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Abstract Despite significant successes achieved in knowl-

edge discovery, traditional machine learning methods may

fail to obtain satisfactory performances when dealing with

complex data, such as imbalanced, high-dimensional, noisy

data, etc. The reason behind is that it is difficult for these

methods to capture multiple characteristics and underlying

structure of data. In this context, it becomes an important

topic in the data mining field that how to effectively con-

struct an efficient knowledge discovery and mining model.

Ensemble learning, as one research hot spot, aims to integrate

data fusion, data modeling, and data mining into a unified

framework. Specifically, ensemble learning firstly extracts a

set of features with a variety of transformations. Based on

these learned features, multiple learning algorithms are uti-

lized to produce weak predictive results. Finally, ensemble

learning fuses the informative knowledge from the above re-

sults obtained to achieve knowledge discovery and better pre-

dictive performance via voting schemes in an adaptive way.

In this paper, we review the research progress of the main-

stream approaches of ensemble learning and classify them

based on different characteristics. In addition, we present

challenges and possible research directions for each main-

stream approach of ensemble learning, and we also give an

extra introduction for the combination of ensemble learning

with other machine learning hot spots such as deep learning,

reinforcement learning, etc.
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1 Introduction

Ensemble learning methods exploit multiple machine learn-

ing algorithms to produce weak predictive results based on

features extracted through a diversity of projections on data,

and fuse results with various voting mechanisms to achieve

better performances than that obtained from any constituent

algorithm alone [1]. From Fig. 1 (modified with reference to

Fig. 6 of the essay “Understanding the Bias-Variance Trade-

off” by Fortmann-Roe S. See the author’s personal website),

we observe that the total error of the learning model declines

continuously until reaching the bottom, followed by a rapid

upward trend, when the model complexity increases. The

trends of the bias and variance are opposite: the former drop

dramatically before remaining steady, while the latter holds

steady before rising heavily. We deduce that when increas-

ing the model complexity to improve the performance of this

model, we are dedicated to reaching a delicate balance be-

tween bias and variance. The earliest work of ensemble learn-

ing can date back to the last century [2–4]. Dasarathy and

Sheela [2] proposed to utilize component classifiers trained

from different categories to constitute a composite classifica-

tion system, thereby enhancing the performance of identifica-

tion systems. Kearns [3] investigated the equivalent problem

about the relationships between the weak learning algorithms

and the strong learning algorithms in PCA learning model.

Afterward, Schapire and Robert [4] explored the feasibility

of incorporating multiple weak learning models into a high-

precision model. The past decades have witnessed ensemble

learning drawing increasing attention, and researchers have

carried out a great amount of exploration and innovation,
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and in some international machine learning competitions like

Kaggle, KDD-Cups, etc., ensemble learning has achieved ex-

ceptionally satisfactory performance. To put it more specifi-

cally, ensemble learning aims to integrate various machine

learning algorithms into a unified framework seamlessly.

Thus, the complementary information of each algorithm is

effectively utilized to allow better performance of the overall

model. From this perspective, ensemble learning is extremely

extensible to combine with diverse machine learning models

for different types of tasks, such as common classification

tasks, clustering tasks, etc. Generally speaking, existing en-

semble learning methods can be grouped into four categories:

supervised ensemble classification, semi-supervised ensem-

ble classification, clustering ensemble, and semi-supervised

clustering ensemble. We would discuss these methods in the

following sections from their research progress and algorithm

applications to challenges encountered and give some poten-

tial future directions. We also give a brief introduction to the

main research issues of ensemble classification and cluster-

ing ensemble in Fig. 2 and Fig. 3 to make readers know the

main content of this survey more clearly.

Fig. 1 The relationship between learning curve and model complexity
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Fig. 2 Main research issues of ensemble classification

The rest of this survey is organized as follows. In Section 2,

we review the supervised ensemble classification (in short,

we call it ensemble classification). Next, we give an overview

of semi-supervised ensemble classification in Section 3. Sec-

tion 4 introduces the researches of clustering ensemble. In

Section 5, we provide a conspectus of semi-supervised clus-

tering ensemble. In Section 6 we give a more specific intro-

duction for the combination of ensemble learning with deep

learning and other hot spots in machine learning, and in Sec-

tion 7, we give a summary and discussion about the survey.

Fig. 3 Main research issues of clustering ensemble

2 Supervised ensemble classification

Figure 4 illustrates the main idea of a typical ensemble clas-

sification model, which consists of two steps: (1) generat-

ing classification results using multiple weak classifiers, and

(2) integrating multiple results into a consistency function to

get the final result with voting schemes. The widely-used en-

semble classification methods include bagging [5], AdaBoost

[6], random forest [7], random subspace [8], gradient boost-

ing [9]. The Bagging method generates sample subsets by

randomly sampling from the training data set, and then uses

these obtained subsets to train the basic models for integra-

tion. The training of basic models in the Bagging model is

performed in a parallel manner. From Fig. 5, we can see that

AdaBoost focuses on samples that are misclassified through

adjusting weights of samples iteratively, thereby improving

classification performances of basic models for the final inte-

gration. It is worth noticing that the training of basic models

in AdaBoost is conducted in a tandem manner instead of in a

parallel manner. Random Forest trains multiple decision tree

models from two perspectives: the sample dimension and the

feature dimension. As a result, it alleviates the problem that

decision trees are prone to over-fitting by integrating voting

results of multiple decision trees. The training of basic mod-

els in the Random Forest is parallel, which is similar to that in

Bagging. Random Subspace constructs a set of feature sub-

spaces via randomly sampling features, and then trains ba-

sic classifiers in these subspaces to generate multiple results

before being fused into the final result. The basic models in
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Random Subspace are trained parallelly. As Fig. 6 shows,

Gradient Boosting randomly samples to get sample subsets

and then each learner is constructed and trained to reduce

the residuals generated by the previous learner. Consequently,

Gradient Boosting can make the sum of the final residuals

from the integrated models small enough, thereby forcing the

prediction close to the actual value. Similar to that in Ad-

aBoost, basic models in the gradient boosting are trained in

a tandem way. In addition to the above-mentioned methods,

there are some other methods in the ensemble classification

category.

Fig. 4 The framework of ensemble classification

Fig. 5 The framework of AdaBoost

Fig. 6 The framework of Gradient Boosting

At the sample level, ensemble classification methods can

be grouped into two categories concerning the manner that

how the sample subsets are selected. Specifically, Garcia-

Pedrajas [10] combined an instance selection algorithm with

Boosting method to effectively reduce the space complex-

ity when constructing basic classifiers, and focus on the in-

stances which were difficult to learn using a biased distribu-

tion. The instance selection algorithm in this method is also

suitable for other basic classifiers such as KNN and SVM.

Afterward, Garcia-Pedrajas et al. [11] fused Boosting method

and Random Subspace method into a unified framework, in

which a series of subspaces were obtained. In each subspace,

misclassified instances were utilized to generate supervised

projections that span a space where the next classifier was

trained using all instances. The final results were obtained by

using such serial operations.

At the feature level, some works carried out studies on

characteristics of features embedded in the original data from

different aspects [12, 13]. Kuncheva et al. [12] investigated

three feature criteria including usability, coverage, and diver-

sity for random subspace ensemble, these criteria were used

for searching appropriate ensemble size and feature size to

improve the accuracy and diversity of classifiers. Ye et al. [13]

proposed a stratified sampling method to divide features into

two groups: one with strong information and the other with

weak information. With these two groups, one can construct

multiple feature subspaces by proportionally sampling from

each group. This special sampling makes it possible that ev-

ery subspace contains enough informative features for train-

ing better classifiers and increasing diversities of classifiers.

These above studies demonstrate that the characteristics of

features can be utilized to effectively improve the perfor-

mance of an ensemble classification model in terms of pre-

diction accuracy.

Different from works that explored characteristics of fea-

tures, some works focused on feature subset selection, fea-

ture extraction, redundancy feature removal, etc. Empirical

evidence has demonstrated that such explorations can effec-

tively reduce dimensions of features, and decrease negative

effects brought about by noisy data. For example, Bryll et

al. [14] used Bagging technique to do sampling on the at-

tributes of instances and used feature subsets to train basic

classifiers, where the performance on training data set was

used for adjusting the size of attribute subsets and the number

of voters. Based on co-training algorithm [15] which tries to

generate basic classifiers from different perspectives, Wang

et al. [16] extended co-training to the multi-view situation,

in which random subspaces of feature space were chosen to

train multiple classifiers, since classifiers showed various sen-

sitivities to subspaces and provided complementary informa-

tion for each other. Besides, Yaslan and Cataltepe [17] pro-

posed a relevant random subspace co-training approach, in

which features were drawn with probabilities proportional

to corresponding relevance that were quantified by the mu-

tual information between features and class labels. Zhang
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and Zhang [18] introduced random discriminant information

into canonical correlation analysis for feature extraction in

multi-view ensemble learning. Guo et al. [19] presented a

dynamic rough subspace based selective ensemble method,

in which the rough set theory was adopted to reduce the

searching space and the dimensionality of features. Windeatt

et al. [20] used a feature ranking scheme to remove irrelevant

features in multilayer perceptron ensemble. Additionally, re-

searches at the feature level include how to design and con-

struct new features for classifier construction. Rodriguez et

al. [21] designed Rotation Forest method to extract features

from the original features using coordinate rotation transfor-

mation. Takemura et al. [22] constructed pattern-spectrum

based features using mathematical morphology computation,

in which the spectrum parameters could help quantify analy-

sis of tumor shapes. Amasyali and Ersoy [23] presented ex-

tended space forest method by performing different trans-

formations on pairs of original features to generate random

feature combinations. Concerning the missing feature pro-

cessing, Polikar et al. [24] proposed Learn++.MF method

to solve the problem of missing features with random sub-

space method, in which labels of data with missing features

were predicted by the classifier trained on data that contained

the corresponding missing feature. The performance of this

method experienced a gradual decline trend when the num-

ber of missing data increased. Concerning the feature weight

adjustment, Nanni and Lumini [25] used particle swarm op-

timization algorithm [26] to assign optimal weights for fea-

tures in each random subspace, thereby minimizing the error

rate in the training process.

At the basic model level, many basic models are trained

for prediction, then the ensemble model fuses the predictive

results from these basic models via a consensus function,

however, not all basic models are beneficial to the final re-

sult of the integration. As shown in Fig. 7, it is expected that

basic models beneficial to the integration performances are

selected, and models that are redundant or have negative ef-

fects are removed. Specifically, Zhou and Tang [27] proposed

GASEN-b algorithm using bit strings to represent the appear-

ance of tree classifiers in the ensemble and adopted genetic

algorithm on bit strings to conduct classifier selection. Diao

et al. [28] developed a thought of feature selection to facilitate

the selection of basic models by considering classifiers as fea-

tures after converting ensemble predictions into training sam-

ples. Yu et al. [29] proposed a progressive selection process

by considering the sample space and the feature space simul-

taneously, in which a cost function was designed to fuse the

current and perennial information to serve the classifier se-

lection sequentially. Recently, they propose the hybrid incre-

mental ensemble learning (HIEL) approach [30] which takes

into consideration the feature space and the sample space si-

multaneously for classifier selection to handle noisy dataset.

Dos Santos et al. [31] combined optimization process with

the dynamic selection strategy to select the most confident

subsets of classifiers with high accuracy. Hernández-Lobato

et al. [32] used statistical techniques to evaluate confident

levels of basic classifier subsets for voting results, in which

the polling of classifiers would be halted once the remain-

ing failed to change the final result with probabilities above

the specified confidence level. Moreover, it is an important

issue that how to design and utilize effective methods to inte-

grate results from basic models. Martínez-Muñoz et al. [33]

studied several pruning strategies and found that an appropri-

ately ordered classifier aggregation could better the model in

terms of accuracy and robustness. De Stefano et al. [34] ex-

ploited Bayesian network to merge the response of decision

tree ensembles, in which performance was improved and the

number of classifiers was considerably reduced. Rahman and

Verma [35] proposed a cluster-oriented hierarchical ensemble

classification algorithm which integrated classifiers generated

by applying clustering algorithms to the data in multiple lay-

ers. In [36], a hierarchical ensemble classification algorithm

was further proposed which was based on clustering confi-

dence vectors. In general, these studies focus on filtering ba-

sic models using statistical knowledge, optimization process,

etc., and adopting various schemes to integrate predictions

from basic models to obtain the final prediction. There are

also some other studies that introduce different types of basic

models into ensemble classification, and these basic models

include neural networks, support vector machines, etc. These

works [37–39] show that the ensemble method can be eas-

ily compatible with other machine learning methods. Specif-

ically, Zhang and Suganthan [37] introduced support vector

machine into oblique decision tree ensemble [38] to help get

the testing hyperplane for internal nodes to do classification.

Zhou et al. [39] proposed a neural network based ensemble

method, where the weights of networks were updated by ge-

netic algorithm. Apart from the abovementioned researches,

some works concentrate on the refinement of basic models.

Since the K-nearest neighbor algorithm cannot sufficiently

utilize the information embedded in the feature space, Yu et

al. [40] proposed a hybrid KNN classification approach to re-

lieve this limitation, in which random subspace method was

adopted for the ensemble. Moreover, Li et al. [41] proposed a

random subspace evidence classifier which used the informa-

tion of both the whole feature space and the random subspace
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to calculate basic belief for classification.

There have been lots of studies at the level of the entire

ensemble model, which has some characteristics including

complexity, sparsity, stability, etc. For example, Hernández-

Lobato et al. [42] explored the effect of the size of a parallel

ensemble on the aggregated predictive result, in which the

minimum number of classifiers was estimated. Wang et al.

[43] found that with the fuzziness of basic classifiers becom-

ing higher, the ensemble classification model could achieve

better generalization ability when handling data sets with

complex boundaries. Kuncheva [44] used the kappa-error di-

agrams to analyze the property of classifiers ensemble which

showed that accuracies of basic models played an impor-

tant role in improving performance of ensemble classifica-

tion model. Gao and Zhou [45] introduced the concept which

called approximation stability to help evaluate the ensemble

model stability. Yin et al. [46] studied the sparsity and diver-

sity of ensemble model, and introduced the concept called di-

versity contribution ability for classifier selection and weight

adjustment. Zhang and Suganthan [47] increased diversities

of the tree classifiers in random forest by concatenating dif-

ferent rotation spaces into a higher space in the root node,

and searched the best rotation method for child nodes. Li et

al. [48] studied the connection between the diversity and the

generalization performance of ensemble models, and found

that the diversity could be used for the ensemble regular-

ization. Zhang et al. [49] constructed basic classifiers by re-

sampling pairwise constraints to improve diversities of mod-

els. Zhou and Li [50] studied the ensemble diversity from the

perspective of information theory and found that ensemble

diversity could be decomposed over the basic classifiers. Re-

cently, a tree matching diversity measurement was proposed

by Sun and Zhou [51] to consider the structural diversity and

the behavioral diversity concurrently.

Fig. 7 The framework of model selection in ensemble method

Overall, these above researches mainly focus on character-

istics of ensemble models and use the complementary infor-

mation of basic models to improve the overall performance.

Apart from these works, some works are dedicated to design-

ing new measurements for performances of ensemble meth-

ods. Specifically, Mao et al. [52] designed an objective func-

tion to approximate the ensemble error to reduce the diffi-

culty of balancing the diversity and the accuracy of ensemble

model. Yu et al. [53] proposed a non-parametric test method

to evaluate the suitability of ensemble methods on different

data sets. Furthermore, some works studied optimization pro-

cessing from different aspects such as features, basic mod-

els, etc. For instance, Kim and Cho [54] used an evolution-

ary algorithm to find optimal discriminant ensembles of fea-

tures and classifiers. Qian et al. [55] used a bi-objective for-

mulation to better the generalization performance and prune

basic models simultaneously. Some researches focus on re-

laxing limitations of existing methods, such as Zhou and

Feng [56] presented the multi-grained cascade forest method

to rival deep neural networks (DNN) by achieving compa-

rable performances, in which a deep forest ensemble with a

cascade structure was generated for representation learning.

They also proposed encoder forest [57] which adopted trees

ensemble for auto-encoder and obtained lower reconstruction

errors with faster training speed when compared with DNN

based auto-encoders. More researches about deep forest can

be seen in [58–60]. To find the optimal subspace combina-

tions for traditional Random Subspace method, Yu et al. [61]

proposed a hybrid adaptive ensemble classification algorithm

to explore the optimal random subspace set.

Because ensemble classification methods have advantages

in terms of accuracy, stability, and generalization, they are

widely adopted to solve all kinds of problems, such as multi-

instance learning, multiple-label learning, imbalance learn-

ing, etc. Specifically, Zhou and Zhang [62] transformed

multi-instance representations into single-instance learning

algorithms, in which the basic classifiers were trained us-

ing bags that represented features factor generated by cluster-

ing on all samples. Zhu et al. [63] proposed an active learn-

ing ensemble framework which selectively labeled instances

from data streams with the guide of minimum variance prin-

ciple. Brzezinski and Stefanowski [64] presented an accuracy

updated ensemble method which combined accuracy-based

weighting mechanisms with the incremental nature of Ho-

effding Trees to solve different types of concept drifts in data

stream mining. Muhlbaier et al. [65] designed a dynamically

weighted consult and a voting mechanism to integrate clas-

sifiers for the incremental learning of new new class. Xiao

et al. [66] proposed a dynamic classifier ensemble selection

strategy to reduce the bias in classification error and ob-

tained good performance when handling noisy data. Galar

et al. [67] conducted a thoroughly empirical comparison of



246 Front. Comput. Sci., 2020, 14(2): 241–258

representative ensemble classification approach dealing with

imbalanced problems. Liu et al. [68] presented EasyEnsem-

ble method and BalanceCascade method, which generated

subsets of major class firstly, and trained classifiers using

the subsets, thus information of major data could be fully

utilized. Sun et al. [69] proposed an evolutionary under-

sampling based bagging method which generated a set of

accurate and diverse basic classifiers for ensemble to deal

with imbalance data. Li et al. [70] adopted the wiener pro-

cess which characterized the particles macroscopic move-

ment into over-sampling to synthesize new samples for cer-

tain minority class. The regularity exhibited in the wiener

process forced the generated samples to follow the distribu-

tion of the original minority class, which expanded the range

of attribute values in the training data set. As a result, a stable

and robust decision region can be constructed for the clas-

sifier to achieve better performance on an imbalanced data

set. Abawajy et al. [71] introduced a large iterative multi-

tier ensemble scheme tailored for handling big data. In this

method, except the second-level ensemble modules using ba-

sic classifiers as members, ensemble modules in the higher

level were composed of low-level ensembles instead of ba-

sic classifiers. Li et al. [72, 73] presented a selective ensem-

ble of classifier chains method to reduce the computational

cost and the storage cost arose in multi-label learning by de-

creasing the ensemble size. In this method, with F1-score as

the performance criterion, an upper bound for the empirical

risk was converted into a convex optimization problem using

math-norm regularization. In addition, ensemble classifica-

tion methods are widely used in the biomedical field, such as

protein kinase-specific phosphorylation sites prediction [74],

protein-ligand binding site localization [75], protein func-

tion prediction [76], breast cancer cell identification [77],

etc. Apart from applications in the biomedical field, ensem-

ble classification methods have been applied to the intelli-

gent transportation area, such as pedestrian detection [78,79],

vehicle type recognition [80], traffic flow prediction [81].

Furthermore, ensemble classification methods are adopted

in pattern recognition applications, such as face recogni-

tion [82], hand-printed character recognition [83], multi-label

image/video annotation [84], speaker verification [85], gait

recognition [86], image retrieval [87] and network intrusion

detection [88]. Besides, ensemble classification methods can

also be adopted for social applications such as noise differ-

entiation [89], customer relationship management [90], sen-

timent analysis [91], etc.

Based on the above-mentioned works, we find that there

are still many challenges in the ensemble classification field

that are worth further exploring in the future. Specifically,

although most methods mainly consider improving the accu-

racy of the model at the architecture level of ensemble mod-

els, there are quite a few researches on determining the appro-

priate model size and reducing the complexity of the model

to increase the training speed. Moreover, ensemble classifi-

cation models contain many characteristics like the diversity,

accuracy, generalization and so on, and these characteristics

are conflicting in improving performances of the models in

certain cases. Hence, there are many existing methods explor-

ing to combine these characteristics using mixture models or

multi-objective functions to optimize them simultaneously,

but there is a lack of researches on theoretically analyzing re-

lationships among these characteristics. Moreover, some re-

searches have proved that performances of ensemble classifi-

cation models can be further improved by taking the intercon-

nection and feedback between different levels such as sample

level, feature level, etc. into account and optimizing these lev-

els simultaneously, which needs more researches. Besides, it

is also a feasible research issue of performing optimization at

a higher level such as the classifier collection level of ensem-

ble model. Finally, it is necessary to expand the practical ap-

plications of ensemble classification to handle multiple-type

data that may be semi-structured and unstructured, or contin-

uous and discrete.

3 Semi-supervised ensemble classification

Semi-supervised ensemble classification methods have

drawn extensive attention in the past years. Unlike ensem-

ble classification methods, semi-supervised ensemble clas-

sification methods focus on expanding the training set and

utilizing these expanded training set, Fig. 8 shows that the

semi-supervised mechanism can help capture more accurate

underlying data distribution by introducing more informative

data [1]. Specifically, in semi-supervised ensemble classifi-

cation, a classifier is first trained using limited labeled data.

Secondly, this classifier is used to assign pseudo-tags to unla-

beled data. These pseudo-labeled data are used to update the

classifiers together with the original labeled data. Lastly, the

results from the classifiers are fused to get the final predic-

tion using a certain voting scheme. Extensive experimental

results demonstrate that semi-supervised ensemble classifi-

cation methods outperform other traditional ensemble classi-

fication methods in the case where the labeled data is insuf-

ficient. We would give a brief overview of semi-supervised

ensemble classification models in the following.
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Among existing semi-supervised ensemble classification

models, some works focus on mining hidden structures, dis-

tributional information, dependencies and other character-

istics of the data. As shown in Fig. 9 (RS denotes ran-

dom subspace, NG denotes neighborhood graph, and SC de-

notes semi-supervised classifier), Yu et al. [92] proposed a

graph-based semi-supervised ensemble classification method

that effectively tackled the underlying structures of the high-

dimensional data which was hard to characterized by graph

method directly. This method constructed a neighborhood

graph in each feature subspace and trained a semi-supervised

linear classifier on the learnt graph for integration. They also

proposed a multi-objective subspace selection process to gen-

erate the optimal combination of feature subspaces, and used

unlabeled data sets to generate an auxiliary training set based

on the sample confidence to improve the performance of the

classifier ensemble [93]. Gharroudi et al. [94] presented a

semi-supervised multi-label classification method by com-

bining both bagging technique and random subspace strate-

gies to construct multi-label classification models for ensem-

ble. Lu et al. [95] presented a semi-supervised rotation forest

algorithm that utilized both the discriminative and local struc-

tural information embedded in the labeled and unlabeled data

to provide better class separability for classification.

Fig. 8 Decision boundary adjusted by semi-supervised method

Fig. 9 The framework of semi-supervised ensemble classification in sub-
space

Furthermore, some works explore different manners to

effectively select high-quality unlabeled data. Specifically,

Wang and Chen [96] used an active data selection strategy

to select unlabeled data with more probability of improving

the model performance. Soares et al. [97] proposed a cluster-

based boosting method which utilized a cluster-based semi-

supervised optimization method to overcome potential incor-

rect label estimation for unlabeled data. Some researches fo-

cus on the effective use of unlabeled data to ameliorate the

ensemble performance. Particularly, Woo and Park [98] used

a label propagation method to predict labels and then con-

structed ensemble classifiers using these expanded labeled

data, thereby classifiers with good diversity and accuracy

were obtained. Zhang and Zhou [99] proposed UNDEED

method, a semi-supervised classification method to increase

the classifier accuracy on labeled data and diversity on un-

labeled data simultaneously, we show some of the experi-

ment results in Fig. 10, it shows that when semi-supervised

mechanism is applied, the model performance including ac-

curacy and stability on most of the UCI data sets can be

improved (names of datasets according to the abbreviation

are diabetes, heart, wdbc, austral, vote, vehicle, hepatitis,

ionosphere, colic, credit_g, g241n). In addition, some other

works focus on loosening limitations of existing methods.

For example, Alves et al. [100] presented the social-training

method using social choice functions that work with rank ag-

gregation for heterogeneous classifier ensemble, and it was

demonstrated that this method could sufficiently exploit the

information about the label data when compared with tradi-

tional semi-supervised methods. Since existing methods sel-

dom consider the optimization on the unlabeled data, Yu et

al. [101] proposed a progressive semi-supervised ensemble

approach which fused a progressive generation process and

a self-evolutionary sample selection process into a unified

framework to enrich the training set with unlabeled data.

Fig. 10 Comparison of supervised and semi-supervised ensemble classifi-
cation

With respect to applications of semi-supervised ensem-

ble classification methods in the data mining area, espe-

cially when dealing with issues such as data stream pro-

cessing, multi-label learning, high-dimensional data process-

ing, semi-supervised ensemble classification can effectively

better model performance by introducing semi-supervised

mechanism into ensemble model. For example, Hosseini et
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al. [102] proposed a semi-supervised ensemble classification

algorithm to classify instances of a large-scale non-stationary

data stream with concept drift. Wang and Li [103] applied an

incremental learning technique to avoid unnecessary repeti-

tion training and improve the accuracy of basic models for

time-varying data streams. Yu et al. [104] designed an adap-

tive semi-supervised classifier ensemble framework which

incorporated an adaptive feature selection process, adaptive

weighting process and auxiliary training set generation pro-

cess for high-dimensional data classification. In the biomed-

ical field, Li and Zhou [105] proposed a computer-aided di-

agnosis and treatment system based on the co-forest method

which used the random forest method to extend the co-

training paradigm. In pattern recognition area, Guz et al.

[106] investigated the performance of semi-supervised en-

semble classification models with respect to self-training and

co-training method for sentence segmentation of speech. Shi

et al. [107] presented a semi-supervised ensemble classifica-

tion method using tolerance rough set to approximate con-

cepts existed in documents and extract an initial set of neg-

ative examples when there was no labeled negative example

for text classification. Semi-supervised ensemble classifica-

tion methods are also employed to other related fields, such

as fault classification in micro-grids system [108], automatic

mine detection [109], urban pollutant monitoring [110], spam

short message service detection [111] and so on.

It is a key research point that how to effectively make use
of unlabeled data, which is accompanied by a series of chal-
lenges. Apart from that, since the incorrectly-labeled samples
have negative effects on the performance of models in the la-
bel propagation process, it is imperative to develop more ef-
fective schemes to reduce negative effects of these samples,
which needs us to make more efforts. Furthermore, most ex-
isting semi-supervised learning methods focus on handling
unlabeled data from the same field with labeled data. We can
explore to use different fields of data to expand the training

sets and model the relationships between unlabeled data and
labeled data by combining different methods, such as graph
theory, probability theory, etc. Additionally, since the tradi-
tional models need to be retrained when introducing new data

for the semi-supervision method, it would be a feasible direc-

tion to design a model with efficient update ability.

4 Clustering ensemble

Clustering ensemble algorithm works by generating a series

of clustering partition using clustering algorithms and com-

bining the partitions together to get the consensus solution.

Clustering ensemble methods have better performances in

terms of accuracy, robustness, and stability when compared

with single clustering algorithms because they can make full

use of the information provided by its clustering members.

The related work can date back to Strehl and Ghosh’s re-

search [112]. As shown in Fig. 11, a typical framework of

the clustering ensemble framework includes two stages: the

clustering ensemble member generation and the consistency

function partition. In the former stage, one can produce multi-

ple clustering solutions with various clustering algorithms af-

ter performing different transformations on the original data

set. In the latter stage, some special consensus functions are

exploited to fuse clustering solutions from ensemble mem-

bers and get the final clustering result.

Fig. 11 The framework of clustering ensemble

There are extensive researches on clustering ensemble

methods, and we can classify these existing works into the

following types according to their emphasis during the clus-

tering process. The first type of research works focuses on

designing new algorithms for the clustering member genera-

tion process and the combination process. For example, Yang

et al. [113] adopted the nearest neighbor method to fill the

category information for missing samples and generate basic

partitions with a good balance between the quality and the

diversity for clustering ensemble. Wu et al. [114] proposed

a clustering ensemble algorithm based on data subset, when

compared with point-based clustering ensemble methods, ex-

periment showed the method could significantly reduce the

computational complexity when the data set is large. Franek

and Jiang [115] formulated the complex clustering ensemble

as the Euclidean median problem by mapping and clustering

embeddings of ensembles in vector space, and the consensus

clustering was obtained by utilizing an inverse transforma-

tion from the vector space to clustering space. Yu et al. [116]

proposed a graph-based consensus clustering scheme to ef-

fectively discover the class information about gene expres-

sion data. In this method, random subspace and correlation

clustering algorithms were combined to enhance diversities

of clustering ensemble. In [117], Yu et al. presented a hy-

brid clustering ensemble framework, which was based on
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the random transformations in the sample dimensions and

the feature dimensions, in this method, the clustering tech-

nique was adopted to assign different weights for clustering

solution according to the confidence level, followed by the

normalized cut algorithm as the consensus function to gen-

erate the final partition. Afterward, Yu et al. [118] proposed

a triple spectral-clustering based consensus clustering frame-

work which adopted spectral clustering along with normal-

ized cut serving as the consensus function. To further en-

hance the robustness, stability and accuracy of clustering en-

semble methods, Yu et al. [119] introduced fuzzy theory to

hybrid fuzzy clustering ensemble algorithms. In this paper,

four types of schemes were contained to differentiate sam-

ples from different cancers, the first two schemes generated

basic ensemble partitions in the sample and attribute dimen-

sion, respectively, and the last two schemes combined the

first two in a serial and a parallel way, respectively. More-

over, in [120], Yu et al. designed a noise immune cluster-

ing ensemble framework to address issues brought about by

noisy data sets. This framework utilized affinity propagation

and normalized cut techniques by adopting multiple distance

functions to evade effect of noise. Ayad and Kamel [121]

converted the voting problem into regression problem involv-

ing multi-response and multi-input variables, and randomized

generation techniques were adopted for generating basic par-

titions, the proposed method utilized an information theoretic

algorithm to obtain the consensus clustering and the number

of clusters from learned ensemble representations with the

help of bipartite matching and cumulative voting. Zhang et

al. [122] investigated the adjusted rank index (ARI) and pro-

posed two measurements based on ARI to calculate the con-

sistency of clustering members for clustering ensemble. Fred

and Jain [123] introduced the evidence accumulation clus-

tering (EAC) concept to combine multiple clustering results,

in which each partition was treated as independent evidence

of data organization, and these learned partitions were com-

bined via certain voting mechanism before adopting the hi-

erarchical agglomerative clustering technique to obtain the

final partition. To explore the scalability of EAC from the

perspective of theoretical analysis to reduce the space com-

plexity, Lourenco et al. [124] learned the compact representa-

tion of the co-association matrix which exploits the inherent

sparseness and constructed clustering partitions via the split-

and-merge strategy. In summary, this category of researches

focuses on investigating delicate clustering ensemble algo-

rithms from different perspectives rather than simply aligning

clustering results obtained from traditional algorithms.

The second type of research works theoretically analyzes

clustering ensemble model characteristics such as stability,

diversity, convergence, etc. For example, Amasyali and Ersoy

[125] investigated different factors that produced a great in-

fluence on performances of clustering ensemble algorithms.

Those factors included clustering algorithms, the number of

features, the size of ensemble models, and the fusion pol-

icy of clustering results and so on. Fern and Brodley [126]

used the random projection for ensemble clustering and an-

alyzed the impacts of qualities and diversities of individ-

ual clustering result on the final prediction. Kuncheva and

Whitaker [127] explored the relationship between diversity

and accuracy of ensemble model, followed by investigating

the stability of clustering ensemble algorithms with respect

to various initialization parameters and conditions [128]. Shi

et al. [129] proposed a transfer CES (TCES) algorithm to

make use of the relationship between quality and diversity in

source dataset, and they proposed a transfer CE framework

(TCE-TCES) based on TCES to obtain better clustering re-

sults. Topchy et al. [130] studied the convergence of cluster-

ing ensemble algorithms, which indicated that the consensus

solutions could converge to a potential clustering structure as

the number of integration partitions increased. Wang [131]

proposed co-association (CA) tree method which used the hi-

erarchical data structure to reduce the ensemble model com-

plexity. Hore et al. [132] explored the feasibility of merging

multiple clustering centroids that were obtained from data in

a scalable framework. The purpose of this type of researches

was to improve performances of clustering ensemble algo-

rithms and provide theoretical supports.

The third type of researches focuses on the selection of

clustering results from ensemble models. Fern and Lin [133]

studied how to effectively select clustering results for ensem-

ble based on diversities and qualities of clustering. In this

work, they proposed three methods to combine diversity and

quality: the first method combined them by a joint objec-

tive function, the second method separated clustering mem-

ber into different groups and selected high-quality solutions

in each group, the third method utilized points to represent

the average quality and diversity of a pair of clustering so-

lutions, followed by selecting solutions with a convex hall.

Besides, Azimi and Fern [134] proposed an adaptive selec-

tion algorithm by using characteristics of data sets for clus-

tering results selection. The method generated a subset of en-

semble members based on the diversities between ensemble

members and consensus partitions and then combined them

to obtain the final output. Wang et al. [135] designed a cluster-

ing result selection strategy based on the rough set theory, in

which significant attributes of data were used to find optimal
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subsets of clustering members. In [136], Yu et al. considered

clustering solutions as sample features, and used weighting

function to combine several features selection algorithms to

select informative clustering solutions.

Additionally, Yu et al. [137] conducted researches on clus-

tering structures for the clustering ensemble method. Specif-

ically, they introduced the cluster structure concept and ex-

tracted the cluster structures from different data sets, in which

the re-sampling technique and graph theory were utilized to

construct a unified cluster structure. To solve the structural

ensemble problem for heterogeneous data, Yu et al. [138] de-

veloped a cluster structure ensemble framework which was

based on Gaussian Mixture models. In this method, represen-

tative clustering structures were selected and generalized to

form a unified cluster structure. Yu et al. [139] also designed

a distribution based distance function to quantify similarities

between cluster structures and chose representative structures

to generate the final result with distributional normalized hy-

perplane algorithm.

Clustering ensemble methods have been widely used to

solve a diversity of real-world problems. In the data mining

area, Yang and Jiang [140] presented a hidden Markov model

(HMM) based clustering ensemble method to reduce impacts

of initialization and model selections on performances for

temporal data clustering, in which a hierarchical clustering

refinement was utilized. Yang and Chen [141] adopted a hi-

erarchical clustering ensemble algorithm which used HMM-

based partitioning to help mine the intrinsic structure of data

sets such as cluster numbers from temporal data. In the bioin-

formatics field, Yu and Wong [142] designed a special tu-

mor discovery framework which adopted perturbation tech-

nique and cluster validity index to help explore the number

of classes of tumor gene expression data. Besides, Yu et al.

[143] presented a random double clustering-based fuzzy clus-

tering ensemble framework for cancer discovery, in which

the fuzzy extension model was contained to generate fuzzy

metrics used for consensus partition. The clustering ensem-

ble methods could be applied to other related research field,

such as DNA microarray analysis [144], gene expression

data analysis [145], image segmentation [146–149], signifi-

cant region detection [150], biomedical text clustering [151],

speaker recognition [152], internet security [153], filtering

recommendation [154], etc.

In the above-mentioned work, we summarize challenges

and potential research directions for clustering ensemble.

Concerning traditional clustering ensemble algorithms, there

is a lack of theoretical design principles for sample alloca-

tions for each clustering member. In addition, in the case

where the prior information is not available, it is still a prob-

lem that how to determine the numbers of clustering members

and final clustering members, which needs to be further ex-

plored. Moreover, because the clustering results of ensemble

members need to be fused, the time complexity is extremely

high, especially when dealing with high-dimensional data. In

this setting, it is imperative to develop efficient algorithms

to reduce the time complexity of clustering ensemble mod-

els. Besides, it is necessary to explore the technical combina-

tion between ensemble clustering methods and other methods

such as semi-supervised mechanism, etc., which allow mak-

ing full use of the prior knowledge in data sets.

5 Semi-supervised clustering ensemble

Semi-supervised clustering ensemble algorithms focus on

utilizing prior knowledge such as cannot-link and must-link

to instruct the clustering ensemble process. In other words,

semi-supervised clustering ensemble can be treated as a tech-

nical combination of semi-supervised clustering and ensem-

ble learning. Thus, it allows fusing advantages of both tech-

niques to improve the accuracy and robustness of the model,

compared with traditional clustering ensemble methods.

In the field of semi-supervised clustering ensemble, some

works focus on optimizing the generation process and the se-

lection process of clustering members. As shown in Fig. 12,

Yu et al. [155] developed an incremental semi-supervised

clustering ensemble framework (RS denotes random sub-

space, CS denotes constraint subset, and EECP is a constraint

propagation method), in which the random subspace and the

constraint propagation technique respectively helped to deal

with high-dimensional data and incorporate the prior knowl-

edge. Besides, this method designed an incremental cluster-

ing member selection process to effectively eliminate redun-

dant members. Yu et al. [156] designed a random subspace

based semi-supervised clustering ensemble scheme to fuse

clustering solutions into a unified solution. In this method,

transitive closures were introduced to expand constraints to

obtain clustering solutions on different data sets, and the label

propagation process is adopted to disseminate pairwise con-

straints. Wei et al. [157] proposed a hybrid semi-supervised

clustering ensemble algorithm, in which the prior knowledge

including class labels and pairwise constraints were utilized

to generate basic clustering partitions. Based on these par-

titions, a metric function was designed to consider the spa-

tial distribution for feature extractions, followed by integrat-

ing into a consensus function. Inspired by Chameleon [158]
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which performed hierarchical clustering via dynamic model-

ing, Xiao et al. [159] proposed a semi-supervised clustering

ensemble model. We show part of the experiment results in

Table 1, it shows that when compared with traditional cluster-

ing ensemble algorithm such as voting proposed by Zhou and

Tang [160], CECH achieve comparable performance, and we

can see that semi-supervision mechanism can further increase

the accuracy of the model on UCI data sets, moreover, it is

also worth noticing that the performance of semi-supervised

ensemble method improves with the increase of the percent-

age of pairwise constraints, and outperforms voting method

obviously. More details can be seen in [159].

Fig. 12 The framework of incremental semi-supervised clustering ensem-
ble

Table 1 Semi-supervised clustering ensemble compared with clustering
ensemble

Voting CECH SCECH0% SCECH5% SCECH10%

Iris 0.8853 0.8853 0.8847 0.9172 0.9412

Wine 0.9564 0.9548 0.9552 0.9583 9613

Glass 0.4714 0.4849 0.4862 0.5256 0.5418

Ionosphere 0.7177 0.7177 0.7175 0.7253 0.7295

Vehicle 0.4224 0.4456 0.4455 0.4455 0.4518

Diabetes 0.6656 0.6656 0.6681 0.6752 0.6911

Cmc 0.4319 0.4761 0.4760 0.4802 0.4898

Segment 0.5101 0.6903 0.6909 0.6915 0.6918

Sonar 0.5579 0.5556 0.5556 0.5623 0.5686

Some researchers studied the way to integrate clustering

members into final prediction via some special voting mech-

anisms. Zhang et al. [161] presented collaborative training

by using tri-training [162] as consensus function for semi-

supervised clustering ensemble. Wang et al. [163] introduced

the normal mutual information to semi-supervised cluster-

ing ensemble. Yu et al. [164] proposed an adaptive ensem-

ble member weighting process to associate different weight

values with different ensemble members. Yang et al. [165]

implemented a parallel multi-ant colonies algorithm using

MapReduce technique to improve the performance of semi-

supervised clustering ensemble. In addition, related works

such as Iqbal et al. [166] engaged supervision in clustering

ensemble using two parameters for clustering consensus par-

tition, where the first parameter described the compatibility

between the dataset and the clustering algorithm and the sec-

ond parameter provided the user feedback on the partitions.

Chen et al. [167] conducted convergence analysis of semi-

supervised clustering ensemble methods, which showed that

the accuracy of semi-supervised clustering ensemble could

converge with the increase of the number of basic cluster-

ing members. To reduce the difficulty of high dimensional-

ity metric learning in clustering, Yan and Domeniconi [168]

projected the data and the constraints in multiple subspaces

and tried to learn the distance between data points in sub-

spaces for ensemble. Apart from abovementioned researches,

semi-supervised clustering ensemble has also been applied

to other fields. For example, Mahmood et al. [169] adopted

semi-supervised clustering ensemble methods to categorize

the web videos and used the genetic algorithm(GA) to help

iterate the clustering ensemble process for social media min-

ing [170]. Additionally, Junaidi and Fink [171] utilized semi-

supervised clustering ensemble for character labeling. In the

medical field, Yu et al. [172] treated prior knowledge as con-

straints in clustering ensemble for cancer classification. Af-

terward, they designed a double-layer selection [173] which

was applied to tumor discovery.

From the above-mentioned works, we observe that there

are relatively few studies on semi-supervised clustering en-

semble. Specifically, there are quite a few researches on semi-

supervised hypotheses, such as smoothness, clustering den-

sity and manifold in semi-supervised clustering ensemble.

Considering the aspect of algorithms, since existing semi-

supervised clustering ensemble methods have the following

disadvantages: failing to make full use of the constraint in-

formation and optimize the constraint selection, we can fur-

ther explore how to effectively overcome the above shortcom-

ings. Moreover, the semi-supervised mechanism can be re-

fined by introducing unlabeled data from other sources. Thus,

it sounds a promising research direction to capture the un-

derlying relationships between multi-source data. Finally, it

is worth to explore the refinement of semi-supervised mech-

anism by other machine learning methods (such as transfer

learning, active learning, etc.) for clustering ensemble in cer-

tain rational formations.

6 New direction

As we can see, ensemble learning is a relatively mature ma-

chine learning issue, compared with recent machine learning
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hot spots like deep learning, reinforcement learning, trans-

fer learning, etc. Previous sections show that ensemble learn-

ing is more of a frame ideology, so it becomes possible for

ensemble learning to combine with other machine learning

methods seamlessly. We investigate relevant works in recent

years, and we find that there are a number of investigations

which have proved that ensemble learning can successfully

fuse with deep learning, reinforcement learning, etc., where

the performance can be effectively improved with the in-

troduction of ensemble mechanism. Relevant work such as

Krogh and Vedelsby [174] defined the variation of output of

ensemble networks averaged over unlabeled data as ambigu-

ity, and then used the ambiguity in combination with cross-

validation to estimate the ensemble generalization error, thus

the reduction of the error helps to improve the performance.

To optimize the determination process of deep classification

model structure and the combination of multi-modal feature

abstractions, Yin et al. [175] proposed multiple-fusion-layer

based ensemble classifier of stacked auto-encoder (MESAE)

for recognizing emotions, in which deep learning is used for

guiding autoencoder ensemble. Moreover, based on the as-

sumption that different convolutional neural network (CNN)

architectures learn different levels of semantic representa-

tions, Kumar et al. [176] developed a new feature extractor

by ensembling CNNs that were initialized on a large data set

of natural images. Experiment showed that the ensemble of

CNNs can extract features with a higher quality, compared

with traditional CNNs. Liu et al. [177] applied ensemble of

convolutional neural network models with different architec-

tures for visual traffic surveillance systems.

As for the transfer learning issue, related works like [178]

used ensemble method to combine outputs of various se-

lective layer based transference conditions of deep learning

model. Experiments show it can reduce the effect of nega-

tive feature transference on image recognition tasks. Nozza et

al. [179] used ensemble methods to reduce the cross-domain

generalization error of domain adaptation problem in senti-

ment classification tasks. Liu et al. [180] design an ensemble

transfer learning framework which used AdaBoost to adjust

the weights of the source data and target data, this method

achieved good performance on UCI data sets when the train-

ing data are insufficient.

Relevant works about reinforcement learning like [181]

combined multi-objective optimization and ensemble tech-

niques to boost solving performance in reinforcement learn-

ing. Specifically, reward signals created by reward sharp-

ing were combined using ensemble method, thus the sample

complexity in reinforcement learning could be reduced. To

solve the problem that existing ensemble algorithms in rein-

forcement learning are not compatible with nonlinearly pa-

rameterized value functions, Chen et al. [182] proposed an

ensemble network architecture for deep reinforcement learn-

ing, in which the temporal ensemble stabilized the training

process by reducing the variance of target approximation er-

ror and the ensemble of target values reduced the overesti-

mate. The method got good performance in OpenAI Gym

environment.

With the above-mentioned researches, we find that ensem-

ble learning is more than a specific algorithm, which makes it

easy to combine ensemble method with other machine learn-

ing algorithms, and we also give a brief introduction for the

combination of ensemble learning with other machine learn-

ing techniques in Fig. 13 according to Sections 1–6, for pro-

viding readers some references on research issues.

Fig. 13 The combination of ensemble learning with other machine learning
issues

7 Summary

In this paper, we investigated the research progress in various

branches of ensemble learning, and categorized ensemble

learning methods from different perspectives. Besides, we

introduced challenges and feasible research directions for

ensemble learning. However, there are still more efforts to

make to further improve performances of ensemble models,

especially in the case where data contains complex patterns.

We consider that readers would have a preliminary under-

standing of these existing ensemble learning approaches, and

conduct ensemble learning from different aspects through our

paper. We expect to throw some light on this field by provid-

ing some suggestions for future ensemble learning directions.
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