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Abstract Sentence alignment is a basic task in natural lan-
guage processing which aims to extract high-quality paral-
lel sentences automatically. Motivated by the observation that
aligned sentence pairs contain a larger number of aligned words
than unaligned ones, we treat word translation as one of the
most useful external knowledge. In this paper, we show how to
explicitly integrate word translation into neural sentence align-
ment. Specifically, this paper proposes three cross-lingual en-
coders to incorporate word translation: 1) Mixed Encoder that
learns words and their translation annotation vectors over se-
quences where words and their translations are mixed alterna-
tively; 2) Factored Encoder that views word translations as fea-
tures and encodes words and their translations by concatenating
their embeddings; and 3) Gated Encoder that uses gate mech-
anism to selectively control the amount of word translations
moving forward. Experimentation on NIST MT and Opensub-
titles Chinese-English datasets on both non-monotonicity and
monotonicity scenarios demonstrates that all the proposed en-
coders significantly improve sentence alignment performance.

Keywords sentence alignment, word translation, mixed en-
coder, factored encoder, gated encoder

1 Introduction
Sentence alignment, aiming to find semantically equivalent
sentence pairs in given bitexts, remains an essential and chal-
lenging component in construction of parallel corpora, which
are fundamental to various multilingual natural language pro-
cessing applications such as machine translation [1, 2], multi-
lingual word representation [3], and cross-lingual information
retrieval [4, 5]. Most traditional sentence alignment approaches
[6] mainly depend on manually designed features (e.g., length
ratios and word pairs), and thus suffer from the sparsity prob-
lem due to the language ambiguity. As neural networks recently
show its powerful capability of modeling distributed represen-
tations, neural sentence alignment starts to shed light in this
literature [7–10]. For example, Gregoire and Langlais [7] re-
sort to sentence modeling which maps an input sentence into a
fixed-length vector and then predict if two sentences are aligned
by their sentence vectors. Considering that sentence-level rep-
resentation fails to capture word alignment details which are
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promising evidences for sentence alignment, studies in [8–10]
propose word-level approaches which calculate the similarity
between word pairs to capture fine-grained word-level infor-
mation. In an aligned sentence pair, words in one sentence usu-
ally have proper translations in the other. However, recent stud-
ies [11,12] have shown that even with the complicated attention
mechanism, neural models still fail to capture a large portion of
word translation details, even though it is capable of learning
certain word translations from parallel corpus.

In this paper, we address how to explicitly incorporate word
translation, as external knowledge to enhance word distributed
representation to improve sentence alignment performance. As
shown in Fig. 1, the sentence pair (Src, Trg)’s word transla-
tion, i.e., Src_WT and Trg_WT , can be viewed as extra useful
knowledge for sentence alignment. Different from the repre-
sentative approach in Arthur et al. [13] which constrains word
prediction in decoding process with pre-prepared word trans-
lation tables, we take word translations as external inputs and
let the encoder automatically learn useful information. There-
fore, we propose and compare three different encoders: Mixed
Encoder, Factored Encoder and Gated Encoder to incorporate
word translations into the neural sentence alignment model. Ex-
perimentation on Chinese-English NIST MT dataset and Open-
subtitles dataset demonstrates that all the three cross-lingual
encoders can effectively improve the quality of sentence align-
ment.

2 Related work
The study of sentence alignment can be traced back to the
1990s. Gale and Church [14] use the length statistics of bilin-
gual sentences which is based on the idea that the closer two
sentence are in length, the more likely they are to align. How-
ever as shown with Chen [15] and Wu [16], sentence-length
based approaches are not robust and severely dependent on
the language pair involved. In 2000s, Moore [17] proposes a
multi-pass procedure to search the best alignment. It first uses
sentence-length model to generate a set of sentence pairs from

Fig. 1 An example of the model’s inputs. *WT: word translations as the extra
input in this paper
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the input bi-text strictly for training IBM translation model 1
[18] and re-aligns the bi-text using both sentence-length model
and the generated word-correspondence model. Braune and
Fraser [19] develop an unsupervised and two-step clustering
approach, which slightly modifies Moore’s alignment model
to find a model-optimal alignment, namely 1-0/0-1 and 1-1,
and then merges those correspondences into large alignment
like 1-many/many-1. Then, meeting the challenge of noise data,
Ma [20] proposes a robust and lexicon-based parallel text sen-
tence aligner - Champollion. It borrows the idea of tf-idf to
compute the similarity of two sentences and then uses dynamic
programming algorithm to produce final alignment. To reduce
running time of Champollion, Li et al. [21] first split the bi-
texts into small aligned fragments and then align them one by
one. Quan et al. [22] present a semi-supervised learning ap-
proach to non-monotonic sentence alignment by incorporating
both monolingual and bilingual consistency.

Although there have been a lot of studies on sentence
alignment of unsupervised and semi-supervised approaches,
most of them are based on hand-crafted features. Due to the
strong capability of automatically learning feature representa-
tions through neural network, the researches on supervised ap-
proaches with neural network recently start to emerge. Gregoire
and Langlais [7] propose a deep neural network approach at
sentence-level to detect translation equivalence between sen-
tences in bi-texts. They use a shared bi-directional recurrent
neural network (BiRNN) encoder to encode a sentence into a
continuous vector representation, and then estimate aligning
probability of a sentence pair by feeding their vectors into a
fully connected layer with a sigmoid layer. Grover and Mitra
[8] create a similarity matrix between the words of a sentence
pair using cosine similarity measure, then dynamically pool the
similarity matrix into a fixed-dimension matrix and finally use
Convolutional Neural Network (CNN) to estimate if the pair is
aligned or not. Similarly, Ding et al. [9] propose a word-pair
relevance network to extract parallel sentences at word-level.
They use BiRNN to encode a sentence pair, then three simi-
larity measures are adopted to capture the semantic interaction
between word pairs, and finally they transform semantic inter-
action by max pooling into a vector and adopt a multilayer per-
ceptron to predict whether the sentence pair is aligned or not.
To our best knowledge, we are not aware of studies that explore
external knowledge for neural sentence alignment.

Nevertheless, the approaches of leveraging external knowl-
edge have recently been proposed in neural machine translation
(NMT) to improve translation quality through different perspec-
tives. Word translation is an important linguistic resource and is
very helpful. Most related studies [13,23–26] focus on decoders
to guild NMT decoding model in favor of pre-obtained tar-
get words. Syntax is another type of useful external knowledge
and has been widely explored in NMT, including both source-
side [27–30] and target-side [31, 32]. Our approach–Mixed En-
coder, Factored Encoder and Gated Encoder are motivated by
the models in Li et al. [28], Sennrich and Haddow [30], Han
et al. [33], but we focus on introducing word translation rather
than syntax into encoder of sentence alignment model.

3 Problem definition
Sentence alignment accepts a bitext consisting of a set of

Fig. 2 Illustration of (a) monotonic and (b) non-monotonic alignment, with a
line correspondence between two bilingual sentence

source language sentences X = {x1, . . . , xi, . . . , xM}, and a set
of target language sentences Y = {y1, . . . , y j, . . . , yN} as in-
put. Monotonic alignment follows the monotonicity assumption
that aligned sentences in bitexts appear in a similar sequen-
tial order in two languages without crossings in general [34].
On the contrast, non-monotonic alignment allows the sentence
pairs in X and Y to cross arbitrarily. Figure 2(a) illustrates a
monotonic alignment with no crossing correspondences in the
bipartite graph while Fig. 2(b) has non-monotonic alignment
with scrambled pairs. In non-monotonic alignment, we can find
that the type of many-to-many alignment is much more com-
plicated, so we will not consider this type but assume that each
sentence may align to only one or zero sentence in the other
language, i.e., 1-1 and 1-0/0-1.

For monotonic alignment, it is relatively straightforward to
identify all types of alignments using the dynamic program-
ming algorithms [20], even for many-to-many. We compute a
lattice F(i, j) representing the similar score from the beginning
of the document to the ith source sentence and jth target sen-
tence, then the lattice can be calculated using a recurrence rela-
tion as follow:

F(i, j) = max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(i − 1, j) + sim(i, φ)

F(i, j − 1) + sim(φ, j)

F(i − 1, j − 1) + sim(i, j)

F(i − 1, j − 2) + sim(i, j − 1)

F(i − 2, j − 1) + sim(i − 1, j)

F(i − 1, j − 3) + sim(i, j − 2)

F(i − 3, j − 1) + sim(i − 2, j)

(1)

where sim is the probability provided by our model, and the
rows in the Eq. (1) correspond to 1-0, 0-1, 1-1, 1-2, 2-1, 1-3
and 3-1 alignment, respectively. Specifically, φ in sim(i, φ) de-
notes NULL, i.e., the ith source sentence is not aligned with any
target sentence and we simply set sim(i, φ) = −0.01 as Cham-
pollion [20]. Note that for NIST MT monotonic test sets, we
only extract 1-1 and 1-0/0-1 alignments.

Then, for non-monotonic alignment, let matrix F ∈ RM×N

represents the correspondence relation between X and Y, where
Fi j is a real score to measure the likelihood of matching the
ith sentence xi in X against the jth sentence y j in Y, i.e., the
probability of xi and y j being aligned. And alignment matrix
A ∈ {0, 1}M×N is defined to produce the final alignment where
Ai j = 1 for a correspondence between xi and y j and Ai j = 0
otherwise, then we use a heuristic search for local optimiza-
tion [35], which consists of two steps:
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• Pick Fi j such that Fi j � 0.5 and is ranked the greatest
score in the similarity matrix F. Set Ai j to 1, and Fi∗ , j∗

(1 � i∗ � M, 1 � j∗ � N) to 0 since xi and y j are aligned.
• Repeat above step until all entries in F are less than 0.5.

On the basis, given the alignment matrix A, it is easy to ob-
tain all 1-0/0-1, and 1-1 alignments from it.

Given a sentence pair (xi, y j), in next section we describe our
neural sentence alignment model which returns the probability
of the sentence pair being aligned, i.e., sim(i, j) score for mono-
tonic alignment, and Fi j score for non-monotonic alignment.

4 Neural sentence alignment with word trans-
lation
In this section, we will first describe our method to obtain word
translation, then present the neural sentence alignment model,
and finally detail our approaches that incorporate word transla-
tion.

4.1 Learning word translation
For each source word xi, we simply obtain its translation di

from a bilingual dictionary by looking for its translation with
the highest probability, as defined below:

di = arg min
w∈Vt

Pdic(w|xi), (2)

where Vt is the vocabulary of the target language and Pdic(w|xi)
is the lexical translation probability from source word xi to tar-
get word w. And each target word is processed in the same way.

To obtain the bilingual dictionary, we get word alignment re-
sults by running Giza++ [36] on the two training data in two di-
rections (source→ target, target→ source), respectively. Then
word translation probability could be computed from word
alignments. Specifically, a special token NULL indicates the
word does not have a corresponding translation.

4.2 Neural sentence alignment
We use the neural sentence alignment model proposed in Ding
et al. [9] as our baseline. Given a sentence pair, the baseline
uses two bi-directional RNNs to encode the pair, one for the

source sentence and the other for the target one.1) In order to ex-
plicitly incorporate word translation, we propose three different
cross-lingual encoders while keep the rest part of the model un-
changed. Figure 3 shows the architecture of the renewed model
which consists of the following main sublayers:

• Cross-lingual Encoder: models input sentence pair and
their corresponding word translation sequences. The en-
coder serves as the basis of the subsequent network sub-
layers (see details in Section 4.3).

• Word-pair relevant networks (WPRN): captures the rele-
vance score for every word pair (xi, y j) through its hidden
state pair (hxi , hyj) from different perspectives. Specially,
we measure the pair’s relevance scores from following
multiple views:

– Cosine similarity: cos(hxi , hyj ) is defined as:

cos(hxi , hyj) =
hxi · hyj

‖hxi‖‖hyj‖
. (3)

The cosine similarity measures the similarity of two
representations with the angle between them.

– Bilinear model: b(hxi , hyj ) is defined as:

b(hxi , hyj) = hxi
TMhyj , (4)

where M ∈ Rdh×dh is a weight matrix. The bilinear
model is a simple but efficient way to incorporate
the strong linear interactions between two represen-
tations [38, 39].

– Single Layer Network: s(hxi , hyj ) is defined as:

s(hxi , hyj) = uT f (V[hxi , hyj] + b), (5)

where u ∈ Rk, V ∈ Rk×2dh , b ∈ Rk are parameters
to be learned, and f is a non-linear function applied
element-wise, e.g., tanh in this paper. k is a hyper-
parameter we can set arbitrarily. The single layer
network captures the nonlinear interactions between
two representations [40].

Fig. 3 The architecture of the proposed approach. “*_WT” denotes the corresponding word translations

1) For the activation function of an RNN, in this paper we uses the gated recurrent unit (GRU) proposed by Cho et al. [37]
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• Max pooling: adopts a max-pooling strategy to partition
the similarity score matrix generated by WPRN, into a
set of non-overlapping sub-regions, each of which out-
puts the maximum value.2) Assuming that the max pool-
ing size is 3 × k1 × k2, the output is thus a matrix with
the size of R�

m
k1
�×� n

k2
�, and then we flatten the matrix of

pooling scores into a vector3).
• Multi-layer perceptron (MLP): uses two successive full

connection hidden layers to get a more abstractive rep-
resentation and then connect to the output layer. For the
task of classification, the outputs are probabilities of bi-
nary classes, computed by a sigmoid function after the
fully-connected layer.

4.3 Cross-lingual Encoders
Most conventional neural network models regard a sentence as
a sequence of words, which easily ignores external knowledge
and fails to effectively capture various useful information.

To leverage external knowledge, especially the use of word
translation, we propose three cross-lingual encoders to model
the input words and their translations from multiple ways.
For simplicity, we take a source sentence and its word trans-
lation sequence as an example to illustrate the encoders
while a target sentence and its word translation sequence
can be encoded in the same way. Given a source sentence
x = (x1, . . . , xi, . . . , xm) and its word translation sequence
d = (d1, . . . , di, . . . , dm), the goal is to inform the model of
each word and its potential translation so that it not only
encodes the information of words (e.g., xi) and their sur-
roundings, but also encodes their possible translations (e.g.,
di). In the following, we will present the details of these
cross-lingual encodes (Sections 4.3.1–4.3.3) and Figs. 4–6
show their structures. Among them, xi and di represent source
word and its possible translation, Exi and Edi represent corre-

sponding embedding,
−→
hi and

←−
hi represent the forward hidden

state and the backward hidden state of the ith word, respec-
tively.

4.3.1 Mixed Encoder
Inspired by the model proposed by Li et al. [28], Fig. 4 il-
lustrates the structure of Mixed Encoder which encode source
words and their translations in a mixed way. The input se-
quence is alternatively mixed with both source words and
their translation, i.e., (x1, d1, . . . , xi, di, . . . , xm, dm), and only

the annotation vectors of source words, i.e., ([
−→
hx1 ,
←−
hx1], . . . ,

[
−→
hxi ,
←−
hxi], . . . , [

−−→
hxm ,
←−−
hxm]) are fed to the next layer. Even though

the annotation vectors of translations (e.g., [
−→
hdi ,
←−
hdi]) are not di-

rectly fed to the next layer, the error signal is back propagated
along the word sequence and allows the annotation vectors of
word translation being updated accordingly.

4.3.2 Factored Encoder
Similar to the related studies which integrate source-side fea-
tures into encoder [30], we regard word translation di as an

Fig. 4 Mixed Encoder

Fig. 5 Factored Encoder

external feature of source word xi and directly concatenate their
corresponding word embeddings Exi and Edi. As shown in
Fig. 5, Factored Encoder encodes a source word and its trans-
lation vertically, treating them equally. Then, the encoder reads
the concatenated word embedding sequence as input.

4.3.3 Gated Encoder
Both encoders mentioned above make full use of word trans-
lation di, while rather than fully utilizing word translation, the
Gated Encoder selectively controls the amount of word trans-
lation fed to the encoder. As shown in Fig. 6, Ex′i represents
the word embedding of the input to encoder as position i and is
defined as:

Ex′i = Exi + g ◦ Edi, (6)

where ◦ is an element wise multiplication, g is gate express-
ing how much the amount of translation word embedding Edi

should be incorporated into the encoder. We define g as follows:

g = σ(WxExi +WdEdi + b), (7)

where Wx ∈ R1×d, Wd ∈ R1×d and b ∈ R are parameters to
be learned, σ denotes the logistic sigmoid function. Gated En-
coder selectively incorporates the amount of translation’s in-
formation through the gated mechanism, which is potentially
helpful in cases where word translation might be incorrect.

2) We also tried other pooling strategies, like average pooling and sum pooling. However, our preliminary experimental results show that the max-pooling strategy
outperforms the others on the development set
3) Note that in max pooling, the pooling size’s first dimension (e.g., 3 in this paper) is the number of similarity measures
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Fig. 6 Gated Encoder

4.4 Training
Given training sentence pairs (X, Y) = {xi, yi|1 � i � N} and
their true labels L = {li|1 � i � N, li ∈ {0, 1}}, the training
objective is to minimize the cross entropy, defined as:

L(X, Y, L;Θ) =
N∑

i=1

(

li log( p̂i) + (1 − li) log(1 − p̂i)
)

, (8)

where p̂i is the predicted probability of label 1 for sentence pair
(xi, yi).

5 Experimentation
To our best knowledge, there is no official corpus for sen-
tence alignment. Therefore, we evaluate our approaches on
NIST MT Chinese-English translation dataset and Opensubti-
tles 2018 Chinese-English dataset.

5.1 Experimental settings
5.1.1 Datasets
The NIST MT training set consists of 1.25M sentence pairs ex-
tracted from LDC corpora4), with 27.9M Chinese words and
34.5M English words respectively. All the parallel sentence
pairs are naturally viewed as positive samples in training. Be-
sides, we also construct negative examples of the same size.
That to say, for each source sentence, we randomly choose a
target sentence from the target side and obtain a negative ex-
ample. We use NIST MT 02 (878 sentence pairs) as develop-
ment set and NIST MT 03, 04 and 05 (919, 1788 and 1082
sentence pairs) as test sets. Note that the source and target sen-
tences in the above dataset are originally 1-1 mapping. In order
to obtain 1-0/0-1 alignments, we randomly delete 90 sentences
on the source side and 60 sentences on the target side5) . Con-
sequently, the bilingual texts are aligned in monotonic way. In
addition, sentence order in the above sets is scrambled to obtain
NIST MT non-monotonic test sets. Table 1 shows the statistics
of the NIST MT sets.

The Opensubtitles training set consists of 1,400 documents
randomly selected from Opensubtitles2018, including 1.11M
sentence pairs, 15.3M Chinese words and 19.3M English
words. Similarly, for every source sentence we randomly

choose a target sentence from the target side of the same doc-
ument and obtain a negative example. The Opensubtitles de-
velopment set (OSD) and test sets (OST) are also randomly
selected from Opensubtitles2018, including 1 document and 8
documents respectively, not included in the training set. Since
the test sets contain 1-0/0-1, 1-1, 1-2/2-1 and 1-3/3-1 align-
ments and the non-monotonic alignment of them is much more
complicated, we only evaluated as monotonic alignment for
simplicity. Table 2 shows the statistics of the Opensubtitles sets.

Table 1 Numbers of sentences and alignments on NIST MT development set
and test set

Dataset #Src #Trg 1-0/0-1 1-1

nist02 788 818 138 734
nist03 829 859 144 772
nist04 1698 1728 146 1640
nist05 992 1022 140 937
All (Test) 3519 3609 430 3349

Table 2 Numbers of sentences and alignments on Opensubtitles development
set and test set

Dataset #Src #Tgt
1-0/
0-1

1-1
1-2/
2-1

1-3/
3-1

OSD 170 180 24 121 24 3
OST 4225 3806 207 2840 576 104

5.1.2 Parameters
In order to train the neural network models effectively, we limit
the maximum sentence length of source and target side to 50.
And the most frequency of 30K words in Chinese and English
are selected as the source and target vocabularies, covering ap-
proximately 98.4% and 99.0% of NIST MT source and tar-
get training sentences respectively, and 96.3% and 99.0% of
Opensubtitles training set. All the out-of-vocabulary words are
mapped to a special token UNK.

We use pre-trained 50-dimensional Chinese-English bilin-
gual word embeddings provided by Zou et al. [41], and update
them in training process. In the cross-lingual encoder layer, we
use GRU for the activation function and set the size of hidden
state as 150. In the WPRN layer, we set k in single layer net-
work as 2. Consequently, the WPRN layer will obtain tensors
with size 3×50×50. In the max pooling layer, the max-pooling
size is the set 3 × 3 × 3, resulting the flatten vector size as 289
(i.e., � 50

3 � ∗ � 50
3 �). In the MLP layer, the sizes of the neighboring

hidden sub-layers are 2000 and 1000, respectively.

5.1.3 Evaluation
We adopt precision (P), recall (R) and F-measure (F1) as eval-
uation metrics to evaluate each type of alignments, as well
as Micro-averaged scores of precision, recall and F-measure
(Micro-P/R/F1) to measure the overall performance on all
alignments.

5.2 Experimental results
5.2.1 Results on non-monotonic alignment
Table 3 shows the performance of NIST MT test set on non-
monotonic alignment. From this table, we have the following
observations:

4) The dataset includes LDC2002E18, LDC2003E07, LDC2003E14, Hansards portion of LDC2004T07, LDC2004T08 and LDC2005T06
5) The deleted sentences number can be set as arbitrary number, just to increase the alignment of 1-0/0-1
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• Word translation is helpful for sentence alignment.
Clearly, the three cross-lingual encoders, Mixed Encoder,
Factored Encoder and Gated Encoder, significantly im-
prove all type of alignments. For instances, our best ap-
proach Gated Encoder outperforms the baseline with 3.2
F1 scores over all alignments.

• The three cross-lingual encoders behave differently.
Gated Encoder achieves the biggest improvement, fol-
lowed by Mixed Encoder and Factored Encoder.

• Comparing to 1-1 alignment, the lower performance of
1-0/0-1 alignment provides more room for improvement.
For example, Gated Encoder achieves 9.1 F1 scores im-
provement on 1-0/0-1 alignment over the baseline, much
bigger than the 2.2 F1 scores improvement on 1-1 align-
ment.

Table 3 The non-monotonic sentence alignment performance on the NIST
MT test set

1-0/0-1 1-1 Micro
P R F1 P R F1 P R F1

Baseline 66.4 83.0 73.8 97.0 95.4 96.2 92.7 94.0 93.3
Factored 68.5 89.5 77.6 98.0 96.1 97.0 94.6 96.3 95.4
Mixed 76.2 89.3 82.2 98.8 97.7 98.2 95.8 96.7 96.3
Gated 76.7 90.2 82.9 98.9 97.8 98.4 96.0 96.9 96.5

5.2.2 Results on monotonic alignment
Most sentence aligners are designed for monotonic alignment.
Here we also compare our approaches against three popular tra-
ditional aligners as follows:

• Moore [17]: A fast and accurate sentence aligner for
bilingual corpora which combines sentence-length-based
method and word-correspondence-based method.

• Gargantua [19]: An unsupervised and language-pair inde-
pendent aligner of symmetrical and asymmetrical parallel
corpora.

• Champollion [20]: A lexicon-based sentence aligner de-
signed for robust alignment of potential noisy parallel
text.

Table 4 presents the monotonic alignment performance on
NIST MT test set. Although all the traditional aligners obtain
favorable performance, our baseline achieves as high as 99.3
F1 score, clearly better than the traditional aligners, suggesting
supervised learning is necessary to achieve high performance.
We also note that the almost perfect performance of the base-

line gives no space for cross-lingual encoders to achieve further
improvement.

Table 4 The monotonic sentence alignment performance on the NIST MT
test set

1-0/0-1 1-1 Micro
P R F1 P R F1 P R F1

Baseline 100.0 92.1 95.9 99.5 100.0 99.8 99.6 99.1 99.3
Factored 99.8 91.8 95.6 99.5 99.9 99.7 99.5 99.0 99.2
Mixed 100.0 92.1 95.9 99.5 100.0 99.8 99.6 99.1 99.3
Gated 100.0 92.1 95.9 99.5 100.0 99.8 99.6 99.1 99.3
Moore 53.8 89.3 67.1 98.8 94.6 96.6 90.6 94.0 92.3
Gargantua 43.5 79.8 56.3 97.0 91.9 94.4 86.4 90.5 88.4
Champollion 32.7 59.5 42.2 91.1 86.3 88.7 79.6 83.3 81.4

Fortunately, the priority of our cross-lingual encoders also
persists when they are evaluated on the out-domain and realis-
tic Opensubtitles test set, as shown in Table 5.

From Tables 4 and 5, we observe that:

• Sentence alignment on the Opensubtitles is more chal-
lenging than that on the NIST test set. This is not sur-
prising since the former originates from dialogue while
the latter originates from news.

• For monotonic alignment, the advantage of cross-lingual
encoders over the baseline is shrunken, given the fact
that monotonic alignment is less challenging to non-
monotonic one.

• Among different types of alignment, 1-0/0-1 alignments
are the hardest to recognize, followed by 1-2/2-1 and 3-
1/1-3 alignments while 1-1 alignments are the easiest.

5.3 Experimental analysis
In this subsection, we analyze the influence of word translation
on sentence alignment from different perspectives.

5.3.1 Comparison of encoders
The proposed three cross-lingual encoders shown in Figs. 4–6
integrate the information of word translation. Here we compare
the proposed encoders as well as the conventional RNN encoder
in following three perspectives.

From parameter perspective, Mixed Encoder does not re-
quire any additional parameters since although its input sen-
tence length becomes twice longer, the encoder parameters are
shared to convert both Exi to hxi and Edi to hdi . And Factored
Encoder simply concatenates Exi and Edi that only requires an
extra parameter matrix Wd ∈ Rd×h to convert d-dimension Edi

into h-dimension hdi . While for Gated Encoder, due to the use

Table 5 The monotonic sentence alignment performance on the Opensubtitles test set

1-0/0-1 1-1 1-2/2-1 1-3/3-1 Micro
P R F1 P R F1 P R F1 P R F1 P R F1

Baseline 36.5 41.1 38.6 91.0 92.1 91.6 69.7 68.2 68.9 69.3 58.7 63.5 83.9 84.7 84.3
Factored 42.4 40.6 41.5 90.8 91.8 91.3 70.4 69.1 69.8 68.7 65.4 67.0 84.6 84.7 84.7
Mixed 48.6 43.5 45.9 91.6 92.7 92.1 70.9 71.2 71.1 71.4 72.1 71.8 85.7 86.1 85.9
Gated 46.2 50.2 48.1 91.4 93.0 92.2 73.7 71.2 72.4 75.6 65.4 70.1 85.7 86.5 86.1
Moore 5.0 8.1 9.5 76.2 65.6 70.5 - - - - - - 35.1 54.5 42.7
Gargantua 8.9 27.1 13.4 67.8 75.6 71.5 56.1 30.2 39.3 61.3 18.3 28.1 57.9 64.3 61.0
Champollion 3.2 5.3 4.0 52.2 48.3 50.2 20.7 8.7 12.2 8.8 12.5 10.4 40.3 38.8 39.5
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of gate mechanism shown in Eq. (7), it requires extra (2 ∗ d+ 1)
parameters.

From the network perspective, the degrees of making use of
word translation in the three encoders are like this: Factored
Encoder > Mixed Encoder > Gated Encoder. Given a word
sequence x = (x1, . . . , xi, . . . , xm) and its word translation se-
quence d = (d1, . . . , di, . . . , dm), our goal is to learn word an-
notation vectors h = (h1, . . . , hi, . . . , hm) which encode not only
the information of words and their surroundings, but also trans-
lation information. Factored Encoder makes full use of word
translation sequence d and treat it equally as word sequence
x while Mixed Encoder learns word annotation h with context
containing word translation sequence. Differently, Gated En-
coder uses gate mechanism to selectively control the amount of
word translation information moving forward into the encoder.
This is important to alleviate the impact of error propagation
from word translation.

From the flexibility perspective, Mixed Encoder is more flex-
ible and extensible than the other two. In the Factored Encoder
or Gated Encoder, there must be one and only one translation
word associated to every source word. Therefore, it would be
hard to model other scenarios with phrase translations, such
as �� to New York, � ��� to spokeswoman, and so on.
However, in the Mixed Encoder, original words and transla-
tion words are sequenced and they are also applied to scenarios
when a source word has no word translation or has multiple
translation words. Therefore, phrase translations can be nat-
urally handled by the Mixed Encoder to sequence the source
phrase and its translation, e.g., � ��� spokeswoman.6)

Moreover, rather than covering all source words, the Mixed En-
coder is extensible to focus on source words with special inter-
est (e.g., low frequency words, named entities).

5.3.2 Accuracy of word translation
In this paper, word translation is used as external knowledge to
enhance the word semantic modeling. Normally, correct word
translation can enhance the semantic information while incor-
rect one may affect it. While it is hard to precisely estimate the
accuracy of word translation, we access the accuracy from word
alignment perspective. Given a sentence pair (x, y) and word xi

in x, we obtain its translation from the word alignment to sen-
tence y. Specifically, if xi aligns to multiple target words, we
select the one with the highest lexical translation probability as
xi’s gold translation. Therefore, we are able to estimate if the
given xi’s word translation is correct or not. On the NIST MT
development set, the accuracy of Chinese word translation is
52.1%, while that of English is 49.3%. Note that the evalua-
tion criterion is very strict and will view two words of semantic
equivalence as wrong translation to each other. As shown in Ta-
ble 6, the word translation accuracy of Chinese and English are
45.4% and 70.0% (i.e, 5/11 and 7/10), respectively. However,
wife-(��, ��), children-(��, ��), �-(are, is) are all
polysemous pairs.

5.3.3 Analysis on opensubtitles
Sentence alignment on Opensubtitles is more difficult than the
NIST dataset, Table 7 presents several typical examples to il-

lustrate the challenges.

Table 6 Example of aligned sentences (S rc, Trg) and their word translations
(S rc_WT, Trg_WT ). Here, semantically equivalent words are highlighted in
the same color

Src ���� �����������
Trg his wife and two children are all us citizens.

Src_WT he of wife and two NULL children is us citizens.
Trg_WT ��� ������������

Table 7 Example of aligned sentences (S rc,Trg) extracted from Opensub-
titiles2018 test sets while our approaches fail to recognize them. The literal
translations are provided below each S rc sentence for easy understanding

Src �� �
hello .

Trg good evening .
Prob Gated: 0.14 Mixed: 0.21 Factored: 0.10

(a)

Src ��� �
that’s_good .

Trg all right, then .
Prob Gated: 0.24 Mixed: 0.36 Factored: 0.47

(b)

Src �� �� ��
really save words brother

Trg never one to waste words
Prob Gated: 0.39 Mixed: 0.38 Factored: 0.23

(c)

Firstly, the document-level information is important for
Opensubtitle’s sentence alignment, because all sentences come
from conversations and document information can provide con-
text to assist alignment. In the first example (a), the target sen-
tence provides the temporal background, and the surface source
meaning is “hello” which is different from the target. Lacking of
the document context is one of reasons that our approaches rec-
ognize it incorrectly. Secondly, the unknown words are one of
the sources of sentence alignment errors, especially for Open-
subtitlie dataset whose sentences are usually short in length.
Take the second sentence pair (b) as example, “���” is
an unknown word in vocabulary and there are no other useful
words in source sentence, which makes the prediction quite dif-
ficult. Finally, it is challenging to capture the correct semantic
of proverbs, poems or four-characters words in Chinese. Like
“����” in the last example (c) is a popular phrase in Chi-
nese.

5.3.4 Cross domain evaluation
Experimental results in Section 2 demonstrate that our pro-
posed encoders significantly improve sentence alignment on the
test sets which are in the same domain of the training sets. To
see if the encoders benefit test sets of a different domain, we
evaluate the encoders trained on the NIST MT data against the
Opensubtitles test set.

Table 9 shows the monotonic sentence alignment perfor-
mance achieved by the encoders trained on the NIST MT data.
From it, we observe that except the Factored Encoder, the other
two encoders also benefit test set of another domain. It is also
not surprising that the results in Table 9 are lower that the coun-

6) For an aligned phrase pair containing multiple words on two sides, it can also be heuristically converted into a sequence
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Table 8 Example of sentence alignment predictions. Note that the first two sentence pairs are aligned while the last one is unaligned. “Src/Trg_WT” indicates
that the word translations of the source/target sentence. “Prob” indicates the predicted probabilities of Src and Trg being aligned by different models

Src1 �� �� �� �� � �� |�� �� ��, � �� ���
Src_WT1 eu follows chairman netherlands in china ? eu peak meeting, for over said.

Trg1 the eu dutch presidency made the remarks following a china-eu summit.
Trg_WT1 � �� �� �� � � � � � � ���
Prob1 Gated: 0.99 Mixed: 0.96 Factored: 0.62 Baseline: 0.26

Src2 �� � � �� �� � �� �� �� “� �” ��
Src_WT2 shenzhen will in part building and unit mandatory implementation “of water” application

Trg2 shenzhen to enforce the use of " reclaimed water " in some office buildings and residential quarters
Trg_WT2 �� NULL ����� NULL ��� ����	��������
Prob2 Gated: 0.98 Mixed: 0.95 Factored: 0.73 Baseline: 0.72

Src3 ���������������������, 
�������
Src_WT3 side of basic starting is safeguarding dprk peninsula of peace with stability, achieve peninsula no nuclear to.

Trg3 national reconciliation is an important condition for sustained peace and stability in a region after conflicts.
Trg_WT3 ��������������������������
Prob3 Gated: 0.03 Mixed: 0.05 Factored: 0.41 Baseline: 0.55

Table 9 The monotonic sentence alignment performance on the Opensubtitles test set when the encoders are trained on the NIST MT data

1-0/0-1 1-1 1-2/2-1 1-3/3-1 Micro
P R F1 P R F1 P R F1 P R F1 P R F1

Baseline 23.8 39.1 29.6 84.8 86.1 85.4 59.9 55.0 57.4 64.3 51.9 57.5 75.5 77.7 76.6
Factored 23.3 31.9 26.9 85.6 83.5 84.6 54.4 55.9 55.1 51.9 53.9 52.9 75.0 75.6 75.3
Mixed 25.6 38.6 30.8 86.8 86.1 86.4 57.4 56.1 56.7 60.0 57.7 58.8 76.7 78.0 77.3
Gated 28.4 40.1 33.3 85.7 86.9 86.3 62.0 58.0 60.0 66.7 57.7 61.9 77.5 79.0 78.2

terparts in Table 5, suggesting that there exists improvement
room for cross domain sentence alignment.

5.3.5 Case study

In Table 8, we list three sentence pairs from test sets as exam-
ples to illustrate the advantages of our approaches. The first two
examples are aligned sentence pairs and the last is unaligned.

For the sentence pair (Src1, Trg1), the baseline incorrectly
predicts it as unaligned with a low probability while our ap-
proaches all give this pair with high probabilities (i.e., 0.99,
0.96 and 0.62). Even containing semantically equivalent pairs,
like (��, eu), (��, dutch), the baseline still fails to rec-
ognize them. However, with the help of word translations, our
approaches correctly predict the the sentence pair as aligned.
Although all approaches correctly predict the second sentence
pair (Src2, Trg2) as aligned, they give considerable distinguish-
ing probabilities, with Gated Encoder gives the highest confi-
dence, followed by Mixed Encoder and Factored Encoder. The
third sentence pair (Src3, Trg3) is unaligned, despite of the ex-
istence of several semantically equivalent word pairs, such as
(��, peace), (�, and) and (��, stability). For this pair, the
baseline mistakenly predicts it as aligned while our approaches,
especially the Gated Encoder is almost 97% confident that this
pair is unaligned.

Analysis of above examples shows that word translation is
helpful to improve the performance of sentence alignment. On
the one hand, our three cross-lingual encoders are more likely
to make correct prediction than the baseline. On the other hand,
Gated Encoder obtains the most reasonable alignment proba-
bilities, followed by Mixed Encoder and Factored Encoder.

6 Conclusion and future work
In this paper, we explore approaches of incorporating word
translation into neural sentence alignment models. Specifically,
we propose three cross-lingual encoders to capture translation
information. Among them, Mixed Encoder and Factored En-
coder treat words equally with their translations and respec-
tively model word translation in horizontal and vertical way
while Gated Encoder automatically controls the amount of
translation information through the gate mechanism. Experi-
mental results on NIST MT and Opensubtitles Chinese-English
datasets shows that word translation is useful for sentence align-
ment and the proposed cross-lingual encoders yield improve-
ments over strong baseline.

For future work, we will further explore other external re-
sources, such as part of speech and syntax, to improve sentence
alignment performance. Given that many language pairs are of
low-resource, we will test our approach on them and examine
whether the sentence alignment quality is good enough if using
small scale training data to learn bilingual dictionary.
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