
Front. Comput. Sci., 2020, 14(4): 144305

https://doi.org/10.1007/s11704-019-7267-5

Extracting a justification for OWL ontologies by critical axioms

Yuxin YE1,2, Xianji CUI2,3, Dantong OUYANG 1,2

1 College of Computer Science and Technology, Jilin University, Changchun 130012, China

2 Key Lab of Symbolic Computation and Knowledge Engineering (Jilin University), Ministry of Education,

Changchun 130012, China

3 College of Information and Communication Engineering, Dalian Minzu University, Dalian 116600, China

c© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract Extracting justifications for web ontology lan-

guage (OWL) ontologies is an important mission in ontology

engineering. In this paper, we focus on black-box techniques

which are based on ontology reasoners. Through creating a

recursive expansion procedure, all elements which are called

critical axioms in the justification are explored one by one. In

this detection procedure, an axiom selection function is used

to avoid testing irrelevant axioms. In addition, an incremental

reasoning procedure has been proposed in order to substitute

series of standard reasoning tests w.r.t. satisfiability. It is im-

plemented by employing a pseudo model to detect “obvious”

satisfiability directly. The experimental results show that our

proposed strategy for extracting justifications for OWL on-

tologies by adopting incremental expansion is superior to tra-

ditional Black-box methods in terms of efficiency and perfor-

mance.

Keywords description logics, automated reasoning, ontol-

ogy engineering, justification

1 Introduction

Ontology acquisition and maintenance are important prereq-

uisites for the successful application of ontology in a vari-

ety of areas, such as semantic web. There exist some solu-

tions for assisting humans to modify ontologies. Justifications

are minimal entailing subsets of an web ontology language

Received July 30, 2017; accepted March 14, 2018

E-mail: ouyd@jlu.edu.cn

(OWL) ontology which provide helpful and easy-to-

understand explanations for repairing unwanted entailments

in the ontology debugging process.

Finding justifications of an entailment (i.e., all minimal set

of axioms sufficient to produce an entailment) has emerged as

a key inference service for the OWL. Schlobach and Cornet

were among the first to consider debugging of erroneous ter-

minologies as a new non-standard reasoning services in [1].

They defined a concept of minimal unsatisfiability-preserving

sub-TBoxes (MUPS) to explain the cause of incoherences

in description logic (DL) terminologies. In fact, MUPS is a

special justification which were defined in [2] by Kalyanpur

et al. In their work, they also expanded the handled object

from terminologies to the whole ontology. Both [2] and [3]

categorized the solution strategies into two ways. One is

a black-box technique which solely uses the reasoner as a

subroutine and the internals of reasoner are not needed to

be modified. The other one is a glass-box technique which

is built on existing tableau based decision procedures for

expressive DL. Their implementations required a thorough

and non-trivial modification of the internals of reasoner. The

new resolution method we proposed in this paper belongs

to black-box technique which is independent of reasoners.

There are some others strategies besides black-box or glass-

box techniques, such as automata-based axiom pinpointing

considered in [4, 5], and so on.

In [6], the contextual knowledge is exploited to detect

the hidden modeling errors of incoherent ontologies. Xue

et al. [7] proposed a novel topic hierarchy construction

method for the topic classification which could also be ap-

2 Front. Comput. Sci., 2020, 14(4): 144305

plied to the concept hierarchy of an ontology. For the reason-

ing of multi-agent systems, Wu et al. [8] proposed a quan-

tified temporal knowledge, belief and certainty logic which

were sound and complete with respect to the correspond-

ing semantical classes. Ouyang et al. [9] provided a modified

tableau algorithm which was sound and complete for decid-

ing the consistency of an extended ontology. The work in [10]

considered an optimization technique based on the unsatisfi-

able dependent path to calculate the minimal unsatisfiability

preserving sub-TBoxes of an unsatisfiable concept, for which

the optimization was on the basis of glass box method of on-

tology debugging. Considering the fact that ontologies in real

world applications are typically dynamic entities when new

knowledge are added in the existing ontologies, [11] used a

heuristic strategy to reuse the results of previous debugging

and to provide information for the next debugging.

Justification is not only an important explanation for er-

roneous ontologies, but also the infrastructure for many

other ontology debugging missions. [1] defined the MIPS

(i.e., minimal in-coherence preserving sub-TBox) based on

MUPS. Furthermore, [12] and [13] separately constructed the

diagnosis system by finding the minimal hitting set of MIPS.

A few debugging strategies were also proposed for handling

the problem about how to delete conflict axioms according

to such diagnosis system. [14] and [15] developed the theory

of ontology diagnosis in terms of interaction and paralleliza-

tion. Other related works include understanding entailments

in OWL [16], decluttering justifications [17], and so on.

2 Motivation

Informally, a justification is simply the precise set of axioms

in an ontology responsible for a particular entailment. For

example, if an ontology O contains concepts A, B, and A is

inferred to be a subclass of B, i.e., O |= A � B, then the jus-

tification J for this concept subsumption entailment is the

smallest set of axioms in O responsible for it. The concept of

justifications formally defined as follows:

Definition 1 (Justification [2]) J is a justification for O |=
η, if J ⊆ O, J |= η, and for all J′ ⊂ J , it holds thatJ′ �|= η.
It’s denoted as JUST(η,O).

In this way, all justifications for η in O are denoted as

ALL_JUST (η,O). The most intuitive idea of finding justi-

fications for an OWL ontology O is to decide whether the

entailment relationship is hold between the target axiom and

every sub-ontology of O at first. There are 2m testing times

for m axioms included in O. All of sub-ontologies will be

found after successful entailment testing. All pairs of such

sub-ontologies are compared with each other to discover min-

imal sub-ontologies. In fact, there would be (2m−1)2/2 testing

times in the worst case. Even though such procedure is sound

and complete, it is exhaustive and an impossible mission for

large scale ontology.

Many strategies have been proposed to solve this problem.

The common idea is to first determine a certain justification,

and then find all the other justifications via using Hitting-

Tree algorithm [18]. In this paper, we mainly focus on how

to detect one justification efficiently. According to the naive

approach discussed in [2], finding the first justification only

needs m testing times for an ontology including m axioms.

Their method tries to decide a series of satisfaibilities for

this ontology by an expansion-contraction procedure. Even

if its computation complexity can be handled by program-

ming, there are still some possible improvement. First of all,

the detection of justification is only depend on the contrac-

tive phase, but not related with expansive phase. Thus one

may think of if it is possible to detect the justification or a

part of justification directly during the expansive phase. Sec-

ondly, although it is easily operated given every entailment

testing occurred in this procedure is independent with each

other, it would generate unnecessary reasoning expenses. In

this paper, we adopt a new solution architecture to the extrac-

tion of a justification. Under our architecture, the justifica-

tion can be detected by the expansive phase directly through

defining the critical axiom. Inner relationships between en-

tailment testings which occurred in this expansive phase has

also been discovered. Consequently, the proposed new strat-

egy can reduce the reasoning procedure thus it is able to find

the justification faster.

3 Definition of critical axiom and construc-
tion of a justification

3.1 Critical axiom

As aforementioned, the existing strategy for the extration

of justification is achieved by an expansion-contraction pro-

cess. The extraction procedure is implemented by selecting

relevant and removing irrelevant axioms from the ontology.

In contrast to this expansion-contraction procedure, we here

construct an iterative expansion procedure in order to avoid

running contraction phases. Through a series of iterative ex-

pansions, all axioms in the same justification could be de-

termined. We define such axiom as critical axiom in our al-

Yuxin YE et al. Extracting a justification for OWL ontologies by critical axioms 3

gorithm. Similar concept with respect to constraint problem

or SAT problem is called critical clause in [19] or necessary

clause in [20].

Definition 2 (Critical axiom) Given an axiom η, we say that

an axiom α of an ontology O is a critical axiom with respect

to O and η, if α is an axiom that belongs to every justification

of O for the axiom η. In other words, axiom α is critical if

α ∈ n⋂

i=1
JUST(η,O), in that n = |ALL_JUST(η, O)|. A critical

axiom is denoted as CRIT(η, O).

Furthermore, all critical axioms for η in O are denoted

as ALL_CRIT(η,O) ={α|α ∈ n⋂

i=1
JUST(η,O)}, in that n =

|ALL_JUST(η, O)|.

For example, as shown in Fig. 1, O1 is an ontology O1 in-

cluding four axioms and η1 is an entailment axiom. Base on

O1 and η1, it’s easy to obtain two justifications as the follow-

ing:

J1 = {α1 : A � ∃r.B, α2 : Domain(r,C)} |= A � C

J2 = {α3 : A � ∃s.B, α4 : r � s, α2 : Domain(r,C)} |= A � C

They are both minimal axiom sets which entail the axiom

η1: A � C. α2 is the common axiom w.r.t all justifications.

According to Definition 2, α2 is the critical axiom w.r.t. O1

and η1.

Fig. 1 An ontology illustration

Usually, there is no any critical axiom for the whole on-

tology, because the critical axiom has to belong to every

JUST(η,O). Sometimes justifications are disjoint. For exam-

ple, we use α3
′ and α4

′ instead of α3 and α4 to establish a

new ontology O1
′ as shown in Fig. 2.

Fig. 2 Another ontology illustration

J1 is still set up w.r.t. O1
′ and η1, and J2 is changed to be

J2
′ as the following:

J1 = {α1 : A � ∃r.B, α2 : Domain(r,C)} |= A � C

J2
′ = {α3

′ : A � D, α4
′ : D � C} |= A � C

J1 and J2
′ are disjoint given there is no common element

between these two justifications. Therefore, no critical axiom

exists w.r.t. O1
′ and η1. However, we can still detect a criti-

cal axiom in a small enough ontology which could be a sub-

ontology of some original ontology. In our example, O1
′′ is a

sub-ontology of O1
′ when O1

′′ only includes α1 and α2 (sim-

ilar in the scenario where O1
′′ only includes α3

′ and α4
′).

Every axiom of O1
′′ is critical w.r.t. O1

′′ and η1, but not w.r.t.

O1
′ and η1.

3.2 Method for critical axiom detection

According to the definition of critical axioms, it is easy to

imagine that a critical axiom for the whole ontology usually

does not exist, since it is difficult to find a axiom belong-

ing to every JUST(η, O) at the same time. However, we may

try to define a critical axiom in a small enough ontology O′
which is a sub-ontology of O. In the following, a function is

constructed in order to detect a critical axiom by extracting

a small sub-ontology from the whole ontology. Arguments

of this function include ontology O, entailment axiom η, and

sub-ontologyO′ of O. Usually, O′ is initially set up as empty.

Then. O′ is updated by adding axioms from O until it entails

η. The final updated O′ and last appended axiom α (actually

it’s critical w.r.t. O′ and η) will be the output of the function.

Function 1 Find_Critical_Axiom (O, O′, η)
Input: Ontology O, O′ ⊆ O, Entailment Axiom η;

Output: CRIT(η,O′) and sub-ontology O′;
1: while η is not entailed by O′ do

2: select some axiom α from O\O′
3: i

¯
f η is not entailed by O′∪{α} then

4: O′ ← O′∪{α}

5: end if

6: end while

7: O′ ← O′∪{α}

8: return last appended({α}) and O′

Assume that the sub-ontology O′ of O is initialized as

empty, so O′ does not entail η at first. Thus the decision con-

dition in step 1 is satisfied, and then the program can be exe-

cuted into the loop body containing steps from 2 to 6. In this

loop body,O′ is firstly selected as any axiom fromO\O′ (step
2), then it checks whether η is entailed by the union of {α}

and O′. If the condition O′ |= η does not hold (step 3), O′
is updated by adding the current selected axiom α (step 4).

This recursive procedure will terminate until O′∪{α}|= η. At

the end of this loop procedure, the final ontology O′ is up-

dated by O′∪{α} (step 6). Such final ontology O′ is the sub-

ontology including a critical axiom, and the last axiom tested

is the critical one for O′ (step 8). Proposition 1 guarantees

that Function 1 is correct and sound. The axiom generated by

Function 1 is absolutely critical w.r.t. η and updated O′. The

4 Front. Comput. Sci., 2020, 14(4): 144305

proposition can be easily proved according to Definition 2.

Proposition 1 The last axiom α appended to O′ by Func-

tion 1 is a critical axiom w.r.t. O′ and η.

Proof According to Function 1, O′ does not entail η when

the last axiom α is not included in O′. At this moment, there

is no justification generated based on Function 1. However

at least one justification will be generated until the last ax-

iom α being added into O′. This implies that the last axiom

α must be included in any justification w.r.t. η and the final

O′. If there is any justification uninvolved with α for η and

the final O′, it must exists in the previous O′, which is gen-

erated before the last axiom α is added. This conclusion will

be conflict with the fact that the previous one doesn’t entail η.

Therefore, the last axiom α appended to the final O′ by Func-

tion 1 must belong to any justification w.r.t. η and the final

O′, and it must be critical according to Definition 2. �

Take the ontology in Fig. 1 as an example, in which we try

to detect a critical axiom w.r.t a sub-ontology of O1 and η1.

According to Function 1, firstly an axiom is selected (e.g., α1

is selected) from O1 into O′. η1 is not entailed by O′ at this

moment. Then we keep on adding α2 into O′, and the entail-

ment relationship will be hold between η1 and updated O′.
Thus the procedure stops, and the final O′ includes axioms

α1 and α2. α2, the critical axiom w.r.t. O′ and η1, is returned

by Function 1. Notice that α2 is a CRIT(η1, O′). Similarly,

α1 will be the critical axiom if α2 is selected at first, and α1 is

added later during this process. In this case, α1 is a CRIT(η1,

O′).

3.3 Construction of a justification by recursively detecting

critical axioms

In fact, a justification is a special minimal ontology which en-

tails axiom η. When we consider a justification as the whole

ontology, every axiom in this ontology also belongs to the

sole justification at the same time. Proportion 2 is given as

below.

Proposition 2 ∀α ∈ O is critical w.r.t. O and η iff O is the

justification w.r.t. O and η.

Proof First, the proposition is necessary. Given an ontol-

ogyO itself is the justification w.r.t.O and η. At this moment,

there must be only one justification for O and η. In other

words, ALL_JUST(η,O)={{O}}. Every axiom belonging to

O also belongs to this justification w.r.t. O and η. Therefore

every axiom belonging to O must be critical w.r.t. O and η

according to Definition 2.

Conversely, the proposition is sufficient. Assuming that

there is another ontology O′ ⊂ O which is also the justifi-

cation w.r.t. O and η when ∀α ∈ O is critical w.r.t. O and η.

According to Definition 1, O will not be the justification be-

cause O is not the smallest anymore. At this moment, axioms

which belong to O but not belong to O′ are not critical w.r.t.

O and η according to Definition 2. This is conflict with the

precondition of the proposition. So no such sub-ontology O′
exists. O must be the only justification w.r.t. O and η when

∀α ∈ O is critical w.r.t. O and η. �

According to Proposition 2, we can devise a recursive

procedure to construct all elements of some justification as

shown in Algorithm 1 which recalled Function 1. O and O′
are updated by O′ and J (a set of critical axioms w.r.t. η

and O′) each time before recalling Function 1, respectively,

in order to pinpoint the critical axiom in a more precise and

smaller scale. In the loop program, each round will find a

new critical axiom for η1 and current ontology O. At the end

of each round, O will become smaller and J will be bigger

than that from the previous round. Finally, they will equal

to the same set of axioms (i.e., justification) when the whole

program is over.

Algorithm 1 Construct_Justification

Input: Ontology O, Entailment Axiom η;

Output: Justification J;

1: J ← ∅
2: O′ ← ∅
3: w

¯
hile |J| < |O| do

4: Find_Critical_Axiom(O,O′ ,η)
5: J ← J∪ {α}

6: O ← O′
7: O′ ← J
8: end while

9: return J

Theorem 1 J returned by Algorithm 1 is a justification

w.r.t. ontology O and axiom η.

Proof Both justification J and critical axiom set O′ are

initialized to be empty in steps 1 and 2. When the algo-

rithm runs into the recursive body, it will recall Function 1

in step 4 of this algorithm. The last axiom α appended by

Find_Critical_Axiom (O, O′, η) must be a critical axiom for

O according to Proposition 1. So it has to be the element of

some justification and expanded to J in step 5. Then O is

replaced by O′, and O′ is replaced by J sequently in steps 6

and 7. It is guaranteed to find a new element of a justification

Yuxin YE et al. Extracting a justification for OWL ontologies by critical axioms 5

in a smaller ontology during the next recursion.

For the circular body described from steps 3 to 8 in Algo-

rithm 1, a new element (i.e., a critical axiom) of justification

J will be explored in each round. If η is entailed by J at the

start of a round, O will still be equal to J at the end of the

same round. The recursion will be ended when O equals toJ
according to the critical condition of step 3. At this moment,

every axiom is critical w.r.t. O and η. According to Proposi-

tion 2, J will be the justification w.r.t. η and current updated

O. It also be the justification for η and original O. �

An illustration for the process of Algorithm 1 using the ex-

ample from Fig. 1 is as the following. The input is ontology

O1 ={α1, α2, α3, α4} as O and axiom η1 : A � C as η, and the

output is a JUST(O1, η1) = {α1, α2}.
Table 1 illustrates the ending status of each round for

the recursive execution (from steps 3 to 8 in Algorithm 1).

All rounds are recorded in the first column of Table 1,

such as Round 1 and Round 2. The item “α” appeared

in the third column is the critical axiom calculated by

Find_Critical_Axiom(O,O′, η) (i.e., step 4). At the end of

Round 1, α2 is critical returned by Function 1 for η1 in O′
including α1 and α2. Then α is added into the justification J
(step 5). In order to select a new axiom from O\O′ for detect-

ing the next critical axiom, we would update O and O′ (steps

6 and 7). O and O′ are updated as {α1, α2} and {α2}, respec-

tively, at the end of Round 1. In a similar way, we can obtain

the status of Round 2. At the end of Round 2, J equals to

O, and the recursion stops. JUST(O1, η1) ={α1, α2} which

is assigned in the lower right corner of Table 1 is returned by

this program.

Table 1 Illustration of algorithm 1 using example from Fig. 1

O O′ α J
Initialization α1 , α2 , α3 , α4 ∅ ∅ ∅
Round1 α1 , α2 α2 α2 α2

Round2 α1 , α2 α1 , α2 α1 α1, α2

4 Optimization of the recursive constructing
procedure

As mentioned in the motivation section, the naive strategy

given in [2] and [3] for an ontology w.r.t. unsatisfiable con-

cept C including m axioms only requires m times of satis-

fiability decision to detect a certain MUPS. We interchange

the concept of MUPS and justification since they could be

transferred equivalently. Compared to such naive shrink strat-

egy, times of satisfiability decision about Algorithm 1 is

m(m + 1)/2 in the worst case.

In fact, the worst case rarely occurs in practice. On one

hand it is not necessary to traverse every axiom of the un-

satisfiable ontology in one round (mentioned in Section 4.1).

On the other hand, it can be transferred into an equivalent

incremental reasoning problem instead of performing a large

number of independent satisfiability tests in one round (men-

tioned in Section 4.2). This can be tackled in an easier and

more efficient manner.

4.1 Axiom selection function

Our algorithm described above is greedy in some sense. Ax-

ioms in the ontology will be added all the time to a set of

axioms unless such set is proved to be unsatisfiable. During

this procedure, axiom selection has a great impact on per-

formance in terms of speed. Some simple optional automatic

axiom sorting methods are easy to be implemented, such as

base on weight (i.e., sorting axioms selected by the sum of

number of occurrences in the ontology of all concepts of the

axiom), base on length (i.e., sorting axioms with the shortest

ones first), and so on. In contrast to these common indicators,

we here adopt a special strategy named “selection function”

for OWL ontology which is proposed by Huang [21]. In the

reasoning of inconsistency, [21] used syntactic relevance to

define a selection function to extend the query “Σ |= φ?” until

the reasoning process can obtain an answer to the query φ.

In our work, we adopt it to select and determine the order of

axioms expanded. The selection function defined in the fol-

lowing will stop until the ontology becomes unsatisfiable.

Definition 3 (Selection function [21]) s(Σ, φ, k) = {ψ ∈
Σ | ψ is directly relevant to s(Σ, φ, k − 1)}, for k > 1.

In Definition 3, s is the name of selection function, Σ is

an ontology, both ψ and φ are axioms of ontology. Two ax-

ioms (or ontologies) are directly relevant if and only if there

are common individuals, concepts or roles. Selection function

will run k times until we obtain enough axioms for satisfia-

bility checking.

4.2 Incremental reasoning for satisfiability decision

In the procedure for critical axiom detection, besides select-

ing proper axioms, the reasoning mission about satisfiability

decision for a series of continually updated ontologies can be

treated more efficiently. In order to transform it into an incre-

mental reasoning problem, such series of continually updated

ontologies are defined formally as the following:

Definition 4 (Ontologies chain) For an ontology O, S

6 Front. Comput. Sci., 2020, 14(4): 144305

which is a subset of 2O is called an ontologies chain, if an

axioms inclusion ⊂axiom on S is a quasi and totally ordering.

Definition 5 (Incremental debugging ontologies, IDOs) An

ontologies chain is called an incremental debugging ontolo-

gies when the axiom η is only entailed by its greatest element.

Each element of IDOs is called debugging ontology (DO)

According to Definition 5, an IDOs can be ordered as a se-

quence < O1,O2, . . . > by Hasse Diagrams. Each element of

this sequence does not entail η except the last one. Actually,

if only one axiom from current ontology is added to the next

one each time, the critical axiom can be detected by the last

two elements of the sequence. We consider to build a growth

procedure by adding only one axiom (step size). The added

axiom is called incremental axiom, noted as αi when it’s

added toOi. In this procedure, axiom η should not be entailed

by anyOi, but entailed by the last one from the corresponding

IDOs. The last element of corresponding sequence of added

axioms sequence < α1, α2, . . . > is a critical axiom.

Proposition 3 The last axiom appended to the incremental

debugging ontologies is critical if axiom η is not entailed by

any Oi except the last one.

This incremental reasoning problem is possible to be tack-

led by using cached results from previous model w.r.t. the

former ontology to demonstrate the satisfiability of the fol-

lowing ontology. The similar optimization technique has been

adopted in [22–24] to detect “obvious” satisfiability in order

to resolve classification problem. In our problem, the situa-

tion is different in two main aspects. First of all, we decide

the satisfiability about the whole knowledge base, not only

about concepts. Second, there is only one model known in

the IDOs, not two in the classification problem. Therefore,

we cannot use caching optimization technique directly.

In addition, attention should be paid to the implementation

of entailment reasoning. Normally, the entailment is equiva-

lently transferred into unsatisfiability decision for a concept

w.r.t. an ontology firstly (i.e., finding MUPS problem) [2].

Furthermore, it is equivalently transferred into satisfiability

decision w.r.t. some concept by tableaux expansion [25].

To solve this problem, we firstly obtain the final ABox of

the current DO according to its model. Such ABox is also

called “pseudo model” in [26]. Then we transform the entail-

ment decision for the next DO into the satisfiability of ABox

for the current DO w.r.t. the increment axiom αi. We call it

incremental reasoning about IDOs. It uses cheaper reason-

ing cost (does not need to expand the whole knowledge by

tableaux rules again) instead of stand entailment tests. The

incremental reasoning procedure for detecting a critical ax-

iom is described in the following Function 2.

Function 2 InRe_Critical_Axiom(O,O′ ,η)
Input: Ontology O, O′ ⊆ O is a DO, Entailment Axiom η;

Output: CRIT(η,O′) and O′;
1: FABOX ← getFinalAbox(O′ ∪ G(η))

2: while η is not entailed by O′ do

3: select some axiom α from O\O′ according to the select function

4: if FABOX is satisfiable w.r.t. {α} then

5: FABOX ← getFinalAbox(O′ ∪ {α})
6: O′ ← O′ ∪ {α}
7: else

8: if η isn’t entailed by O′ ∪ {α} then

9: FABOX ← getFinalABox(O′ ∪ {α})
10: O′ ← O′ ∪ {α}
11: end if

12: end if

13: end while

14: O′ ← O′ ∪ {α}
15: return last appended(α) and O′

In Function 2, target axiom η is transformed into the cor-

responding concept by the function G in step 1. G has been

defined in [26] in order to transfer entailment tests into the

satisfiability decision problem. For example, a final ABox

about knowledge base O′ ∪ {α} will be obtained by tableaux

expansion when O′ ∪ {α} is satisfiable. This calculus proce-

dure is denoted as a function getFinalABox(). Then we select

an added axiom as the incremental axiom by a selection func-

tion which is mentioned in Section 4.1. In step 4, we keep on

deciding the satisfiability of the final ABox about the current

DO w.r.t. the incremental axiom a instead of entailment test

between O′ ∪ {α} and η. Updating corresponding final ABox

and DO in steps 5 and 6 if satisfiability attains. Otherwise, we

are uable to announce that O′ ∪ {α} is unsatisfiable. Because

there may exist a model constructed by tableaux expansion

rules for the initial knowledge O′ ∪ {α} but not for the fi-

nal ABox w.r.t. α. In other words, it is sound but we cannot

prove that is also completed. So we should test the entailment

in step 8, and execute corresponding operations in steps 9 and

10. Recurring such procedure until we find the critical axiom

α and the corresponding ontology O′ (steps 14 and 15).

If Function 2 replaces Function 1 which is recalled in step

4 for Algorithm 1, an optimized procedure for detecting α

justification will be obtained.

5 Experiments

In the previous sections, we have elaborated on the theory,

Yuxin YE et al. Extracting a justification for OWL ontologies by critical axioms 7

improvements, designment, and optimizations for detecting

a justification for OWL ontologies by critical axioms. In our

implementation, a solver is utilized to detect justifications of

some public ontologies and their target axioms. The experi-

mental results demonstrate the effectiveness of our proposed

method. The properties of ontologies and testing environment

are described in Section 5.1. Experiments for a single justifi-

cation and all justifications are conducted and corresponding

results are reported in Section 5.2 and Section 5.3, respec-

tively.

5.1 Ontologies and testing environment

In order to evaluate our method efficiently, we select some

real-world ontologies. Some come from WebProtégé repos-

itories, and others come from similar testing works such as

[2, 25, 27]. Details for different tested ontologies are given

in Table 2. The first column records the name of ontolo-

gies. The second one describes all kinds of characteristics

in terms of the description logic (DL) used to formulate the

ontology. The third column C/P/I summarizes information

about the number of concepts, properties, and individuals

contained by the corresponding ontology. The last column N

gives the number of entailment problems, and such number

corresponds to the number of unsatisfiable classes which are

special entailments for ontologies debugging tasks. Most on-

tologies such as MadCow, dbPediea-2014, Tambis, and so

on have unsatisfiable classes. While the current version of

SWEET Ontology and University Ontology does not exist

unsatisfiable concepts. So we choose some concepts in these

two ontologies to generate entailments randomly as testing

tasks. The counts of entailments about SWEET and Univer-

sity Ontology are 30 and 10, respectively.

Table 2 Description of tested ontologies

Ontology DL A C/P/I N

1.MadCow ALCHOIN (D) 109 53/29/13 1

2.dbPedia-2014 ALCHF (D) 6,772 828/3035/1 2

3.SWEET-JPL ALCHOF (D) 3,833 1537/121/50 30

4.Tambis SHIN (D) 795 392/112/0 144

5.University SHI(D) 117 43/44/1555 10

6.Economy ALCH (D) 663 338/65/482 51

7.Transportation ALCN (D) 1,282 444/105/183 62

We implement algorithms and related optimizations de-

scribed in this paper in Java code base on OWL API. All

evaluations are carried out on a laptop with 2.3 GHz Intel(R)

Core(TM)2 Duo CPU and 4.0 GB of RAM using 32 bit oper-

ating system Windows 7.

5.2 Experiment for a single justification

First of all, we compare performance between the basic ex-

pansion algorithm and traditional prune algorithm. Expan-

sion and prune procedures only select one axiom to deal with

each time and only test usual satisfiability (not increment

reasoning satisfiability mentioned in Section 4.2.). Here we

adopt the select function described in Section 4.1 for the ba-

sic expansion method to compare its performance with the

traditional prune method.

Experiments results for the basic expansion method and

prune method are summarized in Tables 3–4. We test entail-

ment tasks for every ontology listed in Table 2. The running

time and times of satisfiability decision to be called are filled

separately in each row. The unit of running time is “ms”, and

the unit of calling times of satisfiability decision is “times”.

Results in Table 3 show that the basic expansion method is

generally worse than traditional prune method in terms of

time spent and calling times. The reason is that there are

multiple rounds tests in our expansion method. The count

of rounds for the expansion method equals to the number

of axioms included in a justification, while pruning method

only needs one round to shrink. Therefore, our basic expan-

sion method spends more time and calling times, even if our

method can avoid testing every axiom in one round. However,

our method with increment reasoning optimization stated in

Section 4.2 is better than the basic pruning method. We can

confirm this conclusion by comparing the 4th line in Table 3

to the 2nd line in Table 4.

Table 3 Evaluation between basic expansion and prune

(units: ms/times)

Ontology ID 1 2 3 4 5 6 7

59 347 3,843 77,014 1,694 1,341 6,682
Expansion method

29 276 2,217 36,978 937 1,145 5,719

45 178 2,954 57,824 1,370 882 4,998
Prune method

10 121 1,654 21,547 618 765 3,998

In fact, modern ontology reasoners, such as Pellet or

Fact++, does not adopt the traditional prune strategy any-

more. Most of them use the sliding windows strategy to per-

form a fast pruning. In such prune procedure, multiple ax-

ioms (not only one axiom) are selected at the same time for

one testing satisfiability. Thus times of calling satisfiability

decision will be reduced greatly. Does our expansion method

still have some advantage to compare with prune method un-

der such situation? The good news is our expansion method

can be optimized by using increment reasoning described

in Section 4.2 (fast pruning or slow pruning cannot adopt).

8 Front. Comput. Sci., 2020, 14(4): 144305

The speed of increment reasoning is obviously faster than the

usual satisfiability decision, so our expansionmethod is likely

to have superior performance. In order to confirm it, we con-

duct experiment to compare the expansion method with in-

crement reasoning optimization and the fast prune method

with sliding windows optimization. The results are displayed

in Table 4.

Table 4 Incremental reasoning vs. Sliding windows optimization
(units: ms/times)

Ontology ID 1 2 3 4 5 6 7

37 58 862 3,564 481 387 1,194
Expansion with INR

8 32 639 2,184 173 402 579

43 87 1,124 4,811 609 512 2,010
Prune with WIN

10 51 731 2,765 201 564 1,874

The test terms in Table 4 are similar with that in Table 3.

We also test the running time and times of satisfiability de-

cision to be called during implementation processes. The

times of calling satisfiability test which is executed by expan-

sion method with increment reasoning optimization only are

recorded by normal test. In other words, we ignore to count

the times of increment reasoning. Because the spending of

such special reasoning is small enough compared to common

satisfiability test of the whole knowledge base. Obviously, the

efficiency of pruning method with sliding windows shown in

Table 4 is better than the slow pruning method in Table 3.

Dealing multiple axioms instead of a single axiom each time

has great impact on the efficiency. However, it does not has

advantage when comparing to our expansion method with in-

crement reasoning optimization. The results in Table 4 show

that the reasoning time spent is also an important element for

the improvement of efficiency.

5.3 Experiment for all justifications

Given an initial justification, we can use a variation of the

classical Hitting Set Tree (HST) algorithm [27] to compute

the remaining ones. To begin with, we find any single justi-

fication and set it as the root node of the HST. Then each of

axioms in the justification is removed individually, thus new

branches of the HST are created, and we find new justifica-

tions along these branches on the fly (using our proposed al-

gorithm in this paper) in the modified ontology. This process

needs to be exhaustively done in order to compute all justifi-

cations. The details about finding all justifications are stated

in [2]. In this section, we use such a variation of the HST

algorithm to extract all justifications for various ontologies

mentioned in Table 2. The statistics of attributes of justifica-

tions for various ontologies are shown in Table 5.

Table 5 Justifications statistics about ontologies

No. of JUSTs Size of JUST
Ontologies

mean max mean max

1 1 1 4 4

2 1 1 4 4

3 1.63 3 3.96 5

4 – – – –

5 1.5 2 4.25 6

6 1.29 2 3.74 6

7 2.18 5 5.58 9

The first row of “No. of JUSTs” is the mean number of jus-

tifications for each target axiom, and the second row presents

the target axiom which owns the most justifications. The first

row of “Size of JUST” is the mean number of axioms for

each justification, and the second row presents the justifi-

cation which owns the most axioms. According to Table 5,

the numbers of justifications and axioms of MadCow and

dbPedia-2014 are both less than other ontologies.

The time spent with the extraction of every ontology ap-

peared in Table 2 is plotted in Fig. 3. Deep grey lines rep-

resent the running time by Pellet which are mature tools to

find all justifications for OWL ontologies. Shallow grey lines

represent the running time by a variation of HST algorithm

invoking our proposed method in this paper. Among 7 on-

tologies, notice that for dbPedia-2014, even if there are only

two target axioms for its testing, it is still time-consuming

since the justifications of this ontology are more complicated

than others. In addition, Tambis ontology owns 144 target ax-

ioms. The testing has exhausted the computer memory, thus

does not produce results as shown in line 4 of Table 5. The

same story happens in Fig. 3, where the time spent for Tam-

bis ontology is ignored. As a result, we observe that invoking

our method to compute all justifications achieves a better per-

formance than the traditional methods, i.e., Pellet.

Fig. 3 Run time for Pellet vs. HST based on our single JUST method

Yuxin YE et al. Extracting a justification for OWL ontologies by critical axioms 9

6 Conclusion

In this paper, a novel approach is proposed to detect one jus-

tification for OWL ontologies. Compared to the traditional

pruning strategy for reducing axioms, our proposed method

expands axioms directly. This is realized by detecting critical

axiom through a series of definitions, properties, theorems,

and algorithms. At the same time, some optimization tech-

niques such as select function and increment reasoning have

been adopted to improve this approach in further. The exper-

iment results show that our method wins in efficiency.
In our experiments, we simply invoke our method via us-

ing Hitting-tree algorithm to detect all justifications. That

is to say, we only substitute the traditional pruning method

with the proposed method in combining with Hitting-tree

algorithm, which does not fully display advantages and per-

formance of our proposed method. We believe there are a lot

of possible improvement which is worthy to be explored in

our future work.

Acknowledgements Research presented in this paper was partially sup-
ported by the National Natural Science Foundation of China (Grant Nos.
61672261, 61502199). It’s also funded by China Scholarship Council
(201506175028) for the first author of this paper. We would like to be grate-
ful to the partners in the laboratory who have given our generous support
and helpful advice for this study. Specially, thanks are due to Assistant Pro-
fessor Jiafeng Xie for assistance with the experiments and proofreading the
manuscript.

References

1. Schlobach S, Cornet R. Non-standard reasoning services for the debug-

ging of description logic terminologies. In: Proceedings of the 18th In-

ternational Joint Conference on Artificial Intelligence. 2003, 355–362

2. Kalyanpur A, Parsia B, Horridge M, Sirin E. Finding all justifications

of OWL DL entailments. In: Proceedings of the 6th International the

Semantic Web and 2nd Asian Conference on Asian Semantic Web

Conference. 2007, 267–280

3. Schlobach S, Huang Z S, Cornet R, Harmelen F V. Debugging inco-

herent terminologies. Journal of Automated Reasoning, 2007, 39(3):

317–349.

4. Baader F, Penaloza R. Automata-based axiom pinpointing. Journal of

Automated Reasoning, 2010, 45(2): 91–129

5. Ma Y, Penaloza R. Towards parallel repair: an ontology

decomposition-based approach. In: Proceedings of the 27th Inter-

national Workshop on Description Logics. 2014, 633–645

6. Teymourlouie M, Zaeri A, Nematbakhsh M A, Staab S. Detecting hid-

den errors in an ontology using contextual knowledge. Expert Systems

with Applications, 2018, 95: 312–323

7. Xue H, Qin B, Liu T. Topic hierarchy construction from heterogeneous

evidence. Frontiers of Computer Science, 2016, 10(1): 136–146

8. Wu L, Su K, Han Y. Reasoning about knowledge, belief and certainty in

hierarchical multi-agent systems. Frontiers of Computer Science, 2017,

11(3): 499–510

9. Ouyang D, Cui X, Ye Y. Integrity constraints in OWL ontologies based

on grounded circumscription. Frontiers of Computer Science, 2013,

7(6): 812–821

10. Zhang Y, Ouyang D, Ye Y. Glass box debugging algorithm based on

unsatisfiable dependent paths. IEEE Access, 2017, 5: 18725–18736

11. Zhang Y, Ouyang D, Ye Y. An optimization strategy for debugging in-

coherent terminologies in dynamic environments. IEEE Access, 2017,

5: 24284–24300

12. Friedrich G, Shchekotykhin K M. A general diagnosis method for on-

tologies. In: Proceedings of the 4th International Conference on the

Semantic Web. 2005, 232–246

13. Schlobach S. Diagnosing terminologies. In: Proceedings of the 20th

National Conference on Artificial Intelligence. 2005, 670–675

14. Shchekotykhin K M, Friedrich G, Fleiss P, Rodler P. Interactive on-

tology debugging: two query strategies for efficient fault localization.

Journal of Web Semantics, 2012, 12: 88–103

15. Jannach D, Schmitz T, Shchekotykhin K M. Parallel model-based di-

agnosis on multi-core computers. Journal of Artificial Intelligence Re-

search, 2016, 55: 835–887

16. Horridge M, Bauer J, Parsia B, Sattler U. Understanding entailments in

OWL. In: Proceedings of the 5th OWLED Workshop on OWL. 2008,

26–27

17. Bail S, Parsia B, Sattler U. Declutter your justifications: determining

similarity between OWL explanations. In: Proceedings of the 1st Inter-

national Workshop on Debugging Ontologies and Ontology Mappings.

2012, 13–24

18. Reiter R. A theory of diagnosis from first principles. Artificial Intelli-

gence, 1987, 32: 57–95

19. Maaren H V, Wieringa S. Finding guaranteed MUSes fast. In: Proceed-

ings of the 11th International Conferences on Theory and Applications

of Satisfiability Testing. 2008, 291–304

20. Kullmann O, Lynce I, Marques J. Categorisation of clauses in conjunc-

tive normal forms: minimally unsatisfiable sub-clause-sets and the lean

kernel. In: Proceedings of the 9th International Conference of Theory

and Applications of Satisfiability Testing. 2006, 22–35

21. Huang Z S, Harmelen F V, Teije A Y. Reasoning with inconsistent on-

tologies: framework, prototype, and experiment. In: Davies J, Studer

R, Warren P, eds. Semantic Web Technologies: Trends and Research in

Ontology-based Systems. Hoboken: John Wiley & Sons, Inc., 2006

22. Horrocks I. Implementation and optimisation techniques. In: Baader

F, Calvanese D, McGuinness D, Nardi D, Schneider P F, eds. The De-

scription Logic Handbook: Theory, Implementation, and Applications.

2nd ed. London: Cambridge University Press, 2007

23. Parsia B, Halaschek C, Sirin E. Towards incremental reasoning through

updates in OWL-DL. In: Proceedings of the 15th International Confer-

ence of World Wide Web. 2006

24. Grau B C, Halaschek C, Kazakov Y, Suntisrivaraporn B. Incremental

classification of description logics ontologies. Journal of Automated

Reasoning, 2010, 44(4): 337–369

25. Horrocks I, Schneider P F. Reducing OWL entailment to description

logic satisfiability. In: Proceedings of the 2nd International Conference

on the Semantic Web. 2003, 17–29

10 Front. Comput. Sci., 2020, 14(4): 144305

26. Haarslev V, Moller R, Turhan A Y. Exploiting pseudo models for TBox

and ABox reasoning in expressive description logics. In: Proceedings

of International Joint Conference on Automated Reasoning. 2001, 61–

75

27. Ji Q, Gao Z, Huang Z, Zhu M. Measuring effectiveness of ontology

debugging systems. Knowledge-Based Systems, 2014, 71: 169–186

Yuxin Ye received his PhD degree in com-

puter software and theory from Jilin Uni-

versity, China in 2010. He is currently

an associate professor in the College of

Computer Science and Technology, Jilin

University, China. He also serves on Key

Laboratory of Symbolic Computation and

Knowledge Engineering (Jilin University),

Ministry of Education, China. He has more than 10 years of experi-

ence in Ontology Engineering and Semantic Web research and has

more than 40 publications in these areas. He is a Member of China

Computer Federation (CCF). His main research interests include se-

mantic Web, ontology engineering, and knowledge graph.

Xianji Cui received her PhD degree in

computer software and theory from Jilin

University, China in 2014. She is cur-

rently a lecture in College of Information

and Communication Engineering, Dalian

Minzu University, China. Her main re-

search interests include semantic Web and

ontology engineering.

Dantong Ouyang received her PhD degree

in computer software and theory from Jilin

University, China in 1998. She is currently

a professor and PhD supervisor in the Col-

lege of Computer Science and Technol-

ogy, Jilin University, China. She is a se-

nior member of China Computer Federa-

tion (CCF). She also serves on some aca-

demic organizations, such as CCF TCAIPR, CCF TTCS, CAAI

KE&DS, and so on. Her main research interests include artificial in-

telligence, automatic reasoning, model based diagnosis, constraint

problem, and so on.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 802.205]
>> setpagedevice

