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Abstract Network representation learning called NRL

for short aims at embedding various networks into low-

dimensional continuous distributed vector spaces. Most ex-

isting representation learning methods focus on learning rep-

resentations purely based on the network topology, i.e., the

linkage relationships between network nodes, but the nodes

in lots of networks may contain rich text features, which are

beneficial to network analysis tasks, such as node classifi-

cation, link prediction and so on. In this paper, we propose a

novel network representation learning model, which is named

as Text-Enhanced Network Representation Learning called

TENR for short, by introducing text features of the nodes

to learn more discriminative network representations, which

come from joint learning of both the network topology and

text features, and include common influencing factors of both

parties. In the experiments, we evaluate our proposed method

and other baseline methods on the task of node classification.

The experimental results demonstrate that our method outper-

forms other baseline methods on three real-world datasets.

Keywords network representation, network topology, text

features, joint learning

1 Introduction

Modern society has entered an era of information explosion,
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and information networks are ubiquitous in the real world

with examples such as social and communication networks,

airline networks, citation networks between academic papers

and so on. Recently, in order to extract useful information

from massive network data, some researchers have already

begun to focus on network representation learning to find a

dense, continuous, and low-dimensional vector for each node

of the network as its distributed representation, which can

be applied to various machine learning tasks, such as node

classification [1], recommendation system [2,3], and link pre-

diction [4]. In particular, network representation learning can

alleviate the sparse issues caused by the conventional repre-

sentation methods.

Most related works take the network topology informa-

tion as input to learn a low-dimensional vector for each node,

such as DeepWalk [5], node2vec [6], LINE [7], GraRep [8],

SDNE [9] and HARP [10]. These topology-based embedding

methods assume that the nodes close in the network topol-

ogy structure should also be close in the node vector repre-

sentation space. However, in many real scenarios, the vec-

tors learned purely from the network topology structure are

not desirable vectors. For example, in the social network, it

is possible that two users with similar interests are not con-

nected and share no common friends, thus the topology-based

embedding methods can not effectively capture their similar-

ity on interests. In such a case, other auxiliary information

should be incorporated to learn vector representations of bet-

ter quality.

Usually, the nodes in the network may be associated with a
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set of features, such as text, community or label information

of the nodes, which are useful for measuring the similarity be-

tween the nodes. However, most previous works ignore these

features. For example, in a paper citation network, if two pa-

pers share some abstracts or keywords, they may be simi-

lar even if they are topologically far away from each other.

Since these node features potentially encode different types

of information from the network topology structure, integrat-

ing them into the embedding process is expected to achieve

a better performance. Based on the above ideas, TADW [11]

is proposed to incorporate the node text features into the em-

bedding process under a framework of matrix factorization.

However, TADW has the following drawbacks: (1) the very

time and memory consuming of matrix factorization process

of TADW makes it not scalable to large-scale networks; (2)

TADW simply ignores the contexts of text features, so can-

not appropriately capture the semantic correlations between

the nodes and their related words. CANE [12] is also a re-

cently proposed algorithm to learn vector representations of

the nodes from different contexts related to the nodes. The

global vector for the node is the concatenation of two types of

local vectors: structure-based embedding and text-based em-

bedding. However, CANE fails to consider the inter-relation

between structure-based embedding and text-based embed-

ding, which are learned independently. Besides, CANE is not

general since it cannot be used when rich text information is

available on edges.

In this paper, we propose a general network embedding

framework which can effectively encode both the network

topology and rich text features of the nodes. There is the

following challenge in handling this task. It is not easy how

best to combine the network topology and text features of

the nodes into a unified embedding process under a general

framework. There are sophisticated interactions between the

network topology and text features of the nodes, and it is dif-

ficult to incorporate text features into the existing topology-

based models.

To address the above challenge, we propose a general

text-enhanced network representation learning model TENR.

We formulate the learning process of text-enhanced network

representation as a joint problem, where Topology-Derived

model and Text-Derived model are optimized jointly. Specif-

ically, we propose a negative sampling strategy to capture the

topology information, which aims to exploit inter-node re-

lationships by maximizing the probability of predicting the

node given its contextual nodes in random walks generated

from the network. Besides, the negative sampling strategy

is still adopted to capture node-text semantic correlations by

maximizing the probability of predicting the node given its

related words. Finally, we utilize stochastic gradient ascent

(SGA) to solve this joint optimization problem.

The contributions of this paper can be summarized as fol-

lows:

• We propose a novel network embedding model that

captures both the network topology and textual con-

tents. Experiments on the task of node classification us-

ing three real-world datasets demonstrate its superiority

over various baseline methods.

• We utilize textual contents in the homogeneous network

through converting into a heterogeneous network. Ho-

mogeneous network and textual contents are integrated

into a heterogeneous network, giving us the possibility

to integrate and exploit different information.

We test our method against several baseline methods on

three datasets. The Micro-F1 and Macro-F1 values for node

classification of our method outperform the values of other

baselines when the ratios of training sets range from 10% to

90%. Meanwhile, our method shows strong clustering abili-

ties by node clustering visualizations on Citeseer, DBLP and

Weibo.

The rest of this paper is organized as follows. Section 2

summarizes the related works. Section 3 gives the for-

mal definition of our studied problem. Section 4 introduces

Topology-Derived model, Text-Derived model, TENR model

and Complexity analysis in turn. The datasets and experimen-

tal results are introduced in Section 5. Section 6 concludes

this paper.

2 Related works

Network representation learning aims to learn a distributed

vector for each node in a network, which becomes more and

more popular in lots of network analysis tasks.

In recent years, there have been lots of NRL models to

learn efficient vector representations of the nodes in the net-

work. For example, DeepWalk introduces Skip-Gram [13], a

widely-used distributed word representation method, into the

study of the network to learn a low-dimensional vector for

each node. node2vec modifies the random walk strategy in

DeepWalk into biased random walks to explore the network

topology structure. LINE optimizes a carefully designed ob-

jective function which preserves both the global and local

structure. GraRep, with the k-step loss functions defined on

graphs which integrate rich local structural information asso-
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ciated with the graph, captures the global structural properties

of the graph. As a deep embedding model, SDNE captures

the highly non-linear network structure and exploits the first-

order proximity and second-order proximity to characterize

the local and global network structures. HARP is proposed to

learn low-dimensional representations of a graph’s nodes to

preserve higher-order structural features by compressing the

input graph prior to embedding it. Nevertheless, most of these

NRL models only encode the topology information into vec-

tor representations, without considering other features asso-

ciated with the nodes in the network, such as text, community

or label information of the nodes.

To cope with this issue, researchers make great efforts

to incorporate these related features of the nodes into the

topology-based models. For example, TADW improves ma-

trix factorization based DeepWalk with text information.

MMDW [14] utilizes label information of the nodes to learn

discriminative vector representations. CANE learns context-

aware embeddings for the nodes with mutual attention mech-

anism and models the semantic relationships between the

nodes. CNRL [15] simultaneously detects community distri-

bution of each node and learns embeddings of both nodes

and communities. PPNE [16] incorporates rich types of node

properties into the network embedding process. MVC-DNE

[17] incorporates both the network structure and the node

properties and efficiently performs network embedding on in-

complete networks. CENE [18] utilizes both structural and

textural information to learn network embeddings. TriDNR

[19] utilizes information from three parties: node structure,

node content, and node labels (if available) to jointly learn

optimal node vector representations. Rank2vec [20] consid-

ers both local structure and global structural roles to enable

the learned representations to preserve both microscopic and

macroscopic information.

To the best of our knowledge, there are a large number

of works which focus on node classification or link predic-

tion. However, the objectives of these works are completely

different from that of our work, which aims to learn vector

representations of better quality for the nodes, while the node

classification or link prediction tasks are only utilized to eval-

uate the quality of the learned vectors.

3 Problem definition

In this section, we formally define the studied problem. The

input network is defined as G = (V, E, T ), where V =

{vi}i=1,...,|V | consists of a set of nodes, ei, j = (vi, v j) ∈ E is

an edge encoding the linkage relationship between the nodes,

and tvi ∈ T is a text document associated with each node vi.

Here we formally define the problem of text-enhanced net-

work representation learning:

Definition Given a network G = (V, E, T ), the problem

of text-enhanced network representation aims to learn a low-

dimensional vector rvi ∈ Rk for each node vi in the network,

where k is expected to be much smaller than |V |. The objec-

tive of text-enhanced network representation is to make the

learned representation vectors explicitly preserve both net-

work topology and text information of the nodes, so that the

nodes close to each other in network topology or with similar

text contents are close in the representation space.

4 Text-enhanced network representation

In this section, we present the details of the proposed text-

enhanced network representation learning model. Firstly,

Section 4.1 gives the introductions of Topology-Derived

model. Secondly, Section 4.2 introduces Text-Derived

model. Thirdly, TENR model based on the joint optimiza-

tion of the above two models is introduced in details in Sec-

tion 4.3. Finally, Section 4.4 presents complexity analysis of

TENR model.

4.1 Topology-Derived model

Continuous Bag-of-Words model [21] called CBOW for short

is a widely-used distributed word representation method. Fol-

lowing the idea of CBOW, we propose a novel negative sam-

pling based model called Topology-Derived model, based

on which we construct a set of node sequences by random

walks generated from the network. Each node sequence can

be regarded as a sentence in neural language models and

each node in the network can be regarded as a word in

neural language models. This model is composed of input

layer, projection layer and output layer, which can predict

the center node vi given its contextual nodes context(vi) =

vi−s, vi−s+1, . . . , vi+s−1, vi+s, where s is the window size. In the

projection layer,

Xvi =
∑

−s� j�s, j�0

vvi+ j , (1)

where both i and j are integers, and vvi+ j ∈ Rk is the represen-

tation vector corresponding to the node vi+ j, where k is the

vector dimension. Figure 1 shows Topology-Derived model.
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Fig. 1 Topology-Derived model

In this model, given a center node vi and its contextual

nodes context(vi), the node vi is regarded as the positive sam-

ple and NEG(vi) is the set of negative samples of the center

node vi with a predefined size ds. For ∀u ∈ V , the labels of

the node are defined as follows.

Lvi (u) =

⎧⎪⎪⎨⎪⎪⎩
1, u ∈ {vi},
0, u ∈ NEG(vi),

(2)

p(u|context(vi)) defines the probability of predicting the node

u given the contextual nodes context(vi). We try to solve the

following probability.

maximizeg1(vi) =
∏

u∈{{vi}∪NEG(vi )}
p(u|context(vi)). (3)

For each node vi in V , we design two corresponding vectors:

the embedding vector and the parameter vector. The embed-

ding vector vvi is the representation of the node vi when it is

treated as the contextual node, while the parameter vector θvi

is the representation of vi when it is treated as the center node.

p(u|context(vi)) in Eq. (3) is defined as follows.

p(u|context(vi)) =

⎧⎪⎪⎨⎪⎪⎩
σ(XT

vi
θu), Lvi (u) = 1,

1 − σ(XT
vi
θu), Lvi (u) = 0,

(4)

where σ(XT
vi
θu) = 1

1+e
−XT

vi
θu

is a sigmoid function. Xvi is the

summing operation of the representation vectors correspond-

ing to all nodes of context(vi). Eq. (4) can also be written as

an integral expression.

p(u|context(vi)) = [σ(XT
vi
θu)]Lvi (u) · [1−σ(XT

vi
θu)]1−Lvi (u). (5)

Consequently, Eq. (3) can be rewritten as follows.

maximizeg1(vi) =
∏

u∈{{vi}∪NEG(vi )}
[σ(XT

vi
θu)]Lvi (u) ·

[1 − σ(XT
vi
θu)]1−Lvi (u). (6)

Formally, maximizing g1(vi) corresponds to maximizing the

prediction likelihood of positive samples and minimizing the

prediction likelihood of negative samples simultaneously, by

which the network topology information is encoded into the

node representation vectors.

4.2 Text-Derived model

The above Topology-Derived model is only based on the net-

work topology to learn representations so that it cannot learn

representations of nodes very well, which include rich text

features, which may also be important to NRL. For exam-

ple, the title of the paper regarded as a node of the citation

network includes multiple words, which are regarded as text

nodes associated with the paper. In order to learn better node

representations, we incorporate the text nodes into the orig-

inal network to construct a heterogeneous network. Figure 2

shows the heterogeneous network.

As shown in Fig. 2, the heterogeneous network is com-

posed of two parts: the original network and text network.

The original network consists of all circular nodes as well as

the edges between these nodes. The text network consists of

each circular node and the rectangular nodes associated with

it as well as the edges between each circular node and its re-

lated rectangular nodes. Note that there are no edges between

the rectangular nodes.

Fig. 2 Heterogeneous network

Let tvi denote the text node sets associated with the node

vi ∈ V . Our goal is to capture node-text semantic correlations

by maximizing the probability of predicting the node given

its related text nodes.

Inspired by the above Topology-Derived model, we regard

the node vi as a positive sample and other nodes not asso-

ciated with the node vi as the negative samples to construct

a text-derived model. Suppose that the negative samples are

defined as NEG(v). For ∀v ∈ tvi , we define the labels of the

nodes as follows.

δ(ϑ|v) =

⎧⎪⎪⎨⎪⎪⎩
1, ϑ ∈ {vi},
0, ϑ ∈ NEG(v),

(7)

where the labels of the positive sample and negative samples

are equal to 1 and 0 respectively. As for the given samples,
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we aim at maximizing the following probability.

g2(vi) =
∏

v∈tvi

p(vi|v)

=
∏

v∈tvi

∏

ϑ∈{{vi}∪NEG(v)}

{
σ(eT

v θϑ)
δ(ϑ|v) · [1 − σ(eT

v θϑ)]
1−δ(ϑ|v)

}

=
∏

v∈tvi

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ(eT

v θvi ) ·
∏

ϑ∈NEG(v)

[1 − σ(eT
v θϑ)]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (8)

where ev is the parameter vector corresponding to the text

node v ∈ tvi .

Formally, by maximizing g2(vi), the node text features are

encoded into the node representation vectors.

4.3 TENR model

As the first attempt, TADW incorporates the text features

of nodes into network embedding process under the frame-

work of matrix factorization. However, there are two limita-

tions of TADW. Firstly, the very time and memory consum-

ing of matrix factorization process of TADW makes it not

scalable to large-scale networks. Secondly, TADW simply ig-

nores the contexts of text features, so cannot appropriately

capture semantic correlations between the nodes and their re-

lated words.

In order to address the above issues, we propose a

novel model named as Text-Enhanced Network Represen-

tation Learning called TENR for short, which is regarded

as Topology-Derived model plus Text-Derived model. Com-

pared to TADW, TENR is improved at two levels: (1) at the

network topology level, TENR exploits inter-node relation-

ships by maximizing the probability of predicting the node

given its contextual nodes in random walks generated from

the network; (2) at the node text level, TENR captures node-

text semantic correlations by maximizing the probability of

predicting the node given its related words. By means of the

above improvements, TENR model is expected to address the

above issues to get the vector representations of better qual-

ity. Figure 3 shows TENR framework.

Fig. 3 TENR framework

As shown in Fig. 3, the network topology representation

and text feature representation learned by Topology-Derived

model and Text-Derived model respectively share the same

representation, which can comprehensively utilize the con-

texts and text features of each node to get the vectors of better

quality.

On the basis of TENR model, we construct a corpus C,

which is a set of node sequences by random walks generated

from the network. For ease of calculation, take the logarithm

of g1(vi) and g2(vi), and based on the corpus C, we aim at

maximizing the following joint objective probability function

of TENR model.

L =
∑

vi∈C

⎧⎪⎪⎨⎪⎪⎩

∑
u∈{{vi}∪NEG(vi )}

{
Lvi (u) · log[σ(XT

vi
θu)] + [1 − Lvi (u)] · log[1 − σ(XT

vi
θu)]
}
+

β ·∑v∈tvi

∑
ϑ∈{{vi}∪NEG(v)}

{
δ( ϑ| v) · log[σ(eT

v θϑ)] + [1 − δ( ϑ| v)] · log[1 − σ(eT
v θϑ)]

}
⎫⎪⎪⎬⎪⎪⎭

=
∑

vi∈C

⎧⎪⎪⎨⎪⎪⎩

∑
u∈{{vi}∪NEG(vi )}

{
Lvi (u) · log[σ(XT

vi
θu)] + [1 − Lvi (u)] · log[1 − σ(XT

vi
θu)]
}
+

∑
v∈tvi

∑
ϑ∈{{vi}∪NEG(v)} β ·

{
δ( ϑ| v) · log[σ(eT

v θϑ)] + [1 − δ( ϑ| v)] · log[1 − σ(eT
v θϑ)]

}
⎫⎪⎪⎬⎪⎪⎭ , (9)

where β is a harmonic factor to balance Topology-Derived

model and Text-Derived model.

For ease of derivation, we define L(vi, u, v, ϑ) as follows.

L(vi, u, v, ϑ) = {Lvi (u) · log[σ(XT
vi
θu)] + [1 − Lvi (u)]·

log[1 − σ(XT
vi
θu)]}

+β · {δ( ϑ| v) · log[σ(eT
v θϑ)]

+[1 − δ( ϑ| v)] · log[1 − σ(eT
v θϑ)]}. (10)
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And then we utilize stochastic gradient ascent to optimize

the joint objective function L. The key is to give four kinds of

gradients of L.

Firstly, we calculate the gradient on θu of L(vi, u, v, ϑ).

∂L(vi, u, v, ϑ)
∂θu

= Lvi (u) · [1 − σ(XT
vi
θu)] · Xvi

−[1 − Lvi (u)] · σ(XT
vi
θu) · Xvi

= {Lvi (u) · [1 − σ(XT
vi
θu)]

−[1 − Lvi (u)] · σ(XT
vi
θu)} · Xvi

= [Lvi (u) − σ(XT
vi
θu)] · Xvi . (11)

Consequently, the updating formula of θu is denoted as fol-

lows.

θu = θu + α · [Lvi (u) − σ(XT
vi
θu)] · Xvi , (12)

where α is the learning rate of TENR model.

Secondly, we calculate the gradient on Xvi of L(vi, u, v, ϑ).

We use the symmetry property between θu and Xvi to get the

gradient on Xvi .

∂L(vi, u, v, ϑ)
∂Xvi

= [Lvi(u) − σ(XT
vi
θu)] · θu. (13)

Consequently, the updating formula of vv′ is denoted as

follows, where v′ ∈ context(vi).

vv′ = vv′ + α ·
∑

u∈{{vi}∪NEG(vi )}

∂L(vi, u, v, ϑ)
∂Xvi

= vv′ + α ·
∑

u∈{{vi}∪NEG(vi )}
[Lvi (u) − σ(XT

vi
θu)] · θu. (14)

Thirdly, we calculate the gradient on θϑ of L(vi, u, v, ϑ).

∂L(vi, u, v, ϑ)
∂θϑ

= β ·
{
∂

∂θϑ
{δ( ϑ| v) · log[σ(eT

v θϑ)]

+[1 − δ( ϑ| v)] · log[1 − σ(eT
v θϑ)]}

}

= β · {δ( ϑ| v) · [1 − σ(eT
v θϑ)] · ev

−[1 − δ( ϑ| v)] · σ(eT
v θϑ) · ev}

= β · {{δ( ϑ| v) · [1 − σ(eT
v θϑ)]

−[1 − δ( ϑ| v)] · σ(eT
v θϑ)} · ev}

= β · [δ( ϑ| v) − σ(eT
v θϑ)] · ev. (15)

Consequently, the updating formula of θϑ is denoted as fol-

lows.

θϑ = θϑ + α · β · [δ(ϑ|v) − σ(eT
v θϑ)] · ev. (16)

Finally, we calculate the gradient on ev of L(vi, u, v, ϑ). We

use the symmetry property between θϑ and ev to get the gra-

dient on ev.

∂L(vi, u, v, ϑ)
∂ev

= β · [δ(ϑ|v) − σ(eT
v θϑ)] · θϑ. (17)

Consequently, the updating formula of ev is denoted as fol-

lows, where v ∈ tvi , 1 � i � |V |.

ev = ev + α · β · [δ(ϑ|v) − σ(eT
v θϑ)] · θϑ. (18)

We utilize stochastic gradient ascent (SGA) method for op-

timization. In our implementation, we approximate the effect

of β through instance sampling (node-node and node-text) in

each training epoch. More details are shown in Algorithm 1.

Algorithm 1 TENR

1 Input:

2 Network G = (V, E, T )

3 Embedding size d

4 Output:

5 Embedding matrix X ∈ R|V |×d

6 for node vi in V do

7 initialize embedding vector vvi ∈ R1×d

8 initialize parameter vector θvi ∈ R1×d

9 for node v in tvi do

10 initialize parameter vector ev ∈ R1×d

11 end for

12 end for

13 node sequences C = RandomWalk()

14 for (vi , context(vi )) in C do

15 update parameter vectors following Formula (12)

16 update embedding vectors following Formula (14)

17 update parameter vectors following Formula (16)

18 for node v in tvi do

19 update parameter vectors following Formula (18)

20 end for

21 end for

22 for i = 0; i < |V |; i + + do

23 Xi = vvi

24 end for

25 return X

Algorithm 1 adopts the same random walk as DeepWalk,

where the number of walks to start at each node is 10, and the

length of walks to start at each node is 40.

4.4 Complexity analysis

As a popular Topology-Derived method, DeepWalk utilizes

the hierarchical softmax method to reduce the computational

complexity of calculating the probability of a pair of node-

context in the random walk node sequence from O(|V |) to

O(log |V |). Consequently, the computational complexity of

DeepWalk is O(|C|·2w·log |V |), where w is the window size of

the contextual nodes. In the objective function (9), the com-

putational complexity is further reduced to O(|C| ·(ds+1) ·(β ·
M + 1)), where the computational complexities of Topology-

Derived and Text-Derived model are O(|C| · (ds + 1)) and
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O(|C| ·(ds+1) ·M), where ds is the predefined size of the neg-

ative sample sets and also a constant number irrelevant to the

size of the network, and M = max{|tv1 |, |tv2 |, . . . , |tv|V | |}, which

is the maximum number of the text node sets tvi . Compared

to DeepWalk, TENR model is faster.

5 Experiments

5.1 Datasets

We select three real-world network datasets as follows:

Citeseer is a subset of CiteSeerX data, which is a typical pa-

per citation network. This dataset consists of 4610 scientific

publications from 10 distinct research areas and 5923 edges,

which are citation relationships between them.

DBLP is also a paper citation network, which consists of

bibliographic data in computer science. This dataset consists

of 17725 conference papers from four research areas and

105781 edges between them in total.

Weibo is a broadcast-style social network platform in China,

which shares the brief and real-time information through the

concern mechanism. This dataset consists of 62095 active

users from 12 different concerned topics and 1383025 edges,

which are friendships between them.

The detailed statistics are listed in Table 1.

Table 1 Statistics of datasets

Datasets Citeseer DBLP Weibo

Nodes 4610 17725 62095

Edges 5923 105781 1383025

Labels 10 4 12

Average degree 2.57 11.94 44.55

5.2 Baseline methods

DeepWalk. DeepWalk is a popular network topology-only

representation learning method, which uses local information

obtained from truncated random walks to learn vector repre-

sentations by treating walks as the equivalent of sentences.

node2vec. node2vec is an algorithmic framework for learn-

ing vector representations for nodes in networks, whose inno-

vation is to improve the strategy of random walk to explore

neighborhood architecture.

LINE. LINE is proposed to learn network representations for

large scale networks, which takes into account both 1-order

and 2-order proximity, and the concatenation of these two

representations is used as the final embedding.

HARP. HARP is a method for learning low-dimensional vec-

tor representations to preserve higher-order structural fea-

tures by compressing the input graph prior to embedding it.

HARP in this experiment is the meta-strategy algorithm to

improve DeepWalk.

Text. We take text matrix T ∈ R|V |×100 as 100-dimensional

network representation. The method is content-only baseline.

DeepWalk + Text. We simply concatenate the vectors from

DeepWalk and text features into a 200-dimensional vector for

network representations.

TADW. TADW is proposed to learn low-dimensional vector

representations by incorporating text features of nodes into

network representation under the framework of matrix fac-

torization.

CANE. CANE is proposed to learn context-aware network

representations for nodes with mutual attention mechanism

and model semantic relationships between the nodes.

TENR@1. TENR is proposed to learn network representa-

tions, which preserves the features of the text nodes contain-

ing all stop words.

TENR@2. TENR is proposed to learn network representa-

tions, which preserves the features of the text nodes deleting

all stop words.

5.3 Classifiers and experiment setup

We conduct the experiments on three real-world datasets. We

adopt node classification tasks to verify the feasibility of our

method. For all three datasets, we reduce the dimension of

vectors to 100. To evaluate our method, we randomly select

a portion of datasets as training set, and the rest is testing

set. We take representation vectors of nodes as input to train

classifiers, and calculate the accuracies of node classifications

based on different training ratios, which range from 10% to

90%.

5.4 Experimental results and analysis

The node classification results for three datasets are shown

in Tables 2–4. TENR consistently outperforms other baseline

methods on different datasets, which shows the feasibility of

our method.

The Micro-F1 and Macro-F1 values for multi-label classi-

fication on three datasets are reported in Tables 2–4. From the

three tables, we have the following interesting observations:

(1) TENR consistently outperforms all of the other base-

line methods on all three datasets. For example, TENR

achieves the best performance and beats the best baseline

CANE on Citeseer and DBLP, while it outperforms the best

baseline DeepWalk+Text on Weibo. In addition, TENR out-

performs the remaining baselines more or less to some extent.
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Table 2 Node classification results on Citeseer

Training ratio 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 56.80 59.53 60.64 61.26 60.93 62.47 63.59 63.02 63.56

node2vec 61.05 63.79 64.21 65.06 65.81 66.70 67.21 65.62 64.75

LINE 29.93 33.46 34.41 35.03 34.79 34.90 36.15 38.45 35.57

HARP 61.17 64.20 65.25 65.98 66.56 67.50 68.54 66.78 66.10

Text 64.77 67.25 68.83 70.23 71.48 71.72 72.45 72.34 73.10
Micro-F1 (%)

DeepWalk+Text 63.81 68.34 70.68 71.57 72.32 73.24 73.04 73.67 73.51

TADW 76.12 77.45 78.40 78.79 79.02 79.15 79.28 79.00 78.86

CANE 76.75 77.83 78.37 78.85 78.89 79.20 79.21 79.07 78.98

TENR@1 78.50 79.88 80.94 81.38 81.82 82.42 82.79 82.65 83.30

TENR@2 79.01 81.48 81.84 82.65 82.86 83.08 83.80 83.19 83.73

DeepWalk 34.18 35.90 36.83 37.03 36.81 37.75 38.44 38.31 38.55

node2vec 36.81 38.58 38.81 39.33 39.86 40.40 40.72 39.90 39.34

LINE 16.54 19.24 20.31 20.76 20.73 20.80 21.97 23.51 22.49

HARP 36.92 39.85 38.90 40.82 40.78 41.12 41.85 40.80 40.15

Text 39.58 40.98 41.98 42.82 43.58 43.75 44.20 44.06 44.64
Macro-F1 (%)

DeepWalk+Text 40.11 41.50 42.89 43.36 43.85 44.31 44.49 44.23 45.04

TADW 46.78 47.69 48.70 48.57 49.10 49.23 48.69 48.77 48.56

CANE 46.57 47.76 48.66 48.82 49.07 49.52 48.78 48.38 48.73

TENR@1 47.82 48.73 49.84 50.93 51.81 52.46 52.04 51.94 52.65

TENR@2 48.17 49.67 51.01 52.26 52.57 53.50 53.75 53.16 54.02

Table 3 Node classification results on DBLP

Training ratio 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 75.89 76.32 76.93 77.01 77.08 77.04 77.39 77.18 76.54

node2vec 77.92 78.48 78.96 79.11 79.05 79.03 79.31 79.69 79.44

LINE 54.29 55.97 56.79 56.84 56.71 57.24 57.60 58.01 57.05

HARP 78.48 79.35 79.57 79.92 80.16 80.04 79.81 79.63 79.41

Text 67.99 68.80 69.45 69.75 69.78 70.25 70.48 71.50 72.02
Micro-F1 (%)

DeepWalk+Text 77.61 78.25 79.39 79.45 79.53 79.66 79.78 79.27 79.60

TADW 80.05 80.51 80.64 80.87 81.09 81.38 81.31 81.13 80.82

CANE 80.24 81.08 81.29 81.34 81.55 81.66 81.68 81.31 81.75

TENR@1 80.09 81.20 81.45 81.56 81.67 81.70 81.73 81.09 81.80

TENR@2 80.62 81.36 81.50 81.70 81.76 81.85 82.78 82.34 82.36

DeepWalk 69.27 69.61 70.42 70.81 70.79 70.68 71.05 70.64 70.31

node2vec 70.93 72.23 72.82 73.06 73.13 73.22 73.69 74.17 73.72

LINE 37.10 41.11 42.84 43.15 43.41 44.13 44.74 45.26 44.77

HARP 70.86 72.56 73.19 73.81 74.25 74.28 73.99 73.67 73.76

Text 59.00 60.51 61.64 62.03 62.17 62.52 62.90 63.09 63.74
Macro-F1 (%)

DeepWalk+Text 70.95 72.76 73.29 73.74 74.10 74.44 74.50 74.80 74.94

TADW 72.59 73.91 74.81 74.96 75.10 75.38 75.12 75.32 75.43

CANE 73.35 74.59 75.06 75.02 75.28 75.47 75.33 75.45 75.60

TENR@1 73.43 74.65 74.98 75.81 75.90 75.40 75.30 75.90 76.04

TENR@2 73.80 75.28 75.73 75.96 75.98 76.38 76.10 76.19 76.36

These experimental results demonstrate that TENR is effec-

tive and robust.

(2) From the three tables, we find that a simple concate-

nation of representation vectors from DeepWalk and Text,

has better performances than Deepwalk or Text on the three

datasets, which shows the importance of both the network

topology structure and text features.

(3) The best baseline CANE and the second best baseline

TADW almost have the same performance on the small-

scale citation network Citeseer and DBLP. However, TADW

has better performance than CANE, and weaker perfor-

mance than DeepWalk+Text on the large-scale social net-

work Weibo, which verifies that TADW is not scalable

to large-scale networks and CANE is not general since it
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Table 4 Node classification results on Weibo

Training ratio 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 40.19 40.69 40.89 41.09 41.13 41.15 41.20 40.68 40.81

node2vec 40.22 40.75 41.10 41.24 41.50 41.84 41.57 41.42 41.58

LINE 39.48 39.98 40.24 40.40 40.59 40.62 40.78 40.50 40.68

HARP 40.76 41.15 41.95 42.00 42.23 42.35 42.16 42.25 41.89

Text 71.16 72.20 72.43 72.81 72.77 72.80 73.03 72.91 72.99
Micro-F1 (%)

DeepWalk+Text 73.20 74.39 74.56 75.02 75.29 75.14 75.40 75.45 75.52

TADW 64.94 67.90 69.40 70.47 71.07 71.59 72.04 72.45 72.68

CANE 40.70 41.26 42.05 42.56 42.45 42.78 43.02 42.80 42.47

TENR@1 73.74 74.99 75.26 75.54 75.68 75.90 76.21 76.39 76.30

TENR@2 74.29 75.19 75.61 75.82 76.03 76.30 76.52 76.68 76.57

DeepWalk 34.28 34.78 35.01 35.20 35.18 35.29 35.33 34.99 35.14

node2vec 34.41 34.90 35.26 35.45 35.60 35.74 35.48 35.29 35.39

LINE 33.00 33.77 33.95 34.13 34.42 34.39 34.49 34.45 34.66

HARP 35.09 35.61 36.04 36.14 36.42 36.59 36.41 35.92 35.89

Text 70.94 71.16 71.44 71.80 71.72 71.90 72.08 71.96 71.69
Macro-F1 (%)

DeepWalk+Text 72.05 73.37 74.18 74.50 74.62 74.33 74.51 74.88 75.16

TADW 63.08 66.65 68.37 69.46 70.15 70.72 71.28 71.69 71.84

CANE 35.12 35.60 35.98 36.25 36.45 36.74 36.58 36.02 36.46

TENR@1 72.50 74.23 74.59 75.06 75.11 74.54 74.70 75.00 75.31

TENR@2 73.06 74.58 74.85 75.17 75.40 75.45 75.42 75.53 75.84

cannot be used when there is rich text information on Weibo.

(4) TENR@2, which deletes the stop words from the text

nodes associated with each node of the original network,

has a little better classification performance than TENR@1,

which contains the stop words, which demonstrates that these

stop words interfere with the vector representations.

From these observations we find that TENR generates

high-quality representations by considering the network

topology and text features simultaneously. Moreover, TENR

is not task-specific and the vector representations can be con-

veniently used for different tasks, such as link prediction,

similarity computation.

5.5 Parameter sensitivity

TENR model has a hyper-parameter: harmonic factor β to

balance Topology-Derived model and Text-Derived model.

We fix the training ratio to 50% and test Micro-F1 and Macro-

F1 values of TENR@1 and TENR@2 with different β.

We let β vary from 0.1 to 0.9 on Citeseer, DBLP and Weibo

datasets. Figure 4 shows the comparisons of Micro-F1 and

Macro-F1 values of TENR@1 and TENR@2 with different

β. Figs. 4(a), (b) and (c) are the comparisons of Micro-F1 val-

ues, and Figs. 4(d), (e) and (f) are the comparisons of Macro-

F1 values. From Fig. 4, we find that as the value of the pa-

rameter β increases, the changes of Micro-F1 and Macro-F1

values follow different trends on all three datasets, but all the

change ranges are within 1%, which shows that overall the

performance of TENR model is not very sensitive to the pa-

rameter β, demonstrating the robustness of our model. Over-

all, for the Citeseer dataset, the best evaluated results in terms

of Micro-F1 and Macro-F1 are achieved at β = 0.3. For the

DBLP dataset, the best evaluated results in terms of Micro-

F1 and Macro-F1 of TENR@1 are achieved at β = 0.5, and

the best evaluated results in terms of Micro-F1 and Macro-F1

of TENR@2 are achieved at β = 0.7. For the Weibo dataset,

the best evaluated results in terms of Micro-F1 and Macro-F1

of TENR@1 are achieved at β = 0.7, and the best evaluated

results in terms of Micro-F1 and Macro-F1 of TENR@2 are

achieved at β = 0.3.

5.6 Visualizations

We propose TENR to learn network representations on Cite-

seer, DBLP and Weibo. To demonstrate whether the repre-

sentation vectors generated from TENR show discriminative

clustering abilities or not, we randomly select four network

categories on Citeseer and Weibo, each of which includes

150 nodes and three network categories on DBLP, each of

which includes 200 nodes. Figure 5 shows node clustering

visualizations on Citeseer, DBLP and Weibo.

As shown in Fig. 5, Figs. 5(a), (b) and (c) are the clustering

visualization results of TENR@1. Figs. 5(d), (e) and (f) are

the clustering visualization results of TENR@2. From Fig. 5,

we can find that TENR learns efficient representation vectors

with better
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Fig. 4 Parameter sensitivity. (a) Citeseer; (b) DBLP; (c) Weibo; (d) Citeseer; (e) DBLP; (f) Weibo

Fig. 5 Clustering visualizations. (a) Citeseer; (b) DBLP; (c) Weibo; (d) Citeseer; (e) DBLP; (f) Weibo

clustering abilities. The representation vectors from

TENR@2 on Citeseer, DBLP and Weibo datasets show

stronger clustering abilities than from TENR@1, and the

boundaries between the categories on Figs. 5(d), (e) and (f)

are clearer and more discriminative than on Figs. 5(a), (b)

and (c), because the stop words disturb the vectors. In addi-

tion, the representation on Weibo dataset shows a relatively

weaker clustering ability than Citeseer and DBLP datasets.

This reason is that there are more network links in Weibo

network, which leads to closer spatial distances among the

vectors obtained from TENR than Citeseer and DBLP net-

works. In a word, the results of visualization demonstrate the

effectiveness of our model.

5.7 Case study

To verify the performance of TENR, we conduct an experi-

ment on Citeseer dataset. The selected document title is “ex-

ploiting population information in evolutionary learning”. As

shown in Table 5, by using the representation vectors gen-

erated from DeepWalk, TADW, TENR@1 and TENR@2,

we find three nearest documents to the selected document

ranked by cosine similarity. We find that all these docu-

ments are cited by the selected document or some of these

documents cite the selected document. Three nearest doc-

uments by TENR@1 and TENR@2, whose similarities to

the selected document are higher than DeepWalk and TADW,
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Table 5 Three nearest documents found by DeepWalk, TADW and TENR

Method Title Similarity

an evolutionary approach to the automatic design of ensembles of neural network classifiers 0.8522

DeepWalk hybrid soft computing systems a critical survey with engineering applications 0.8318

evolutionary artificial neural networks 0.8276

how to make best use of evolutionary learning 0.7753

TADW making use of population information in evolutionary artificial neural networks 0.7595

evolutionary ensembles with negative correlation learning 0.7116

making use of population information in evolutionary artificial neural networks 0.8768

TENR@1 meta-learning evolutionary artificial neural networks 0.8440

trends in evolutionary robotics 0.8409

how to make best use of evolutionary learning 0.9126

TENR@2 making use of population information in evolutionary artificial neural networks 0.9018

evolutionary artificial neural networks 0.8772

totally contain a relevant word to the selected document, such

as “evolutionary”. This indicates that TENR can learn better

network representations with the help of text features than

DeepWalk and TADW.

6 Conclusion

In this paper, we propose Text-Enhanced Network Repre-

sentation Learning, which is a novel and discriminative net-

work representation method to take the network topology and

text features together into consideration. We conduct exper-

iments with the task of node classification on three datasets

(Citeseer, DBLP and Weibo). The experimental results show

that TENR is an effective and robust network representation

method compared to other baseline methods. Meanwhile,

the visualization results of network representations generated

by TENR demonstrate strong discrimination ability. TENR

provides a normalized framework for joint learning with dif-

ferent types of resources. For future work, we will explore

some new methods to incorporate community features of

nodes into network representation learning.
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