
Efficient and stable quorum-based log replication and replay for
modern cluster-databases

Donghui WANG, Peng CAI (✉), Weining QIAN, Aoying ZHOU
School of Data Science and Engineering, East China Normal University, Shanghai 200062, China

 Higher Education Press 2022

 
Abstract    The  modern  in-memory  database  (IMDB)  can
support  highly  concurrent  on-line  transaction  processing
(OLTP) workloads and generate massive transactional logs per
second.  Quorum-based  replication  protocols  such  as  Paxos  or
Raft have been widely used in the distributed databases to offer
higher availability and fault-tolerance. However, it is non-trivial
to  replicate  IMDB  because  high  transaction  rate  has  brought
new  challenges.  First,  the  leader  node  in  quorum  replication
should  have  adaptivity  by  considering  various  transaction
arrival  rates  and  the  processing  capability  of  follower  nodes.
Second,  followers  are  required  to  replay  logs  to  catch  up  the
state  of  the  leader  in  the  highly  concurrent  setting  to  reduce
visibility  gap.  Third,  modern  databases  are  often  built  with  a
cluster of commodity machines connected by low configuration
networks, in which the network anomalies often happen. In this
case,  the  performance  would  be  significantly  affected  because
the  follower  node  falls  into  the  long-duration  exception
handling process (e.g., fetch lost logs from the leader). To this
end, we build QuorumX, an efficient and stable quorum-based
replication  framework  for  IMDB  under  heavy  OLTP
workloads.  QuorumX  combines  critical  path  based  batching
and  pipeline  batching  to  provide  an  adaptive  log  propagation
scheme  to  obtain  a  stable  and  high  performance  at  various
settings.  Further,  we  propose  a  safe  and  coordination-free  log
replay scheme to minimize the visibility gap between the leader
and  follower  IMDBs.  We  further  carefully  design  the  process
for  the follower node in  order  to  alleviate  the influence of  the
unreliable  network  on  the  replication  performance.  Our
evaluation results with the YCSB, TPC-C and a realistic micro-
benchmark  demonstrate  that  QuorumX  achieves  the
performance close to asynchronous primary-backup replication
and could always provide a stable service with data consistency
and a low-level visibility gap.

Keywords    log  replication,  log  replay,  consensus  protocol,
high  performance,  high  availability,  quorum,  unreliable
network, packet loss
 

1    Introduction
Replication is  the technique that  can be used for a traditional

database  management  system  (DBMS)  or  fast,  multi-core
scalable  in-memory  database  (IMDB)  to  support  high-
availability.  In  this  work,  we  assume  a  full  database  copy  is
held  on  a  single  IMDB  node,  and  each  backup  node  has  the
full  replication.  In  replicated  IMDBs,  the  execution  of  a
transaction  is  completely  in  the  primary  IMDB.  Primary-
backup replication is the well-known replication method in the
database  community.  The asynchronous (lazy)  primary-
backup  replication  used  in  traditional  database  systems  (e.g.,
MySQL,  DB2)  trades  consistency  for  performance  and
availability.  In  contrast,  the synchronous (eager)  primary-
backup  replication  trades  performance  and  availability  for
consistency.

f 2 f +1

Today’s  mission-critical  enterprise  applications  in  banking
or  E-commerce  require  the  back-end  database  system  to
provide  a  stable,  high-performance  and  high-availability  ser-
vice without sacrificing consistency. Compared with primary-
backup replication, the quorum-based replication (e.g., Multi-
Paxos  [1],  Raft  [2],  etc.)  can  guarantee  strong  consistency,
tolerate  up  to  out  of  fail-stop  failures,  and  achieve
better  performance  than  the  synchronous  primary-backup
replication because it only requires the majority of replicas to
respond  to  the  leader.  The  quorum-based  replication  adopts
consensus protocols to take more reasonable trade-offs among
performance, availability and consistency, and thus it has been
regarded  as  a  practical  and  efficient  replication  protocol  for
large scale datastores [3−5].

Quorum-based  replication  protocols  are  the  natural  choice
for  replicating  IMDB  as  a  highly  available  and  strongly
consistent  OLTP  datastore.  However,  it  is  non-trivial  to
translate  the  quorum-based  replication  protocol  into  a  prag-
matic implementation for industrial use. The basic principle of
various  quorum-based  protocols  is  that  committing  a
transaction requires its log to be replicated and flushed on the
non-volatile  storage  on  the  majority  of  follower  replicas.  A
transaction  may  take  extremely  short  time  to  complete  its
execution  in  the  leader  IMDB.  But,  committing  this
transaction may take more time to wait its log replicated to the
majority  of  the  followers.  As  a  result,  the  performance  of  a
replicated  IMDB  significantly  depends  on  the  quorum-based
log replication which is influenced by many factors.

To  achieve  read  scalability,  the  followers  need  to  replay

 

Received May 19, 2020; accepted November 23, 2020

E-mail: pcai@dase.ecnu.edu.cn

Front. Comput. Sci., 2022, 16(5): 165612
https://doi.org/10.1007/s11704-020-0210-y

RESEARCH ARTICLE

https://doi.org/10.1007/s11704-020-0210-y


committed  logs  into  its  memory  table  (memtable)  at  a  fast
speed  to  keep  up  with  the  leader’s  state,  so  that  it  could
provide  fresh  data  for  online  analytical  processing  (OLAP)
services.  The  classic  quorum-based  replication  needs  the
leader to send followers the maximal committed log sequence
number  (MaxComLSN),  and  then  followers  can  commit  and
replay these logs with LSN smaller or equal to MaxComLSN.
Replaying  logs  after  receiving  the  specified  MaxComLSN
leads to that the committed data on followers are visible at a
later  time than that  on  the  leader  all  the  time,  referred to  as
visibility  gap (VGap).  Without  careful  designs,  VGap  would
be  larger  when  the  leader  IMDB  is  running  under  a  heavy
OLTP  workload,  and  generates  transactional  logs  at  a  high
rate.

Modern  database  systems  are  increasingly  deployed  in  a
cluster  of  commodity  machines  connected  by  networks  with
less high-end configurations whereby the network Anomalies
frequently  crop  up,  including  increased  network  delays  and
packet loss. Consensus protocols are aware of the problem of
network  disconnection  between  some  of  the  servers  and
propose  to  elect  a  new  leader  to  guarantee  availability  and
safety when the old leader cannot connect with the majority.

Anomalies in the unreliable network also bring problems in
log  replication  and  replay.  For  example,  when  the  packet  is
lost  during  replication,  the  logs  on  the  follower  node  will  be
discontinuous.  Due  to  log  coherency,  Raft  logs  are  not
allowed  to  have  any  hole  on  both  leader  and  followers.  The
follower would stop log persistence and replaying and wait for
the leader to resend the missed logs, resulting in blocks of the
process  of  normal  log  replication.  Mulit-Paxos  replication
relaxes the restriction of log coherency, and allows holes exist.
Although  the  normal  replication  would  not  be  blocked,  log
replaying  in  the  follower  node  is  still  blocked.  Also,  the
relaxation  in  Paxos  also  makes  the  new  elected  leader  that
may  not  have  full  logs.  The  leader  should  fetch  missed  logs
from  other  servers  and  commit  them  before  taking  over  the
system to provide service, resulting in a long unavailable time.

In  this  paper,  we  present  an  efficient  and  stable  quorum-
based replication framework, called QuorumX, to optimize log
replication  and  replay  for  IMDB  under  highly  concurrent
OLTP  workloads.  Main  contributions  are  summarized  as
follows:

●  QuorumX  combines  critical  path  based  batching  and
pipeline based batching to adaptively replicate transac-
tional  logs,  which  takes  into  account  various  factors
including the characteristics of transactional workloads
and the processing capability of follower.

●  We  introduce  a  fast  and  coordination-free  log  replay
scheme  without  waiting  for  the  MaxComLSN,  which
applies  logs  to  memory  ahead  of  time  in  parallel  to
reduce the risk of increased VGap. Thus, the replicas is
able to provide a fresher data for OLAP queries in the
premise of data consistency.

●  We analyze  the  problem caused  by  network  anomalies
and redesign the process in the follower node. First, we
relax the  constraint  of log coherency and allows holes
to  exist  in  logs  as  Multi-Paxos  did,  ensuring  the  log

replication  would  not  be  affected  by  network  anoma-
lies.  Second,  we  let  the  follower  fetches  the  lost  logs
from  the  leader  proactively  so  that  replaying  in
QuorumX  would  not  be  blocked  with  ensuring  a  low
unavailability time.

●  QuorumX  has  been  implemented  in  Solar  [6],  an  in-
memory  NewSQL  database  system  that  has  been
successfully  deployed  on  Bank  of  Communications,
one  of  the  biggest  commercial  banks  in  China.  Exten-
sive  experiments  are  conducted  to  evaluate  QuorumX
under different benchmarks.

The paper is organized as follows. Section 3 describes some
preliminaries  of  quorum-based  replication,  including  the
overall  architecture  and  processing  flows  of  both  the  leader
and follower database. Section 4 gives several detailed designs
of  our  adaptively  self-tuning  batching  method.  Log  replay
optimization  is  described  in  Section  5.  In  Section  6,  we
analyze  the  influence  of  network  anomalies  on  both  log
replication and replaying and then give the solution. Section 7
presents  the  results  of  performance  evaluation.  Finally,  in
Section 8, we give an overview of related works and Section 9
concludes the paper. 

2    Consistency model
In  distributed  system,  the consistency  model describes  how
different replicas are kept in sync. As observed by Brewer in
his  well-known  CAP  Theorem  [7],  in  a  distributed  system,
among  consistency,  availability,  and  partition  tolerance,  only
two out of three are possible. Any replicated systems need to
trade  off  these  three  aspects.  In  this  section,  we  first  clearly
define  the  related  terminologies,  and  then  show  the  design
choice of QuorumX. We adopt the definition of consistency in
replicated system from prior work [8−10].

Ti T j Ti
Ti

Definition  1    Strong  consistency    Strong  consistency  is
commonly equated with linearlizability,  which requires:  after
a transactions  commits, any new transaction  following 
observes the updates of .

Ti

Ti

Definition  2    Weak  consistency    Weak  consistency  rela-
xes  the  requirements  of  strong  consistency.  Within  a  weak-
consistent database, after a transaction  finishes, there is no
guarantee that the following transactions can read the updates
of .  With  weak  consistency,  applications  may  see  different
versions of data from different replicas.

As network partition is unavoidable in a distributed system,
CAP  theorem  formally  proved  that  when  a  system  chooses
strong  consistency,  it  can  not  provide  high  availability.
However, database systems like Google Spanner [11] claim to
be  highly  available  and  strongly  consistent,  which  seems  to
avoid  the  CAP  theorem.  Actually,  this  is  because  of  the
misunderstanding of availability. To clearly understand it,  we
classify availability  into Node-level  Availability  and Service-
level Availability.

Definition  3    Node-level  availability    Node-level  availa-
bility means that, when network partition occurs, every replica
of the system still could provide services for applications.

2 Front. Comput. Sci., 2022, 16(5): 165612



Systems  like  Dynamo  [12]  and  Cassandra  [13]  choose  to
guarantee  node-level  availability,  and  they  can  not  ensure
strong consistency at the same time. Instead, they use eventual
consistency to  provide  service  when  partition  happens.  We
believe that the availability in CAP theorem means node-level
availability.

Definition  4    Service-level  availability    Service-level avai-
lability  requires  that,  when  network  partition  occurs,  as  long
as  the  partition  degree  is  not  too  serious  (e.g.,  a  majority  of
replicas  are  still  in  the  same  partition),  the  system  is  still
capable to provide service.

Service-level  availability  does  not  require  that  all  replicas
provide services in the case of failure, but require that some of
them  are  available.  Also,  the  system  needs  to  automatically
elect  a  new master  from replicas to take the place of  a  failed
one,  ensuring  no  loss  of  service.  Consensus  protocols  are
always  used  to  achieve  service-level  availability.  Since
QuorumX  targets  to  provide  service  for  mission-critical
applications,  strong  consistency  is  the  primarily  necessary.
Therefore,  QuorumX  is  designed  to  satisfy both  strong
consistency and service-level high availability. 

3    Preliminary
 

3.1    Architecture
Figure 1 shows  the  overall  architecture  of  replicating  an
IMDB.  The  replicated  IMDB  cluster  contains  one  primary
IMDB  as  a  leader  and  more  than  two  replica  IMDBs  as
followers. Requests that contain write operations are routed to
the leader  IMDB, while  read-only transactions are  performed
by the follower nodes. Transactions are concurrently executed
on  the  leader.  When a  transaction  completes  all  transactional
logics  and  starts  to  execute  the  COMMIT  statement,  the
worker  threads  in  the  leader  generate  the  transactional  logs
and appends them to log buffer (at steps 1 and 2 in the left side
of Fig. 1).  Then  this  transaction  enters  the  commit  phase,
waits  to  be  committed  (at  step  3)  and  finally  responds  to  the
client (at step 6). The single commit thread in the leader sends
these  transactional  logs  to  all  followers  and  flushes  them  to
local disks (at steps 4 and 5). A transaction can be committed
only  after  the  leader  receives  more  than  half  responses  from
followers,  and  the  latest  committed  log  sequence  number
(MaxComLSN) is set to the index of this committed log entry.

After  that,  the  leader  will  asynchronously  send  the
MaxComLSN  to  followers.  Follower  replicas  then  replay
committed logs less  than the latest  received MaxComLSN. It
should  be  noted  that  the  execution  worker  is  multi-threaded.
The  new  arrived  transaction  requests  from  clients  can  be
processed  in  parallel  although  previous  transactions  have  not
been  committed.  The  new  arrival  transactions  cannot  be
committed until the previous ones have been committed. That
means the commit order is sequential. 

3.2    Log replication
The follower replica who receives log packets will first parse
it  into  entries  with  log  format  and  check  the  integrity,  then
write  it  to  the  non-volatile  storages  and  send  a  response
message  to  leader.  Under  a  heavy  OLTP  workload,  if
followers  use  a  single  thread  to  process  received  logs  in  a
sequential  manner,  the replication latency would be unaccep-
table  in  practical  settings.  Pipeline  and  batching  are  general
methods used to improve the performance of log replication.

● Pipeline  parallelism  of  log  replication  in  the  follo-
wer The  basic  steps  for  processing  a  received  log  by
replica can be divided into three relatively independent
stages: parsing logs, flushing logs and sending response
to  leader.  The  pipeline  of  replicating  logs  in  the
follower  is  that:  the  log  receiving  thread  (e.g., revLog
thd)  gets  network  packets  from  the  receive  queue,
parses them to log entries and appends these logs to the
receive  buffer(at  steps  I  in  the  right  side  of Fig. 1).
After that revLog thd pushes the indexes of log entries
into  the wait-for  reply  queue.  At  the  back-end,  the
single  persistence  thread  (i.e., wrtDisk  thd)  reads  a
batch of logs from the receive buffer and flushes them
to log files (at step II). When finishing writing a batch
of  logs, wrtDisk  thd notifies  the reply  thd to  send  a
response to the leader (at step III). Then reply thd pops
the indexes of log entries from the wait-for reply queue
and  send  an  acknowledgment  to  the  leader.  The
replication  latency  introduced  by  follower  replicas  is
hidden through pipelined log processing.

● Batching  logs  in  the  leader Pipeline  and  batching  are
often  used  together  [4,14].  Without  batching,  the
pipeline  will  be  hard  to  work  effectively.  Basically,
batching  several  requests  into  a  single  instance  allows

 

 
Fig. 1    Overall architecture of log replication and replaying in an IMDB cluster. ○ represents the step of log replication in the leader. ● indicates
the process of log replication in the follower.  denotes the flow of log replaying

 

Donghui WANG et al.    Efficient and stable quorum-based log replication and replay for modern cluster-databases 3



the  overhead  to  be  amortized  over  per-request.  The
systems built over quorum-based replication can adopt
the batching method to boost the throughput. However,
the  parameters  such  as  the  batch  size  or  the  sending
interval  have  greater  impact  on  the  performance.
Manual configurations for these parameters are proved
to  be  time  consuming  and  can  not  adapt  to  different
environments.  Existing  works  on  automatic  batching
are  limited  in  the  replicated  IMDBs.  For  example,  the
factor on processing capability of follower has not been
fully considered in the batching scheme.

In this work, we investigated several batching methods and
found that they were not always effective under the context of
replicating  a  fast  IMDB.  Quorum-based  replication  needs  an
adaptively  self-tuning  batching  mechanism  that  not  only  is
parameter-free but also considers: 1) the capacity of follower;
2) the workload characteristics (e.g., the arrival rate).

The receive buffer in the follower is  an important structure
which  is  responsible  for  caching  the  received  logs  from  the
leader.  The wrtDisk  thd can flush a  batch of  buffered logs  at
one time.  We choose  to  use  the  ring buffer  to  implement  the
receive  buffer  in  order  to  avoid  frequent  memory  allocations
and  deallocations.  The  size  of  the  receive  buffer  is  a  key
design  consideration.  If  the  size  is  set  to  a  small  value,  the
received but un-flushed logs would be soon overlapped by the
new arrival  logs.  This  makes  the  follower  require  to  pull  the
covered  logs  from  the  leader,  which  introduces  additional
latency for  the  log replication.  The basic  idea of  determining
the buffer size is that it  should be greater than the rate of log
generation on the leader. 

3.3    Log replaying
Basically,  the wrtDisk  thd flushes  logs  into  disks  and  at  the
same  time  appends  them  to  the  replay  buffer  waiting  for
replaying.  Log replication and replaying use different  buffers
in  order  to  avoid  that  flushed  but  un-replayed  log  entries  are
overlapped  by  the  new  arrived  logs  caused  by  the  speed
mismatch between disk write and replaying.

To  avoid  lagging  behind  the  leader  too  much,  the  follower
requires a fast mechanism of replaying committed logs. On the
back-end, follower IMDBs replay logs to memtables (which is
often  implemented  by  B+  Tree  or  SkipList  in  IMDB)  to
provide  read-only  transaction  requests  according  to  the
maximal  committed  log  sequence  number  (MaxComLSN),
which is piggybacked on logs to notify the follower the latest
committed point.

Under  the  conventional  quorum-based  replication  schemes,
the wrtQueue  thd fetches  log  entries  with  LSN  less  than
MaxComLSN from the  replay  buffer  and  pushes  them to  the
replay workers (step a). After that, replay workers apply logs
into  local  memtable  in  parallel  and put  the  replayed LSNs in
the publish  sorted  queue.  A  single publish  thd commits  the
modifications  in  the  memtable  and  make  them  visible  in  a
serial LSN order. In the case of highly concurrent workloads,
this  principle  of  relaying logs by follower causes a  challenge
in visibility gap. In this paper,  visibility gap is defined as the
time  difference  between  leader  and  follower  for  making  the
same  committed  data  be  visible.  Real  applications  such  as

HTAP  often  take  real-time  OLAP  analysis  over  the  follower
nodes [15], and it is expected that there is a VGap as small as
possible  between  the  leader  and  followers.  There  are  two
challenges to minimize VGap in QuorumX.

First,  recently proposed solutions to minimize VGap aimed
at resolving the problem in the asynchronous primary-backup
replication,  which  can  not  be  applied  to  the  quorum-based
replication  [16,17].  In  the  asynchronous  primary-backup
replication,  the  follower  could  replay  the  received  logs
immediately  without  any  coordination  with  leader.  However,
in  the  quorum-based  replication,  it  is  the  leader  that  notifies
followers  the  consensus  decision  of  transactional  logs  by
sending  the  current  MaxComLSN.  After  receiving  MaxCom-
LSN,  follower  nodes  are  agreed to  replay logs  with  LSN not
larger than MaxComLSN.

Second,  since  it  is  expensive  to  read  logs  from  disk  for
replaying, the replicated but un-replayed logs need to reside in
the  memory  for  a  period  of  time  before  being  replayed.  The
structure  holding  un-replayed  logs  is  the  replay  buffer.
However, in the case where the leader generates logs at a high
speed, e.g., SiloR could produce logs at gigabytes-per-second
rates  [18],  or  the  case  that  the  follower  server  is  under  high
pressure,  causing  a  slow  replaying  speed,  un-replayed  logs
resided  in  the  buffer  can  be  soon erased  by  the  new arrivals.
The  follower  still  needs  to  read  flushed  logs  from  disk  for
replaying,  and  would  definitely  lag  behind  the  leader  and
produce larger and larger VGap.

Therefore, in this paper, in order to minimize the VGap and
keep  up  with  the  state  of  the  leader,  we  first  propose  a
coordination-free  log  replaying  mechanism  for  the  follower.
Second, we devise a remedial  action against  the case that the
un-replayed logs  in  the  replay buffer  are  covered by the  new
logs. 

4    Adaptively self-tuning batching scheme
Basically,  batching  several  requests  into  a  single  instance
reduces the amortized per-request overhead, which boosts the
throughput  of  system.  The  design  objectives  of  batching
scheme in QuorumX have three aspects.

First, no parameters are required to be calculated offline and
then  manfully  tune  system  configurations.  Because  once  the
environment settings are changed, these parameters need to be
calculated  again.  It  should  be  totally  automatic  to  cope  with
the uncertainties without manual intervention.

Second,  workloads  in  real  setting  are  often  dynamically
changed  and  have  an  important  effect  on  the  performance  of
batching  scheme.  For  instance,  if  the  transaction  arrival  rate
becomes  low,  a  batch  should  be  constructed  by  a  small
number of log entries.

Last but not least, considering the processing capacity of the
follower  is  essential  for  adaptively  tuning  algorithm  in
quorum-based  replication,  especially  in  the  case  where  the
whole performance relies on the processing speed of followers
under heavy workloads. Follower replicas may be overloaded
if log replication with a wrong batch size.

Although  many  batching  methods  claimed  that  could  tune
with a better  performance,  but in our development,  we found
that  almost  neither  of  existing  algorithms  can  satisfy  all  our
needs, as shown in Table 1. 

4 Front. Comput. Sci., 2022, 16(5): 165612



4.1    Batching scheme in QuorumX
Based on the above design objectives, we propose to combine
critical-path-based  batching  (CB)  [20]  and  pipeline-based
batching  (PB).  CB  automatically  adjusts  the  batch  size
according to workload characteristics. PB is complementary to
CB  by  considering  the  processing  capability  of  follower,
which  can  adaptively  tune  the  frequency  of  sending  logs  to
avoid  followers  being  overloaded  in  highly  concurrent
workloads.

commit_transaction

sendBatch

The  CB  mechanism  operates  as  following:  as  shown  in
Fig. 2,  after  finishing  processing  transaction  logics,  each
worker thread will enter a global common code fragment, that
is .  The entry code is used for registering
the commit queue as the task is inside. Similarly, the exit code
de-registers the task and appends it  to the sending batch. The
intuition  behind CB is  that  multiple  tasks  should  be  included
in  the  same  batch  only  if  they  arrive “close  together” to  the

().  When  implementing  CB,  we  treat  the  commit
queue as a doorway. A batch is complete and sent to followers
when the commit queue is empty, since the next task is too far
behind to join into the current batch. Compared with batching
with  a  fixed  time  or  a  fixed  size,  CB  could  adjust  sending
frequency according to the arrival rate. When the arriving rate
is  high,  CB  gathers  a  lot  of  close  tasks  and  achieves  good
throughput. And if the arrival rate is low, CB will not waste a
long time for waiting for more tasks. The disadvantage of CB
is  that  when  the  arrival  rate  stays  constantly  high,  CB  will
continue to gather too many tasks without sending a batch in a
proper size. We combine PB with CB mechanisms to resolve
this issue.

s1, s2, s3

PB  takes  a  full  consideration  of  the  pipelined  replication
scheme  in  the  follower.  As  described  above,  the  pipelined
replication  scheme  in  follower  consists  of  three  stages
( ). It should be noted that an optimal performance can
be achieved if the slowest pipeline stage handles tasks all the

s2
ts2

time  and  has  no  idle  time. Taking Fig. 3(a) for  example,
suppose  that  is  the  most  time-consuming  stage,  and  the
optimal  send  interval  for  a  batch  should  be .  Upon  this
sending  rate,  every  batch  could  get  a  smallest  replication
latency and next batches would not be blocked by the previous
ones.  Therefore,  during  the  pipeline  replication,  QuorumX
collects the consumed time of each stage by followers for each
batch, and embedded them into the response to be sent to the
leader.  QuorumX  requires  the  time  interval  of  sending  two
batches  should  not  to  be  less  than it.  If  logs  are  sent  with  an
interval larger than that value, the resources cannot be utilized
sufficiently.  On  the  contrary,  if  the  sending  interval  is  less
than that value, congestion should happen during replication. 

4.2    Discussion
We demonstrate  that  network latency between the  leader  and
follower has no effect to set sending frequency with Fig. 3(a)
and Fig. 3(b). No matter how the network latency changes, the
optimal  frequency  is  always  restricted  by  the  most  time-
consuming stage  of  follower.  However,  we need to  point  out
that  network  bandwidth  can  affect  the  sending  frequency.
Under  complicated  network  environment  especially  the  wide
area network, bandwidth is often limited and may be occupied
by something unknown. Here, log replication is constrained by
the  limited  network  bandwidth  of  the  leader.  As  a  result,  the
sending  frequency  should  be  lowered  properly.  How  to
automatically  adjust  the  frequency  of  sending  logs  over
complicated, unreliable networks is still an open question, and
we will study this problem in our future work. 

4.3    Calculation method of the sending interval
In the PB mechanism, the leader calculates the time interval of
sending  a  log  batch  by  averaging  the  previous  send  interval
and  the  feedback  time  (the  time  consumed  by  the  slowest
stage in the pipeline replication) by all followers. The value is
a uniform value, which means that the leader sends logs to all
the followers at the same time interval. Certainly, we could set
a  frequency  for  each  follower  according  to  their  slowest
pipeline  stage,  but  it  would  be  less  space-efficient  and  time-
efficient because we need to store and copy different logs for
each follower.

In a realistic cluster, replicas may have different replication
performance.  For  example,  servers  with  HDDs  have  a  much
longer  disk-write  latency  than  servers  that  are  equipped  with

   
Table 1    Features of different batching algorithms

Batching scheme Parameter-free Workload-adaptive Follower-friendly
JPaxos × √ ×
N Santos [14] × √ ×
P Romano [19] × √ ×
AB [20] √ × ×
TAB [20] × √ ×
QuorumX √ √ √
 

 

 
Fig. 2    Critical-path-based batching (CB)

 

 

 
Fig. 3    Pipeline-based batching (PB). (a) S2 is the most time-consuming part,
under  low-latency  network; (b)  S1 is  the  most  time-consuming  part,  under
high-latency network
 

Donghui WANG et al.    Efficient and stable quorum-based log replication and replay for modern cluster-databases 5



SSDs. When there are other tasks running on a follower node,
its  replication  performance  would  be  largely  affected.  As  a
result, the replication latency will be prolonged.

In  this  situation,  if  the  uniform  sending  interval  is  still
averaged  by  all  follower  replicas,  it  is  unappealing  since  for
the  slow  followers,  the  frequency  may  be  so  high  that
congestion will very likely happen. As discussed in Section 3,
the receive buffer may be overlapped under the congestion. As
a result, the slow followers will be increasingly lagging behind
the  leader,  also  resulting  in  a  larger  and  larger  VGap  that
affects the system availability.

Hence,  we  refine  the  calculation  method  for  the  uniform
sending interval according to the following cases.

maxPstLSN
● When the difference of the maximum index of persisted

log  entries  (e.g., )  among  the  followers  is
small, the sending interval takes the average;

maxPstLSN●  When  the  difference  of  is  greater  than  a
threshold, the sending interval is set to the feedback of
the  slowest  follower.  The  active  reduction  of  sending
frequency  by  the  leader  node  enables  the  lagged
followers  to  catch  up  with  the  leader  as  soon  as
possible.

 

5    Coordination-free log replay
 

5.1    Design choices for replay buffer
The replay buffer  in  follower  is  responsible  for  buffering the
persisted logs waiting for replaying to the memtable. We have
discussed  the  design  of  the  receive  buffer  which  is  used  to
cache the received logs waiting for persistence. We avoid the
case  when  the  un-flushed  logs  in  the  receive  buffer  are
overlapped by the new arrivals through adjusting the sending
interval in the leader.

The  size  of  the  replay  buffer  is  also  a  significant  design
consideration.  IMDB  such  as  SiloR  could  generate  logs  at
gigabytes-per-second  rates.  When  the  follower  is  under  high
workload  pressure  and  the  replay  speed  slows  down,  the
flushed log entries that have not been replayed will be covered
by  new  arrived  logs.  As  a  result,  the  un-replayed  log  entries
must be read from the disks, which would introduce extra disk
I/O latency. This causes the risk of cascading latency as more
un-replayed  logs  continue  to  be  covered  by  newly  arrived
logs.  Finally,  it  will  make the memtable state  of  the follower
nodes  never  catch  up  with  the  leader.  The  design  of  replay
buffer  should  guarantee  replicated  logs  are  replayed  from
memory  most  of  the  time  and  avoid  re-loading  them  from
HDD/SDD.

In order to provide read services on fresh data by followers,
they need to replay flushed logs to memory as fast as possible.
However,  as  discussed  above,  different  from  asynchronous
replication,  the  time  to  replay  a  log  entry  is  restricted  by  the
quorum-based replication scheme. A follower is only allowed
to  replay  logs  with  LSN  not  larger  than  MaxComLSN  for
guaranteeing  consistency.  However,  wait-for-replay  logs
residing  in  the  memory  may  cause  the  replay  buffer
overwhelmed.  To this  end,  we design a  coordination-free log
replay (CLR) scheme which directly applies the received logs
to  the  memtable  without  waiting  for  the  MaxComLSN.  CLR

ensures  consistency  by  separating  the  replay  procedure  into
two  phases.  The  first  phase  converts  logs  into  uncommitted
cell  lists  of  memtable  in  parallel,  where  the  applied  data  are
invisible.  The  second  phase  sequentially  installs  them  into
memtable  according  their  LSNs,  where  the  consistency  is
guaranteed. It  should be emphasized that  the second phase is
extremely  lightweight  without  introducing  overhead  as  the
installation only contains a few pointer manipulations. 

5.2    Mechanism of coordination-free log replay
Basically,  different  from  transaction  execution  in  the  leader,
there  is NO rollback  when  replaying  logs  in  follower.  That
means all of the logs must be replayed successfully in a serial
order.  We choose to  replicate value logs instead of  operation
logs,  which  could  promise  a  lock-free  replay  strategy.  When
CLR  begins  to  replay  a  batch  of  logs,  in  the  first  phase,
multiple  threads  (e.g., replay  workers)  works  in  parallel.
Replay  workers first  starts  a  transaction  for  each  log  entry.
Then it looks up the memtable to find the node the transaction
wants  to  modify.  After  that,  logs  are  translated  into  several
uncommitted cell informations in which each cell has a pointer
pointing  to  the  actual  node  in  the  memtable.  Translating  will
not  directly  be  installed  the  updates  into  the  memtable  and
therefore  there  is  no  need  to  acquire  any  locks.  The
uncommitted  cell  informations  are  stored  in  the  transaction
context.
 

 
 

After  completing  the  above  procedures,  transaction  will  be
pushed into the publish sorted queue of a single publish thread
(i.e., publish  thd)  which  is  responsible  for  committing

6 Front. Comput. Sci., 2022, 16(5): 165612



transactions,  making  their  modifications  visible.  It  was  the
single publish  thd that  ensures  the  safety  and  consistency  of
quorum-based  replication.  In  the  second  phase  of  CLR,
publish  thd sequentially  pops  transaction  whose  log  id  is
smaller than the MaxComLSN, and does the commit transac-
tion operation. As shown in the Algorithm 1, transactions with
log  id  less  than  MaxComLSN  will  be  committed  and  their
uncommitted  cell  informations  will  be  directly  append  to  the
value list in the memtable. Locks are necessary in this part, but
as  we  can  see,  the  duration  is  short  (lines  13–17).  Here,  the
rowlock is  maintained  in  a  per-tuple  fashion  and  co-located
with  the  raw data  (e.g.,  an  additional  field  in  the  header  of  a
tuple is  used to represent  its  current  locking state)  which can
be  acquired  and  released  by  atomic  operations.  Such  lock
implementation  is  popular  in  modern  lock-based  database
systems and proved to be lightweight and efficient [21−23].

The main processing flow of CLR can be processed totally
in  parallel  and  only  the  commit  part  is  done  sequentially  in
order  to  promise  transaction  modifications  are  installed  into
memtable  by  the  LSN  order.  CLR  immediately  replays  the
received  logs  without  waiting  for  MaxComLSN.  One
advantage is to alleviate the risk of reading flushed logs from
disk and the memory resources consumed by the replay buffer
has  a  minor  risk  of  being  excessive.  Besides,  since  CLR
performs replaying ahead of time, the VGap can be minimized
compared  with  the  replaying  scheme  waiting  for  MaxCom-
LSN. 

5.3    Discussion

R1—R5 R1
R1

R2

R4

R2

R2

R2 R2

Nevertheless,  there  are  additional  demands  on  fault  handing
introduced  by  our  proposed  replay  strategy.  Suppose  such  a
scenario in Fig. 4, five replicas ( ) form a cluster and 
is the initial leader. Before crashed,  has generated five log
entries and committed four log entries. Log five has flushed to
disk  and  entered  into  the  first  phase  of  CLR in  while  the
other three followers have not received log five. According to
the  election  algorithm,  is  elected  as  the  new  leader.  It
generates  a  different  log  five  and  replicates  it,  and  there  is  a
growing problem that  has began to replay a log five from
the  old  leader.  Although  the  modification  has  not  been
installed in the memtable, the transaction context with log five
still  reside  in  the  memory  (dirty  contents).  If  begins  to
replay another log five, there may be some checksum errors. If
similar  situations arise when we do not  adopt CLR, there are
no dirty contents in ’s memory,  only needs to rewrite log
five to its disk.

Based  on  above  description  and  discussion,  when  intro-
ducing CLR, we also refine the fault handing algorithm. More

concretely,  when  role  change  happens,  each  node  will  firstly
perform replay-revoking operation before actually getting into
working. CLR ensures that dirty contents can be easily erased
since it neither modify any structures storing data nor hold any
locks.  The  commit  thread  pops  all  tasks  from  its  commit
queue,  cleaning  uncommitted  cell  informations  and  ending
these transactions. 

5.4    Asynchronous loading mechanism
Although CLR could provide a fast log replaying for quorum-
based  replication,  the  risk  of  reading  flushed  logs  from  disk
for replaying has not completely been avoided. When there are
other loads running on the follower and the resource thrashing
problem  is  heavy,  it  would  makes  the  replay  speed  greatly
slowed down. Therefore, in order to avoid the risk of reading
disks  entirely,  we  propose  an  asynchronous  loading  mecha-
nism (ALM)  to  ensure  that  all  un-replayed  logs  are  obtained
from the memory all the time.

tail head

Figure 5 illustrates  the  processing  model  of  ALM.  We
introduce an additional thread called asyncLoad thd,  which is
responsible for loading log entries from log files to the replay
buffer  asynchronously.  Before  trying  to  append  logs  to  the
replay  buffer,  the wrtDisk  thd first  checks  whether  the  un-
replayed logs have occupied the entire replay buffer. It can be
completed by comparing the size of the replay buffer and the
difference between  and . If so, wrtDisk thd does not
perform  this  append  operation  and  wake  up  the asyncLoad
thd.  The asyncLoad thd loads a  batch of  log entries  from the
disk and appends them to the replay buffer in the background.
When wrtDisk thd finds that  the LSN difference between the
first  un-replayed  log  entry  and  the  appending  log  entry  is
small,  which  means  that  the  follower  has  caught  up  with  the
leader,  it  notifies  the asyncLoad  thd stop,  and  reverts  to  the
normal replaying process. 

6    QuorumX in an unreliable network
Although QuorumX is  able  to  obtain a  nice performance and
low VGap under the normal cases, it is fragile to the network
jitter.  In  this  section,  we  first  discuss  that  how  the  network
anomaly causes the performance of QuorumX unstable. Then,
we  give  our  solution  to  avoid  this.  Finally,  we  refine  the
related recovery mechanism. 

6.1    Problem analysis
Anomalies  in  an  unreliable  network,  including  package  loss
and  increased  network  delay,  are  detrimental  for  the  perfor-
mance  of  Raft-replication  due  to  its log  coherency.  As  illu-

 

 
Fig. 4    An example illustrating a fault caused by CLR

 

Donghui WANG et al.    Efficient and stable quorum-based log replication and replay for modern cluster-databases 7



strated in Fig. 6(a), logs do not allow any holes in both leaders
and  followers.  In  other  words,  log  entries  are  committed  by
leaders, and applied to all followers in a serial order.

Suppose that a log packet sent to a follower is lost, in Raft,
the leader will  resent the log packet if  it  does not receive the
acknowledgment  from  the  follower.  During  this  time,  the
follower  can  not  process  subsequent  logs  until  the  previous
lost  logs are replicated: for example,  in Fig. 6(a),  Node 3 did
not  receive  the  log  entry  with  the  index  4  and  blocked.
Although it can receive the following log entries, they can not
be processed. It gets worse when the log packet sent to Node 2
is  also  lost  (e.g.,  log  entry  with  the  index  6).  It  results  in  an
increasing waiting time of the transaction in the commit phase.
There  is  no  doubt  that  the  increase  of  transaction  blocking
time  has  a  significant  impact  on  system  performance.  The
advantage of  Raft-replication is  that  when the leader  crashes,
Raft can elect the node with the most data as the new leader.
The  new  leader  could  take  charge  immediately  since  its
memtable contains all consistent data.

Multi-Paxos performs steadily when network jitter  happens
because it allows log holes in the follower. It can be seen from
Fig. 6(b) that, the follower can flush logs to disks even it does
not receive the previous logs. Although the replication process
would not be affected, log replaying can not proceed when the
log is incomplete. When a new leader is elected, Multi-Paxos
must  fetch the missing logs from other  servers  and replay all
logs before taking over the system and providing service. This
makes the system suffer from a long time of unavailability. 

6.2    Process in the follower
In  QuorumX,  we  combine  the  characteristics  of  Raft  and

Multi-Paxos.  First,  we  relax  the  constraint  of log  coherency,
thus  the  follower  could  replicate  logs  and  reply  to  the  leader
out of the serial order, which avoids the influence of network
jitter on normal replication process. We use the single publish
thread to make sure that logs are committed in a serial order.
Second,  we  fill  in  the  missing  logs  in  runtime,  ensuring  that
log replaying would not be blocked. Because the leader IMDB
is under great pressure, instead of letting the leader resend the
lost log to the follower, we choose to let the follower find the
log holes and take the initiative to pull the logs from the leader
to fill the holes.

Let  us  review  the  processing  of  the  follower. Log
replication: the revLog thd parses the received log packet and
appends it to the receive buffer. The wrtDisk thd fetches logs
from the receive buffer and flushes them into HDD/SSD even
when  they  are  discontinuous.  When  the  log  is  persisted,  the
reply thd is responsible for sending an acknowledgment to the
leader. Log replaying:  the wrtDisk  thd sends  flushed logs  to
the queues of replay workers.  The replay workers apply logs
into memtable in parallel and push the replayed LSNs into the
sorted publish queue. The single publish thd pops LSNs from
the  publish  queue  according  to  MaxComLSN  sent  by  the
leader and makes the replayed log visible in the serial order.

When  the  log  packet  is  lost,  threads  in  log  replication  and
replaying phase can not perceive this since logs can be flushed
and replayed out  of  the order.  The publish thd can sense this
when it  finds  that  the  commit  queue does  not  contain  a  LSN
and  the  commit  process  has  been  blocked  by  that  LSN for  a
long time. It means that the log entry with this LSN is missing.
In  this  case,  a  dedicated  thread  in  QuorumX  is  triggered  to
actively fetch the lost logs from the leader and write it into the
receive buffer. 

6.3    Recovery mechanism
The correctness  of  replaying  log  out  of  order  can  be  ensured
since finally, they are committed in a serial order. Flushing log
out  of  order  requires  us  to  make  some  modifications  to  the
recovery process. Suppose a case in Fig. 7, when Node 1 is the
leader,  it  generates  log  entry  with  the  index  4,  and  only
replicates  the  log  in  Node  3  (log  4  is  not  committed).  Then
Node 1  crashed,  Node  2  is  elected  to  be  the  new leader,  and
also  generates  a  log  entry  with  the  index  4  (log  4).  Now  in
Node 3, there has two log entries with the index 4, and clearly
log  4  produced  by  Node  1  is  the  dirty  log.  Therefore,  when
recovering  a  crashed  server,  a  pre-scan  over  its  logs  is
required.  If  there are several  log entries with the same index,
the log with latest term value (produced by the newest leader)

 

 
Fig. 5    The model of asynchronous loading mechanism

 

 

 
Fig. 6    An example of 3-way replication’s logs in Raft and Multi-Paxos. (a)
Raft replication; (b) Multi-Paxos replication
 

 

 
Fig. 7    An example of  5-way replication illustrating the problem caused by
flushing logs out of order
 

8 Front. Comput. Sci., 2022, 16(5): 165612



is valid and will be retained. After that the recovery process is
continued by replaying all log entries into the memtable. 

7    Evaluation
In this section, we evaluate the performance of QuorumX for
mainly answering the following questions:

● The first question is whether QuorumX could support a
high  performance  replication  for  fast  IMDB,  and  how
much  additional  performance  is  sacrificed  by
QuorumX through comparing it with the asynchronous
primary-backup  replication  and  the  single  replica
without replication.

● Another question is that whether QuorumX can be self-
tuning  to  workloads.  We  evaluate  its  performance
under  different  concurrency  by  comparing  batching
methods  include  TAB  [20]  and  JPaxos.  Since  the
calculation of offline models in [14,19] requires a lot of
additional parameters which are difficult to collect, we
did not implement them in QuorumX. Also we evaluate
our self-tuning algorithm under the cluster consisting of
servers with different configurations to test whether the
low-configuration  followers  in  QuorumX  will  be
lagged behind other servers.

●  The  third  question  is  that  how  much  VGap  can  be
reduced  by  the  CLR  of  QuorumX  in  contrast  with
asynchronous  primary-backup  replication.  Besides,
CLR replays logs without waiting for MaxComLSN in
order to avoid reading logs from disk and thus reduces
the  VGap.  We  also  measured  how  much  VGap  could
be reduced by CLR even if QuorumX replays logs after
receiving the MaxComLSN.

●  The  next  question  is  that  whether  the  log  replaying  in
QuorumX always fetches log from the memory instead
of the disk when there has other loads in the follower.

● The final question is that whether QuorumX can obtain
a  stable  performance  under  an  unreliable  network
environment.  We  test  both  the  system  throughput  and
the VGap by simulating the network anomalies.

We  have  implemented  QuorumX  in  Solar  [6],  an  open-
source,  scalable  in-memory  database  system.  We  implement
QumrumX by adding  or  modifying  39282 lines  of  C++ code
on  the  original  base.  Therefore,  Solar  is  a  completely
functional  and  high  available  in-memory  database  system.  It
has  also  been  deployed  on  Bank  of  Communications  (BOC),
one  of  the  biggest  commercial  banks  in  China.  The  default
cluster  consists  of  three  replicas  and  the  leader  has  the  full-
copy  of  data.  We  also  evaluate  performance  of  different
number of replicas. Each server is equipped with two 2.3GHz
20-core  E5-2640  processors,  504GB  DRAM,  and  connected
by a 10 Gigabit Ethernet.

In the following experiments, we used three benchmarks to
test the performance of QuorumX.

●  YCSB:  The  scheme  of  YCSB  contains  a  single  table
(usertable)  which  has  one  primary  key  (INT64)  and  9
columns  (VARCHAR).  The  usertable  is  initialized  to
consist of 10 million records. A transaction in YCSB is

simple and only includes one read/write operation. The
record is accessed according to an uniform distribution.

●  TPC-C:  We  use  a  standard  TPC-C  workload  and
populated  200  warehouses  in  the  database  by  default.
The  transaction  parameters  are  generated  according  to
the TPC-C specification.

●  Micro-benchmark:  We  build  a  write-intensive  micro-
benchmark. Instead of sending the leader IMDB transac-
tion  requests  coded  by  SQL  statements,  this  micro-
benchmark  directly  issues  raw  write  operations  to  the
leader.  Therefore,  the  leader  IMDB  is  running  under
extremely  high-concurrent,  write-intensive  workloads.
By  default,  the  micro-benchmark  contains  10GB  data
modifications.

 

7.1    Replication performance
We  firstly  measure  the  throughput  and  latency  under  the
YCSB  workload  with  100% write  operations  and  the
complicated  TPC-C  workload.  The  comparing  methods
include QuorumX with three replicas one of which servers as
the  leader  (abbr.,  QuorumX),  asynchronous  primary-backup
replication  (abbr.,  AsynR)  with  three  replicas  and  a  single
replica without replication (abbr., NR).

Experimental  results  of  YCSB are  shown  in Figs. 8 and 9.
We  can  observe  that  the  throughput  trend  of  all  replication
scheme is increasing firstly and then remaining at a high level.
 

 
Fig. 8    Throughput of YCSB

 

 

 
Fig. 9    Latency of YCSB

 

Donghui WANG et al.    Efficient and stable quorum-based log replication and replay for modern cluster-databases 9



In  general,  QuorumX  sacrifices  about  11% performance
compared with AsynR and 26% compared with NR to provide
data  consistency  and  high  availability.  As  for  latency,
QuorumX produces about  0.6 more milliseconds than AsynR
and  1.1  ms  than  NR  in  average. Figures 10 and 11 illustrate
the performance under the TPC-C workload. We find that the
throughput gap among QuorumX and AsynR and NR reaches
to  2% and  8% respectively,  which  is  smaller  than  that  in
YCSB.  The  reason  is  that  a  transaction  in  TPC-C  contains
more  read/write  operations  than  that  in  YCSB  so  the  leader
takes  more  time to  execute  a  TPC-C transaction.  As a  result,
the percentage of replication latency is relatively small  in the
whole transaction latency.

We  also  evaluate  QuorumX  under  YCSB  benchmark  with
different  write/read ratios.  In Fig. 12,  we vary the percentage
of  read operations from 0% to  100%.  Results  show that  with
the  increasing  of  the  percentage  of  read  operations,  the
performance  gap  between  QuorumX  and  AsynR  is  getting
smaller  and  smaller.  This  is  expected  since  log  replication  is
mainly  performed  for  write  operations.  When  there  are  less
writes, log replication has a smaller impact on the transaction
throughput.  Where  there  are  80% read  operations  in  the
workload,  QuorumX  only  sacrifices  2% throughput  than
AsynR.  When there  are  a  great  number  of  read  requests,  NR
performs  worse  than  AsynR  and  QuorumX.  This  is  because
read requests  are all  routed to a  single node,  as  well  as  write
requests.  NR  lacks  read  scalability  as  it  has  no  followers  to

provide service for read requests. 

7.2    Availability and consistency
In  this  section,  we  present  the  experimental  results  under
several  abnormal  scenarios  to  investigate  the  availability  and
consistency  of  QuorumX.  To  evaluate  the  availability  of  a
system,  the  unable-to-provide-service  time  is  one  of  the
recognized  indicators.  Therefore,  we  manually  kill  the  leader
while  the  system  is  running,  and  calculate  the  time  interval
between  the  leader’s  collapse  and  the  system  being  able  to
provide services again. Such operation is repeatedly executed
15  times,  and Fig. 13 shows  the  system  unavailable  time.
Results indicate that QuorumX could sense the missing of the
leader  and  re-elect  a  new  leader  quickly  to  take  over  the
system  when  the  leader  crashes.  And  the  unavailable  time
remains  about  ten  seconds,  which  is  mainly  used  to  wait  the
lease expired (the lease time is nine seconds).

Strong data consistency means that the system will not lose
any  committed  data  under  any  circumstances.  We  empirical
studied  the  consistency  of  QuorumX  by  constructing  various
abnormal  scenarios,  e.g.,  killing  the  leader,  partitioning  the
network,  killing  more  than  half  of  the  severs,  etc.  Detecting
whether a system satisfy data consistency under anomalies can
be  performed  from  several  aspects.  For  example,  we  add
transactional  cumulative  checksum  for  each  row.  Replaying
logs  needs  to  verify  the  checksum value.  Verification  failure
means  some  transaction  modifications  on  the  row  lost.  Also,
we could compare the log files of the leader and the followers

 

 
Fig. 10    Throughput of TPC-C

 

 

 
Fig. 11    Latency of TPC-C

 

 

 
Fig. 12    Impact of read/write ratios

 

 

 
Fig. 13    Unavailable time

 

10 Front. Comput. Sci., 2022, 16(5): 165612



by  using  log  reader  tools.  For  insert  operations,  we  could
select the total count of rows from the follower and compare it
with  the  number  of  successful  inserted  rows  to  find  whether
the  committed  data  is  lost  or  not.  QuorumX  passes  massive
abnormal  tests  and  thus  could  be  trustingly  deployed  in  real-
world applications. 

7.3    The ability of adaptive self-tuning
We  first  demonstrate  how  the  batch  size  impact  transaction
throughput under the YCSB workload with a fixed number of
clients  (1000 clients). Figure 14 presents  the  throughput  over
different batch sizes. We find that both small and large batch
sizes  would  impair  the  performance.  Obviously,  the  worst
performance occurs when the batch only contains a single log
entry. The maximal throughput in this experiment can reach to
120K/s when the batch size is set to 256. In this case, we find
the follower can process about 500 batches per second. When
the  batch  size  is  far  beyond  256,  the  throughput  decreases
because  the  transactional  logs  take  more  time  to  construct  a
big-size batch in the leader, and the log processing pipelines in
the  follower  might  be  idle.  This  implies  the  significance  of
pipeline-based batching in QuorumX.

batchsize

To compare the performance of self-tuning batching scheme
of QuorumX with other batching algorithms, we implemented
TAB  (which  adopts  critical-path-based  batching)  and  JPaxos
(which  need  manually  set  the  parameter  of  batch  size)  to
evaluate  their  effectiveness  under  various  number  of
concurrent  clients.  JPaxos  is  configured  to  two 
values: 32 and 256 respectively, referred to as JPaxos-32 and
JPaxos-256. Experiments are run over YCSB workloads with
100% write requests.

Figure 15 illustrates  the  experimental  results  on  different
client  concurrency.  It  is  clear  that  QuorumX  performs  best
under  all  concurrency.  We  can  observe  that  the  performance
of TAB is close to that of QuorumX when the concurrency is
low. However, as the number of clients increases, TAB could
not achieve good performance. Recall from Section 4, under a
light  workload,  critical  path  based  batching  works  well.  But,
under  a  highly  concurrent  workload,  the  throughput  of  the
system  would  be  determined  by  the  slowest  stage  in  the
pipelined  processing  on  followers.  In  this  case,  the  pipeline
batching  mechanism  in  QuorumX  can  adaptively  tune  the
interval of sending logs.

The trend of JPaxos-32 increases firstly and could stay at a
similar  throughput  to  QuorumX,  but  decreases  sharply  when
the  number  of  client  exceeds  25.  This  is  because,  when  the
client number is small, the arrival rate of transactions is slow,
and  waiting  32  requests  to  generate  a  batch  is  relatively
reasonable.  However,  when  the  arrival  rate  rises,  sending
batches  with  size  of  32  exceeds  the  processing  capacity  of
followers.  Follower  cannot  process  as  many  as  batches
produced  by  JPaxos-32  in  time  and  these  received  batches
would  be  blocked.  So  there  is  a  sudden  drop  of  the
performance.  On  the  contrary,  JPaxos-256  performs  badly
when  the  client  concurrency  is  low  and  gradually  close  to
QuorumX  with  the  increasing  of  the  number  of  client.  It  is
clear  that,  sending  batches  with  size  of  256 is  too  slowly  for
followers  when the  arrival  rate  is  low.  The leader  wastes  too
much  time  on  waiting  for  enough  requests.  Under  the  high
concurrency,  collecting  256  requests  for  a  batch  becomes
easier,  and  the  sending  frequency  can  match  the  processing
capacity of follower. 

7.4    Impact of the buffer size
The  size  of  the  receive  buffer  size  plays  a  key  role  in  log
replication  of  QuorumX.  When  the  buffer  is  small  and  log
entries are generated at a fast speed, it is highly likely that the
un-flushed  logs  in  the  buffer  are  overwritten,  causing
catastrophic decline of log replication performance. This set of
experiment  investigates  the  impact  of  the  receive  buffer  size
on  the  throughout  under  different  frequencies  of  log
generating. We vary the number of worker threads running the
micro-benchmark  in  this  scenario,  e.g.,  10,  20  and  40.  The
more worker threads executing the micro-benchmark task, the
faster the log generation. Results in Fig. 16 indicate that when
there are 20 worker threads and the buffer size is smaller than
128MB,  the  performance  decreases  sharply.  While  at  40
worker threads and the buffer size is set  to less than 256MB,
the  throughput  starts  decreases.  This  is  expected  since  when
the speed of log generation is  faster,  the system will  produce
more  logs  and  the  possibility  of  overwritten  is  higher.  This
implies that the buffer size must be set according to the rate of
log generation. 

7.5    VGap results
We  measure  the  VGap  between  the  leader  and  followers  to
explore  the  effectiveness  of  CLR  under  a  continued,  write-

 

 
Fig. 14    Performance of different batch size

 

 

 
Fig. 15    Performance of different tuning algorithms

 

Donghui WANG et al.    Efficient and stable quorum-based log replication and replay for modern cluster-databases 11



l
f tl

t f t f − tl
l f

intensive micro-benchmark. Assuming that the leader  and the
follower  commit the same transaction at physical time  and

,  we  use  the  value  to  donate  the  VGap  between  the
same visible state of leader  and the follower . We compare
VGap  of  three  methods:  QuorumX,  QuorumX  without  CLR
and AsynR.

Figure 17 shows  the  VGap  results  over  60  seconds.The
number of client is fixed to 800. Results shows that QuorumX
could  gain  the  lowest  and  most  stable  VGap  among  three
methods.  The  VGap  of  AsynR  exceeds  200  ms,  which
suggests  that  follower  in  AsynR  lags  far  behind  the  leader.
And the VGap of QuorumX without CLR remains about 100
ms at beginning, but it suddenly increases sharply at time 45.
By our analysis, the replica may perform disk-read operations
for  getting  logs  to  replay,  and  the  trace  log  also  proved  that.
QuorumX with CLR has a stable VGap and most of it is under
60  ms.  Using  CLR  could  achieve  a  3.3x  lower  VGap  than
AyncR and 1.67x than not using CLR. Therefore,  in the case
of  heavy  workload,  reading  from  follower  under  QuorumX
with CLR could get a fresher and more stable state. 

7.6    Stability of QuorumX
In  this  sets  of  experiments,  we  evaluate  the  stability  of
QuorumX from the following three aspects:

●  The  maximum  log  entry  difference.  We  use  this
indicator  to  examine  whether  all  servers  in  the  Quor-
umX  cluster  could  keep  the  number  of  logs  close

especially when the cluster is consisted of servers with
different  replication  performances.  Therefore,  this
experiment  mainly  tests  the  stability  and  effectiveness
of our self-tuning algorithm and our refined calculation
method for sending interval (Section 7.6.1).

●  The  rate  of  log  commits.  This  indicator  reflects  the
stability  of  our  log  replaying  mechanism,  especially
can  tell  us  whether  there  is  a  phenomenon  of  reading
disk  when  replaying  logs.  This  is  used  to  investigate
the  effectiveness  of  the  asynchronous  loading
mechanism (Section 7.6.2).

●  The  performance  of  QuorumX  under  the  unreliable
network. Through simulating packet loss and increased
network  latency,  we  observe  the  replication  performa-
nce changing of QuorumX compared with the classical
Raft-replication (Section 7.6.3).

 

7.6.1    The maximum log entry difference
We denote our refined calculation method for sending interval
as RCM. Figure 18 shows the result of the maximum flushed
log  entries  difference  between  two  servers  in  the  Quorum-
Replication  cluster  with  RCM  and  without  RCM  under  the
micro-benchmark.  The  experiment  lasts  15  seconds.  In  order
to  simulate  the  servers  with  different  configurations,  in
Section 5, we manually prolonged the latency of writing disk
in one of a follower. During the experiment, we print the LSN
of latest flushed logs of all servers every second, and calculate
the maximum log difference.

In the first 5 seconds, the log entry difference between two
servers  in  the  cluster  remains  0.  Once  the  latency  of  disk
writing becomes longer,  log difference becomes larger.  Since
the un-flushed logs in the receive buffer is soon overlapped by
new logs,  the  log  difference  in  QuorumX without  RCM gets
larger  and  larger.  By  taking  the  slow  follower  into  consider-
ation,  RCM calculates a  more decent  sending interval  for  the
leader.  Thus  QuorumX  with  RCM  could  obtain  a  stable
maximum  log  difference,  which  means  that  the  log  state  of
any two servers in the cluster would not be too different. 

7.6.2    The rate of log commits
This experiment investigate the effectiveness of our asynchro-

 

 
Fig. 16    Performance over various buffer sizes

 

 

 
Fig. 17    VGap changing under the write-heavy Micro-Benchmark

 

 

 
Fig. 18    The maximum log entries difference between two followers

 

12 Front. Comput. Sci., 2022, 16(5): 165612



nous  loading  mechanism  to  avoid  the  risk  of  reading  un-
replayed logs from disks. Before the experiment, we modified
the code to make the wrtQueue thd fetch logs from the replay
buffer  slower.  Therefore,  the  replay  buffer  is  full  at  the
beginning  of  the  experiment.  The  experiment  ran  for  30
seconds  under  the  YCSB  workloads.  We  calculate  the
indicator according to the commit rate of the publish thd in the
follower. Result can be found in Fig. 19.

Since  the wrtQueue  thd in  QuorumX  without  ALM  is
required to read covered logs from the disk for replaying when
the  replay  buffer  is  full,  the  commit  latency  is  significantly
increased. As a result, the commit rate in the follower remains
low  (<1000).  ALM  ensures  that  the  un-replayed  logs  would
not  be  covered  the  new  logs.  Thus  all  replaying  logs  can
always be fetched from the memory instead of the disk. Even
when  the  replay  buffer  is  full  filled  by  various  reasons,  the
commit rate would not be affected. 

7.6.3    Performance under unreliable network
We investigate the impact of network delay and package loss
on different replication schemes and observe their stability in
this experiment. We use the traffic control (TC) tool in Linux
to  simulate  the  network  anomalies. Figure 20 shows  the
performance comparison of QuorumX and Raft-replication by
setting  different  extra  network  latency  among  the  servers  in
the  cluster.  With  the  increasing  extra  network  delay,  the

throughput of both QuorumX and Raft-replication drops. Due
to the  serial  replication in  Raft,  its  throughput  declines  faster
than  QuorumX.  Results  of  the  impact  of  packet  loss  are
illustrated  in Fig. 21.  Raft-replication  is  very  sensitive  about
packet  loss.  The  reason  is  that  the  follower  must  suspends
normal  replication  process  and  repairs  the  log  holes  at  first.
Moreover,  the  leader  must  wait  for  the  log  packet  timeout
before sending a new packet. During this period, the follower
does  not  process  any  new  log  packets.  QuorumX  allows  log
holes exist, writes and replays logs out of the serial order, and
fills  the  lost  logs  asynchronously,  minimizing  the  impact  of
packet loss on log replication. Therefore, QuorumX performs
much  better  than  the  classical  Raft-replication  under  the
unreliable network environment. 

7.7    Number of replicas
To  investigate  the  scalability  of  QuorumX,  we  evaluate  the
performance  over  different  number  of  replicas  under  two
YCSB  workloads  of  different  write/read  ratios:  100/0  and
50/50. Experimental results are shown in Fig. 22. The number
of clients is fixed to 125. We can see that under workload with
100% writes,  the  performance  of  QuorumX  decreased  most
significantly when the number of replicas is changed from one
to  three,  dropped  about  26%.  This  is  because  transaction
processed  under  three-replica  cluster  has  obviously  longer
latency than under single server. When the number of replicas
keeps  increasing,  the  throughput  decline  is  not  intense,
performance under five replicas only decreases 9% than three
replicas. This is acceptable since logs have to be replicated to
more replicas. Under the workload with 50/50 write/read ratio,
the performance decline is even less obvious. As more replicas
could  provide  scalable  read service,  we can see  that  with  the
number of replicas increase, the performance could achieve a
sustainable growth. After all, QuorumX has a good scalability
with more replicas.

We  also  compare  the  scalability  of  QuorumX  with  AsynR
and NR in this experiment. As NR does not replicate data into
replicas,  its  performance  does  not  scale  with  the  number  of
replicas. The performance trend of AsynR is similar to that of
QuorumX,  both  of  which  could  scale  under  read/write
workload  and  decrease  under  write-only  workload.  As  the
result  in  Section  8  shows,  under  workload  with  50/50

 

 
Fig. 19    Rate of log commits in the follower

 

 

 
Fig. 20    Impact of network delay

 

 

 
Fig. 21    Impact of packet loss

 

Donghui WANG et al.    Efficient and stable quorum-based log replication and replay for modern cluster-databases 13



write/read requests, QuorumX sacrifices less performance than
that under workload with 100% write operations. 

8    Related work
Replication is an important research topic across database and
distributed  system  communities  for  decades  [24,25].  In  this
section, we review relevant works mainly on two widely used
replication  schemes,  i.e.,  primary-backup  replication  and
quorum based replication.

Asynchronous primary-backup replication [26], proposed by
Michael Stonebraker in 1979, has been implemented in many
traditional  database  systems.  In  most  typical  deployment
scenarios, asynchronous primary-backup replication is used to
transfer  recovery  logs  from  a  master  database  to  a  standby
database.  The  standby  database  is  usually  set  up  for  fault
tolerance,  and not  required  to  provide  the  query  on the  latest
data.  The performance of  log replication and replay have not
received much attentions in the last several decades. Recently,
the  researchers  [16,27]  suggest  that  serial  log  replay  in  the
primary-backup replication can cause the state of replica is far
behind  that  of  the  primary  with  modern  hardware  and  under
heavy workloads.  KuaFu [27]  constructs  a  dependency graph
based  on  tracking  write-write  dependency  in  transactional
logs,  and  it  enables  logs  to  be  replayed  concurrently.  The
dependency  tracking  method  works  well  for  traditional
databases  under  normal  workloads,  and  it  might  introduce
overheads for IMDB under highly-concurrent workloads. [16]
proposed  a  parallel  log  replay  scheme  for  SAP  HANA  to
speed up log replay in  the  scenario  where  logs  are  replicated
from  an  OLTP  node  to  an  OLAP  node.  Qin  et  al.  [17]
proposed to add the transactional write-set into its log in SQL
statement formats, which can reduce the logging traffics. Log
replay  in  classical  quorum-based  replication  has  different
logics  to  primary-backup  replication.  Followers  using
quorum-based  replication  cannot  replay  received  logs  to
memtable  immediately,  and  they  need  to  wait  for  the
maximum committed log sequence number from the primary.
Due to this difference, these works that optimize log replay for
primary-backup  replication  can  not  be  directly  applied  to  the
quorum-based replication.

Despite  the  low  transaction  latency,  the  asynchronous

primary-backup replication cannot guarantee high availability
and  causes  data  loss  when  the  primary  is  crashed.  PacificA
resolves  these  problems  by  requiring  the  primary  to  commit
transactions only after receiving persistence responses from all
replicas.  The  introduced  synchronous  replication  latency
depends  on  the  slowest  server  in  all  replicas.  Kafka  reduces
replication  latency  by  maintaining  a  set  of  in-sync  replicas
(ISR)  in  the  primary.  Here  ISR  indicates  the  set  of  replicas
that keep the same states with the primary. A write request is
committed until all replicas in ISR reply. Kafka uses the high
watermark (HW) to mark the offset of the last committed logs.
The  replicas  in  ISR  need  to  keep  the  same  HW  with  the
primary. When the offset of a replica is less than HW, it would
be  removed  from  ISR.  Through  ISR,  Kafka  can  reduce
negative  impact  on  performance  caused  by  the  network
dithering.

Replication  based  on  consensus  protocols  is  referred  to  as
quorum-based  replication,  which  is  also  called  as  state
machine  replication  in  the  community  of  distributed  system.
Paxos  based  replication  ensures  all  replicas  to  execute
operations  in  their  state  machines  with  the  same  order  [1].
Paxos variants such as Multi-Paxos used by Spanner [11] are
designed to improve the performance. Raft [2] is a consensus
algorithm proposed in recent years. One of its design goals is
more  understandable  than  Paxos.  For  this  reason,  Raft
separates  log  replication  from  the  consensus  protocol.  Many
systems such as AliSQL1) and etcd adopt Raft to provide high
availability.  However,  these  systems  use  Paxos  or  Raft  to
replicate  meta  data,  where  replication  performance  is  not  a
serious problem. Spanner as a geo-distributed database system
supports  distributed  transactions,  and  each  partitioned
database  node  is  not  designed  to  handle  highly  concurrent
OLTP workloads. AliSQL only uses Raft to elect leader in the
occurrence  of  system  failures.  Etcd  is  a  distributed,  reliable
key-value  store  that  uses  the  Raft  for  log  replication.  Similar
to  Zookeeper  [28],  these  kinds  of  datastore  are  designed  to
provide  high  availability  for  meta  data  management  and  are
not suitable for highly concurrent OLTP workloads.

There are a few works on tuning replication performance of
Paxos with batching and pipeline [14]. Nuno Santos et al. [14]
provide  an  analytical  model  to  determine  batch  size  and  the

 

 
Fig. 22    Throughput over the number of replicas. (a) Write-only YCSB; (b) Read/write YCSB

 

14 Front. Comput. Sci., 2022, 16(5): 165612

1) https://github.com/alibaba/AliSQL



pipeline  size  through  gathering  a  lot  of  parameters,  like
bandwidth and the application properties.  JPaxos proposed to
generate  batches  and  instances  according  to  three  input
parameters:  the  maximum  number  of  instances  that  can  be
executed  in  parallel,  the  maximum  batch  size,  and  the  batch
timeout.  These  parameters  need  to  be  calculated  offline  and
set manually which can not adapt to various environments.

Our previous work [29] presents the idea of the self-tuning
batching scheme in log replication and the basic algorithm of
coordination-free  log  replay  to  make  the  process  faster.  This
work extensively investigates how to make the quorum-based
replication and replay architecture more practical and stable in
real-world application environments. 

9    Conclusion
In  this  paper,  we  built  QuorumX,  an  efficient  and  stable
quorum-based  replication  framework  for  replicating  fast
IMDB. We propose an adaptive batching scheme which could
self-tuning  sending  frequency  and  could  adapt  to  both  light
and heavy workloads and clusters with different configuration
servers. In order to produce a minimal and stable visibility gap
between leader and follower, we design a fast and coordinate-
free log replay mechanism to replay logs without  waiting for
maximum committed log sequence number of the leader.  We
also refine the process of the follower in QuorumX under the
unreliable network environments, ensuring the performance of
log  replication  and  replaying  would  not  be  significantly
affected by network anomalies. Experimental results show that
QuorumX  supports  strong  data  consistency  and  high
availability  by  sacrificing  only  8%–25% performance  than
single  IMDB  replica  and  has  a  2%–11% decline  than
asynchronous  primary-backup  replication.  The  batching
scheme  always  performs  better  than  existing  methods.  Also,
the  visibility  gap  produced  by  QuorumX  can  reach  to  a  low
level. We also present the stability of QuorumX under various
settings and exceptions.

Acknowledgements    This  work  was  partially  supported  by  National  Key
R&D  Program  of  China  (2018YFB1003404),  NSFC  (Grant  Nos.  61972149,
61977026),  and  ECNU  Academic  Innovation  Promotion  Program  for
Excellent Doctoral Students.

References
 Chandra  T  D,  Griesemer  R,  Redstone  J.  Paxos  made  live:  an
engineering  perspective.  In:  Proceedings  of  the  26th  Annual  ACM
Symposium on Principles of Distributed Computing. 2007, 398–407

1.

 Ongaro  D,  Ousterhout  J.  In  search  of  an  understandable  consensus
algorithm.  In:  Proceedings  of  2014  USENIX  Annual  Technical
Conference. 2014, 305–319

2.

 van Renesse R, Altinbuken D. Paxos made moderately complex. ACM
Computing Surveys, 2015, 47(3): 42

3.

 Rao J, Shekita E J, Tata S. Using paxos to build a scalable, consistent,
and  highly  available  datastore.  Proceedings  of  the  VLDB Endowment,
2011, 4(4): 243–254

4.

 Zheng J,  Lin Q, Xu J,  Wei C,  Zeng C, Yang P,  Zhang Y. PaxosStore:
high-availability storage made practical  in WeChat.  Proceedings of the
VLDB Endowment, 2017, 10(12): 1730–1741

5.

 Zhu T, Zhao Z, Li F, Qian W, Zhou A, Xie D, Stutsman R, Li H, Hu H.
Solar:  towards  a  shared-everything  database  on  distributed  log-
structured  storage.  In:  Proceedings  of  2018  USENIX  Conference  on
Usenix Annual Technical Conference. 2018, 795–807

6.

 Gilbert  S,  Lynch  N.  Brewer’s  conjecture  and  the  feasibility  of
consistent,  available,  partition-tolerant  web  services.  ACM  SIGACT
News, 2002, 33(2): 51–59

7.

 Breitbart  Y,  Garcia-Molina  H,  Silberschatz  A.  Overview  of
multidatabase transaction management. The VLDB Journal, 1992, 1(2):
181–239

8.

 Daudjee  K,  Salem  K.  Lazy  database  replication  with  ordering
guarantees.  In:  Proceedings  of  the  20th  International  Conference  on
Data Engineering. 2004, 424–435

9.

 Elnikety  S,  Pedone  F,  Zwaenepoel  W.  Database  replication  using
generalized  snapshot  isolation.  In:  Proceedings  of  the  24th  IEEE
Symposium on Reliable Distributed Systems. 2005, 73–84

10.

 Corbett  J  C,  Dean  J,  Epstein  M,  Fikes  A,  Frost  C,  et  al.  Spanner:
Google’s  globally-distributed  database.  In:  Proceedings  of  the  10th
USENIX  Conference  on  Operating  Systems  Design  and
Implementation. 2012, 251–264

11.

 DeCandia  G,  Hastorun  D,  Jampani  M,  Kakulapati  G,  Lakshman  A,
Pilchin  A,  Sivasubramanian  S,  Vosshall  P,  Vogels  W.  Dynamo:
amazon’s  highly  available  key-value  store.  In:  Proceedings  of  the  21st
ACM  SIGOPS  Symposium  on  Operating  Systems  Principles.  2007,
205–220

12.

 Lakshman  A,  Malik  P.  Cassandra:  a  decentralized  structured  storage
system. ACM SIGOPS Operating Systems Review, 2010, 44(2): 35–40

13.

 Santos  N,  Schiper  A.  Tuning  paxos  for  high-throughput  with  batching
and pipelining. In: Proceedings of the 13th International Conference on
Distributed Computing and Networking. 2012, 153–167

14.

 Özcan F, Tian Y, Tözün P. Hybrid transactional/analytical processing: a
survey.  In:  Proceedings of  the 2017 ACM International  Conference on
Management of Data. 2017, 1771−1775

15.

 Lee  J,  Moon  S,  Kim  K,  Kim  D  H,  Cha  S  K,  Han  W  S.  Parallel
replication  across  formats  in  SAP  HANA  for  scaling  out  mixed
OLTP/OLAP workloads. Proceedings of the VLDB Endowment, 2017,
10(12): 1598–1609

16.

 Qin D,  Brown A D,  Goel  A.  Scalable  replay-based replication for  fast
databases.  Proceedings  of  the  VLDB  Endowment,  2017,  10(13):
2025–2036

17.

 Zheng W, Tu S, Kohler E, Liskov B. Fast databases with fast durability
and recovery through multicore parallelism. In: Proceedings of the 11th
USENIX  Symposium  on  Operating  Systems  Design  and
Implementation. 2014, 465–477

18.

 Romano  P,  Leonetti  M.  Self-tuning  batching  in  total  order  broadcast
protocols  via  analytical  modelling  and  reinforcement  learning.  In:
Proceedings  of  2012  International  Conference  on  Computing,
Networking and Communications. 2012, 786–792

19.

 Friedman  R,  Hadad  E.  Adaptive  batching  for  replicated  servers.  In:
Proceedings of the 2006 25th IEEE Symposium on Reliable Distributed
Systems. 2006, 311–320

20.

 Yu X, Bezerra G, Pavlo A, Devadas S, Stonebraker M. Staring into the
abyss:  an  evaluation  of  concurrency  control  with  one  thousand  cores.
Proceedings of the VLDB Endowment, 2014, 8(3): 209–220

21.

 Wang  T,  Kimura  H.  Mostly-optimistic  concurrency  control  for  highly
contended dynamic workloads on a thousand cores. Proceedings of the
VLDB Endowment, 2016, 10(2): 49–60

22.

 Ren K, Thomson A, Abadi D J. Lightweight locking for main memory
database  systems.  Proceedings  of  the  VLDB  Endowment,  2012,  6(2):
145–156

23.

 Kemme B,  Alonso  G.  Don’t  be  lazy,  be  consistent:  Postgres-R,  a  new
way  to  implement  database  replication.  In:  Proceedings  of  the  26th
International Conference on Very Large Data Bases. 2000, 134–143

24.

 Wiesmann  M,  Pedone  F,  Schiper  A,  Kemme  B,  Alonso  G.  Database
replication techniques: a three parameter classification. In: Proceedings
of  the  19th  IEEE  Symposium  on  Reliable  Distributed  Systems.  2000,
206–215

25.

 Stonebraker M. Concurrency control and consistency of multiple copies
of  data  in  distributed  INGRES.  IEEE  Transactions  on  Software
Engineering, 1979, SE-5(3): 188–194

26.

 Hong C,  Zhou D,  Yang M,  Kuo C,  Zhang L,  Zhou L.  KuaFu:  closing
the parallelism gap in database replication. In: Proceedings of the 2013

27.

Donghui WANG et al.    Efficient and stable quorum-based log replication and replay for modern cluster-databases 15



IEEE 29th International  Conference on Data  Engineering.  2013,  1186-
1195
 Hunt  P,  Konar  M,  Junqueira  F  P,  Reed  B.  ZooKeeper:  wait-free
coordination  for  internet-scale  systems.  In:  Proceedings  of  2010
USENIX Annual Technical Conference. 2010

28.

 Wang  D,  Cai  P,  Qian  W,  Zhou  A.  Fast  quorum-based  log  replication
and replay for  fast  databases.  In:  Proceedings of  the  24th International
Conference  on  Database  Systems  for  Advanced  Applications.  2019,
209–226

29.

Donghui  Wang  is  a  PhD  candidate  in  School  of
Data  Science  and  Engineering  from  East  China
Normal  University  (ECNU),  China.  She  received
her  bachelor’s  degree  in  computer  science  and
technology  from  Zhejiang  Normal  University,
China in 2016. Her research interests include high
performance  transaction  processing  in  database

management systems and high availability in distributed systems.

Peng  Cai  is  a  researcher  in  the  School  of  Data
Science  and  Engineering  at  East  China  Normal
University  (ECNU),  China.  He  received  his  PhD
degree  in  computer  science  and  technology  from
ECNU, China in 2011. He joined ECNU in 2015,
prior  to  which  Peng  worked  for  the  IBM  China
Research  Lab  and  Baidu.  His  work  has  been

published in various leading conferences,  such as ICDE, SIGIR and
ACL.  His  main  research  interests  include  in-memory  transaction
processing  and  building  adaptive  systems  using  machine  learning

techniques.

Weining  Qian  is  a  professor  and  Dean  of  the
School  of  Data  Science  and  Engineering,  East
China Normal  University,  China.  He received his
MS  and  PhD  degrees  in  computer  science  from
Fudan  University,  China  in  2001  and  2004,
respectively.  He  is  now  serving  as  a  standing
committee  member  of  Database  Technology

Committee of China Computer Federation, and committee member of
ACM  SIGMOD  China  Chapter.  His  research  interests  include
scalable transaction processing, benchmarking big data systems, and
management and analysis of massive datasets.

Aoying Zhou,  a  professor,  Vice President  of  East
China  Normal  University,  China.  He  got  his
master’s  and  bachelor’s  degrees  in  computer
science  from  Sichuan  University,  China  in  1988
and 1985 respectively, and he won his PhD degree
from Fudan University  in  1993.  He is  the  winner
of  the  National  Science  Fund  for  Distinguished

Young  Scholars  supported  by  National  Natural  Science  Foundation
of  China  (NSFC).  He  is  a  CCF  Fellow  and  the  Vice  Director  of
Database Technology Committee of CCF. He served Vice PC Chair
of  ICDE’2009,  ICDE’2012,  PC  Co-chair  of  VLDB’2014.  His
research  interests  include  Web  data  management,  data  management
for  data-intensive  computing,  in-memory  cluster  computing  and
distributed transaction processing and benchmarking for big data.

16 Front. Comput. Sci., 2022, 16(5): 165612


	1 Introduction
	2 Consistency model
	3 Preliminary
	3.1 Architecture
	3.2 Log replication
	3.3 Log replaying

	4 Adaptively self-tuning batching scheme
	4.1 Batching scheme in QuorumX
	4.2 Discussion
	4.3 Calculation method of the sending interval

	5 Coordination-free log replay
	5.1 Design choices for replay buffer
	5.2 Mechanism of coordination-free log replay
	5.3 Discussion
	5.4 Asynchronous loading mechanism

	6 QuorumX in an unreliable network
	6.1 Problem analysis
	6.2 Process in the follower
	6.3 Recovery mechanism

	7 Evaluation
	7.1 Replication performance
	7.2 Availability and consistency
	7.3 The ability of adaptive self-tuning
	7.4 Impact of the buffer size
	7.5 VGap results
	7.6 Stability of QuorumX
	7.6.1 The maximum log entry difference
	7.6.2 The rate of log commits
	7.6.3 Performance under unreliable network

	7.7 Number of replicas

	8 Related work
	9 Conclusion

