
Front. Comput. Sci., 2020, 14(5): 145205

https://doi.org/10.1007/s11704-019-9023-2

Improving students’ programming quality with the continuous
inspection process: a social coding perspective

Yao LU1, Xinjun MAO 1,2, Tao WANG1, Gang YIN1, Zude LI3

1 College of Computer, National University of Defense Technology, Changsha 410073, China

2 Key Laboratory of Software Engineering for Complex Systems, Changsha 410073, China

3 School of Information Science and Engineering, Central South University, Changsha 410012, China

c© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract College students majoring in computer science

and software engineering need to master skills for high-

quality programming. However, rich research has shown

that both the teaching and learning of high-quality program-

ming are challenging and deficient in most college educa-

tion systems. Recently, the continuous inspection paradigm

has been widely used by developers on social coding sites

(e.g., GitHub) as an important method to ensure the internal

quality of massive code contributions. This paper presents a

case where continuous inspection is introduced into the class-

room setting to improve students’ programming quality. In

the study, we first designed a specific continuous inspection

process for students’ collaborative projects and built an ex-

ecution environment for the process. We then conducted a

controlled experiment with 48 students from the same course

during two school years to evaluate how the process affects

their programming quality. Our results show that continuous

inspection can help students in identifying their bad coding

habits, mastering a set of good coding rules and significantly

reducing the density of code quality issues introduced in the

code. Furthermore, we describe the lessons learned during the

study and propose ideas to replicate and improve the process

and its execution platform.

Keywords continuous inspection, programming quality,

SonarQube

Received January 17, 2019; accepted July 10, 2019

E-mail: xjmao@nudt.edu.cn

1 Introduction

College students majoring in computer science (CS) and soft-

ware engineering (SE) are potential future professional soft-

ware engineers who need to master skills for high-quality

programming [1–3], that is, the ability to write code with high

readability, understandability, maintainability, etc. However,

researchers [4–6] have recognized that graduates entering the

workforce lack high-quality programming skills. Eric Brech-

ner, Director of Developer Excellence at Microsoft, identi-

fied high-quality code that lasts as one of the 5 aspects of

capabilities that graduates need to improve [7]. One impor-

tant cause underlying this problem is that both the teaching

and learning of high-quality programming skills are challeng-

ing in most college education systems. On the one hand, stu-

dents usually cannot sufficiently master programming skills

through the “knowledge-inculcation” model of the instruc-

tors [3, 8, 9]. The training of programming, a practical skill,

requires students’ real practices and personal meaning con-

struction [10]. In addition, knowledge background and pro-

gramming experience differ among individual students, and

thus, it is not conducive for personalized learning to conduct

unified teaching in the class. On the other hand, when stu-

dents conduct programming assignments or projects, teachers

usually do not have effective programming-quality improve-

ment and assessment methods [2, 11]. Consequently, a gap

exists between students’ programming skills and the expec-

tations of industry managers or other hiring personnel [6,12].

2 Front. Comput. Sci., 2020, 14(5): 145205

The lack of high-quality programming capabilities can put

job-hunting students at a disadvantage and can even influ-

ence the productivity and quality of newly hired employees.

Therefore, it is critical to train students from the beginning to

write code that not only works correctly but also meets inter-

nal quality standards1) [13, 14].

Social coding sites, such as GitHub, receive large numbers

of contributions from developers around the world [15, 16],

and the frequent turnover of external developers and the

wide variations among their coding experience challenge the

project management of code and its internal quality [17].

To meet this challenge, automated quality assurance meth-

ods are increasingly adopted and integrated into the contri-

bution workflow [15, 18]. Figure 1 illustrates a typical pro-

cess in GitHub that integrates the continuous integration and

continuous inspection processes into the pull-based model

to ensure the external and internal quality of contributions,

respectively. Pull-based development is a paradigm for dis-

tributed software development in which developers can per-

form changes on a copied version of the central repository.

The pull-based workflow decouples the development effort

from the decision to incorporate the results of the develop-

ment in the code base [15]. The workflow begins with a de-

veloper forking2) a repository that she wants to contribute

to. After making changes to the forked repository, she opens

a pull request3) (PR), expressing her readiness to have the

branch4) containing her changes merged into the main reposi-

tory. Next, the continuous integration and continuous inspec-

tion processes are automatically started. A continuous inte-

gration system, such as Jenkins, and a continuous inspection

tool, such as SonarQube, are triggered to run the tests and

analyze the static code quality of the PR. The results of the

two processes are sent to the core developers, who perform

manual code review and potentially request more changes.

Typically, the core developers will not accept the PR until it

has been modified to pass both quality gates [18].

Essentially, continuous inspection is the quality assurance

process which emphasizes that code should be continuously

inspected by static quality analysis tools and that all stake-

holders should participate in the quality assurance process.

From the perspective of contributors, the results of continu-

ous inspection identify their bad coding habits. In addition,

the continuous alerts and modifications in the process can

help them to learn and memorize their quality issue patterns

according to the ebbinghaus forgetting curve5) [19]. This mo-

tivates us to examine whether such an automated quality as-

surance method can be used in the classroom setting to ad-

dress the challenges in the teaching and learning of high-

quality programming.

Fig. 1 The overview of automated quality assurance process for internal
and external code quality in GitHub

In this study, we designed a specific continuous inspection

process for students’ collaborative projects to monitor, ana-

lyze and improve their programming quality. To support the

process, we built an execution environment and integrated it

into a popular teaching platform – TRUSTIE [20]. Further,

with this platform, we conducted a controlled experiment to

investigate how the process affects students’ programming

quality. In the experiment, 48 students working in 11 teams

during two school years were required to complete an inno-

vative software project. On the basis of the data, we exam-

ined the changes in the students’ introduced code quality is-

sue densities (CQIDs) after adopting continuous inspection,

and investigated the quantities and categories of the coding

rules that they learned. In addition, a post-course survey and

interviews were used to understand the problems that the stu-

dents encountered and their perceptions of the process. The

main contributions of our research are as follows:

• We present how we designed a practical continuous in-

spection process for students’ collaborative projects in

practice.

• We find that continuous inspection can help students to

identify their bad coding habits, master a set of good

1) The external quality characteristics are those parts of a product that affect its users, e.g., correctness, reliability, and usability; while the internal quality
characteristics are typically perceived by developers, e.g., readability, maintainability, and understandability of code
2) Forking a repository allows developers to perform changes to a copy of a repository without affecting the original repository
3) A pull request records a set of code commits and a description of the changes
4) Branch is a lightweight mechanism in Git that supports users to concurrently perform changes on different threads
5) The forgetting curve hypothesizes a decline in memory retention over time, and it shows how information is lost over time when there is no attempt to
retain it

Yao LU et al. Improving students’ programming quality with the continuous inspection process: a social coding perspective 3

coding rules and significantly reduce their introduced

CQIDs, thereby improving their programming quality.

• We find that the code quality issues (CQIs)6) most fre-

quently introduced by students during the two school

years are concentrated on a few coding rules, more than

half of which are coding conventions.

• We provide recommendations on the process and plat-

form for practitioners to apply continuous inspection in

classroom and field settings.

To the best of our knowledge, we present the first case

study applying the continuous inspection paradigm in a class-

room setting, and we believe that the results can provide ac-

tionable guidance for future related work.

2 Background and related work

In this section, we review related work on students’ program-

ming quality and introduce the background of the continuous

inspection paradigm that we adopted in the study.

2.1 Students’ programming quality and skills

Traditionally, software quality has been decomposed into in-

ternal and external quality attributes [14,21,22]. The external

quality attributes are often reflected at the runtime stage, e.g.,

functionality, usability, and correctness, which can be per-

ceived by users. An important and commonly used measure

for the external quality is defect [23]. Correspondingly, the in-

ternal quality attributes are often reflected at the development

and maintenance stage, e.g., maintainability, readability, and

security, with which developers are more concerned. For poor

internal quality attributes, there are some well-accepted pat-

terns or indicators [24]. For example, the over-complexity

of the methods affects the maintainability and readability of

code; and unused parameters and duplications could cause

security and reliability problems. In this paper, we focus on

a static view of the software, while considering its internal

quality of student code.

Multiple studies have shown that both the teaching and

learning of high-quality programming are deficient in col-

leges’ education systems. Breuker et al. [2] examined the in-

ternal quality of the code written by first- and second-year

students based on seven sub-characteristics: size, readability,

understandability, structure, complexity, duplicates, and ill-

formed statements, which corresponded to 22 metrics. Using

a Mann-Whitney test on the measurement results, they found

that there is no clear difference between the internal qual-

ity of code produced by students in different years of study.

Salman [1] investigated the differences in internal code qual-

ity between students and professionals in the context of test-

driven development. He conducted Mann-Whitney tests on

20 proposed internal quality metrics, e.g., cyclomatic com-

plexity, lines of code, unique operands count, maintenance

severity, etc. The statistical tests showed that code quality

differs between students and professionals in the cases of

test-last development and test-driven development tasks. He

also found that test-driven development has an effect on im-

proving the code quality. Carver and Kraft [4] conducted an

empirical study in two offerings of a senior-level computer

science course to determine how well students are learning

testing skills. They investigated student testing skills in two

phases: manual creation of the test suite and use of Code

Cover to improve the test suite. The test coverage of student

code was measured with three metrics: statement coverage,

branch coverage, and condition coverage. The results indi-

cated that without a coverage tool, students achieve signifi-

cantly less than 100% statement, branch or condition cover-

age. When using Code Coverage, students increase coverage

levels.

Pair programming is an important approach in the re-
viewed studies to train students’ programming skills and im-
prove their programming quality. Akinola [25] compared the
solo and pair programming performances of 60 student pro-
grammers in terms of their effort (comprehension time and

coding time), bug occurrence (the number of bugs/errors) and

effectiveness (score obtained at the end of the exercise). He

divided the students into two equally sized groups and as-

signed both groups the same programming task. The t-test

statistic results showed that pair programming improves per-

formance relative to solo programming in terms of the fac-

tors analyzed. To determine the effects of pair programming

on students’ behavior and performance in a Middle Eastern

society, Nawahdah and Taji [5] conducted an experiment tar-

geting two sections of an advanced computer programming

course in two semesters (30 and 29 students in both sections

in the first and second semester, respectively). They observed

that students in the pair-programming section produce bet-

ter quality code (e.g., fewer code lines, fewer syntactic er-

rors, and more comments, etc.) than the students in the tra-

ditional section. Braught et al. [26] conducted a controlled

study that directly measured 176 students’ acquisition of indi-

vidual programming skills. They used course scores and sur-

vey responses to measure student performance, attitudes, and

6) CQIs refer to the violations reported by static analysis tools

4 Front. Comput. Sci., 2020, 14(5): 145205

retention. Using an ANOVA test, they found that pair pro-

gramming improves the individual programming skills.

Additionally, a few other approaches were proposed to

improve students’ programming quality. Code review is a

method in which the students or tutors manually inspect the

quality of code. Generally, code review can be categorized

into three categories based on the role of the reviewer: self

code review, peer code review and tutor code review, among

which peer code review is recognized as the most practi-

cal [27, 28]. Hundhausen et al. [29] proposed a tutor-based

code review process called pedagogical code review in which

student code is reviewed by trained moderators. By analyz-

ing inspection logs and exit surveys, they found that peda-

gogical code review improves the quality of students’ code,

stimulates discussions of programming issues, and promotes

a sense of community. Chen and Tu [11] conducted an ex-

periment on the programming assignments of a junior-year

Windows programming course. During the process, the stu-

dents were asked to keep removing 12 bad smells (e.g., long

method and duplicated code). The statistical results showed

that as the program assignments progressed, the average stan-

dard deviation value of smell density significantly decreased,

and students’ responses showed a significant improvement in

code quality.

Pair programming or code review, a method to improve

students’ programming quality through the surveillance and

alerts of the peers or tutors, is a relatively subjective and

manpower-consuming task, which is in stark contrast to

the continuous inspection method in our study. A detailed

comparison between the two approaches is discussed in

Section 6. Chen’s work [11], requiring the students to keep

removing code smells, is similar to the continuous inspection

process in effect, while the inspection scope of code inter-

nal quality is relatively narrow (12 bad smells). In contrast,

referencing the social coding methods, we implemented an

automated inspection process for the pushed code. The static

quality analysis tool we adopted, SonarQube, covers 7 axes

of code quality (a detailed introduction to the execution envi-

ronment is presented in Section 4).

2.2 Continuous code quality assurance

The DevOps movement intends to establish a culture and en-

vironment where building, testing, and releasing software can

occur rapidly, frequently, and more reliably [30]. Automa-

tion of software quality assurance is key to the success of

DevOps [31]. Continuous integration is a widely adopted au-

tomated method for assuring the external quality of code.

Vasilescu et al. [32] analyzed historical data on process and

outcomes in GitHub projects to investigate the effects of con-

tinuous integration. They found that continuous integration

improves the productivity of project teams who can integrate

more outside contributions without an observable diminish-

ment in external code quality (number of bugs per unit time).

It has also been introduced in the classroom setting. Bowyer

and Hughes [33] conducted a study in which SE undergrad-

uates were given a short intensive experience of test-driven

development with continuous integration using an environ-

ment that imitated a typical industrial circumstance. The re-

sults showed good participation by student pairs and clear

understanding of agile processes and configuration manage-

ment. Heckman and King [34] presented the canary frame-

work, employing GitHub and Jenkins for supporting collab-

oration, continuous integration, code analysis and automated

grading. They conducted a case study in five courses with

more than 3,000 students. They found the framework pro-

vided benefits of automated grading and supported the teach-

ing philosophy of situated learning.

Continuous integration ensures the external quality of code

through automating the building and testing process, that is,

it does not concern the internal quality of code. Focusing on

the internal quality assurance of code, SonarSource published

the continuous inspection white paper [35] in 2013, in which

the key characteristics and principles are applied in this study.

The white paper discusses four types of shortcomings (e.g.,

lack of process ownership and pushback from development

teams) in traditional code quality management such as punc-

tual audits (the code review processes are usually performed

by external auditors at specified intervals). In light of these

shortcomings, the white paper proposes 10 principles of con-

tinuous inspection, and we list the core 4 principles: (1) man-

aging software quality must be everyone’s concern from the

beginning of development; (2) software quality requirements

must be objective; (3) stakeholders must be alerted when new

quality flaws are injected; and (4) software products must be

continuously inspected. The essential goal behind continuous

inspection is to find problems early when fixing them is still

inexpensive and easy.

As an internal quality assurance paradigm, continuous in-

spection has been widely adopted in open source software

communities and industrial companies [36]. However, to the

best of our knowledge, few if any existing studies have in-

troduced this popular method into the educational context or

have reported the effects on students’ programming quality.

This study is therefore designed to understand the effects and

challenges of continuous inspection in the classroom setting.

Yao LU et al. Improving students’ programming quality with the continuous inspection process: a social coding perspective 5

3 The continuous inspection process

We inherit the principles of continuous inspection [35] and

design a quality assurance process by integrating continuous

inspection into students’ collaborative projects. In particular,

the process emphasizes that (1) the students’ code changes

must be continuously inspected by static quality analysis

tools; (2) all projects members should participate in the qual-

ity assurance process; and (3) stakeholders must be alerted

when new CQIs are injected. The process is based on the Git

branching collaboration model, which is commonly adopted

in industry [37, 38]. Typically, a collaborative development

team is composed of more than two students, and includes a

team leader role, which is responsible for team management,

including task assignment and contribution collection. The

process (see Fig. 2) begins with the team leader creating the

project repository. Then, each member forks the repository

and clones it to the local Git repository. The team leader sub-

mits code on the develop branch, and the members develop

on their own branches. After making changes, e.g., imple-

menting a feature or fixing a defect, the members push their

local changes to the remote repository. The quality analysis

processes are then automatically triggered, and the members

should fix the CQIs reported by the static quality analysis tool

(see mark 1© in Fig. 2). When the members decide to merge

their contributions to the leader’s branch, they first pull the

latest code on the develop branch to resolve the conflicts7)

caused by concurrent changes. Then, they open PRs, ex-

pressing their readiness to have the branches containing their

changes merged into the leader’s develop branch. The team

leader and members can review the PRs in TRUSTIE and dis-

cuss whether to merge them. During this process, the leader

may require the members to make additional changes, based

on the results of the review process, which can lead the mem-

bers to repeat the pushing and fixing actions and result in

updated PRs. When the PRs are accepted and merged to the

develop branch, the quality analysis processes are triggered,

which can again lead to the CQI fixing actions (see mark 2© in

Fig. 2). After building a new version, the team leader merges

the code on develop to the master branch, which stores stable

releases of the software system. In addition, we stipulate the

following regulations that the students should follow during

the process:

• Each team should fix or close all CQIs of the projects

before starting the continuous inspection process.

• Each student is responsible for fixing the CQIs of her

modules on her own branch.

• The CQIs should be fixed within 24 hours after being

reported by SonarQube.

• All CQIs on the master branch should be fixed or

closed. If a CQI is marked as “won’t fix”, reasons should

be given as comments in SonarQube.

• The descriptions of commits or PRs aiming to fix CQIs

should be specified as “Fixing CQIs (...)”.

4 Methodology

To evaluate the effectiveness of the continuous inspection

process on students’ programming quality, we conducted a

two-year controlled experiment with the students in our col-

lege. We are interested in investigating the improvement in

Fig. 2 The continuous inspection process for students’ collaborative projects

7) Conflicts occur when Git tries to merge two branches that have changes in common code pieces

6 Front. Comput. Sci., 2020, 14(5): 145205

students’ programming quality and their violated coding

rules through the process. In addition, we want to understand

the issues they encountered during the experiment. Specifi-

cally, we consider the following research questions:

RQ1: To what extent has the students’ programming quality

improved after adopting the continuous inspection process?

RQ2: What are the quantities and categories of the introduced

CQIs through the continuous inspection process?

RQ3: What challenges do the students face when working

with the continuous inspection process?

To answer our research questions, we followed a mixed-

method approach combining quantitative and qualitative

methods [39]. We analyzed the CQI data on the whole re-

vision histories of the students’ repositories and obtained the

students’ perceptions through a post-course survey and semi-

structured interviews.

4.1 Setting

4.1.1 The courses

In our college, the undergraduates majoring in SE have to

take a series of three mandatory courses, which are spread

over the autumn, spring and summer semesters. During the

autumn semester, in addition to studying the curriculum

knowledge, the students are required to read the code of an

open source Android project, and then add some new fea-

tures. During the spring and summer semesters, the courses

are centered on a software-development project: the students

have to come up with a novel idea on a software system and

collaboratively develop the project using the iterative devel-

opment model. They are required to accomplish four itera-

tions (two iterations in each semester). At the end of each it-

eration, they submit an executable version of the software and

its related documents. During the first iteration in the spring

semester, the teacher teaches related theoretical and empir-

ical knowledge in the class combining the students’ work

at the beginning of each phase (e.g., requirement and de-

sign). After the first two iterations of the course project in the

spring semester, the students are usually more familiar with

the programming language, development environment and

pull-based collaborative development process. Therefore, in

the summer semester, the course is intended to help students

to improve their programming quality through the final two

iterations, to achieve higher educational goals. The summer

semester lasts only for approximately 20 days, which is much

shorter than the spring semester. However, during the summer

semester, the students are required to spend all day on this

single course. Thus, the actual time they spent on the course

is no less than in the previous semester. Moreover, the stu-

dents’ continuous participation during the summer semester

provides conditions for us to implement the continuous in-

spection process. In the summer semester, each team was re-

quired to fix all CQIs in the initial analysis process in the first

two days of the semester. Note that the teacher did not teach

good coding rules or practices in the class throughout the two

semesters.

4.1.2 Participants

We conducted the experiment on the students in the same

courses during the 2016 and 2017 school years. During the

2016 school year, we had a total number of 22 students in

the class, who were grouped into 5 teams. During the 2017

school year, the number of the students increased to 26, form-

ing 6 teams. All the students were male juniors majoring in

SE, and all the teams consisted of 4 or 5 students. In addi-

tion, we had two classroom teachers and three teaching assis-

tants (TAs). Each teacher and teaching assistant supervised a

project team on their progress in development, artifacts and

tool use.

4.1.3 Projects

At the beginning of the project phase in the spring semester,

each team was given one week to propose innovative ideas

and requirements for their projects. In the end, the stu-

dents produced original software systems covering different

domains, e.g., AR-Navigation Android apps, smart library

robots, and multi-drone rescue systems. All projects have

used Java as the main programming language, and more than

5,000 lines of source code were written by the students in

each team.

4.1.4 The continuous inspection platform

In the courses, we leverage TRUSTIE [20] (Trustworthy

software tools and integration environment) to support our

course teaching and to execute the quality assurance process.

TRUSTIE is a popular platform among Chinese universities

that enables collaborative learning (e.g., resource sharing,

homework assignments, and discussion forums) and collabo-

rative development (e.g., issue tracking, task assignment, ver-

sion control, and PRs & comments).

The collaborative development environment builds on Git

and GitLab. We built the continuous inspection environment

by integrating SonarQube into the collaborative development

environment. SonarQube is a popular static analysis platform

that supports more than 20 code languages and covers 7 axes

Yao LU et al. Improving students’ programming quality with the continuous inspection process: a social coding perspective 7

of code quality: architecture& design, duplications, test cov-

erage, complexity, potential bugs, coding standards and com-

ments. It is a web-based application and provides a powerful

plugin mechanism to support users in adding new languages,

rules and integrations. The quality characteristic model of

SonarQube is based on the SQALE (software quality assess-

ment based on lifecycle expectations) methodology, which is

a generic quality model to support the evaluation of nonfunc-

tional requirements related to the code quality [40]. We used

the popular automation server Jenkins to connect the code

repositories in GitLab and SonarQube deployed in TRUSTIE

(see Fig. 3). By configuring some settings in Jenkins, we im-

plemented an automated process to analyze the latest revision

in the code repositories when new code changes were pushed

or merged to the GitLab server. After installing the Git plugin,

SonarQube can automatically detect the introduced commit

of a CQI using the git blame command and display the rel-

evant information in the source code view (as shown by the

white dialog box in Fig. 4). This feature allows us to easily

obtain the CQIs introduced by a student. Note that the ver-

sion of SonarQube that we used is 5.6, with the Java plugin

(SonarJava) version of 4.1.

Fig. 3 The quality analysis framework in TRUSTIE

Fig. 4 The screenshot of students’ CQIs displayed in SonarQube

4.2 Research methods

To investigate the effects of continuous inspection on the stu-

dents regarding their programming quality, we designed the

controlled experiment from two dimensions. The first dimen-

sion examined the programming-quality changes in the stu-

dent individuals before and after they participated in the con-

tinuous inspection process. Second, to examine whether the

effects (if any) were caused by the process, we compared stu-

dent CQID changes between two groups that did adopt and

did not adopt continuous inspection. Because the number of

the teams in 2016 was odd and relatively small, they all par-

ticipated in the continuous inspection process. Accordingly,

in 2017, we randomly divided the 6 teams into two groups (3

teams in each group): the experimental group, which adopted

continuous inspection, and the control group, which did not.

The experiment was executed in a controlled setting to elim-

inate possible effects of potential disturbing factors, for ex-

ample, the students were supervised by teachers or TAs to

submit code patches using their own Git account in the form

of a pull request, rather than merging code using “copy and

paste”; the status of the collaborative development environ-

ment was continuously monitored in case of unexpected ser-

vice crashes. The students were required to continuously par-

ticipate in our experiment to avoid absence such as a leave.

4.2.1 Data collection

To answer RQ1 and RQ2, we collected quantitative data that

record students’ development history and the introduced and

fixed CQIs. We also collected students’ perceptions regarding

RQ1 and RQ3 through a survey and interview.

Quantitative data Given that all the projects used Java

programming language, we only analyzed the code quality

of the Java modules. The students used Git to update the re-

lated documents in addition to code changes. Therefore, the

commit histories contain document updates, non-Java code

changes and Java code changes. Additionally, we observe that

the commit history contains some large commits which are

used to resubmit the whole project or to clean the content on

branches; thus, we call these commits non-change commits.

Table 1 summarizes the data on the commits of the 11 teams

throughout the two semesters.

By qualifying the code quality, CQIs are used to indicate

which good coding practices are violated in the static anal-

ysis. The good coding practices manifest as coding rules in

SonarQube. Accordingly, while running an analysis, Sonar-

Qube raises a CQI when a piece of code breaks a coding

rule. Note that SonarQube stores CQIs in an incremental

way: if new CQIs are introduced, it stores them in the

MySQL database; otherwise, it updates the statuses of ex-

isting CQIs when their statuses are changed (e.g., fixed in

code or removed by users in SonarQube). In addition, if a

8 Front. Comput. Sci., 2020, 14(5): 145205

Table 1 Statistical data of commits of the teams

Team Project type Total code lines Java code lines1 Total commits Java commits non-change commits Java authors Total CQIs

2016 school year

T1 Android app 5,143 4,094 199 56 20 5 2,434

T2 PC game 80,552 52,399 204 31 17 3 9,542

T3 NAO robot 20,081 1,481 194 71 3 3 5,425

T4 NAO robot 37,886 8,935 195 98 1 5 4,138

T5 Android app 10,830 6,534 237 89 26 4 24,790

2017 school year

T62 NAO robot 11,005 5,586 111 61 14 5 12,079

T7 Multi-drone system 17,407 9,973 219 128 10 4 17,770

T8 Smart device 9,370 6,949 184 109 10 4 5,433

T9 NAO robot 7,520 2,067 78 27 1 4 936

T10 Multi-drone system 11,448 2,120 107 68 6 4 3,799

T11 Website 9,810 2,480 78 11 4 4 428

1The Java code lines contain both open-sourced and changed code lines
2In the 2017 school year, T6, T8, T10 are included in the experimental group, and T7, T9, T11 are included in the control group

CQI is closed, we cannot obtain its introduced commit in-

formation through the web service API. Therefore, to ob-

tain all the CQIs introduced throughout the development his-

tory, we wrote a script to analyze the revisions that had

touched .java files (excluding the non-change commits), ex-

tracting the corresponding introduced commit data. Conse-

quently, three data sources formed our data set: the Git

repositories, the SonarQube database in TRUSTIE and the

extracted CQI data. In this study, the SonarQube Java plu-

gin that we used contained 141 rules, which were all ap-

plied in the inspection process. The detailed description of

the rules can be found at a GitHub project on this work: road-

far/continuous_inspection_in_classroom.

Qualitative data We sent an anonymous online survey to

the students after the final lesson of the course. The survey

had 10 questions, including single-choice, Likert-scale, and

open-ended questions. Specifically, we used four questions

to ask the students about their practices before and through

the process of continuous inspection and about their attitudes

toward the coding rules in future programming practices. We

also used five questions (including single-choice and Likert-

scale questions) to obtain student perceptions of the intro-

duced CQIs and their attitudes toward the continuous inspec-

tion process. Lastly, one open-ended question was used to

understand the issues they encountered throughout the pro-

cess. Consequently, we received 22 answers and 13 answers

in 2016 (all the students participated in the continuous inspec-

tion process in the 2016 school year; thus all of them partic-

ipated in our survey) and 2017 school years (the survey was

targeted to the experimental group in the 2017 school year),

respectively. The average time taken to answer the question-

naire was 114 seconds.

In addition, we conducted interviews with 10 students (4

and 6 in 2016 and 2017, respectively) who worked actively

during the continuous inspection process. Our goal in these

interviews was to understand, in greater detail, their work

practices, their perceptions of the process, and the problems

they encountered with the platform and process. The inter-

views were semi-structured based on 9 guiding questions,

and the interviewer could dig deeper with additional ques-

tions when appropriate [41]. Each interview was recorded

and lasted approximately 15 to 30 minutes.

4.2.2 Analysis

We conducted hypothesis testing to examine the changes in

student programming quality before and after they partici-

pated in the continuous inspection process. In this study, pro-

gramming quality refers to the ability to build software with

high internal code quality, e.g., good coding style, low com-

plexity, and best coding practices. Bad code quality patterns

can be identified as CQIs by static analysis tools, and more

CQIs in a code file indicate lower internal quality of the code.

Therefore, we used the code quality issue density, that is,

the number of introduced CQIs per changed code line, to

measure programming quality without considering the differ-

ences in severity among CQIs [17]. We calculated the number

of changed code lines of a student using the git log command,

which counts the added and deleted lines [42]. Note that the

changed code lines did not include autogenerated code such

as the code in R.java and BuildConfig.java files. We used the

nonparametric Wilcoxon signed-rank test for paired samples

to test for a difference in the mean CQIDs of students in the

control and experimental groups. We used the p value to de-

Yao LU et al. Improving students’ programming quality with the continuous inspection process: a social coding perspective 9

termine statistical significance, with the significance level set

to α = 0.05.

5 Results

In this section, we report the results of the quantitative and

qualitative methods. When quoting survey respondents and

interviewees, we refer to them using [YrX] notation and

[YiX] notation, respectively, where Y is the school year (16

and 17 correspond to 2016 and 2017, respectively) and rX or

iX represents the respondent’s or the interviewee’s ID.

5.1 RQ1: programming quality improvements

5.1.1 Changes in the introduced CQIDs

We first compared the introduced CQIDs of the students who

adopted continuous inspection between the two phases, i.e.,

the spring semester when they did not adopt continuous in-

spection and the last quarter of the summer semester when

they did adopt continuous inspection. The average introduced

CQID of a student in a phase (before and after using contin-

uous inspection) was calculated by the average CQID on

the commits (not including non-change commits) during that

phase. When calculating the number of CQIs, we did not

include the CQIs that raised in autogenerated code files, e.g.,

the R file in Android8). 10 and 16 students in the 2016 and

2017 school years respectively submitted Java code in both

phases (the remaining students were responsible for non-Java

modules or did not submit Java code in both periods). The

average number of changed code lines for these students is

1672, with the minimum, median, and maximum numbers

of 269, 806, and 5987, respectively. The introduced CQIDs

are shown in Fig. 5: s1-s10 represent the students in 2016

and the remaining represent students in 2017. Among the

16 students in the 2017 school year, s11-s20 represent the

students in the experimental group and the remaining repre-

sent the students in the control group. The results show that

the number of introduced CQIDs significantly decreased for

the majority of the students after adopting the continuous in-

spection process, and the results of the Wilcoxon signed-rank

paired test for the students in both school years confirmed

the significance: p values of 0.037 and 0.004 for the 2016

and 2017 school years, respectively (p<0.05). Furthermore,

we conducted the same analysis on the control group who

did not adopt continuous inspection in the 2017 school year,

and the results did not show significant differences between

introduced CQIDs (p value of 0.590). This result is consis-

tent with previous work [2], which shows that there is no

clear difference between the internal quality produced in dif-

ferent years without specific training procedures. Therefore,

we reject the hypothesis that the introduced CQIDs of stu-

dents adopting continuous inspection in the two phases are

identical and conclude that the number of introduced CQIDs

significantly decreased after adopting the continuous inspec-

tion process. To further understand the CQID changes of the

students who adopt continuous inspection in the process, we

divided the summer semester (20 days) into 4 phases (5 days

for each phase) and analyzed the changes in average CQIDs

throughout the 4 phases. The average CQIDs of individual

students in the 4 phases and the corresponding distributions

Fig. 5 Students’ introduced CQIDs before and after adopting continuous inspection

8) In the poster version (DOI: 10.1145/3183440.3195054) published in the 40th International Conference on Software Engineering (ICSE 2018), we did not
exclude the CQIs raised in autogenerated files, which leads to slight differences in the students’ introduced CQIDs, but the results of the hypothesis testing
still hold

10 Front. Comput. Sci., 2020, 14(5): 145205

Fig. 6 The changes in the students’ average CQIDs in the four phases. (a) Each student’s average CQIDs in the four phases; (b) the distribution
of students’ average CQIDs in the four phases. The red points represent mean values of CQIDs of each phase

are summarized in Fig. 6(a) and Fig. 6(b), respectively. We

observe that in the first 5 days, the students’ average CQIDs

distribute in a relatively wide range. In the second phase, the

students’ average CQIDs fall into a narrower range, and the

third quartile and mean value decrease by approximately half.

In the last two phases, the students’ average CQIDs generally

continue to decrease, and the mean and median value reduce

to 0.02 in the last phase.

5.1.2 Perceived impacts of continuous inspection

We provided the students who adopted continuous inspec-

tion with a set of 3 questions with a 5-level Likert scale to

query about their perceptions of the process; the answers are

presented in Fig. 7. The results show that the majority of

the students (more than 93%) agreed that the process helped

them to recognize bad coding habits and improve their pro-

gramming quality. In addition, more than 91% of the students

agreed either “mostly” or “strongly” that it is necessary to in-

troduce continuous inspection in software development prac-

tices, while the remaining respondents felt uncertain. When

answering the last open-ended question where they could ad-

dress anything about continuous inspection, 43.2% of the

students expressed positive feelings about the process. For

example, “I have learnt many poor practices that I haven’t

perceived before, and it does help me to improve program-

ming capability” [16r4] and “It (the process) is very useful,

and can help a student become an excellent programmer”

[16r6]. Moreover, some students mentioned the significance

of SonarQube: “SonarQube is a cool tool, and I will always

use it in the future. I believe it will improve my programming

quality” [16r19]; “The majority of the reported CQIs make

sense. Unexpectedly, however, it does not even allow com-

menting code, and I have to get used to it gradually” [17r12].

Fig. 7 The students’ perceptions of the process

Furthermore, in the interview, some students described

their detailed experiences of the process. One student in Team

1 described his feelings and mentioned the incentive mecha-

nism of the process:

“(...) The teachers ask us to fix all CQIs analyzed by Sonar-

Qube, which means you should better consciously avoid intro-

ducing the issues that are already known. I think it is an im-

portant incentive factor to help me build good coding habits.”

[16i2].

Some other students mentioned the effects of continuous

inspection on software quality, e.g.,

“I think continuous inspection is meaningful. At an earlier

stage, I write code assuming that the app performs in ideal

cases, without considering the exceptional situations, which

leads to low software reliability. Continuous inspection can

help me find and address such issues.” [17i2].

“Continuous inspection helps us find and solve code issues at

early stages, avoiding running into too much technical debt

or even introducing bugs.” [17i7].

Overall, our experimental results show that the students’

introduced CQIDs significantly decreased after adopting the

Yao LU et al. Improving students’ programming quality with the continuous inspection process: a social coding perspective 11

continuous inspection process, while the students’ introduced

CQIDs in control group did not show significant differences

between the two phases. Therefore, we can conclude that the

adoption of the continuous inspection process leads to the de-

crease of the students’ introduced CQIDs. Our qualitative re-

sults reveal two main mechanisms of continuous inspection

which make the results happen: (1) the regulation that ev-

ery member should fix their introduced CQIs stimulates the

students to consciously avoid introducing known CQIs to re-

duce the workload (the transparency of everyone’s contribu-

tion quality might be another reason, which was not reported

by the students); (2) the ‘continuous’ reporting and fixing ac-

tivities help them remember the CQI patterns, thereby build-

ing good coding habits.

5.2 RQ2: the quantities and categories of introduced CQIs

5.2.1 All CQIs and rules

We first analyzed the quantities and categories of the CQIs

that the students introduced throughout the continuous in-

spection process. By default, SonarQube sets one or more

tags for a coding rule, and one tag covers one or multiple as-

pects of the 7 axes of code quality. Accordingly, we classified

the CQIs with multiple tags into the first category. To under-

stand the students’ programming practices, we excluded the

CQIs that are raised by non-change commits or the CQIs in-

troduced by autogenerated code. Table 2 lists the top 80% of

the CQIs introduced by the students during the two school

years (82.3% and 81.0% for the two school years, respec-

tively).

We observe that the number of violated rules for the CQIs

introduced by the students in both school years approxi-

mately follow the Pareto Principle: 80% of the CQIs come

from 20% of the rules. The high Gini coefficients9) for the

number of violated rules of each team (ranging from 0.59 to

0.83) indicate that the introduced CQIs are concentrated in a

few coding rules. These rules, however, account for only a

small proportion of all Java rules in SonarQube: 14.9% and

17.7% in the 2016 and 2017 school years, respectively. Fur-

thermore, we analyzed the categories of the introduced CQIs.

Interestingly, the top 6 categories of the CQIs introduced by

the students in the two school years tend to be concentrated

in the same categories, even having a similar distribution. In

particular, Table 2 shows that the most frequently introduced

CQIs concern coding convention, which constitutes approx-

imately half of all CQIs. To understand the typical CQIs in-

troduced by the students, we analyzed the categories of the

rules violated by the most students (see Table 3). The results

indicate the common poor coding habits of the students, e.g.,

“commenting out” code, reserving unused imports, improp-

erly naming constants.

Table 2 The categories of the introduced CQIs and violated rules

Category CQIs CQIs pct.1 Rules2 Rules pct.3

2016 school year

Convention 20,032 53.8% 15 10.6%

CERT4 3,967 10.7% 40 28.4%

CWE5 1,925 5.2% 6 4.3%

Misra6 1,834 5.5% 4 2.8%

Unused 1,521 4.1% 2 1.4%

Clumsy7 1,358 3.6% 16 11.3%

2017 school year

Convention 22,731 47.7% 16 11.3%

CERT 5,973 12.5% 31 22.0%

Misra 3,137 6.6% 4 2.9%

Clumsy 2,311 4.9% 15 10.6%

Unused 2,306 4.8% 2 1.4%

CWE 2,155 4.5% 6 4.3%
1The CQIs pct. refers to the percentage of CQIs in a specific category to all CQIs
2The Rules are the number of violated rules corresponding to the CQIs in a specific
category
3The Rules pct. refers to the percentage of the rules in a specific category to all Java
rules
4The CERT standard. Most of the CERT rules are good programming practices and not
language specific
5Common Weakness Enumeration is a formal list of software weakness types
6Best practice guidelines for the safe and secure apps
7Extra steps are used to accomplish something that could be done more clearly

Table 3 The typical CQIs of the top six categories

Category Rule example Students pct.

Convention Constant names should comply with a
naming convention

69.7%

Unused Useless imports should be removed 75.8%

CERT Exception handlers should preserve the
original exceptions

75.8%

CWE Class variable fields should not have pub-
lic accessibility

72.7%

MISRA Sections of code should not be “com-
mented out”

78.8%

Clumsy Collection.isEmpty() should be used to
test for emptiness

42.4%

5.2.2 The violated rules in the process

We further analyzed the students’ practices of violating cod-

ing rules in the continuous inspection process. In the summer

semester, the median and mean values of students’ commits

are 18.00 and 23.15, respectively, and the median and mean

values of the violated commits for the same rules per student

are 2.00 and 2.10, respectively, indicating that more than half

9) The Gini coefficient is an econometrics measure used to measure income concentration; the highest Gini coefficient for a country is approximately 0.6,
signifying that a few people have cornered most of the income

12 Front. Comput. Sci., 2020, 14(5): 145205

of the rules are violated in no more than two commits by the

same students. Based on this preliminary result, we analyzed

the violated commits for the same rules of individual students

who have participated in the continuous inspection process.

The results are presented in Fig. 8.

Fig. 8 The distribution of students’ violated commits of the same rules in
the continuous inspection process

S1-s20 correspond to the students (s1-s20) who are investi-

gated in Section 5.1. s21-s24 are the students who adopted the

continuous inspection process but did not submit Java code

in both phases. The results show that the median values of

the number of violated commits for the same rules of 79.2%

of the students (19) are less than three. We then investigated

the top ten rules that the students repeatedly introduced (see

Table 4). We found that these rules are not always easy for

students to follow during the code maintenance phase. For

example, it is challenging and sometimes unnecessary for the

students to write comments for every public APIs or fields

(the first rule in Table 4); it is useful to reserve necessary

code pieces in the form of comments for potential future use

(the second rule in Table 4), and it is sometimes difficult to

maintain the complexity of methods with the goal of imple-

menting additional features (the fourth rule in Table 4).

In sum, the CQIs introduced by the students in the two

school years are concentrated in a few of the same coding

rules and categories, with approximately half of the rules con-

cerning coding conventions. For more than half of the vio-

lated rules, the majority of the students violate the same rules

in no more than two commits, and the rules most repeatedly

violated by the students are not always easy for students to

follow during the code maintenance phase.

5.3 RQ3: the challenges

To find the pain points experienced when implementing the

process, we introduced a mandatory open-ended question in

the survey and asked the students to state the challenges they

faced during their work practices. In addition, we also com-

municated with the students about this subject during the in-

terviews. We learned that the challenges revolve around three

main aspects: repetitive fixing work, tool issues and work-

load.

Repetitive fixing work The work coupling among the

students and the mechanism of the distributed collaboration

development model raise issues of work conflicts, which oc-

cur when Git tries to merge two branches that have changes

in common code pieces. For example, both student A and stu-

dent B change the tenth line of the same code file on their

own branches, and A tries to merge B’s branch; then, a con-

flict occurs. Moreover, improper task assignment by the team

leader (e.g., the coupling between the tasks that are assigned

by the leader is high) and low-quality structure of code (i.e.,

the coupling between the modules is high) in the classroom

setting make this issue common. A few students mentioned

this issue in the survey, e.g., “Conflicts would happen when

multiple students submit PRs” [16r11] and “Resolving con-

flicts is a difficult work” [16r4]. Worse still, CQIs are some-

times raised repeatedly as a result of resolving conflicts, thus

necessitating the repetitive work of fixing CQIs. For example,

“I have ever met such scenes: I submitted a code patch and

then fixed the CQIs reported by SonarQube, but a teammate

overrode my code, and same CQIs were reported again. Con-

sequently, when I pulled the latest code to my branch, I had

to fix them again.” [16i1].

The case above describes a common situation: when re-

solving conflicts, a student usually tends to retain their own

code pieces, thereby causing repetitive reports of CQIs.

Tool issues False positives frequently occur in static anal-

ysis tools [43] and are mentioned by the students in our study

as well. For example, “False positives exist in SonarQube,

which should be improved” [17i9,17i19], “There are some

Table 4 Statistical data of commits and violated commits of the same rules in the continuous inspection process

Rule description Category Commits CQIs Students Students pct.

Public types, methods and fields (API) should be documented with Javadoc Convention 113 14,428 23 95.8%

Sections of code should not be “commented out” Misra 88 4,637 21 87.5%

String literals should not be duplicated Design 84 616 22 91.7%

Methods should not be too complex Brain-overload 76 961 22 91.7%

Useless imports should be removed Unused 76 3,644 19 79.2%

Yao LU et al. Improving students’ programming quality with the continuous inspection process: a social coding perspective 13

false positives reported by SonarQube, and similar issues are

usually reported at many code pieces. In this case, I have to

mark all of them as “won’t fix” one by one, which spends a

lot of time.” [16i3]. Another student described a specific case

of false positives that he encountered:

“The R file is automatically generated by Android SDK, and

the naming convention of member variables does not meet

Java naming standards, while SonarQube reports issues on

all of them. More than that, since the file is updated after each

compiling process, the issues marked as “won’t fix” would

be reported again after the latest changes are pushed to the

server.” [16i2].

The utility of the CQIs is also mentioned by respondents in

the survey: they think that resolving some CQIs is useless for

improving code quality, e.g., “Some CQIs reported by Sonar-

Qube make no difference to code quality” [16r18], “Some

CQIs are too simple” [16r9], and “The ability of SonarQube

to find CQIs is relatively complete, while some CQIs are

still over sensitive” [16r19, 17r27]. In this regard, a student

suggested rule customization of SonarQube in the interview:

“(...) It is best to provide the rule customization feature, be-

cause every team has her own coding convention” [17i14].

Additionally, the difficulties in understanding coding rules

are mentioned by some students, e.g., “(...) I hope that the

platform can add specific explanations and solution examples

to the CQIs” [16r14] and “SonarQube should provide fixing

recommendations for the CQIs” [17i9].

Workload We asked the students to fix newly reported

CQIs in one day. Some interviewees expressed the difficulties

in fixing CQIs in time. For example,

“I didn’t have enough time for fixing all CQIs after submitting

code patches. In most cases, I had not completed the coding

work until night, and new tasks would come in the next day.

So, I would fix high-severity CQIs first.” [16i2].

Another student expressed his concern about the granular-

ity of commits when asked about the strategies adopted to

follow our requirements on CQI fixing time:

“Well, I think it depends on the amount of code you submitted.

If you change less than 100 lines of code and get a few CQIs,

it is easy for me to fix them in one day; otherwise, if you have

not submitted code changes until having modified hundreds of

lines, it will be difficult for me to fix the CQIs in a short span

of time.” [16i4].

6 Lessons and discussion

We now discuss the lessons learned through the two-year ex-

periment and provide recommendations that could help to

streamline the experience for practitioners in related work.

Moreover, we contrast the continuous inspection paradigm

with the well-known pair programming method in terms of

improving students’ programming quality.

6.1 Recommendations

6.1.1 Recommendations for the process

We present the guidelines for the process based on three as-

pects: the first one is geared toward students while the others

are geared toward teachers.

Minimizing contribution friction. Minimizing contribution

friction is recommended for contributors when addressing the

granularity of PRs in social coding sites, for which small and

isolated contributions are easier for integrators to process and

the impact of each change is more easily evaluated [44]. In

the classroom setting, especially when introducing continu-

ous inspection, it is even more strongly recommended for

students to minimize contribution granularity when submit-

ting contributions. The results for RQ2 and RQ3 show that

the introduced CQIs are concentrated in a few coding rules,

and work conflicts often lead to repetitive fixing work. In this

regard, small and isolated contributions can reduce the num-

ber of times the same rules are reported as well as conflicts,

thus improving the development efficiency.

Teaching coding rules in class. Through the continuous

inspection process, the coding rules that the students have

mastered are largely determined by what they introduce. The

variety of the coding-skill requirements and module types

make the coding rules learned by the students diverse with

respect to category and limited in quantity. Therefore, teach-

ers could combine the students’ autonomous coding prac-

tices and classroom teaching. It is recommended that teachers

summarize the coding rules that are easily introduced by the

students and share them with all the students in the class. Ad-

ditionally, they can teach and explain the coding rules that the

students find difficult in class.

Customizing coding rules. As reported by the students,

the utility issue of CQIs sometimes puzzles them. To address

this issue, teachers can customize the coding rules based on

the teaching requirements: they can choose valuable coding

rules or even add new rules, ignoring low-utility ones. Fur-

thermore, they can customize coding rules based on the inter-

nal quality measures of students’ code proposed by previous

studies [2, 45].

14 Front. Comput. Sci., 2020, 14(5): 145205

6.1.2 Recommendations for the platform

We first provide recommendations on the deployment of the

continuous inspection environment.

The deployment of the continuous inspection environment.

In our work, we implemented the automated analysis pro-

cess by using Jenkins to connect the code repositories and

SonarQube. The latest version of GitLab community edi-

tion (free) has provided features for the continuous integra-

tion/deployment workflows. Accordingly, practitioners can

use this function to configure SonarQube as the continuous-

inspection tool. In addition, the GitLab Ultimate edition

(paid) has provided a complete set of solutions to the contin-

uous inspection process, which uses SonarQube as the code

analysis tool. Hence, users can easily deploy a continuous in-

spection environment by using the GitLab Ultimate edition.

Our work also uncovers several aspects for improvement

of the continuous inspection platform.

Personalized guidance in learning coding rules. To support

the students in learning more coding rules, in addition to the

violated rules, it is recommended that the platform provides

personalized learning paths for programming quality for the

students. In particular, the platform can ‘1learn” the students’

development histories to continuously and automatically rec-

ommend the potential coding rules that they have not yet mas-

tered.

CQID rank list. To improve the students’ motivation for

writing high-quality code, the platform can present a CQID

rank list on the project page, displaying the project mem-

bers’ submitted code lines, introduced CQIs and CQIDs, and

fixed CQIs. As with the contribution boards of social cod-

ing sites, such a transparency mechanism of contribution and

quality can stimulate the students to improve their technical

skills and manage their reputation [16], as well as facilitate

the teachers’ evaluation work.

Intelligent recommendation of repair scheme. In our ex-

periment, the students often face difficulty in understanding

the coding rules and finding suitable solutions. In this regard,

in addition to providing more specific explanations and re-

pair examples, the platform can recommend potential fixing

schemes for the reported CQIs. As demonstrated by the re-

sults of RQ2, similar CQIs can be reported in different code

pieces due to cloned code. Therefore, the CQI fixing history

could be instructive for fixing new CQIs, especially in the

same project context. Accordingly, the platform could rec-

ommend potential fixing schemes through mining the fix-

ing histories. Similar methods have been adopted in previous

work [46] to recommend bug-fixing schemes.

6.2 Comparison of continuous inspection and existing

methods

As a coding practice advocated by extreme programming

[47], pair programming requires that teams of two program-

mers work simultaneously on the same design, algorithm,

code, or test. Sitting shoulder to shoulder at one computer,

one member of the pair is the “driver”, actively creating code

and controlling the keyboard and mouse. The other mem-

ber (the “navigator”) constantly reviews the keyed data in

order to identify tactical and strategic deficiencies, includ-

ing erroneous syntax and logic, misspelling, and implemen-

tations that do not map to the design [48]. Compared with

pair programming, code review requires certain reviewers to

periodically walk through the students’ programming assign-

ments rather than monitoring the code pieces that the stu-

dents are typing. The code inspection tool in continuous in-

spection plays a role similar to the “navigator” in pair pro-

gramming and the reviewer in code review. Table 5 sum-

marizes their main differences regarding six aspects. Among

the three approaches, the inspection frequency of code re-

view is relatively low. In contrast to pair programming and

code review, the inspection approach of continuous inspec-

tion is objective and professional. The automated inspection

process saves additional manpower compared to both code

review and pair programming, thus providing more opportu-

nities for students to conduct programming practices, which

is critical for students’ collaborative programming projects.

Although both the inspection approaches of pair program-

ming and code review are manual, the quality inspection cri-

terion of code review [29] (especially the tutor-based code

review) seems more professional and consolidated, the qual-

ity data are traceable, and the support for distributed devel-

opment is better. Previous studies have shown that pair pro-

gramming [5,25,48–50] and code review [27,29,51] are con-

ducive to improving students’ programming quality as well as

guaranteeing the quality of code. Further evaluation of their

differences in performance regarding learning effects and de-

velopment efficiency is required.

7 Threats to validity

Despite our best efforts, there are several threats to the valid-

ity of the results of this study. The three subsections below

present the threats to the internal, external and construct va-

lidity.

Internal validity The validity of the results of this study

is based on the validity of the tool that we use: SonarQube.

Yao LU et al. Improving students’ programming quality with the continuous inspection process: a social coding perspective 15

Table 5 Main differences among continuous inspection, pair programming, and code review

Continuous inspection Pair programming Code review

Inspection frequency continuous realtime periodical

Inspector static analysis tool peer tutors or students

Inspection objectivity objective subjective subjective

Inspection scope the whole project specific code pieces the whole project

Traceability1 traceable untraceable traceable

Support for distributed development supported unsupported supported

1Traceability refers to whether the code quality data and developer activity data are traceable for a method

The concepts and taxonomy we use are the default values set

by SonarSource. The characteristic models are based on the

SQALE methodology, which is a public methodology to sup-

port the evaluation of a software application’s source code

in the most objective, accurate, reproducible and automated

way [40]. A common issue of static analysis tools is false pos-

itives [43], which occur in our study. To deal with this issue,

we took the following measures: (1) we asked the students

to mark the false positives as ‘won’t fix’ CQIs and leave the

reasons (specified in Section 3), which is a handling method

for false positives provided by SonarQube; (2) when con-

ducting quantitative analyses, we excluded the commonly-

reported false positives (e.g., the CQIs reported in R.java and

BuildConfig.java files) and excluded the CQIs with “won’t

fix” tags.

The post-course survey and interview are used to quali-

tatively assess the students’ perceptions of the process. Al-

though we made the survey anonymous and asked the stu-

dents to answer objectively, they might have tended to select

positive options in the survey and express positive feelings in

the interview [52]. In addition, the question-order effect [53]

(e.g., one question could have provided context for the next

one) may lead the respondents to a specific answer. In our

case, we ordered the questions based on the natural sequence

of actions and the difficulty of answering the questions to help

respondents recall and understand the context of the ques-

tions.

External validity Although the experiment is conducted

with junior-level students in both school years, the number of

participants in our experiment is limited (48 students in total),

which may influence the generalizability of the results. In ad-

dition, all the students are male; further evaluation is required

to determine whether the results hold for female students.

Construct validity Referencing the widely used exter-

nal quality metric, defect density, we measured the students’

programming quality based on the density of the CQIs that

she has introduced, without considering the severity of the

CQIs. However, not all quality issues are equally important in

a given context [54]. Particularly, in our experiment, the in-

troduced CQIs are concentrated in a few coding rules, which

means that a single coding rule tends to be violated many

times by a student. Thus, the CQID metric may not accu-

rately measure the students’ programming quality regarding

different coding rules. Last, our finding regarding RQ1 holds

only when they are participating in the continuous inspection

process. Although we believe that students can build good

programming habits through the continuous training, whether

the good programming habits stick without the continuous in-

spection method must be examined in future studies.

8 Conclusion

In this study, we introduced continuous inspection, an

internal-quality assurance method widely adopted on so-

cial coding sites, into an educational setting. We designed a

specific continuous inspection process for students’ collab-

orative projects and then conducted a two-year controlled

experiment to investigate how the process influences the stu-

dents’ programming quality. The quantitative and qualitative

results indicate that the process can help students identify

their poor coding habits, master a set of best coding practices

to improve internal code quality, and significantly reduce

their introduced CQIDs. Furthermore, we share our experi-

ence and offer recommendations to replicate and improve the

process and its execution platform. The work, however, is not

finished. We are still on our journey of continuous improve-

ment of instructional design and study. On the one hand, we

plan to improve the process and platform of continuous in-

spection. On the other hand, as mentioned in Section 6, we

intend to conduct a controlled experiment on the students

in the following semesters to investigate the differences in

learning effects between continuous inspection and pair pro-

gramming.

Acknowledgements We gratefully acknowledge the financial support from
National Key R&D Program of China (2018YFB1004202) and the National
Natural Science Foundation of China (Grant Nos. 61472430, 61502512,

16 Front. Comput. Sci., 2020, 14(5): 145205

61532004 and 61379051). We also want to thank our students on their active
participation in our study.

References

1. Salman I. Students versus professionals as experiment subjects: an in-

vestigation on the effectiveness of TDD on code quality. Master’s The-

sis, University Oulu, 2014

2. Breuker D M, Derriks J, Brunekreef J. Measuring static quality of stu-

dent code. In: Proceedings of the 16th Annual Joint Conference on

Innovation and Technology in Computer Science Education. 2011, 13–

17

3. Feldman Y A. Teaching quality object-oriented programming. Tech-

nology on Educational Resources in Computing, 2005, 5(1): 1

4. Carver J C, Kraft N A. Evaluating the testing ability of senior-level

computer science students. In: Proceedings of IEEE-CS Conference

on Software Engineering Education and Training. 2011, 169–178

5. Nawahdah M, Taji D. Investigating students’ behavior and code quality

when applying pair-programming as a teaching technique in a middle

eastern society. In: Proceedings of IEEE Global Engineering Education

Conference. 2016, 32–39

6. Radermacher A D. Evaluating the gap between the skills and abilities

of senior undergraduate computer science students and the expectations

of industry. North Dakota State University, Thesis, 2012

7. Begel A, Simon B. Struggles of new college graduates in their first soft-

ware development job. ACM SIGCSE Bulletin, 2008, 40(1): 226–230

8. Robins A, Rountree J, Rountree N. Learning and teaching program-

ming: a review and discussion. Computer Science Education, 2003,

13(2): 137–172

9. Higgins C A, Gray G, Symeonidis P, Tsintsifas A. Automated assess-

ment and experiences of teaching programming. Technology on Edu-

cational Resources in Computing, 2005, 5(3): 5

10. Piaget J. Psychology and Epistemology: Towards A Theory of Knowl-

edge. Markham: Penguin Books Canada, 1977

11. Chen W K, Tu P Y. Grading code quality of programming assignments

based on bad smells. In: Proceedings of the 24th IEEE-CS Conference

on Software Engineering Education and Training. 2011, 559

12. Radermacher A, Walia G, Knudson D. Investigating the skill gap be-

tween graduating students and industry expectations. In: Proceedings

of the 36th International Conference on Software Engineering Com-

panion. 2014, 291–300

13. McConnell S. Code Complete. Pearson Education, 2004

14. ISO. IEC25010: 2011 systems and software engineering–systems and

software quality requirements and evaluation (square)–system and soft-

ware quality models. International Organization for Standardization.

2011, 34–35

15. Gousios G, Pinzger M, Deursen A V. An exploratory study of the pull-

based software development model. In: Proceedings of the 36th Inter-

national Conference on Software Engineering. 2014, 345–355

16. Dabbish L, Stuart C, Tsay J, Herbsleb J. Social coding in GitHub:

transparency and collaboration in an open software repository. In: Pro-

ceedings of the ACM 2012 Conference on Computer Supported Coop-

erative Work. 2012, 1277–1286

17. Lu Y, Mao X J, Li Z D, Zhang Y, Wang T, Yin G. Does the role matter?

an investigation of the code quality of casual contributors in GitHub.

In: Proceedings of the 23rd Asia-Pacific Software Engineering Con-

ference. 2016, 49–56

18. Yu Y, Vasilescu B, Wang H M, Filkov V, Devanbu P. Initial and eventual

software quality relating to continuous integration in GitHub. 2016,

arXiv preprint arXiv:1606.00521

19. Ebbinghaus H. Memory: a contribution to experimental psychology.

Annals of Neurosciences, 2013, 20(4): 155

20. Wang H M, Yin G, Li X, Li X. TRUSTIE: A Software Development

Platform for Crowdsourcing. Crowdsourcing. Springer Berlin Heidel-

berg, 2015

21. Wong C P, Xiong Y F, Zhang H Y, Hao D. Boosting bug-report-oriented

fault localization with segmentation and stack-trace analysis. In: Pro-

ceedings of International Conference on Software Maintenance and

Evolution. 2014, 181–190

22. Tonella P, Abebe S L. Code quality from the programmer’s perspective.

In: Proceedings of XII Advanced Computing and Analysis Techniques

in Physics Research. 2008

23. Zhang H, Ali B M. Systematic reviews in software engineering: an

empirical investigation. Information and Software Technology, 2013,

55(7): 1341–1354

24. Lu Y, Mao X J, Li Z D, Zhang Y, Wang T, Yin G. Internal quality assur-

ance for external contributions in GitHub: an empirical investigation.

Journal of Software: Evolution and Process, 2018, 30(4): e1918

25. Akinola O S. An empirical comparative analysis of programming ef-

fort, bugs incurrence and code quality between solo and pair pro-

grammers. Middle East Technology Scientific Research, 2014, 21(12):

2231–2237

26. Braught G, Wahls T, Eby L M. The case for pair programming in the

computer science classroom. ACM Transactions on Computing Edu-

cation, 2011, 11(1): 2

27. Wang Y Q, Li Y J, Collins M, Liu P J. Process improvement of peer

code review and behavior analysis of its participants. In: Proceed-

ings of SigCSE Technical Symposium on Computer Science Educa-

tion. 2008, 107–111

28. Cunha A D D, Greathead D. Does personality matter?: an analysis of

code-review ability. Communications of the ACM, 2007, 50(5): 109–

112

29. Hundhausen C, Agrawal A, Fairbrother D, Trevisan M. Integrating

pedagogical code reviews into a CS 1 course: an empirical study. ACM

SIGCSE Bulletion, 2009, 41(1): 291–295

30. Hüttermann M. DevOps for Developers. Apress, 2012

31. Waller J, Ehmke N C, Hasselbring W. Including performance bench-

marks into continuous integration to enable devops. ACM SIGSOFT

Software Engineering Notes, 2015, 40(2): 1–4

32. Vasilescu B, Yu Y, Wang H M, Devanbu P, Filkov V. Quality and pro-

ductivity outcomes relating to continuous integration in GitHub. In:

Proceedings of the 10th Joint Meeting on Foundations of Software En-

gineering. 2015, 805–816

33. Bowyer J, Hughes J. Assessing undergraduate experience of contin-

uous integration and test-driven development. In: Proceedings of the

28th International Conference on Software Engineering. 2006, 691–

694

34. Heckman S, King J. Developing software engineering skills using real

tools for automated grading. In: Proceedings of the 49th ACM Techni-

Yao LU et al. Improving students’ programming quality with the continuous inspection process: a social coding perspective 17

cal Symposium on Computer Science Education. 2018, 794–799

35. Gaudin O, SonarSource. Continuous inspection: a paradigm shift in

software quality management. Technical Report, SonarSource S.A.,

Switzerland, 2013

36. Merson P, Yoder J W, Guerra E M, Aguiar A. Continuous inspection:

a pattern for keeping your code healthy and aligned to the architecture.

In: Proceedings of the 3rd Asian Conference on Pattern Languages of

Programs. 2014

37. Barroca L, Sharp H, Salah D, Taylor K, Gregory Peggy. Bridging the

gap between research and agile practice: an evolutionary model. Inter-

national Journal of System Assurance Engineering and Management,

2018, 9(2): 323–334

38. Krusche S, Berisha M, Bruegge B. Teaching code review management

using branch based workflows. In: Proceedings of the 38th Interna-

tional Conference on Software Engineering Companion. 2016, 384–

393

39. Jick T D. Mixing qualitative and quantitative methods: triangulation in

action. Administrative Science Quarterly, 1979, 24(4): 602–611

40. Letouzey J L. The SQALE method definition document. In: Proceed-

ings of the 3rd International Workshop on Managing Technical Debt.

2012, 31–36

41. Zagalsky A, Feliciano J, Storey M A, Zhao Y Y, Wang W L. The emer-

gence of GitHub as a collaborative platform for education. In: Proceed-

ings of the 18th ACM Conference on Computer Supported Cooperative

Work and Social Computing. 2015, 1906–1917

42. Lu Y, Mao X J, Li Z D. Assessing software maintainability based on

class diagram design: a preliminary case study. Lecture Notes on Soft-

ware Engineering, 2016, 4(1): 53–58

43. Chess B, McGraw G. Static analysis for security. IEEE Security & Pri-

vacy, 2004, 2(6): 76–79

44. Gousios G, Storey M A, Bacchelli A. Work practices and challenges in

pull-based development: the contributor’s perspective. In: Proceedings

of the 38th International Conference on Software Engineering. 2016,

285–296

45. Mengel S A, Yerramilli V. A case study of the static analysis of the

quality of novice student programs. ACM SIGCSE Bulletin, 1999,

31(1): 78–82

46. Kim S H, Pan K, Whitehead E E J. Memories of bug fixes. In: Proceed-

ings of the 14th ACM SIGSOFT International Symposium on Founda-

tions of Software Engineering. 2006, 35–45

47. Beck K. Extreme Programming Explained: Embrace Change.

Addison-Wesley Professional, 2000

48. Mcdowell C, Werner L, Bullock H, Fernald J. Pair programming im-

proves student retention, confidence, and program quality. Communi-

cation of the ACM, 2006, 49(8): 91

49. Mcdowell C, Werner L, Bullock H E, Fernald J. The impact of pair

programming on student performance, perception and persistence. In:

Proceedings of the 25th International Conference on Software Engi-

neering. 2003, 602–603

50. Mcdowell C, Werner L, Bullock H. The effects of pair-programming on

performance in an introductory programming course. ACM SIGCSE

Bulletin, 2002, 34(1): 38–42

51. Nagoya F, Liu S Y, Chen Y T. A tool and case study for specification-

based program review. In: Proceedings of the 29th Annual Interna-

tional Computer Software and Applications Conference. 2005, 375–

380

52. Campbell D T, Stanley J C, Lees Gage N. Experimental and quasi-

experimental designs for research. Handbook of Research on Teaching,

1963, 5: 171–246

53. Sigelaman L. Question-order effects on presidential popularity. Public

Opinion Quarterly, 1981, 45(2): 199–207

54. Zheng J, Williams L, Nagappan N, Snipes W, Hudepohl J P, Vouk M

A. On the value of static analysis for fault detection in software. IEEE

Transaction on Software Engineering, 2006, 32(4): 240–253

Yao Lu is a doctoral candidate in the Col-

lege of Computer, National University of

Defense Technology, China. His work in-

terests include open source software en-

gineering, data mining, and crowdsourced

learning.

Xinjun Mao is a professor in the Col-

lege of Computer, National University of

Defense Technology, China. He received

his PhD degree in computer science from

National University of Defense Technol-

ogy, China in 1998. His research interests

include software engineering, multi-agent

system, robot system, self-adaptive system,

and crowdsourcing.

Tao Wang is an assistant professor in the

College of Computer, National University

of Defense Technology, China. He received

his PhD degree in computer science from

National University of Defense Technol-

ogy, China in 2015. His work interests in-

clude open source software engineering,

machine learning, data mining, and knowl-

edge discovering in open source software.

Gang Yin is an associate professor in the

College of Computer, National University

of Defense Technology, China. He received

his PhD degree in computer science from

National University of Defense Technol-

ogy, China in 2006. He has published more

than 60 research papers in international

conferences and journals. His current re-

search interests include distributed computing, information security,

and software engineering.

18 Front. Comput. Sci., 2020, 14(5): 145205

Zude Li is an assistant professor at Central

South University. He obtained his PhD de-

gree in 2010 from The University of West-

ern Ontario, Canada. His research interests

are in the fields of software architecture,

evolution and quality. He is appointed as

a software engineering expert in SKANE

SOFT.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 802.205]
>> setpagedevice

