
the pixel-to-pixel loss [16, 17], which minimizes the discrep-
ancy between the generated and the ground-truth images in
pixel space. Another approach is to adopt the generative adver-
sarial loss [18, 19], which minimizes the discrepancy between
the real data distribution and the generated data distribution.
More recently, perceptual loss emerged for minimizing the dis-
crepancy between the generated and ground-truth images at dif-
ferent feature levels [9]. The existing works achieve reasonable
results in some tasks. However, coming up with effective losses
that yield sharp, realistic images is still an open problem, since
the image transformation tasks suffer from blurry results or far
from photo-realistic.

Another issue in CNN for image-to-image transformation is
how to learn a mapping from source images to targets. The
CNN works by learning a mapping from source image domain
to a latent space, and then mapping the latent representations to
the targets. During the mapping process, it is crucial to trans-
form key properties relating the source images to the target
ones. Thus, the problem of how to keep the mutual information
among the source images, target images and latent representa-
tions consistent needs further studying.

The aforementioned issues imply that there still exists room
for researchers to improve their algorithms. In this paper, we
propose the informative coupled generative adversarial net-
works (ICoGAN) in unpaired data setting. The ICOGAN con-
sists of a couple of generators and discriminators, with the pa-
rameters in each domain being shared. The algorithm follows
the structure of the CoGAN [20], and additionally introduces a
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mutual information mechanism to keep the consistency among
the source images, target images and latent representations. To
further improve the quality of generated images at a feature
level, we consider the perceptual loss defined by the interme-
diate layers of the discriminator [9], and extend it to an un-
paired data setting by minimizing the difference between the
inputs and the generated ones. The contributions of this paper
are threefold:

1) We propose the mutual information mechanism in the
weight-sharing structure to learn proper common repre-
sentations of two domains.

2) We combine the mutual information mechanism and the
perceptual loss to solve the problems incurred in unsuper-
vised data settings.

3) We evaluate the performance of the proposed ICOGAN on
several image transformation tasks and show the impor-
tance of each component of the full objective, which val-
idates the effectiveness of the mutual information mecha-
nism and its combination with the perceptual loss.

The rest of the paper is organized as follows: Section 2 sum-
marizes previous work about image transformation and GANS;
Section 3 describes the problem formulation; Section 4 de-
scribes the proposed model ICOGAN; in Section 5, experi-
ments on MNIST, shoe, handbag, CelebA are conducted to val-
idate the proposed model’s effectiveness in image transforma-
tion tasks; finally we conclude this work in Section 6.

2 Related work
2.1

For image transformation, much progress has been made based
on deep convolutional neural networks (CNNs). To solve the
image restoration (IR) problem, some works follows an end-to-
end setting, e.g., SRCNN [16], MS-LapSRN [21] and DPDNN
[22]. SRCNN directly learns a mapping by taking a low-
resolution image as the input and produces a high-resolution
target. It does not explicitly learn the dictionaries or manifolds
for modeling the patch space, but implicitly learn them via
hidden layers [16]. To achieve fast and accurate image super-
resolution, MS-LapSRN adopts an architecture which progres-
sively reconstructs the residuals of high-resolution images at
multiple pyramid levels [21]. DPDNN solves the IR problem by
additionally introducing a CNN based denoiser to exploit multi-
scale redundancies of images [22]. Another type of CNNs on
image transformation introduces a representation learning pro-
cess. For example, Ma et al. proposed a two stage framework,
in which the real embedding features are firstly obtained and
then follows the adversarial embedding feature learning [23].
Murez et al. proposed to regularize the extracted representation
to perform domain adaptation without training annotations in
the target domain [24]. Tran et al. proposed an encoder-decoder
structure to learn the representations [25].

Image to image transformation

The aforementioned CNN based algorithms generally learn
a mapping from input images to output images. The prob-
lem becomes more difficult when the input images are de-
graded or when the output images require to exhibit diversi-
ties. More recently, the generative adversarial networks (GAN5)

have emerged as a popular workhorse to solve these problems.
By manipulating an adversarial two players’ game, GAN learns
a distribution of real data. With the powerful adversarial train-
ing mechanism, the GAN related algorithms are more effective
than the traditional CNNs.

As the tasks require translating input images to targets condi-
tioned on specific properties of the target domain, many works
are conducted based on conditional generative adversarial net-
works (cGANs) [26-30]. For example, Lin et al. proposed to
twist two conditional translation models for inputs combina-
tion and reconstruction, so that diverse translation results for
a fixed input image can be obtained [26]. Li et al. proposed
an encoder-decoder architecture, and introduced VGG features
and L;—-regularized gradient to obtain a clear image from a
hazy one [27]. In [28], Wang et al. proposed a cGAN with
multi-scale generator-and-discriminator architecture to synthe-
size high resolution images. In [29], to solve the cross-view
synthesis problem, Regmi and Borji proposed two cGAN ar-
chitectures, namely X-Fork and X-Seq, both of which learn to
produce natural images as well as their semantic segmentation
maps. In [30], to solve the image-inpainting problem, exam-
plar information is introduced into cGANs at multiple points.
GANSs have also been applied to the multi-modal mapping in
a unsupervised manner [31-33]. Literature [31] and Literature
[32] decompose the image into the content representation and
the style representation. By combining the content representa-
tion with the random style representation extracted in the style
space, they are able to translating the target images into another
domain. In [33], an image representation is comprised of both
content information which is shared across domains and style
information specific to one domain.

It is crucial to pursue two objectives while transforming: (i)
preserve the key properties of the source images; (ii) make the
details from both domains being as distinguishable as possible.
The problem is difficult since the two objectives are interacting
with each other. Many existing cGANs operate by embedding a
condition term in the generator and the discriminator so that the
first objective can be pursued. However, the second objective
are often not pursued since they will generate deterministic out-
put given an input. In this paper, we propose an alternative so-
lution, i.e., adopting the InfoGAN structure [34], which learns
disentangled representations by maximizing the mutual infor-
mation between the latent variables and the targets, instead of
embedding an arbitrary condition term in the model. Moreover,
we adopt a CoGAN structure [20], which uses a couple of gen-
erators and discriminators with weight sharing strategy, so that
the first objective can be pursued by the weight-sharing-layers,
and the second objective can be pursued by non-weight-sharing
layers.

2.2 Loss function design of image to image translation

The aforementioned cGANs are developed with distinct ap-
plications and the design of loss functions plays an important
role for the performance of algorithms. A commonly used ap-
proach is to evaluate the target images pixel-wisely, using least
squares or L;, L, norm to calculate the difference between the
generated and the ground-truth images [10, 16, 17]. The pixel-
to-pixel losses are efficient at test time, requiring only a for-



Hongwei GE et al.

ward pass through the network. More recently, the perceptual
losses emerged as a novel measurement for evaluating different
semantic levels of images. It encourages the output image to
have similar high-level features extracted from different layers
of networks. This strategy has found applications in many prob-
lems such as feature image super-resolution [35], style trans-
fer [36], texture synthesis [37].

The strategies of pixel-to-pixel loss is effective when paired
examples are provided. However, they do not capture percep-
tual differences between generated and ground-truth images, so
they are not free from blurred results or artifacts. Moreover, it
is not appropriate for scenarios in absence of paired examples,
since we only have independent sets of images from different
domains, and there are no paired examples can be used to learn
the end-to-end mapping. The strategies of perceptual loss can
be applied in an unpaired data setting, but problem of how to
utilize the feature layers and extract useful features still remain
unanswered [9, 36].

As can been seen from above, the problems of how to min-
imizing the difference between the generated and the ground-
truth images in unpaired data setting, as well as keeping the
quality of the generated images requires further studying. The
adversarial loss provides an opportunity to generate images in
unpaired data setting [12, 13]. And the perceptual loss provides
an opportunity to generate more realistic and natural target im-
ages. In this paper, we propose to combine the benefits of both
perceptual loss and the adversarial loss, i.e., adopting the adver-
sarial loss to solve the unpaired data problem, and combining
the perceptual loss to prevent the learned mappings from gen-
erating degraded results.

3 Problem formulations

The unpaired image-to-image transformation problem consid-
ered in this paper can be described as follows. Denote two im-
age domains X and Y, with training sets {xi}ﬁ\; , (xi € X) and
{yj}ﬁ’i . (vj € Y), and denote the image distribution as x ~ P,
and y ~ P,, respectively. Moreover, paired training data (x, y)
is not available in the training set. The objective is to learn an
underlying mapping f: X — Y, so that for a given input x € X,
the corresponding target y € Y that preserves the key properties
of x can be obtained.

Generally, a suitable mapping f is difficult to obtain, since
P, and P, are marginal distributions in the source and target
domain. Let’s take the problem presented in Fig. 1 as an exam-
ple. In Fig. 1, we consider a transformation problem on CelebA
dataset that translates black hair face images (domain X) into
the blond hair ones (domain Y). The two-dimensional samples
in the figure are obtained from the original face image after con-
ducting principal component analysis. The cross points denote
the black hair samples in domain X, and the circle points denote
the blond hair samples in domain Y. As can be seen from Fig. 1,
the examples from domain X and Y are distributed in different
regions, which makes the generating of a suitable target y that
well preserve the key properties of input x being difficult.

An alternative solution is to adopt an intermediate latent
space strategy. As illustrated in Fig. 2(a), we can learn a map-
ping from domain X to a latent space, and a mapping from the
latent space to domain Y, instead of learning a direct mapping
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Fig. 2 Semantic diagram of the latent space strategy

from X to Y. In the mapping process, to preserve the key proper-
ties of source image x, we can maximize the mutual information
I(x; c;) between x and the mapped latent vector c¢;. Similarly,
to make the key properties contained in a latent vector ¢, being
transferred, we can maximize the mutual information /(y; ¢;)
between c; and the target image y. As illustrated in Fig. 2(b),
the problem is then converted to minimizing the discrepancy
between ¢ and ¢, to obtain a common latent representation c,
which can be easily achieved by deep neural networks.

In this paper, we conduct image transformation based on the
above motivations. We construct a generator-discriminator net-
work for source domain. The input image x is fed into the dis-
criminator. By utilizing the mutual information mechanism of
infoGAN [34], the discriminator yields a latent vector c; that
carries the key properties of x and yields a truth/false output.
We then construct another generator-discriminator network for
target images, with the generator taking another latent vector
¢ as input. The generator yields the target image y. By forcing
latent vector ¢ and ¢, converging to a common latent represen-
tation c, the indirect mapping from domain X to domain Y can
be set up. Moreover, during the above process, the adversarial
training mechanism, mutual information acquiring mechanism,
and the weight sharing strategy are elaborately designed.
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4 Informative coupled generative adversarial
networks

In this section, we firstly describe the basic formulations of the
generative adversarial networks (GANs) and the coupled gen-
erative adversarial networks (CoGANs). And then, we present
the details of the proposed informative coupled generative ad-
versarial networks (ICOGAN).

4.1 Models of GANs and CoGANs
Since this paper aims at solving image transformation prob-
lems, we describe the formulations of GANs and CoGANs un-
der image generation scenarios. The GAN is designed for learn-
ing a distribution of a single domain. It operates by manipulat-
ing an adversarial two players’ game, i.e., employing a genera-
tor and a discriminator, where the generator tries to synthesize
instances resembling the real ones, and the discriminator tries
to distinguish real instances from synthesized ones. Both the
generator and discriminator are realized as multi-layer percep-
trons.

Let x be a real image taken from a distribution P,. Let c be
a vector taken from a d-dimensional distribution P... Let G and
D be the mappings of the generator and discriminator, respec-
tively. The generator takes c¢ as input, and tries to generate an
image G(c) that simulates a real one. The discriminator takes
x or G(c) as input, and tries to distinguish whether it is a real
image or a simulated one. The generator and the discriminator
are trained jointly by playing a min-max two-players game. The
objective function is defined as follows.

mGin max Vi(G, D) = E,.p [log D(x)]+ E-p, [log(1 — D(G(c)))].
(1)

The CoGAN is designed for learning a joint distribution of
two domains. It employs a pairs of GANs, i.e., GAN; and
GAN;, with each being responsible for synthesizing images in
one domain. By using GAN; and GAN, as two subnetworks
of the framework, the COGAN can learn the joint distribution
of data and generate correlated pairs of images in each do-
main [20].

Let x be a real image taken from distribution P,, and y be a
real image taken from distribution Py. Let ¢ be a vector taken
from a d-dimensional distribution P.. Let Gy, G,, Dy, D, be
the mappings of the two groups of generators and discrimina-
tors, respectively. The generators G| and G, take c as input, and
try to generate images G(c) and G,(c) that simulates real im-
ages of P, and P,, respectively. The discriminator D; takes x
or G(c) as input, and discriminator D, takes y or G»(c) as in-
put. They try to distinguish whether their inputs are real images
or simulated ones. Based on the idea that pairs of correlated
pairs of images in two domains share the same key properties,
the GAN; and GAN, tie a subset of model parameters, so that
correlated pairs of images can be synthesized without corre-
spondence supervision. Similar to GAN, the generators and dis-
criminators are trained jointly by playing min-max two-players
game. The objective function is defined as follows.

rrgn max Va(G1, Ga, Dy, Dy) = E.p [logD(x)] +

Ecp [log(1 = Di(G(c)] + Ey-p,[logD2(y)] +

Ec.p [log(1 = Dy(G(o))]. ()

The CoGAN generates correlated pairs of images given a
random input. However, it doesn’t transform an image from one
domain to another. In the next subsection, we discuss how we
realize image transformation tasks.

4.2 Models of ICOGANs
The framework of the ICOGAN, illustrated in Fig. 3(a), is build
on CoGANSs [20]. Similar to CoGAN, it consists of 4 subnet-
works, including two domain image generators G and G, two
discriminators D; and D,. For cross domain transformation. we
extend GAN| and GAN; into InfoGAN structure [34] by adding
extra networks Q; and Q,, which generate d-dimensional latent
vectors ¢ and ¢, respectively. Q| and O, make c; and c; carry-
ing the key properties of the input images by a mutual informa-
tion mechanism [34]. Then ¢; and c; are forced to converge to
the original input ¢, which is used as input to generate simulated
images. As illustrated in Fig. 3(b), the above process makes the
image transformation data flow of x - Q] > ¢ — G, —» y or
yo 0 —oc—> G-

In the above framework, we implement the mechanisms of
mutual information, weight sharing, and design the loss func-
tion for the network training. The details are as follows.

4.2.1 Mutual information mechanism
The basic InfoGAN operates by dividing the d-dimensional in-
put vector ¢ into a incompressible noise and a latent code, and
then minimizing the entropy between input ¢ and the gener-
ated image G(¢). It is able to learn explicitly representations on
challenging tasks [34]. In our proposed model, we utilize the
slightly modified mutual information term I(c; G(c)) to learn a
latent representation. We eliminate the random noise and only
use the common representation as the input. The objective func-
tion can be expressed as.

mGin max V3(G, D) = Vi(D,G) — A(c; G(c)), 3)
where G and D are generator and discriminator of the basic
GAN, V] is the objective function of basic GAN described in
Eq. (1), I(c, G(c)) is the mutual information between ¢ and G(c),
and A is a hyper parameter that denotes the relative importance
of the mutual information /(c; G(c)). Generally, it is difficult to
obtain the mutual information I(c; G(c)) directly, since the pos-
terior probability P(c|x) is difficult to obtain. Thus we estimate
it via an auxiliary distribution Q(c, x). The derivation is as fol-
lows.

I(c,G(c)) = H(c) = H(c|G(c))
= B, go)[Ec~pnlog P(c'|x)]] + H(c)
= E v [Dgr(PC10)[1QC|x))
+ Ec-peinllog O(c’[)]] + H(c)
> By go)[Ec~pellog O(c'|0)]] + H(c).

“

With Q(c|x) approximating P(c, x), we obtain the following
variational estimation of mutual information.

Li(G, Q) = Exg(),c~Peinllog O(c, x)] + H(c)
< I(c, x).

)

Thus optimizing L;(G, Q) with respect to G and Q is equivalent
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Fig.3 The framework of the informative coupled generative adversarial networks

to optimizing the mutual information /(c, G(c)). The optimiza-
tion problem in Eq. (3) can be rewritten as.

rrgn max V3(G, D) = Vi(D,G) — ALi(G, Q). (6)

In the implementation, the same strategy is adopted as Info-
GAN, which parameterizes a auxiliary distribution Q as a neu-
ral network to output the posterior probability Q(c|x) [34]. By
optimizing the term I(c; G(c)) by network Q, we not only com-
pel the latent code and its generated data to contain the same
key properties, but also obtain an inverse mapping from the
generated data space to its latent space.

4.2.2 Weight sharing mechanism

With the weight-sharing strategy between generators G and
G,, we ensure that the corresponding generated images share
similarity while maintaining their own attributes. Discrimina-
tors D and D, are responsible for distinguishing images in cor-
responding domains, which ensures the image realism in each
domain. Through the adversarial training and the mutual in-
formation maximization, the corelated images in two domains
share the same latent code. At the testing stage of the model,
any image in one domain can be fed into its discriminator, after
which the latent code ¢ can be obtained. With the latent code ¢
fed into the other generator, the model can produces the corre-
sponding image in the target domain.

4.2.3 Design of loss functions
In order to ensure the consistency between the ground truth im-
ages denoted by x and corresponding generated ones which are

obtained through G(c), we additionally use perceptual loss as a
part of the objective. We formulate the pixel-wise discrepancy
between the output of the corresponding layers of the paired
discriminators as the perceptual loss. Formally, the perceptual
loss is defined as follows:

P; = ||D1,(x) = D1,(Gi(c))ll2 + [1D2,(y) = D2,(G2(c2)ll2,  (7)

where x and y is the ground truth data, G (c;) and G,(c;) are
the reconstructed data and Dy,(-), D»,(-) denote the output of the
iy layer of discriminator Dy, D, respectively.

Combining the perceptual loss defined in Eq. (7), we formu-
late the full objective function of our framework as:

n};inmgx V4y(G1, G2, D1, Dy) = Va(Gy,Ga, Dy, Dy)—

Al(c, G1(c)) — Al(c, G2(0)),
Vp1 = mGin Z /11'Pi, (9)

Z/IP]

The full objective consists of two parts, i.e., V4 and Vp, which
are optimized jointly.

The framework of the proposed ICOGAN is illustrated in
Fig. 3. In ICoGAN, a latent code c is fed into both generators
G, and G;. x, y are data randomly sampled from real data dis-
tribution in domain X and domain Y, respectively. And G(c),
G;(c) are data generated by G| and G, respectively. As shown
in the framework, both outputs ¢; and ¢, from the Q; and Q, are
trained to converge to the initially sampled latent code. By such

Vp, = mm (10)
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a process, we avoid the direct mapping between two domains
in the data space. Instead, we firstly obtain the latent code ¢
through Qi, and then use it as a bridge to reach the other do-
main in the data space by feeding c; into G».

We note that during the training stage, training data exists
or is organized in unpaired data setting. Since we merely ran-
domly draw samples from real data distribution in each domain
and feed them to the corresponding discriminator, the training
is totally in an unsupervised setting.

5 Experiments

To evaluate our framework, first we validate the effectiveness
of the proposed inverse mapping method through experiment
on MNIST. Also we conduct experiments on three sets of im-
age transformation tasks, namely edges to photos transforma-
tion, face attribute transformation, face inpainting transforma-
tion. To further show the model’s effectiveness, we compare
the results from the proposed model with several state-of-the-
art algorithms, i.e., BIGAN [38], CycleGAN [12], UNIT [13]
and DiscoGAN [14].

For the network architecture, the network consists of five lay-
ers for the discriminators and five layers for the generators. The
first three layers of the generator are shared and the last three
layers of the discriminator are shared, which enables the frame-
work to learn the joint distribution of the data. The mutual infor-
mation optimization part is implemented using fully connected
layers at the last layer of the discriminator.

We train our framework for 15 epochs with a batch size of 64.
We use ADAM as the optimizer for training and set the learning
rate and momentum to 0.0002 and 0.5, respectively.

5.1 Evaluation metrics

To present the performance of the proposed ICOGAN’s perfor-
mance on image transformation tasks, we visualize the trans-
formed results. To evaluate our model quantitatively, we adopt
the structural similarity index (SSIM) [39], Peak Signal to
Noise (PSNR) as evaluation metrics.

SSIM: SSIM measures the similarity between the generated
image and the original ground truth. Supposing I, is the gen-
erated image and I, is the ground truth, the SSIM between I,
and /; is given by:

Quxpty + €1)(20 4y + €2)

SSIM(/,, 1) = ,
(L 1) (,uf.+p§+c1)(0'§.+0'§+02)

(1)

where p, u, are the mean pixel value of I, and I, respectively,
a2, 0'2 are the variance of I, and I, respectively, and Oy is the
covariance between I, and I,. The blgger the SSIM value is, the
closer the generated image is to the ground truth one and the
SSIM is non-negative and no larger than 1.

PSNR: PSNR is a criterion measuring the image quality, which

is defined as:

154326
FrameSize
Z (In - Pn)2
n=1
MSE = 12
FrameSize (12)
2552

PSNR = 10 x log (13)

MSE’

where MSE is the mean-square error, I, is the nth pixel value
of the original image, P, is the nth pixel value after being
processed by the model. FrameSize is the product of image’s
length, width and channel number. The bigger the PSNR, the
better the image quality.

5.2 Correctness of the inverse mapping learning method

To validate the effectiveness of the inverse mapping method
proposed in Section 2, we conduct image reconstruction task
on MNIST to illustrate whether the representation learned by
the model denotes the correct semantic meaning. In this exper-
iment, we use a group of generator and discriminator. In such
experiment setting, ensured by the perceptual loss and the mu-
tual information, our goal is to learn proper latent representa-
tion of the data space, namely the reconstructed digit images
should have the same digit type as the input digit images. At
the test stage, to perform the reconstruction process, the ground
truth image is input to the Q network to obtain the latent code,
then the latent code is fed into the generator to decode the latent
code into instances in the data space.

Figure 4 illustrates the reconstruction results of the proposed
model ICOGAN and the comparison with BIGAN [38]. The first
row presents the ground truth image. The second row presents
the reconstruction results of the ICOGAN using the representa-
tion obtained from the inverse mapping method. The third row
presents the reconstruction results of the BIGAN. From the vi-
sualization we can see ICOGAN generally outperforms BiIGAN
since the digit type of several output of the BIGAN are incorrect
compared with the ground truth. On the other hand, ICOGAN
outputs the images with the correct digit type compared with
the ground truth. This indicates that our proposed model is able
to learn the latent representation of the data space correctly.

5.3 Edges to photos transformation

We use the shoe images from UT ZAPPOS as the ground truth
shoe photo dataset [40] and the handbag images from Amazon
as the ground truth handbag photo dataset [41]. After HED edge
detection [42], we obtain the corresponding edges. The edge
images are taken as the domain X data and the shoe or handbag
photos are taken as the domain Y data. We shuffle the data and
obtain unpaired data. At the test stage, we feed the edge image
to its discriminator to obtain its latent code ¢, then ¢ will be
fed into the generator in the real-photo domain, by which a
real shoe photo or a real handbag photo will be produced. The
visualized results on edge to shoe or handbag transformation
tasks are illustrated in Fig. 5. As shown in Fig. 5, the results pro-
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Fig. 4 Visualization results produced by the proposed framework on the digit reconstruction task on MNIST
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Fig. 5 Visualization results produced by the proposed framework on edges to photos tasks, i.e., edge to shoe photo transformation and edge to
handbag photo transformation. (a) Edges to shoes transformation; (b) edges to handbags transformation

duced by the ICOGAN are generally realistic compared to the
state-of-the-art compared models including CycleGAN [12],
UNIT [13] and DiscoGAN [14].

We compare the SSIM and PSNR of the ICOGAN with
DiscoGAN, CycleGAN and UNIT on the edge to shoe trans-
formation task. SSIM and PSNR are typical evaluation metrics
for image quality. The results are presented in Table 1. When
the differences between images are great, SSIM and PSNR can
well represent the generated images’ quality. However, SSIM
and PSNR do not completely agree with the perceptual simi-
larity judged by human. Sometimes images with higher SSIM
and PSNR are considered as images of worse quality by hu-
man. As shown in Fig. 5, the transformation results produced
by the ICOGAN stand comparison with the DiscoGAN, Cycle-
GAN and UNIT although the SSIM and PSNR of the ICOGAN
are slightly lower. As shown in Fig. 5, CycleGAN tend to gener-
ate shoes in gray or in black meanwhile preserving the shoe out-
lines well. UNIT is good at generating shoes of diverse colors,
however it is not as good at preserving the outlines. Therefore,
in terms of color diversity, ICOGAN is comparable to Disco-
GAN and UNIT, and is better than CycleGAN. In terms of out-
line preservation, ICOGAN is better than UNIT, worse than Cy-
cleGAN and comparable to DiscoGAN. When the difference of
SSIM and PSNR between the compared models is small, the
evaluation results needs to be further studied.

We further conduct ablation study on the components of the
full objective, whose results are listed in Table 2 and Fig. 6. In
Fig. 6 and Table 2, w/o denotes without perceptual loss, Pe loss
denotes perceptual loss and M term denotes the mutual infor-
mation term. From Table 2, we can see that without perceptual
loss or mutual information term, the quality of the transforma-
tion results has declined. When the perceptual loss is replaced

with the conventional pixel loss and the LPIPS loss [43] , the
results are also not good, which indicates the role played by
perceptual loss is important.

5.4 Face attribute transformation

We use the CelebA dataset to train our framework on face at-
tribute transformation task. CelebA is a large scale face attribute

Table 1 Comparison results on edges to shoes transformation

Models ICoGAN CycleGAN DiscoGAN UNIT

SSIM 0.6984 0.7454 0.7296 0.7023

PSNR 12.6023 14.3772 12.8115 15.9291
Table 2 Ablation study on edges to shoes transformation

Metrics wj/o Pe loss w/o M term Pixel loss

SSIM 0.5018 0.5676 0.3849

PSNR 9.8888 10.6055 9.8974
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Fig. 6 Visualization of the ablation study

Pixel loss
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Fig. 7 Visualization results produced by the proposed framework on face attribute transformation task on CelebA including black hair to blond
hair transformation, black hair to brown hair transformation, open mouth to closed mouth transformation and closed to open mouth transformation

dataset with over 200K celebrity images, with each having a
40-dimension binary attribute annotation [44]. The annotation
consists of attributes such as blond hair, male gender, mouth
slightly open, etc. With unpaired training data and in unsuper-
vised setting, we use the ICOGAN to transform images in terms
of hair color and mouth condition. All the transformation re-
sults on CelebA are visualized in Fig. 7, including black hair
to brown hair, black hair to blond hair, open mouth to closed
mouth, closed mouth to open mouth.

From the visualization results, we can see that although
in unsupervised setting and without paired training data, the
framework has successfully transformed images in terms of hair
color, mouth condition while retaining the images’ attribute. We
find that the image generation results are realistic on all four
tasks. To evaluate the model, we compare the experiment re-
sults with DiscoGAN, CycleGAN and UNIT. Since under such
experiment setting, there does not exist a ground truth image
in the target domain, the evaluation metrics are not suitable for
this task. So we only illustrate the visualization results, which
are in Fig. 7. From the visualization comparisons, we find that
the results produced by our proposed ICOGAN are comparable
to those of DiscoGAN, CycleGAN and UNIT.

5.5 Image inpainting transformation on face

To extend the generality of our model, we also use the CelebA
dataset to train our model on image inpainting tasks in an unsu-
pervised setting, where images sampled from real data distribu-
tion are considered as domain Y data and images with a quarter
of themselves missing as domain X data. The images sampled
from the dataset during training are also shuffled to obtain an
unpaired experiment setting. By training a pair of weight shar-
ing generative adversarial networks, we can perform image in-

painting with the proposed framework.

For the image inpainting transformation tasks, during the test
stage, the ground truth images in the target domain exists, so we
both list the visualization results in Fig. 8 and quantitative eval-
uation results in Table 3.

In Table 3, x stands for the ground truth image sampled from
the real data while x, is the inpainted image after the real image
with its middle quarter missing is transformed into the full im-
age domain data through the proposed framework. As shown in
Table 3, the difference of evaluation metrics between the com-
pared models is small and the inpainted results of the four mod-
els are realistic and stable in the attribute retention. As shown
in Fig. 8, the ICOGAN preserves the face attribute in the input
images and compared to the other three models, the UNIT’s
results are the best and the ICOGAN’s results rank second.

6 Conclusion

In this paper, we present the informative coupled generative ad-
versarial networks (ICOGAN) on image transformation tasks,
which operates without paired training data and can relate data
from different domains. By appending perceptual loss to the full
objective, we encourage the generated images to have similar
high-level features with the ground truth ones. Moreover, using
mutual information term as a part of the full optimization ob-
jective, we assume an approximately-share latent space, which
makes the input vector interpretable and the model training
efficient. With result visualization and quantitative evaluation

Table 3 Comparison results of PSNR and SSIM on image inpainting

Models ICoGAN CycleGAN DiscoGAN UNIT
SSIM 0.8486 0.7231 0.7747 0.7474
PSNR 17.8727 20.309 19.4467 21.9634
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Fig. 8 Visualization results produced by the proposed framework on face inpainting task on CelebA. The first row presents the input data, and the
rows from the 2nd to the 5th present the output of ICOGAN, CycleGAN, DiscoGAN, and UNIT, respectively

on both unpaired unsupervised image transformation tasks and
supervised image transformation tasks, we demonstrate the
proposed model’s effectiveness and promising potential for im-
age transformation tasks.
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