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Abstract Smart city driven by Big Data and Internet of
Things (IoT) has become a most promising trend of the fu-
ture. As one important function of smart city, event alert based
on time series prediction is faced with the challenge of how to
extract and represent discriminative features of sensing knowl-
edge from the massive sequential data generated by IoT de-
vices. In this paper, a framework based on sparse representa-
tion model (SRM) for time series prediction is proposed as an
efficient approach to tackle this challenge. After dividing the
over-complete dictionary into upper and lower parts, the main
idea of SRM is to obtain the sparse representation of time series
based on the upper part firstly, and then realize the prediction
of future values based on the lower part. The choice of differ-
ent dictionaries has a significant impact on the performance of
SRM. This paper focuses on the study of dictionary construc-
tion strategy and summarizes eight variants of SRM. Experi-
mental results demonstrate that SRM can deal with different
types of time series prediction flexibly and effectively.

Keywords sparse representation, smart city, time series pre-
diction, dictionary construction

1 Introduction
With the rapid development of Big Data and IoT, the concept of
“smart city” has attracted much attention of researchers from
academia, industry, and government in recent years. As one of
the most cutting-edge issues, the smart city pays attention to
perceive, correlate and excavate the key information compre-
hensively for intelligent management through urban comput-
ing, with the target of creating a better life for people and pro-
moting the harmonious and sustainable growth of the city [1].
The applications of smart city have been embodied in various
aspects including home automation, medical treatment, traf-
fic management, environmental protection, public services and
other fields [2–8].

However, the realization of the smart city still faces many
great difficulties. One of them is how to extract and represent
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the sensing knowledge from massive IoT devices in order to
realize the proactive event alert of smart city, as these devices
record chronologically the changing states with a sampling in-
terval. For example, the smart meter, as an important device of
the smart grid, collects power consumption at intervals of 10 or
15 minutes [9]. Obviously, these observations can be viewed as
time series, and the prediction of time series is an indispensable
part in electric power system planning, as well as many other
application scenarios.

How to predict time series quickly and effectively has been
one of the research hotspots in the field of data mining for
decades. Although a lot of researches have been done, the task
of time series prediction is still faced with great challenges due
to the characteristics of time series including big size, high di-
mension, continuous update and inevitable noise [10]. Faced
with large amounts of complex time series and the needs of
more accurate prediction in various fields, it is required to ex-
ploit a more effective model. In this paper, a systematic frame-
work based on sparse representation model (SRM) for time
series prediction is proposed as an elegant and efficient way
to deal with the massive sequential data generated by IoT de-
vices. In the last decade, there had been an increasing interest
in sparse representation. The advantage of sparse representation
is that the main information of a signal can be converted into
a small number of components based on an over-complete dic-
tionary. Therefore, sparse representation can not only reduce di-
mensionality by extracting key features but also eliminate noise
by removing redundant information. The applications of sparse
representation have been successfully extended from early sig-
nal processing and image analysis to other fields such as pat-
tern recognition and machine learning [11]. At present, sparse
representation has also been successfully applied to time series
prediction. [9] focuses on extracting key factors affecting power
load change by sparse representation and then fitting the data by
ridge regression method based on extracted features. [12,13] all
focus on sparse representation of dictionaries based on histor-
ical data to achieve one-step prediction, but the difference is
whether to arrange historical data as the rows or columns of the
dictionary. [14] extends one-step prediction to multi-step pre-
diction and compares the performance of various sparse repre-
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sentation algorithms. Nevertheless, the research on the dictio-
nary construction strategy is not comprehensive enough. Moti-
vated by this, this paper focuses on this aspect and eventually
form a systematic framework based on sparse representation for
time series prediction. The contributions of this paper are:

• According to the different strategies of dictionary con-
struction, a systematic framework including eight variants
of SRM is proposed to solve different types of time series
prediction effectively.
• A novel strategy for dictionary construction considering

cross-domain dependencies is proposed. This strategy can
achieve the same accuracy improvement as dictionary
learning without sacrificing computational complexity.
• The experimental comparison between SRM and many

popular models shows the superior performance of SRM
in both accuracy and complexity.

The rest of the paper is organized as follows: Section 2 re-
views the related work of time series prediction. Some prelim-
inary knowledge about sparse representation is introduced in
Section 3. Section 4 focuses on the implementation of SRM.
Experiments and results are presented in Section 5. Finally, in
Section 6, the conclusions and future work are stated.

2 Relate work
The purpose of time series prediction is to forecast the next few
values of a series that are most likely to occur in the future. It is
one of the most extensively applied tasks of time series so that
there is a lot of literature focused on it. In these studies, accord-
ing to different research perspectives, the models of time series
prediction can be divided into three categories: traditional sta-
tistical models, machine learning models, and hybrid integrated
models.

2.1 Traditional statistical models
In the research of time series prediction, traditional statistical
models have been developed very maturely. This category can
be subdivided into two specific subcategories: linear statistical
models and nonlinear statistical models. The idea of linear sta-
tistical models is based on the hypothesis that there is a linear
correlation structure between historical data and the predicted
value of time series. Popular linear statistical models include
simple exponential smoothing (SES), auto-regressive integrated
moving average (ARIMA), dynamic linear model (DLM) and
a number of their variants [15]. In fact, these linear statistical
models can be collectively referred to as state-space models
which provide a unifying framework to define them. As the
linear statistical models have the advantages of simple princi-
ple and easy implementation, they have been widely used in
the fields of economic forecasting, agriculture and industrial
control [15]. However, time series collected from real applica-
tions are generally nonlinear and non-stationary, which make
linear statistical models less effective to complex real-world
problems. Due to the limitation of linear statistical models, a
lot of useful nonlinear statistical models have been proposed
such as smooth transition auto regressive models (STAR) [16],
and generalized auto-regressive conditional heteroskedasticity
models (GARCH) [17].

The drawback of traditional statistical models is that they
all make use of analytic equations with parameters to describe
time series which must be satisfied with some stringent assump-
tions. Although they have good fitting prediction performance
for time series that conform to their assumptions, these assump-
tions are often inconsistent with highly complex time series col-
lected from the real world.

2.2 Machine learning models
With the rapid development of artificial intelligence, machine
learning models have attracted more and more attention and
have been strong competitors of traditional statistical models
in time series prediction. Unlike traditional statistical models,
machine learning models employ the historical data-driven ap-
proach to infer the complex dependencies between the past and
the future of time series [18]. Compared with traditional statis-
tical models, machine learning models tend to be more flexi-
ble and effective because they can obtain more accurate results
by simulating human intelligence or natural phenomena. Com-
mon machine learning models include multi-layer perceptron
(MLP), Bayesian neural networks (BNN), support vector re-
gression (SVR), and random forest (RF) [19,20]. An empirical
comparison of machine learning models for time series predic-
tion has been studied in [19].

In recent years, deep learning has gained increasing popular-
ity in the field of machine learning for time series prediction,
as it had achieved superior performances on many benchmark
datasets. The goal of deep learning is to stack multiple modules
on top of each other to form deep networks in order to enable
more expressive models that can learn more abstract represen-
tations of data. This enables deep learning to carry out unsu-
pervised learning without prior knowledge and achieve better
time series prediction performance [21]. The machine learning
models based on deep learning have been successfully applied
in the field of time series prediction related to the smart city. For
instance, as one of the most popular types of recurrent neural
network (RNN), long short term memory (LSTM) can make a
more accurate prediction by using the long term dependence
in the time series of power load [22]. Unfortunately, LSTM
requires a lot of time to train network parameters. Therefore,
many improved versions of this model are proposed, including
gated recurrent unit (GRU) [23] and minimal gated unit (MGU)
[24].

The success of the machine learning models lies in con-
tinuously adjusting and modifying the function structure and
parameter estimation of the models with iterative learning to
minimize the prediction error. However, they also have some
defects, such as parameter sensitivity, local optimization, and
over-fitting. Therefore, a variety of intelligent optimization al-
gorithms are proposed and introduced into the machine learning
models, such as Genetic Algorithm, Particle Swarm Optimiza-
tion, and Artificial Bee Colony Optimization [25,26].

2.3 Hybrid integrated models
In general, no single model for time series prediction is opti-
mal in every situation because each model has its unique ad-
vantages and disadvantages. In this context, hybrid integrated
models worked on a higher level by ensemble methods have be-
come a newly developing trend in the field of time series predic-
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tion recently. Hybrid integrated models focus on getting the ut-
most out of the strengths of individual models to improve over-
all prediction performance. In other words, hybrid integrated
models can not only avoid selecting the wrong model by in-
tegrating all candidate models but also obtain more accurate
results by making multiple predictions from different starting
points [27]. A hybrid integrated model can be built from two
or more models of the same or different classes. For instance,
a hybrid integrated model of ARIMA and artificial neural net-
work (ANNs) takes advantage of traditional statistical models
and machine learning models in linear and nonlinear aspects
respectively [28]. Recently, another hybrid integrated model
based on convolutional neural network (CNN) and LSTM has
been proposed for urban traffic flow prediction by capturing the
spatial and temporal features from real taxis trace data [29].

Although many empirical studies show that the prediction
performance of the hybrid integrated model is higher than that
of an individual model, it is inevitable that the complexity of
the ensemble method increases greatly. The balance between
prediction performance and computational complexity is a key
issue to consider. In addition, how to select a more effective
way of combining still remains to be further studied.

3 Preliminary
Over the past few years, sparse representation originated from
the theory of compressed sensing (CS) has received more and
more attention from researchers [30]. From the mathematical
perspective, the target of sparse representation is to reconstruct
the original signal by selecting the sparsest linear combination
of basis vectors from an over-complete dictionary. More em-
phatically, there are multiple combinations of signal decompo-
sition because the number of basis vectors in an over-complete
dictionary is greater than the dimension of the signal, which
provides some advantages such as greater flexibility, more com-
pact representation, and increased stability to noise [31].

The sparse representation of time series can be defined as
follows: given a time series T = [t1, t2, . . . , tn]T ∈ Rn and an
over-complete dictionary D = [d1, d2, . . . , dm] ∈ Rn×m (m� n),
each column of D can be called a basis vector or an “atom”. If
T can be reconstructed by a linear superposition of m atoms, it
should be expressed as:

T =
m∑

i=1

dixi, (1)

where xi is the weighting coefficient of atom di. For the con-
venience of description, Eq. (1) can be rewritten by adopting a
matrix-vector notation:

T = DX, (2)

where the vector X ∈ Rm can be considered as a representation
of time series T based on the over-complete dictionary D. Ob-
viously, Eq. (2) is an underdetermined linear system having the
infinite number of solutions because D is a rectangular matrix
having more columns than rows. Only if the majority of coef-
ficients in vector X are zero, it can be considered as a sparse
representation of T . The schematic diagram of sparse represen-
tation is shown in Fig. 1.

Fig. 1 Sparse representation of time series T based on the over-complete dic-
tionary D

The sparsest representation of T can be obtained by solving
Eq. (2) with the l0-norm minimization constraint as follows:

min
X
‖X‖0, s.t. T = DX, (3)

where ‖.‖0 is used to measure the sparse degree by calculating
the number of the nonzero elements in vector X. On account
for the noise present in the real data, the constraint is often re-
laxed using a quadratic penalty function. Therefore, the follow-
ing error-tolerant version can be used to provide the approxi-
mate solution of Eq. (3):

min
X
‖X‖0, s.t. ‖T − DX‖22 � δ, (4)

where δ is a small positive constant that can be considered as
the reconstruction error. If the objective and the constraint are
flipped, Eq. (4) can be transformed to:

min
X
‖T − DX‖22, s.t. ‖X‖0 � ε, (5)

The sparse factor ε is introduced to express the maximum num-
ber of nonzero entries in vector X. In addition, because the
reconstruction error or the sparse factor is difficult to be de-
termined in advance, they can be optimized simultaneously
according to the Lagrange multiplier theorem. Equations (4)
and (5) can be equivalently converted to an unconstrained min-
imization problem:

min
X

1
2
‖T − DX‖22 + λ‖X‖0. (6)

Equation (6) aims to minimize the reconstruction error as well
as the sparse solution, and λ is a constant used to make a trade-
off between them. It is difficult to determine exactly the inher-
ent correlation between the parameter λ and the sparse degree
of vector X [32]. In general, the larger λmeans the more sparse
solution. The process of solving Eqs. (3)–(6) is usually referred
to as sparse coding.

4 SRM for time series prediction
In this section, the framework based on SRM for time series
prediction is detailed, and its implementation process is similar
to the signal reconstruction based on sparse representation. The
process of signal reconstruction can be divided into the follow-
ing three steps: 1) construct an appropriate over-complete dic-
tionary D; 2) obtain the sparse representation α of signal based
on dictionary; 3) D × α is used to reconstruct the signal. In a
sense, the second step can be considered as a coding process,
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and the third step corresponds to the decoding process. Consid-
ering that the future values in the time series have some corre-
lation with the historical values, we believe that if the historical
values can be well reconstructed based on a dictionary, then the
future values can be well predicted by using the dictionary as-
sociated with it. Inspired by this, we split the dictionary into
two parts, the upper part for training and the lower part for pre-
diction. It’s important to emphasize that if the dictionary is not
split into these two parts, the sparse representation algorithm is
only able to reconstruct the historical signal, but unable to pre-
dict the future signal. By flexibly adjusting the number of rows
in the lower part of the dictionary, SRM can be used not only
for one-step prediction but also for multi-step prediction. In ad-
dition, the dictionary of SRM can be augmented with columns,
for example by adding atoms that reflect cross-domain influ-
ence factors, to achieve multivariable time series prediction. To
sum up, the greatest advantage of SRM is that it can flexibly
implement different types of time series predictions by using
different dictionaries.

The general problem of time series prediction is described as
follows: given a time series T1 = [t1, t2, . . . , tn]T, the goal is
to predict the values of T2 = [tn+1, tn+2, . . . , tn+h]T, where h is
the desired prediction horizon. In order to accomplish this goal,
from the perspective of series connection, the over-complete
dictionary D ∈ R(n+h)×m (m � n + h) can be divided into two
parts, a decomposition part D1and a prediction part D2. Firstly,
based on the decomposition part D1, the sparse representation
of the time series T1 can be obtained by using the sparse cod-
ing technique. Then, the sparse representation of T1 is projected
onto the prediction part of the dictionary to compute the desired
forecast for T2. The implementation of SRM is discussed below
in more details, including three stages.

Stage 1: Dictionary construction The dictionary D ∈
R(n+h)×m is constructed according to an appropriate strategy, and
then it is divided into two parts according to the length of histor-
ical data and prediction horizon. The first part of D, called the
decomposition part D1 ∈ Rn×m, consists of the first n rows of
the dictionary. The second part of D, called the prediction part
D2 ∈ Rh×m, consists of the remaining h rows of the dictionary.

Stage 2: Sparse coding Firstly, the time series T1 is nor-
malized to T ′1 = (t′1, t

′
2, . . . , t

′
n)T by using the l2-norm, and its

norm l2(T1) is saved. The relevant formulas are defined as fol-
lows:

t′i = ti/l2(T1) i = 1, 2, . . . , n, (7)

l2(T1) =

√√
n∑

i=1

t2
i . (8)

The purpose of the normalization step is to focus on the shape
of raw data. Secondly, the optimization problem defined as
Eq. (4) is solved by using the sparse coding technique to ob-
tain the sparse representation X of time series T ′1 in term of the
decomposition part D1.

Stage 3: Prediction The values of T ′2 = (t′n+1, t
′
n+2, . . . ,

t′n+h)T can be calculated by the product of the prediction part
D2 and the sparse representation X. The prediction horizon h
can be a constant greater than or equal to 1. If h is equal to 1,
one-step prediction can be achieved, while if h is greater than

1, it means multi-step prediction. Finally, to undo the normal-
ization effect, the values of T ′2 have to be multiplied by l2(T1)
to calculate the final values of T2 = (tn+1, tn+2, . . . , tn+h)T.

tn+i = t′n+i × l2(T1), i = 1, 2, . . . , h. (9)

The framework of SRM for time series prediction is shown
in Fig. 2. The following is a detailed description of the imple-
mentation of stage 1 and stage 2.

4.1 Dictionary construction
The construction of over-complete dictionary D is very im-
portant for the success of SRM because an appropriate dic-
tionary can obtain a higher prediction performance. Generally
speaking, there are four strategies for dictionary construction
of SRM: 1) basic dictionary; 2) learned dictionary; 3) basic
dictionary considering cross-domain dependencies; 4) learned
dictionary considering cross-domain dependencies. These four
strategies can be selected based on different application scenar-
ios and different complexity requirements.

4.1.1 Basic dictionary
The basic dictionary can be created in two different ways. One
way is based on analytic approach and the other way is based on
data realization [33]. The main idea of analytic approach is to
generate an implicit dictionary with tight frame by formulating
a mathematical model. In other words, dictionaries of this type
are usually achieved simply and quickly by utilizing a group
of fixed transformations which can transform time series from
the time domain into other domains in order to extract the main
features of the series. Common transformations applied to the
low-dimensional signals include Fourier and Wavelet. For ex-
ample, each element of the dictionary based on discrete fourier
transform (DFT) can be defined as follows:

dpq =

√
1
N

e− j 2π
N (p−1)(q−1), p, q = 1, 2, . . . ,N, (10)

where N = n + h is the dimension of the atom. It is obvious
that the DFT dictionary is a symmetric square matrix. Different
from DFT, discrete cosine transform (DCT) replaces the com-
plex exponential functions with the cosine functions, which can
be defined as follows:

dpq =

√
1
N

f (q) cos(
(2p − 1)(q − 1)π

2N
), p, q = 1, 2, . . . ,N,

(11)

Fig. 2 The framework of SRM for time series prediction
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where f (q) = 1 when q = 1 and f (q) =
√

2 when q =
2, 3, . . . ,N. Both DFT and DCT dictionary are orthonormal ba-
sis because the columns of the dictionary are unit vectors and
orthogonal to each other. However, since DCT can guarantee
that every element in the dictionary is non-complex, it is more
widely used in practical applications. In addition, considering
that much complex time series does not have the characteris-
tic of periodicity, discrete wavelet transform (DWT) makes use
of the multi-resolution analysis technique by decomposing the
signal through variable-sized windows, which can map the sig-
nals into a joint time-scale domain [34]. There are numerous
wavelet families that could be used, among which the fastest
and easiest to implement is Haar wavelet. It had been proved
that the Haar wavelet is an orthonormal basis with compact sup-
port [35]. In order to guarantee the over-completeness of the
dictionary, the above orthogonal basis can be merged with each
other or with the standard orthogonal basis known as Dirac dic-
tionary. Dirac dictionary is essentially the identity matrix which
is the collection of waveforms that all the points are zero except
dpq = 1 when p = q (p, q = 1, 2, . . . ,N). More recently, some
new transformations have been developed to handle the multi-
dimensional signals, such as Curvelets, Contourlets, Bandelets,
Shearlets, etc [33]. In summary, the highly structured dictionary
based on analytic approach can significantly reduce memory
requirements, as it only needs to describe the algorithm rather
than the full matrix [36].

In contrast, the other way based on data realization infers the
dictionary from the original data, which can be called an ex-
plicit dictionary. For example, given a time series consisting of
historical data Y = (y1, y2, . . . , yl)T, an over-complete dictionary
D ∈ R(n+h)×m can be obtained by using sliding window technol-
ogy to segment historical data [13,14]. The size of the sliding
window can be predefined. If the window size is equal to 1, it
means that only one element is skipped between two adjacent
atoms, and the implementation process is shown below:

D =

⎡⎢⎢⎢⎢⎣
D1

D2

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 y2 · · · ym

y2 y3 · · · ym+1
...

...
...

yn yn+1 · · · ym+n−1

yn+1 yn+2 · · · ym+n

...
...

...

yn+h yn+h+1 · · · ym+n+h−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (12)

Note that each column of the decomposition part D1 ∈ Rn×m

should also be normalized using l2-norm and the corresponding
column of the prediction part D2 ∈ Rh×m should be multiplied
by the same normalization factor [14]. In many cases, the dic-
tionary based on data realization has the advantage of flexibility
and adaptability for the specific signal. However, generating an
unstructured dictionary requires more expense which depends
on the size of the over-complete dictionary.

4.1.2 Learned dictionary
The basic dictionary has been able to help SRM to achieve one-
step prediction and multi-step prediction of time series [13,14].
However, there is a possibility that the basic dictionary after

learning may be able to achieve a better result. The target of dic-
tionary learning is to make it more effective for the approxima-
tion of the signals by updating the initial dictionary step by step.
In order to realize dictionary learning, the remaining historical
data can generate a training set Z = [Z1, Z2, . . . , Zr] ∈ R(n+h)×r,
the training sample Zi is also generated by sliding window tech-
nology. The optimized target function of dictionary learning is
can be defined as:

min
D,Xi

1
r

r∑

i=1

‖Zi − DXi‖, s.t.‖Xi‖0 � ε, (13)

where r indicates the number of training samples. The algo-
rithms used to realize the above optimization problem usually
implement the alternating update operation of sparse vector and
atoms through multiple iterations. The most popular algorithm
for dictionary learning is the k-Singular Value Decomposition
(k-SVD) algorithm which is a generalization of the k-means
algorithm [37]. The k-SVD algorithm requires k iterations in
total, and each of iteration consists of two steps: 1) For each
training sample Zi, the sparse representation Xi is obtained ac-
cording to the current dictionary; 2) The atoms in the dictionary
are updated according to the non-zero entries in the sparse rep-
resentation. Note that only one atom is updated at a time and
only those signals in Z whose sparse representations use the
current atom are used to participate in the optimization process.
This ensures that a dictionary is found under strict sparse con-
straints after k iterations, which can minimize the reconstruc-
tion error for each sample of the training set. Both the atom and
its corresponding coefficient row are updated simultaneously
via singular value decomposition with the result of accelerated
convergence.

It should be noted that dictionary learning can effectively re-
duce the reconstruction errors and lead to better prediction per-
formance at the cost of increased computational complexity.

4.1.3 Basic dictionary considering cross-domain dependen-
cies
Since dictionary learning leads to increased computational
complexity, other approaches need to be considered to improve
the prediction performance of SRM without sacrificing com-
putational complexity. In this paper, a novel dictionary consid-
ering cross-domain dependencies is proposed for SRM from
the perspective of parallel connection, which takes the form
D = [U,V]. More specifically, U is a basic dictionary and V
is an extended dictionary consisting of a set of atoms which
represent the cross-domain influence factors related to time se-
ries. The motivation for considering cross-domain dependen-
cies is that the results of time series prediction based on his-
torical data alone are always unsatisfactory in many cases. For
instance, accurate prediction of power load in smart grid is still
a thorny problem because there are many load variables that
affect the system highly uncertain with nonlinear fluctuations.
These variables include weather, temperature, season, day of
the week, hour of the day, and so on [9,38]. According to our
previous work, the operation of adding influence factors of time
series to the untrained basic dictionary can further improve the
performance of SRM.
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4.1.4 Learned dictionary considering cross-domain depen-
dencies
The only difference between this strategy and the third one
is that it considers cross-domain dependencies based on the
learned dictionary rather than the basic dictionary. So the dic-
tionary D should be rewritten as [U ′,V]. The implementation
of V is the same as the third strategy, and U ′ is the basic dic-
tionary after learning. This strategy is expected to combine the
benefits of dictionary learning and cross-domain dependencies,
but it is also prone to over-fitting.

To sum up, the following three questions need to be consid-
ered when constructing the dictionary. Firstly, whether the basic
dictionary is generated by means of analytic approach or data
realization? Secondly, whether the basic dictionary needs to be
learned? Finally, whether the cross-domain influence factors re-
lated to time series need to be considered? Different choices of
these three questions can form eight variants of SRM, as shown
in Table 1.

Table 1 Eight variants of SRM

Generation of
Basic Dictionary

Dictionary
Learning

Cross-Domain
Dependencies

Abbr.
AA DR No Yes No Yes

SRM-A
√ √ √

SRM-D
√ √ √

SRM-AL
√ √ √

SRM-DL
√ √ √

SRM-AC
√ √ √

SRM-DC
√ √ √

SRM-ALC
√ √ √

SRM-DLC
√ √ √

Note: AA and DR correspond to the abbreviations of analytic approach and
data realization respectively

4.2 Sparse coding
As described in Fig. 2, after constructing the appropriate dic-
tionary, the second stage of SRM is sparse coding. Due to the
fact that sparse representation with l0-norm minimization is an
NP-hard problem [39], it is difficult to find the global optimal
solution in a reasonable time. Many suboptimal methods have
been developed to alleviate this difficulty. From the perspective
of sparse penalty, the methods of sparse coding can be roughly
divided into the following three categories: 1) l0-norm mini-
mization; 2) l1-norm minimization; 3) lp-norm (p � 0 and 1)
minimization. At present, many different strategies have been
proposed to solve different norm minimization [11]. Due to lim-
ited space, three of these strategies are briefly described below.

4.2.1 Greedy strategy for l0-norm minimization
It is well known that the most common strategy for solving an
NP-hard problem is the greedy strategy. Therefore, a lot of lit-
erature focused on how to utilize the greedy strategy to obtain
the approximate solution of sparse representation with l0-norm
minimization. The greedy strategy is a method of sequential se-
lection of basis vectors, which chooses the best local optimal
solution step by step until the termination criterion of iteration
is satisfied. One of the representative methods which adopted
the greedy strategy is matching pursuit (MP) algorithm [40].
The principle of MP is to seek the best atom from the dictio-
nary D ∈ Rn×m to approximate the signal T ∈ Rn by minimizing

representation residual in each iteration. More specifically, for
the kth iteration, the best matching atom dg(k) and the corre-
sponding representation residual Rk can be formulated as:

dg(k) = arg max |〈Rk−1, di〉|, i = 1, 2, . . . ,m, (14)

Rk = Rk−1 − 〈Rk−1, dg(k)〉dg(k), R0 = T, (15)

where g(k) is the label index of the selected column.
One drawback of MP is although asymptotic convergence is

guaranteed, more iterations are necessary if the selected atom
dg(k) is not orthogonal to the residual Rk. A modification of
MP is called as Orthogonal Matching Pursuit (OMP) algorithm
which modifies the formula of the residual Rk to ensure the full
orthogonality between the residual and the selected atoms at
every step [41]. To be specific, after selecting a new atom dg(k)

using Eq. (14), OMP utilizes the standard least squares tech-
nique to calculate the best approximation over all the selected
atoms and then calculates the residual Rk as follows:

Dk = Dk−1 ∪ dg(k), D0 = ϕ, (16)

X̃ = arg min ‖T − DkX‖22, (17)

Rk = T − DkX̃. (18)

Obviously, the update process of OMP is more expensive than
MP, but the benefit is that fewer iterations are required because
OMP does not select the same atom twice due to orthogonality.

Recently, greedy iterative algorithms mainly focus on how to
improve the reconstruction performance or reduce the complex-
ity, such as compressive sampling MP (CoSaMP) [42], stage-
wise OMP (StOMP) [43], subspace pursuit [44] and forward-
backward pursuit (FBP) [45].

4.2.2 Convex relaxation strategy for l1-norm minimization
Considering the l0-norm is a non-convex and highly discontinu-
ous function, convex relaxation strategy aims to replace it with
l1-norm. It had been proved that if the representation X is sparse
enough, the l0-norm minimization is equal to the l1-norm min-
imization [46]. In other words, the number of non-zero entries
in the representation X can be approximated by the absolute
sum of them. According to the above idea, Eqs. (3)–(6) can be
transformed to solve the following problems:

min
X
‖X‖1, s.t. T = DX. (19)

min
X
‖X‖1, s.t. ‖T − DX‖22 � δ, (20)

min
X
‖T − DX‖22, s.t. ‖X‖1 � τ, (21)

min
X

1
2
‖T − DX‖22 + λ‖X‖1, (22)

where ‖.‖1 and τ are respectively defined as the sum of the
absolute values of non-zero entries in vector X and the maxi-
mum value of the sum. The advantage of convex relaxation is
that the l1-norm minimization is a convex optimization problem
which has a unique solution and can be solved in polynomial
time. Due to the equivalence of the l1-norm minimization with
Linear Programming (LP), one of the typical approaches for
Eq. (19) is basis pursuit (BP) which advocates the simplex
method or interior-point method of LP to obtain an optimal so-
lution. As a variation of BP, basis pursuit denoising (BPDN)
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can be adapted to noisy data by solving an optimization prob-
lem like Eq. (22) using quadratic programming techniques [47].
In addition, there are extensive methods for the l1-norm mini-
mization including least angle regression (LAR) [48], gradient
projection (GP) [49], iterative shrinkage thresholding algorithm
(ISTA) [50], and a number of their variants.

4.2.3 Nonconvex strategy for lp-norm minimization
Although l1-norm minimization has been widely used and been
accepted as a very effective strategy for solving sparse represen-
tation, there is still the risk of inconsistent selection because the
l1-norm imposes a heavier penalty on larger coefficients of the
representation X, while the l0-norm imposes the same penalty
on all nonzero coefficients [51]. Recently, more and more stud-
ies have focused on solving the sparse representation problem
with the lp-norm minimization, especially 0 < p < 1 [52]. The
objective function of the lp-norm minimization can be rewritten
as follows:

min
X
‖X‖pp, s.t. ‖T − DX‖22 � δ, (23)

or

min
X

1
2
‖T − DX‖22 + λ‖X‖pp, (24)

where ‖X‖pp = ∑m
i=1 |xi|p.

The lp-norm minimization (0 < p < 1) is a nonconvex and
nonsmooth optimization problem which is difficult to be solved
effectively [53]. Moreover, it is also a problem to choose which
p will produce the best result. In recent years, the representa-
tiveness of l1/2 minimization is highlighted in the study of lp-
norm minimization [54], and some effective methods have been
proposed to solve this problem such as iterative reweighted
method (IRM) [55], iterative reweighted least squares (IRLS)
[56], and iterative thresholding method (ITM) [57].

5 Experiments and results
In this section, two aspects of experiments are carried out on
two publicly available datasets for time series prediction. The
experiments in the first aspect mainly focus on eight variants of
SRM performed on the first dataset, while the experiments in
the second aspect compare the performances of SRM and other
popular models for time series prediction based on both the first
and the second datasets.

5.1 Datasets
Here is a brief overview of the two datasets. The first dataset
that we analyze is the time series of electricity consumption
from the European network of intelligent technologies (EU-
NITE) competition organized by the slovak eastern power com-
pany in August 2001 [58]. The EUNITE competition dataset
not only provides electricity load recorded every half hour from
January 1997 to January 1999 but also contains cross-domain
influence factors including daily mean temperature and holiday
information. To further validate the importance of cross-domain
influences, we added the weekend information to provide ad-
ditional contextual information to support the prediction task.
The specification of the EUNITE competition dataset used in
this paper is described in Table 2. The second dataset is a large-
scale time series dataset provided by the M3 competition which

consists of 3003 time series covering different sampling period
of month, quarter, and year [59]. In order to facilitate the com-
parison with other related work [60,61], the 1045 monthly time
series with the length between 99 and 144 are selected from the
M3 competition data for the experiment. They come from dif-
ferent categories and have different data dimensions. The spec-
ification of the M3 competition dataset used in this paper is
described in Table 3.

Table 2 The specification of the EUNITE competition dataset used in this
paper

Attributes Time interval Dimension

Maximum daily load 1997.1.1–1999.1.31 761
Daily mean temperature 1997.1.1–1999.1.31 761
Holiday information 1997.1.1–1999.1.31 761
Weekend information 1997.1.1–1999.1.31 761

Table 3 The specification of the M3 competition dataset used in this paper

Category Time interval Quantity Dimension

Demographic Monthly 90 132–138
Financial Monthly 123 99–144
Industry Monthly 333 122–144
Macro Monthly 300 107–144
Micro Monthly 197 126
Other Monthly 2 120

5.2 Experimental results of different variants of SRM on the
EUNITE competition dataset
The key to the success of SRM lies in the construction of the
over-complete dictionary. Since this paper mainly focuses on
the performance comparison of eight variants of SRM gener-
ated under different dictionary construction strategies, the fol-
lowing experiments uniformly adopt OMP algorithm written
by Matlab to solve the sparse coding, and the sparse factor is
selected from the given interval for optimization. The size of
the over-complete dictionary constructed by different variants
of SRM is different from each other. On the whole, dictionaries
of the variations that require learning are smaller than those that
do not need because some historical data needs to be reserved
as training sets. From the perspective of fairness principle, the
historical data used to complete the entire dictionary construc-
tion process is the same regardless of whether the variation re-
quires dictionary learning. The mean absolute percentage error
(MAPE) is utilized as an accuracy criterion, which can be de-
fined as:

MAPE =
1
h

h∑

i=1

|ti − ti|
ti
× 100%, (25)

where h is the prediction horizon, ti and ti are the actual and the
predicted value of the ith moment.

5.2.1 Experiments of SRM-A on the EUNITE competition
dataset
According to the description in Table 1, SRM-A employs an
analytic approach to construct a basic dictionary without learn-
ing and considering cross-domain factors. In the first, we merge
DCT, DFT and DWT dictionaries with Dirac dictionary respec-
tively to obtain three over-complete dictionaries. Secondly, we
utilize these three different dictionaries for time series predic-
tion according to the workflow of SRM shown in Fig. 2. For a
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more objective comparison, the experiment of SRM-A makes
use of the data from January 1, 1997 to the day before the pre-
dicted month as the training set to predict the maximum daily
load of the next month. Depending on the predicted month, 13
experiments are performed from January 1998 to January 1999
respectively. The experimental results are shown in Table 4. For
a more intuitive display of the results, we visualize the results
as Fig. 3. It can be concluded from Fig. 3 that SRM-A based
on DCT is a good choice for this dataset because it has main-
tained stable performance and small prediction error in all ex-
periments. Because of the obvious periodicity of power load
data, DWT does not have much advantage in this dataset.

Table 4 MAPE (%) of SRM-A on the EUNITE competition dataset

Training data Test data DCT DFT DWT

97.01–97.12 98.01 3.60 4.00 4.11
97.01–98.01 98.02 1.57 3.79 3.79
97.01–98.02 98.03 3.69 3.70 3.70
97.01–98.03 98.04 7.01 7.07 7.05
97.01–98.04 98.05 5.40 14.44 9.62
97.01–98.05 98.06 3.34 13.14 5.74
97.01–98.06 98.07 5.01 9.11 3.06
97.01–98.07 98.08 3.03 17.09 3.03
97.01–98.08 98.09 3.55 5.74 6.09
97.01–98.09 98.10 4.95 3.21 7.16
97.01–98.10 98.11 3.68 3.07 5.08
97.01–98.11 98.12 3.89 3.21 4.23
97.01–98.12 99.01 2.79 4.75 2.94

5.2.2 Experiments of SRM-D on the EUNITE competition
dataset
In terms of dictionary construction, the only difference between
SRM-D and SRM-A is that it follows the way of data realization
to create an over-complete dictionary. It should be noted that the
dictionary construction of SRM-D is related to the length of his-
torical data. According to the requirements of the competition,
the experiments will take the data of 1997 and 1998 as historical
data to predict the maximum daily load in January 1999. Since
the dictionary D ∈ R(n+h)×m only requires more columns than
rows, there are many different sizes of dictionaries produced
based on 730 points of two years. Considering that prediction
horizon h = 31, after deducting the data of n days before the
predicted month used for sparse coding, the number of columns
m can be calculated according to the following formula:

m = 730 − n − (n + 31) + 1. (26)

Fig. 3 Prediction performance comparison of SRM-A for different basic dic-
tionaries on the EUNITE competitive dataset

For a full comparison, we arrange five experiments with n = 90,
120, 150, 180, and 210. According to the value of n and
Eq. (12), five dictionaries of different sizes are created, includ-
ing 121×520, 151×460, 181×400, 211×340, and 241×280. Af-
ter constructing the dictionary, the sparse representation X can
be obtained based on the data of n days previously reserved and
then the prediction is made. The experimental results of SRM-
D are shown in the second column of Table 5.

Table 5 MAPE (%) of four variants of SRM-D based on the EUNITE com-
petition dataset, where D stands for the dictionary based on data realization

Size of D SRM-D SRM-DL SRM-DC SRM-DLC

121×520 2.69 2.18 1.72 1.74
151×460 2.69 1.94 1.61 1.43
181×400 2.02 1.68 1.94 1.42
211×340 2.22 1.90 1.98 1.62
241×280 1.96 1.69 1.62 1.49

According to the last row of Table 4, the MAPE of the same
prediction problem solved by SRM-A based on DCT is 2.79%,
which is higher than the results of SRM-D based on different
dictionaries. The best result of SRM-D is 1.96% when the size
of the dictionary is set to 241×280. The fact that SRM-D is su-
perior to SRM-A for this dataset further demonstrates that ex-
plicit dictionaries are more flexible and adaptable than implicit
dictionaries.

5.2.3 Experiments of SRM-AL and SRM-DL on the EUNITE
competition dataset
SRM-AL adds the process of dictionary learning based on
SRM-A. In view of the previous experiments on SRM-A, we
directly choose DCT merged with Dirac dictionary to form the
basic dictionary. We conduct five experiments to predict the
maximum daily load in January 1999 respectively, and the size
of the training set gradually increases from 20 to 100. The gen-
eration of the training sample is related to the size of the train-
ing set. If the training set has a total of r samples, each training
sample Zi = {ti, ti+1, . . . , t730−r+i} (i = 1, 2, . . . , r). The method
of dictionary learning is performed using the k-SVD toolbox
V10 and the experimental results of SRM-AL are shown in the
first row of Table 6. It is obvious that SRM-AL performs bet-
ter than SRM-A (MAPE=2.79%) in the vast majority of cases.
Especially when the number of time series involved in dictio-
nary learning r=100, SRM-AL can achieve the best prediction
performance (MAPE=1.41%).

Similar to SRM-AL, SRM-DL adds dictionary learning
based on SRM-D. We maintain the dictionaries of SRM-DL
consistent with those of SRM-D in order to facilitate perfor-
mance comparisons. Five dictionaries of different sizes have
different training sets. For dictionary D ∈ R(n+h)×m, the num-
ber of training samples r = n, each training sample Zi =

{tm+i, tm+i+1, . . . , tm+i+n+h−1} (i = 1, 2, . . . , r). The experimental
results of SRM-DL are shown in the third column of Table 5.
By comparing the MAPE values before and after the dictionary
learning, it can be concluded that this strategy can also effec-
tively improve the prediction performance of SRM-D. The best
performance of SRM-DL is 1.68%, which is worse than that of
SRM-AL (MAPE=1.41%), indicating that dictionary learning
is more helpful for implicit dictionary constructed by analytic
approach.
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5.2.4 Experiments of considering cross-domain dependencies
on the EUNITE competition dataset
Due to the fact that this dataset provides three cross-domain
influence factors for the time series of power loads, it is con-
venient to compare the prediction performances of different
variations with or without influence factors. The cross-domain
influence factors include daily mean temperature, dates of the
holidays, and day of the weeks. We mark holidays and week-
ends as 1, and the rest of the working days as 0. After nor-
malizing all cross-domain influence factors, they are merged
with different dictionaries of different varieties. We performed
the contrast experiments on all the above models to verify the
importance of cross-domain dependencies. For the problem of
power load forecasting in January 1999, the MAPE of SRM-
A based on DCT is 2.79%, while the MAPE of SRM-AC
considering cross-domain dependencies is 2.26%. The exper-
imental results of SRM-DC are shown in the fourth column of
Table 5. Obviously, considering cross-domain dependencies
can also be effective in improving the prediction performance
of SRM-A and SRM-D. The same conclusion applies to SRM-
AL and SRM-DL. The experimental results of SRM-DLC and
SRM-ALC are shown in the last column of Table 5 and the last
row of Table 6. For better comparison, we divide the eight vari-
ants into four groups based on whether cross-domain dependen-
cies are considered. The prediction performance comparisons
of the best results are shown in Fig. 4. It can be concluded from
Fig. 4 that when the dataset provides cross-domain influence
factors that affect the changing trend of time series, it should
be recommended to add atoms of influence factors to the over-
complete dictionary in order to further improve the prediction
performance.

Table 6 MAPE (%) of SRM-AL and SRM-ALC on the EUNITE competition
dataset, where r represents the number of time series involved in dictionary
training

Abbr. r=20 r=40 r=60 r=80 r=100

SRM-AL 3.72 2.29 1.52 1.76 1.41
SRM-ALC 1.87 1.69 1.44 1.41 1.40

Finally, to better compare the overall performance of the
eight variations of SRM, Table 7 lists their optimal MAPE val-
ues and corresponding running time. We can draw the following
conclusions from Table 7:

1) For SRM-A, dictionary learning can improve prediction
performance more effectively than considering cross-domain
dependencies, but at the cost of high computational complex-
ity.

Fig. 4 Prediction performance comparison of eight variants of SRM on the
EUNITE competition dataset

2) For SRM-D, a similar effect can be achieved if either dic-
tionary learning or cross-domain dependencies are considered,
while the combination of the two can further improve the pre-
dictive performance.

Table 7 The overall performance of eight variants of SRM on the EUNITE
competition dataset

SRM-A SRM-AC SRM-AL SRM-ALC

MAPE/% 2.79 2.26 1.41 1.40
Time/s 0.05 0.05 1.01 1.01

SRM-D SRM-DC SRM-DL SRM-DLC

MAPE/% 1.96 1.61 1.68 1.42
Time/s 0.27 0.27 0.47 0.47

5.3 Contrast experiments between SRM and other time series
prediction models
In order to show the strength of SRM for time series predic-
tion, the contrast experiments are carried out on two different
datasets.

5.3.1 Experimental results of the EUNITE competition
dataset
In accordance with the requirements of the competition in that
year, the experiments will take maximum daily loads of 1997
and 1998 as historical data to predict that of January 1999. Ac-
cording to the performance comparison of the eight variants of
SRM shown in Table 7, we choose SRM-DC, SRM-DLC, and
SRM-ALC to compare with some popular models of time series
prediction, including MLP, SVR, RF, ARIMA, LSTM, GRU,
and MGU.

The MLP method using a three-layer neural network is con-
structed exploiting the nnet function of the R statistical pack-
age. The number of the hidden nodes is set to 2n+1 follow-
ing the practical guidelines, where n is the number of the in-
put nodes, that is, the number of cross-domain influence fac-
tors. The activation functions of the hidden layer and output
layer adopt logistic function and linear function respectively.
Since the initial weights are generated randomly, the experi-
ment is performed 10 times to obtain the optimal result. The
SVR method using ε-regression is constructed exploiting the
SVM function of the e1071 R statistical package. The kernel
used is the radial basic one, which is mainly due to its good per-
formance and fewer required parameters. The insensitive loss
ε is set to 0.1 and the cost of constraints violation is fixed to
the maximum of the target output values, which is 1. The RF
method using ensemble learning is constructed with default pa-
rameters exploiting the RF function of the R statistical pack-
age. Similar to MLP, the performance of random forest varies
greatly due to the initial parameters. The experiment is also
carried out 10 times to obtain the optimal result. The ARIMA
method is constructed exploiting the forecast function of the
R statistical package. The parameters in ARIMA are fitted via
maximum likelihood and the model orders (p, d, q) are finally
selected as (2, 1, 3), where p denotes the order of autoregres-
sive, d is express differencing, and q is the specific order of the
moving average. LSTM, GRU, and MGU are implemented in
Python, using Keras library as the backend. We adopt the adap-
tive learning rate optimization algorithm Adam to calculate the
gradient over mini-batches of the training data. Since different
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parameter settings can lead to different results, the optimization
is performed by assigning to each hyperparameter a value se-
lected from a given interval. As the prediction horizon h=31,
the time step of the network is also set to 31. We train the net-
work for 3000 epochs with the learning rate λ = 10−3 and the
optimized configuration is finally set as: the number of the hid-
den units Nh=30, the size of the batch BS=15.

The experimental results in Table 8 show that the accuracy of
SRM-ALC, SRM-DLC, and SRM-DC ranks first, second and
fourth respectively without sacrificing running time. Among
them, although SRM-DC is not as accurate as SRM-ALC and
SRM-DLC, it has the shortest running time due to the lack of
dictionary learning. To be clear, LSTM is also very suitable
for time series prediction because it can capture both long-
term and short-term time dependencies between data. However,
as LSTM adopts a relatively complex gate structure, a large
number of connection weights need to be trained, resulting in
high computational complexity of the model. As the simplified
versions of LSTM, GRU, and MGU reduce the running time,
but their accuracy is worse than that of LSTM. In summary,
SRM only needs to learn the basic dictionary or supplement the
cross-domain influence factors to achieve time series prediction
quickly and efficiently. Considering the tradeoff of accuracy and
complexity, SRM has advantages over other models. Figure 5
shows more detail between the real value of the raw time series
and the predicted value of all models. Although all the models
reflect the periodic change of the raw time series, the predic-
tion performance is quite different. More obviously, ARIMA
and RF do not show a slow upward trend similar to the raw val-
ues, while the other models can well fit them. LSTM does not
fit well in the first half, but the second half is excellent. SRM-
ALC and SRM-DLC have the best fitting effect in the whole
prediction horizon.

Table 8 The prediction performance of different models on the EUNITE com-
petition dataset

Model MAPE/% Time/s Rank

ARIMA 4.08 42.5 10
RF 3.44 0.53 9
SVR 3.09 0.11 8
MLP 2.75 0.08 7
MGU 2.20 3986 6
GRU 1.91 2521 5
SRM-DC 1.61 0.27 4
LSTM 1.53 4949 3
SRM-DLC 1.42 0.47 2
SRM-ALC 1.40 1.01 1

5.3.2 Experimental results of the M3 competition dataset
For the M3 competition dataset, it does not provide cross-
domain influences factors. It is characterized by a large-scale
dataset consisting of 1045 time series with the length between
99 and 144. All models are trained with the first n-18 observa-
tions, where n is the length of the series, and then 18 predictions
are generated and compared with the actual values to evaluate
their performance. According to the computational complexity
comparison of eight variants of SRM shown in Table 7, as the
simplest one, SRM-A has the advantages of the parameter-free
adjustment and the lowest running time, which makes it par-

Fig. 5 Prediction performance comparison of different models on the EU-
NITE competition dataset. (a) The predicted load of ARIMA vs. the raw load;
(b) The predicted load of RF vs. the raw load; (c) The predicted load of SVR vs.
the raw load; (d) The predicted load of MLP vs. the raw load; (e) The predicted
load of MGU vs. the raw load; (f) The predicted load of GRU vs. the raw load;
(g) The predicted load of SRM-DC vs. the raw load; (h) The predicted load of
LSTM vs. the raw load; (i) The predicted load of SRM-DLC vs. the raw load;
(j) The predicted load of SRM-ALC vs. the raw load

ticularly suitable for this dataset. The work performed in
[60,61] utilized the exact same dataset to compare the perfor-
mance of three categories of time series prediction models, in-
cluding traditional statistical models, machine learning models,
and hybrid integrated models. So it is convenient to compare
the results of SRM-A with the above models on this basis. Con-
sidering that the work performed in [60,61] adopted symmetric
mean absolute percentage error (SMAPE) as an accuracy cri-
terion, SRM-A is evaluated with the same performance metric
for reasons of fairness. SMAPE is called the adjusted MAPE
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and is defined as:

SMAPE =
1
h

h∑

i=1

|ti − ti|
(|ti + ti|)/2

× 100%. (27)

Table 9 shows the SMAPE of different horizons by differ-
ent models. The first four models belong to traditional statis-
tical models. Naïve 2 is a kind of random walk model ad-
justed for seasonality, which is often used as a benchmark of
the M3 competition. The second and third models are ARIMA
and automatic exponential smoothing (AES), both of which are
very popular statistical forecasting models. The fourth model
is the Theta method that achieved the best overall prediction
performance in the original M3-competition. The selection of
machine learning models participating in the contrast experi-
ment is based on the conclusion that MLP and BNN are supe-
rior to other machine learning models for one-step prediction
[61]. There are usually three methods to extend the horizon
of machine learning models from one-step prediction to multi-
step prediction, including iterative method, direct method, and
multi-output method [62]. The iterative method involves recur-
sively using the one-step model where the prediction of the
prior time step is used as an input for making a prediction on
the next time step. That means the new prediction depends on
the accuracy of the previous ones such that performance can
quickly degrade as the forecasting horizon increases. On the
contrary, the direct method produces a separate model for each
forecast time step. Finally, the multi-output method is to de-
velop one model that is capable of predicting the entire forecast
horizon at one time. Obviously, the direct method is not suitable
for large-scale datasets due to its complexity. Thus, only the
other two methods are applied to MLP and BNN for multi-step
prediction. Finally, the ninth model is a hybrid integrated model
that combines three exponential smoothing models: SES, Holt,
and Damped, based on the principle of averaging multiple fore-
cast results to achieve better accuracy. A detailed introduction
of the above models can be found in [60].

Table 9 SMAPE (%) of different horizons by different models on the M3
competition dataset

Model h=1 h=5 h=9 h=18 Mean

Results from [60]
Naïve 2 10.75 10.38 13.24 16.49 12.72
ARIMA 7.78 9.84 11.27 16.03 11.23
AES 8.06 9.94 11.09 15.45 11.14
Theta 8.20 9.68 10.73 14.86 10.87
MLP Iterative 7.98 10.75 12.03 17.20 11.99
BNN Iterative 7.92 10.54 11.73 16.82 11.75
MLP Multi 7.87 10.88 12.25 18.38 12.35
BNN Multi 7.95 10.74 12.38 18.25 12.33
Comb S-H-D 8.18 9.70 10.87 14.99 10.94
Our results
SRM-A 3.66 7.66 9.76 14.19 8.82

As can be seen from Table 9, the top three with the best av-
erage prediction performance are SRM-A, Theta and Comb S-
H-D, while machine learning models perform poorly. The main
reason is that the traditional statistical model has a stable pre-
diction performance in predicting a large number of time series
one by one. However, the prediction performance of machine

learning model fluctuates greatly, resulting in the decrease of
the average value. In the case of the overall poor performance
of machine learning models, SRM-A fully achieves the best
performance of different prediction horizons. This fully demon-
strates the effectiveness of SRM for time series prediction.

6 Conclusions and future work
In smart city, huge amounts of sensing information are captured
every second by diverse IoT devices. These information change
with time and have some regulations, which can be predicted
with the help of data mining technology in order to realize
the event alert. In this paper, a systematic framework based on
sparse representation model for time series prediction (SRM)
is proposed as a novel approach to face the challenge. SRM
divides the dictionary into two parts from the perspective of
the series connection. The decomposition part is used to obtain
the sparse representation of historical data, while the predic-
tion part combined with sparse representation can be used for
the forecast. To enable SRM to be flexibly applied to various
types of time series prediction, this paper focuses on the study
of dictionary construction strategy and summarizes eight vari-
ants of SRM. The difference between the eight variants lies in
the choice of three questions, including: how the basic dictio-
nary is generated, whether dictionary learning is required, and
whether cross-domain dependencies are considered. By com-
paring these eight variants in experiments, we got the following
insights:

1) For the prediction of single time series, SRM-D with ex-
plicit dictionary constructed by data realization is more flexible
and adaptable than SRM-A with implicit dictionary constructed
by analytic approach. However, the way of data realization to
generate an over-complete dictionary depends on the length of
the historical time series, while the analytic approach is more
universal and convenient.

2) Dictionary learning can effectively improve the prediction
performance of SRM, but it will increase the computational
complexity.

3) The prediction performance of SRM can be effectively im-
proved by taking cross-domain influence factors into account,
with the benefit of no additional computational complexity.

4) As the simplest of eight variants of SRM, SRM-A has
the advantages of the parameter-free adjustment and the lowest
computational complexity, which makes it particularly suitable
for the large-scale dataset.

For future work, we are interested in two aspects. On the one
hand, the integration of analytic approach and data realization
can be studied to generate an over-complete dictionary so as
to take the advantages of both implicit dictionary and explicit
dictionary. On the other hand, Kernel Sparse Representation
Model (KSRM) for time series prediction with nonlinear fea-
tures is a primary focus, because KSRM has the opportunity
to learn more discriminative sparse representation than SRM
and greatly boosts the performances of nonlinear time series
prediction.
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