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Abstract When evaluating the performance of distributed

software-defined network (SDN) controller architecture in

data center networks, the required number of controllers for

a given network topology and their location are major issues

of interest. To address these issues, this study proposes the

adaptively adjusting and mapping controllers (AAMcon) to

design a stateful data plane. We use the complex network

community theory to select a key switch to place the con-

troller which is closer to switches it controls in a subnet. A

physically distributed but logically centralized controller pool

is built based on the network function virtualization (NFV).

And then we propose a fast start/overload avoid algorithm to

adaptively adjust the number of controllers according to the

demand. We performed an analysis for AAMcon to find the

optimal distance between the switch and controller. Finally,

experiments show the following results. (1) For the number of

controllers, AAMcon can greatly follow the demand; for the

placement location of controller, controller can respond to the

request of switch with the least distance to minimize the delay

between the switch and it. (2) For failure tolerance, AAMcon

shows good robustness. (3) AAMcon requires less delay to

the network with more significant community structure. In

fact, there is an inverse relationship between the community

modularity and average distance between the switch and con-

troller, i.e., the average delay decreases when the community

modularity increases.(4) AAMcon can achieve the load bal-

ance between the controllers. (5) Compared to DCP-GK and

k-critical, AAMcon shows good performance.
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1 Introduction

Software-defined network (SDN) [1,2] separates the cen-

tralized control plane from the distributed data plane. With

SDN’s support of flexible network management and rapid de-

ployment of new functionalities, there is an increasing inter-

est in deploying SDN in both inter-data center (e.g., Google

B4 [3]) and intra-data center (e.g., Hedera [4]) scenarios.

While the concept of centralized control is the foundation

of SDN, implementing it on a centralized controller does

not provide the required levels of availability, responsive-

ness, and scalability. To improve scalability and avoid a sin-

gle point of failure,some recent works have explored architec-

tures for building distributed SDN controller plane [5] (e.g.,

NVP [6]). In generally, switches are statically assigned to one

or multiple controllers in these distributed controller planes.

However, static assignment between switches and con-

trollers leads to long and highly varying controller response

time, simply because traffic in data center networks (DCN)

frequently fluctuates with both temporally and spatially [7,8].

Spatially, switches in different layers of the DCN topology

experience significantly different flow arrival rates. Tempo-

rally, the aggregate traffic usually peaks in daytime and falls

at night. Moreover, traffic variability also exists in shorter

time scales even when the total traffic remains unchanged.

For example, measuring results over real data centers have

shown that the peak-to-median ratio of low arrival rates is al-

most 1–2 orders of magnitude [9]. All these factors cause hot



Waixi LIU et al. AAMcon: an adaptively distributed SDN controller in data center networks 147

spots among some controllers, resulting in excessively long

response time for the switches they manage. Although the

controller response time may not be significant for elephant

flows, it fundamentally limits the network’s ability to quickly

react to changes such as failures and may cause transient con-

gestion to last for a long time [8].

Therefore, for software defined DCN, using dynamic

switch assignment is important to obtain lower controller

response time and better utilization of controller resources.

Dixit et al. [10] propose an efficient protocol to enable switch

migration across multiple controllers without message loss

or observable delay. However, how to determine the assign-

ment remains open. On the one hand, from the switch’s view,

it prefers a controller with low response time to improve

performance. On the other hand, from the controller’s view,

it is more willing to manage topologically closer switches

to reduce the control traffic overhead. This is critical when

the communication between switches and controllers is fre-

quent and occupies scarce bandwidth resources. These pref-

erences are always intertwined, and make the problem es-

pecially challenging. Furthermore, the following challenges

also need to be addressed:

1) Centralization places heavy burden on the software-

based controller. When a network event occurs (e.g., a host

moves from one location to another or a piece of hardware

fails), the control flow has to make an indirection via the con-

troller. As a result, the reaction time can be orders of magni-

tude slower than an in-network reaction [11]. This is partic-

ularly problematic in application scenarios that require fast

response to frequent network dynamics.

Recently, to the slow reaction problem for important net-

work events, some works have begun to explore a radically

different approach—offloading some latency-sensitive net-

work management tasks to the data plane itself (stateful data

plane), and implementing the tasks using only the existing

rule-based infrastructure already implemented in the switches

[12]. This in-network approach is appealing due to two rea-

sons: a) It eliminates the extra round trip to the controller, and

b) It uses only a hardware-based implementation of forward-

ing rules, instead of software-based controller logic, bring a

significant performance boost.

In SDN, flows can be configured with proactive or reactive

mode. The time associated with the reactive flow setup is the

sum of the time it takes to send the packet from the switch

to the controller, the processing time in the controller, and

the time it takes to send the configuration message back to

the switch. Therefore, there are two main factors influencing

the establishment time of flow: the distance between switch-

controller and the processing time of the controller. For the

former, this paper attempts to place the controller closer to

the switch based on the stateful data plane (localized local

controller).

2) Another key limitation of past works is that the mapping

between a switch and controller is statically configured. This

results in long and highly varying controller response time-

dueto DCN traffic varying with both temporally and spatially

as mentioned above.

Since the initial proposal of the network function virtual-

ization (NFV) [13] concept, its relationship with SDN was

argued to be complementary and potentially of benefit when

both technologies are combined [14].

Thus, this paper attempts to adjust adaptively the number

of controllers according to the demand by the NFV.

3) We demonstrate that a good selection of controllers may

balance the load among them and also reduce the data loss in

the control layer. As a result, the selected controllers can effi-

ciently distribute the management duties among them to im-

prove the scalability of the management process where each

controller operates on its own abstract view of the network.

This study attempts to make the switch to select the right con-

troller based on the complex network community theory.

To address the abovementioned challenges, this study

proposes the adaptively adjusting and mapping controllers

(AAMcon). The contributions of this study are as follows:

a) We propose an elastic distributed SDN controller ar-

chitecture for DCN, where the controller pool based

on SDN+NFV dynamically expands or shrinks as the

dynamic demand for controller due to the aggregate

load changing over time. Where we propose a fast

start/overload avoid algorithm to adaptively adjust the

number of controllers according to the demand of

switch.

b) We propose an efficient switch-to-controller mapping

scheme by building a community that contains a lo-

cal controller on the switch using the complex network

community theory. Where the local controller is placed

at the most important node in the community and be-

comes the first mapping choice of the switch when it

needs support from the controller. The controllers can

respond to the switch with the least distance to min-

imize the communication time between the controller

and switches. Simultaneously, AAMcon can achieve

load balancing between controllers, avoid congestion,

and is very tolerant to failures.
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c) This study proposes a stateful data plane to place the

controller closer to the switch.

The remainder of the paper is organized as follows. In Sec-

tion 2, related works are introduced. In Section 3, the design

and implementation for building a scalable control layer are

presented. In Section 4, the experiment results of the pro-

posed method are presented. Section 5 discusses some related

issues. Finally, conclusion and future work are presented in

Section 6.

2 Related work

2.1 Distributed SDN controllers

The SDN controller is responsible to control flows and man-

age network resources based on the global view of the en-

tire network. However, to maintain a global view, controllers

have to synchronize states with each other. As the state of the

whole network frequently changes, synchronization may lead

to network overload. Moreover, Levin et al. [15] have found

that the inconsistent control state of the SDN significantly de-

grades the performance of many applications. Therefore, the

control plane state and logic must be physically distributed.

Then, some proposals attempted to construct the local net-

work view.

For OpenFlow rule allocation and endpoint policy enforce-

ment, a linear optimization model in resource-constrained

SDN networks with relaxed routing policy is proposed [16].

Where they have shown that the general problem is NP-

hard and proposed a polynomial time heuristic (OFFICER),

aiming to maximize the amount of carried traffic in under-

provisioned networks.

To reduce the communication overhead and delay of the

switch-controller and to achieve the balance of traffic, re-

searchers are exploring the stateful data plane and the lo-

cal controller. Bianchi et al. [17] opened a number of pro-

grammable APIs in the data plane, and presented a finite state

machine (XFSMs) to help the switch independently make de-

cisions according to their own local information. Moshref et

al. [18] further extended the application categories. They used

a state machine (FAST) in the switch to track the flow sepa-

rate from the state transition table and the action table to re-

duce their size further, where hash table is used to reduce the

delay state table.

Schmid and Suomela [19] used Local algorithms (a local

distributed computing algorithm) to design a distributed con-

trol plane, which divides the network into many regions, and

a controller that acts as manager. Therefore, locality task and

some global tasks, which can be converted into be local (as

an approximate optimal solution), can be solved by the local

controller.

Vissicchio et al. [20] developed an architecture that

achieves both flexibility and robustness by central control

over distributed routing. They introduces fake nodes and links

into an underlying link-state routing protocol so that routers

compute their own forwarding tables based on the augmented

topology.

On the other hand, to achieve the optimal allocation of net-

work resources, the network should be able to adapt to the

time-space changes of the consumer’s demand. Therefore,

the researchers explore the dynamic connection between the

switch and controller.

When the switch-controller mapping is statically config-

ured, uneven load distribution will be exhibited among the

controllers. To solve this problem, Dixit et al. [10] have pro-

posed ElastiCon that can dynamically increase or decrease

the number of controllers according to the change of traffic.

In addition, ElastiCon divided the application state, and used

the relationship between the switch and application state to

achieve the local controller. Moreover, Krishnamurthy et al.

[21] proposed an elastic controller assignment mechanism by

partitioning the application states and exploring the depen-

dency between switches and applications. They took into ac-

count the CPU and memory load, and abstracted the prob-

lem to multi-dimensional packing problem for optimization.

However, the mechanism does not consider the processing

time on controllers, which is a major factor in flow setup time.

In summary, when SDN is used to large-scale real net-

work, the local controller and stateful data plane are required

to design for scalability and robustness. They should achieve

the dynamic connection between the switch and controller

and form a dynamic distributed control plane to improve the

real-time and fault recovery capabilities. The distributed SDN

controller is discussed in detail in [22].

Differencing from the abovementioned references, we use

NFV to design a stateful data plane, where the local con-

troller is abstracted as one virtual network functions (VNF)

on switch. A heuristic algorithm is proposed to adjust VNF’s

number and placement. Therefore, the proposed scheme can

be scalable to large-scale network.

2.2 Controller placement problem in software-defined net-

works

From the theoretical perspective, Yao et al. [23] defined a ca-
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pacitated controller placement problem (CCPP), considering

the load of controllers. Given a network with fixed topol-

ogy, this study addressed two issues: how many controllers

needed; where each controller is placed. Moreover, Sallahi

and St-Hilaire [24] proposed a mathematical model for the

controller placement problem aiming to minimize the cost of

the network. When a set of switches managed by the con-

troller(s) is given, the model simultaneously determines the

optimal number, location, and type of controller(s) as well

as the interconnections between all network elements. Ros

and Kuiz [25] focused on determining how many controllers

need to be instantiated, where they are deployed, and which

switches are under the control of each of them to achieve

high reliability. However, these schemes assume that the traf-

fic load is fixed and can be looked as the preplanning scheme.

From implementation perspective, Jiménez et al. [26] pro-

posed a distributed protocol called SDN resource discovery

protocol (SDN-RDP). k-critical [27] algorithm aims to find a

placement plan of controller to solve the following two prob-

lems: how to build a network topology containing the con-

troller and how to manage this network topology. Essentially,

each controller discovers a portion of the network topology

creating a minimum latency tree rooted at each controller,

thus creating the control layer.

In summary, the controller placement problem is essen-

tially the positioning of a limited number of resources within

a network to meet various requirements. These requirements

range from latency constraints to failure tolerance and load

balancing. In most scenarios, at least some of these objec-

tives are competing. Thus, no single best placement is avail-

able, and decision makers need to find a balanced trade-off.

Stanislav Lange et al. [28] presented POCO, a framework that

provides operators with Pareto optimal placements with re-

spect to different performance metrics.

Summarily, the past work regarded the controller place-

ment problem as a preplanning problem for static traf-

fic. Differencing from abovementioned these, we propose a

community-based scheme for the controller placement prob-

lem. In addition to taking into account the physical connec-

tion between two nodes (e.g., whether there is connection

between them, the distance between them), real-time traffic

behavior between them is also considered.

2.3 Combination of NFV and SDN (NFV+SDN)

NFV and SDN shared a same objective—using commodity

servers and switches, avoiding specific hardware-based com-

ponents provided by vendors [29]. NFV is able to support

SDN by providing the infrastructure where the SDN software

can be run [14].

Gember-Jacobson et al. [30] designed an open control

plane OpenNF for integration with the SDN+NFV architec-

ture where both the network function (NF) and network for-

warding statuses can be quickly and accurately migrated be-

tween the NF.

Batalle et al. [31] used NFV to implement the routing

function under OpenFlow. Moreover, with the network-as-

a-service (Naas) model based on SDN + NFV architecture,

Wang et al. [32] proposed a greedy routing protocol with en-

ergy saving for the data center network, which can meet the

multi-resource constraints.

The open networking foundation (ONF) has proposed “A

flexible NFV networking solution” [33], outlining the bene-

fits for the NFV deployment of an OpenFlow-enabled SDN

approach to deal with the dynamic provisioning of network-

ing services.

Rodriguez-Natal et al. [34]claim that a decentralization of

NFV control while maintaining global state improves scala-

bility, can offer better per-flow decisions and simplifies the

implementation of VNF.

From the related work, currently there is a clear momen-

tum for exploiting networking innovation in the light of SDN

and NFV.

3 Adaptively adjusting and mapping con-
trollers

3.1 Basic architecture

Reference [35] has shown that community-based data center

can efficiently achieve optimal resource management, such

as capacity allocation, load balancing, energy optimization,

and QoS guarantees. While achieve parallel solving of a huge

problem (e.g., MapReduce), the assigned virtual machines

(VMs) need to exchange data in order to synchronize their

work on the given problem, and we refer it as locality tasks.

The inter-VMs communication has to be localized for perfor-

mance boosting purposes. Thus, we need to assign the VMs

to one community and, in this way, localize traffic inside the

community, which will reduce the communication delay and

increase the overall network performance of the data center.

Multi-level community formation algorithms allow for cre-

ation of super groups of smaller communities with strong in-

tra and inter community information flows.

Thus, in a community-based software defined data center,

this paper designs the stateful data plane: data plane retaining
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some control functions instead of a completely dumb termi-

nal as shown in traditional SDN architecture, and the con-

troller is placed on a key node closer to the switch. These

can reduce the communication overhead and the round-trip

delay between the switch and controller. These can also re-

duce the controller’s workload. Furthermore, the controller is

actually localized (local controller), and a hierarchical, dis-

tributed controller network is ultimately built. In this con-

troller network, locality tasks are completed by the local con-

troller, and global tasks are completed through the local con-

troller by the global controller as shown as Fig. 1. Thus, the

local controller is pushed closer to the switch it control, and

can respond to switch’s request in real-time and more accu-

rately. At the same time, this paper also designs the stateful

data plane to adaptively adjust the number of controllers ac-

cording to the demand. Notations in this paper is shown in

Table 1.

Table 1 Notation acronyms list

Notations Definition

Q Modularity for community structure

m The number of edges for network model

n The number of vertices for network model

Betw(v) The betweenness for node v

Local_C The number of local controller

load_controller The load of controller

Threshold The reserved threshold value for controller numbers

T One round time for Algorithm 1

θ
The threshold ofdetermining whether controller

is overload

Record_data The local controller number when controller is overload

3.1.1 Background theory

Researches have shown that the community structures in a

real network is common, which are an important property of

complex networks. For example, tightly connected groups of

nodes in a social network represent individuals belonging to

social communities [36].

Given a graph G(N ,L), a community is a subgraph

G′(N′,L′), whose nodes are tightly connected, i.e., cohesive.

A type of definition of community structures is based on the

relative frequency of links. In this case communities are seen

as groups of nodes within which connections are dense, and

between which connections are sparser. An example is shown

in Fig. 1. The simplest formal definition in this class has been

proposed in [37]: G′ is a community if the sum of all degrees

within G′ is larger than the sum of all degrees toward the rest

of the graph.

In complex networks,inter-community communication de-

pends on few key nodes when intra-community communica-

tion is frequent. The importance of each node in a community

(such as degree and betweenness) is not equal. The key nodes

among the community are not only more easily accessible by

nodes within the community, but are also easier to access by

the external nodes as well. If the weight of a link is taken into

account, it is named as the weighted complex network. For

example, as shown in Fig. 1, the entire topology can be re-

garded as one community if we do not consider the weight

of the link. However, given that the network traffic behavior

leads to the variation of the weight of the link, there are two

obvious communities, where v1 and v2 are two key nodes for

these two communities respectively.

Fig. 1 Community in weighted complex network

When the community structure is unknown, modularity

(abbreviated as Q) is the first and still currently the most pop-

ular measure of the quality of a partition into communities.

Q value suggested an alternative approach to finding com-

munity structure. Considering the computational complex-

ity and performance, this paper used Fast algorithm [38] to

achieve the community partition without overlap and loop,

which is based on a standard “greedy” optimization algo-

rithm.

The appendix of this paper introduce more detail about

community theory, modularity Q and how to detect commu-

nity structure in networks.

3.1.2 Selection of controllers

With the controller placement problem, the community the-

ory is the motivation of our proposed approach. In SDN

network, tasks can be divided into two types: local and

global. Local tasks can be completed by a single local con-

troller with the local algorithm. However, completing global

task requires cooperation and communication between the lo-

cal controllers. Therefore, some local controllers and some

switches that communicated with each other construct one

complex network. Wherein, the local controller and the
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switch are the node of the network, and the communication

between the nodes is the edge of the network. Given the un-

equal traffic of the edge, the weight of the edge is also not

equal. Therefore, the network is a weighted complex net-

work.

Therefore, we can divide the network into some commu-

nities, and each local controller governs switches within it.

In other words, building a community in which the local con-

troller is placed on the most important nodes (with the biggest

betweenness). For example, in Fig. 1, v1 and v2 are two loca-

tions of the local controller within two communities. Thus, in

the case the switch in the choice of mapping to the local con-

troller can avoid the “detour”, and can also achieve the load

balance between local controllers. From another perspective,

the scenario is equivalent to the global optimization for the

global controller.

However, because traffic in DCN frequently fluctuates with

both temporally and spatially, the weight of edge also fre-

quently fluctuates. Considering the complexity of AAMcon,

this paper simply assume that the weight of edge is equal.

3.1.3 NFV-based elastic controller pool

In this paper, the underlying SDN network infrastructure is

abstracted to support the inter-connection between virtual

network functions (VNFs) and with the end-points.

As shown as Fig. 2, in this study, the local controller

is abstracted as one VNF which runs in a virtual machine

(VM) virtualized from this switch using NFV technology.

Some local controllers (i.e., VNF) logically formed with a

controller pool, and they are actually collocated within their

switch respectively. These local controllers and the global

controller build a hierarchical distributed controller plane. To

complete forwarding decisions, switch can request the lo-

cal controller from this pool on demand, where dynamically

adaptive matching between the demand and supply of VNF

can achieve. VNFs can be inter connected with each other

and with the end-points in a certain way (forwarding path)

to achieve the desired overall end-to-end functionality. This

is known as “service chain”. Thus, VNFs can be distributed

over several switches connected through multiple heteroge-

neous transport networks.

From the view of operation, Nova in OpenStack can

be used to manage the VM in switch. An agent runs

in each switch and controls the hypervisor used for cre-

ation/migration/deletion of the VMs. Finally, the connectiv-

ity between VMs within the switch is managed by Neutron

in OpenStack. Neutron plugin can be used to provide full

control of the switches through an SDN controller, and to

disable reactive packet-in mechanism for unknown incoming

connections.

3.2 System’s design

Based on above mentioned ideas, the paper proposes AAM-

con which consists of two parts: adaptively adjusting con-

trollers (AAcon) and adaptively mapping for the controller

(AMcon). AAMcon supports the following two main load

adaptation operations: (1) For AAcon, if the aggregate load

exceeds the maximum capacity of existing controllers, it

increases the controller pool by adding new controllers, trig-

gering switch migrations to utilize the new controller. Simi-

larly, when the load falls below a particular level, it decreases

the controller pool accordingly to consolidate switches onto

Fig. 2 NFV-based elastic controller pool
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fewer controllers. (2) For AMcon, it monitors the load on all

controllers and periodically balances the load of controllers

by optimizing the switch-to-controller mapping.

3.2.1 AAcon—adaptively adjusting controllers

If the number of local controller can be adaptive to the traf-

fic space-time distribution and is less occupied when the de-

mand of switch is satisfied, then the controller resource can be

used with the most efficiency. Thus, we propose the scheme

of adaptively adjusting controllers—fast start/overload avoid

algorithm. It is shown as Fig. 3. The scheme works mainly as

follows: Local_C (local controller number) is initially set to

a value, and gradually decreases according to demand. When

Local_C decreases to a value in this case the load of the con-

troller (load_controller) is overload, it resets to a new initial

value. Then, one new descent process cycle starts, with more

details presented in Algorithm 1.

Fig. 3 Fast start/overload avoid algorithm

Lines 1–6: The controller does not overload, and then Lo-

cal_Cgradually decreases.

Lines 2–3: If the number of controllers does not decrease

to the reserved threshold value (Threshold), after one round

T , the Local_C exponentially reduces, where round () is the

integral function.

Algorithm 1 Scheme of adaptively adjusting number of controller

1. IF(load_controller<θ);

2. IF(Local_C>Threshold);

3. Local_C=round(b*Local_C);

4. ELSE

5. Local_C=Local_C-a;

6. END IF

7. ELSE

8. Threshold=round(c*Local_C);

9. Record_data(i, 1)=Local_C;

10. i = i + 1;

11. Local_C=max(Record_data);

12. END IF

Lines 4–5: If the number of controllers has reduced to a

predetermined value, after one round T , the Local_C linearly

reduces.

Lines 7–12: The controller overloads, and then the re-

served threshold value (Threshold) is set to one new value

(c*Local_C). Then, the initial value of Local_C is set to the

maximum value of past Record_data.

Line 8: The controller overloads, and then the reserved

threshold value (Threshold) is set to c*Local_C, where Lo-

cal_C is the real-time value of the number of local controller

when the controller overloads.

Lines 9–10: Record_data records the real-time value of the

number of local controller when the controller overloads.

Line 11: Initial value of Local_C is set to the maximum

value of past Record_data. This method can reduce the prob-

ability of excess controller load. It can automatically adapt

the initial value of Local_C to the real network traffic values.

Where a, b, c are the regulation factors, and 0 < a,

0 < b < 1, 0 < c. The initial value of T , θ, Local_C, Thresh-

old, a, b, and c can be set as the following

T is one round time Algorithm 1, and its value does not

affect the experiment result.

θ can be set according to the controller’s carrying capacity

and past experiment data. Without loss of generality, θ is set

90% of controller’s carrying capacity in this paper.

The initial value Local_C can be set a relative larger value

because the main idea of Algorithm 1 is that gradually de-

creasing according to demand. Its initial value does not affect

the finally experiment result and only affect the convergence

time because Algorithm 1 is adaptive-self.

Threshold, a, b and c is the intermediate variable in Al-

gorithm 1. The initial valueof Threshold should be less than
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the initial valueof Local_C, without loss of generality, and

the initial valueof Threshold is set 65% of the initial valueof

Local_C in this paper.

3.2.2 AMcon—adaptively mapping for controller

The concept in Section 3.1.2 is achieved based on heuristic,

which is elaborated in Algorithm 2.

Algorithm 2 Scheme of mapping between switch and local controller

1. Community_result=Community_partion();

2. new_community=insert_controller();

3. While(load_controller>θ)

4. new_community=insert_controller();

5. Community_partion(new_community, 2);

6. While(Q > 0.5 &&betweenness_controller is not the highest)

7. Adding some edges and deleting other edges of community_1

and community_2;

8. betweenness_controller=compute_betweenness();

9. Q=compute_Q();

10. End

11. End

Line 1: To an AS, the network is partitioned to some com-

munities without overlap and loop by Fast algorithm [38].

Line 2: Adding one controller for each community, and

this community is called new_community.

Lines 3–11: Continually adding controller to the

new_community until the controller in the new_community

is not overloaded, where θ is the threshold of determining

whether controller is overload.

Line 4: Inserting one new controller to the new_commu-

nity, and this community is called new_community.

Line 5: This new_community is partitioned into two com-

munities, i.e., community_1 and community_2.

Lines 6–10: Q value of community_1 and community_2

should be more than 0.5, and the betweenness of the con-

troller is not the highest in its community. If they are not sat-

isfied, continually add and delete the edge of community_1

and community_2.

Line 7: To hold on the community characteristic (Q > 0.5),

some edges are added between the inserted new controller

and switches, correspondingly deleting the edge between the

old controller and these switches. According to the greedy

idea, adding or deleting some edges follow the direction of

maximum increase or minimum decrease of the Q value of

the community. The detailed discussion on the conditions that

these actions (adding and deleting) should be executed and

their method of execution can be found in [38].

Line 8: Computing the betweenness of the controller in

community_1 and community_2.

Line 9: Computing the value of Q for community_1 and

community_2;

3.2.3 Load measurement for controller

Algorithm 1 shows that Threshold can adjust the supply

rhythm of the number of controllers, that is, it linearly de-

creases or exponentially decreases. The value of Threshold,

which is determined when the controller overload, is a dy-

namic adaptive adjustment process. However, real-time de-

mand for controllers determines whether the controller over-

load, therefore, the supply of the number of controllers is

eventually regulated by its demand. This process then re-

peats itself, and the dynamic match between the demand

and supply for the number of controllers can be finally com-

pleted. In this process, the real-time value of demands does

not need to be measured. However, the load of controller

(load_controller) must be measured.

The most direct method to measure the load of a con-

troller is by sampling the response time of the controller at

the switches. This response time include both computation

and network latency. However, switches may not support re-

sponse time measurements because this will require main-

taining some amount of extra state at the switches that may

or may not be feasible.

The experiments show that CPU utilization is roughly in

proportion to the packet arrival rate [10]. Then, we can as-

sume that the fraction of controller resources used by a switch

is proportional to its fraction of the total packets received at

the controller, which is typically true due to the almost linear

relationship between throughput and packets. The packet ar-

rival rate from each switch connected to the controller can

help AAMcon in first dissecting the contribution of each

switch to the overall CPU utilization.

Given that the controller is more programmable, AAM-

con maintains a load measurement module on each controller

to periodically report the CPU utilization and network I/O

packet arrival rates at the controller.

Our experiments and reference [10] also show that the

CPU is typically the throughput bottleneck for the controller.

Thus, this paper uses CPU utilization to measure the load of

a controller. The load measurement module averages load es-

timates over small time intervals (60s in this study) to avoid

triggering switch migrations due to short-term load spikes.

3.3 Problem formulation and numerical analysis

Assuming that the topology of the network with 50 switch
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nodes and the network’s Q is 0.605. The distance between

any two switches and the number of controllers required for

the network (Local_C) are also known. The section analyzes

the average distance between switches and controllers (ab-

breviated as Lavg) as shown in Eq. (1), and also find the rela-

tionship between the value of Q and average distance.

Considering that the physical network is modeled by a

graph denoted by the tuple G = (V, E,C), where V =

{v1 · · · vN} is the set of switch nodes, E is the set of edges, and

C = {c1 · · · cw} defines the set of controllers. The controller

can be placed on any switch node in the network. {vi, c j} rep-

resent the adjacency matrix between the switch node and the

controller.

Lavg =
1
N

N∑

i=1

d(vi, c j), (1)

where d(vi, c j) is the shortest distance (hops) between the

switch and controller, and is computed by Dijkstra algorithm.

We also assume that the distance between the controller and

the switch where it is placed is 1.

Finding the controller placement c j from the set of all pos-

sible controllers C with minimizing Lavg can be expressed as

the following optimization problem:

Min Lavg = 1
N

∑N
i=1 d(vi, c j).

S .t.

(a) Local_C = F, the number of controllers is constant.

(b)
∑N

i=1{vi, c j} > 0,∀ j ∈ w, each controller connects to at

least one switch node.

(c)
∑k

j=1 d{vi, c j} = 1,∀i ∈ N, each switch can only connect

one controller.

(d) Max{d(vi, c j)} � Dreq, guaranteeing QoS for distance.

(e) Max{load_controller(c j)}< θ, ∀ j ∈ w, guaranteeing

each controller not to be overloaded.

Dreq is the required maximum threshold of distance for

QoS, and load_controller(c j) is the load of the controller c j.

3.3.1 Comparison of AMcon’s and optimal value for Lavg

We use the Genetic Algorithm to solve the above optimiza-

tion problem in the following two cases: 1) The optimal so-

lution of Lavg (Lavgmin, i.e., optimal value of Lavg). 2) The

optimal solution of Lavg for AMcon, where the controller is

placed on the switch with the largest betweenness among its

community to add the constraints of Q > 0.5.

The analysis results are shown in Table 2, where Lavgmin

is the optimal value of Lavg without Q > 0.5. For AMcon,

we let Q > 0.5 to guarantee the community characteristics.

From Table 2, we found that the gap between AMcon and the

optimal value is small.

Table 2 Least Lavg of AMcon and optimal value

Number of controllers (Local_C) AMcon Lavgmin

2 2.52 2.32
Lavg

4 2.44 2.28

3.3.2 Relationship between the Q value and average dis-

tance

Under the abovementioned conditions with Local_C=3, we

allowed the 50 switches to arbitrarily connect to any of the 3

controllers to find the relationship between the value of Q and

average distance according to the full combination results be-

tween the switch and controller. From the result, we can plot

the blue line of Fig. 4, where the horizontal axis is the average

distance with hops.

Fig. 4 Relationship between the Q value and average distance

The following conclusions can be drawn from the blue line

of Fig. 4: First, the correspondence between the Q value and

average distance is not one-to-one, but a corresponding range

exists, where in a certain network community structure (i.e.,

a Q value), its average distance fluctuates in a certain range.

Second, the trend shows that the Q value and average dis-

tance is indeed an inverse relationship, i.e., the average delay

decreases when the Q value increases. This observation in in

good agreement with the experimental results (as described

later). Furthermore, we carried out the trend of 9th degree fit-

ting, with results following the norm of residuals = 0.24547

to Eq. (2),

y = −3e + 4x9 + 7e + 4x8 − 7.3e + 6x7 + 4.4e + 7x6

−1.7e + 8x5 + 4.5e + 8x4 − 7.9e + 8x3

+8.8e + 8x2 − 5.7e + 8x + 1.7e + 8, (2)

where y is the Q value and x is the arerage distance with hops.

We plot the red line of Fig. 4.

The above analysis has shown that AMcon is a practical

solution. Therefore, in the actual deployment process, we can

try to let the SDN network hold an obvious community char-

acteristic where some communities are built, and then the
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controller is placed on the switch with the largest between-

ness among its community. Then, its performance can be

approximated to the optimal value Lavgmin.

4 Experiments

We evaluate the performance of our proposed framework
through extensive simulations. We have deployed networks
with different sizes and resource requirements to test our cur-
rent implementation on a real test-bed: distributed OpenFlow
testbed (DOT) [39].

Bari et al. [40] presented an algorithm with dynamically
and efficiently provision controllers in a WAN by periodi-
cally reassigning switches to controllers. It combines Greedy
Knapsack with Simulated Annealing heuristic. We just use
the greedy algorithm of DCP-GK since the full algorithm
is designed for controller provisioning in WANs where time
complexity is less of an issue. DCP-GK is a typical adaptive

solution.

Jiménez et al. [27] proposed the k-critical algorithm, which

identifies the minimum number of controllers and their loca-

tion to create a robust control topology that deals robustly

with failures and balances the load among the selected con-

trollers. On the other hand, k-critical is a typical static solu-

tion.

Thus, the proposed scheme (abbreviated as AAMcon) is

compared with DCP-GK and k-critical.

4.1 Experiment setup

1) Topologies: we conduct our simulations using the

widely adopted fat-tree topologies. For fat-tree, the number

of pods is 24 with a total of 3,456 hosts and 720 switches.

2) Flow generation model: the flow generation pattern

follows the Zipf parameters, which are of the form, where

Pr{Ck} is the probability of the kth most routers being se-

lected as the destinations and α = 0.7. We use iperf to gener-

ate TCP flows between the end hosts. The end hosts of each

flow is chosen randomly. To make the traces more realistic,

we generate the flows according to the distribution of flow

size, flow inter arrival times, and number of concurrent flows

reported in a recent study on network traffic characterization

[41]. The generated traffic spans 48 hours capturing the time-

of-day effect.

4.2 Experiment results

This section presents the experiment results. Unless other-

wise stated, each experimental point reported is averaged

over 10 experimental runs.

4.2.1 Load adaptation

The primary objective of the proposed scheme is to determine

whether the number of controllers can dynamically increase

or decrease according to the significant variations in both spa-

tial and temporal traffic, which results in the variations of the

demanded number of controllers. Figure 5 shows the varia-

tions of the provided and demanded controllers with time.

Fig. 5 Relationship between the provided and demanded controllers for
AAMcon

In Fig. 5, the provided controllers of AAMcon can greatly

follow the demanded controllers, and their relation coefficient

is close to 0.8. During the whole experiment, the number of

demanded controllers over the provided controllers is only 2

times, i.e., the success rate is 98%. We let overflow rate to re-

flect the cost of the provided controller satisfying the demand,

which is defined as . Where n1(t) is the number of provided

controller, and n2(t) is the number of demanded controller at

time t. Experiment results show that the average value of the

overflow rate with 27.8% is not high to achieve a success rate

at 98%. The success rate and overflow rate is dependent, and

higher overflow rate can result in higher success rate.

4.2.2 Number of controllers for average delay

Unless otherwise stated, the delay in this study represents the

switch-to-controller propagation delay whose unit is µs. In

the experiments, we gradually increase the number of con-

trollers for each placement strategy until no overload oc-

curred.

As shown in Fig. 6, the horizontal axis is the average de-

lay, and the vertical axis is the number of controllers. We

observe some trends in the results. First, as expected, more

controllers result in less average delay. Second, the reduc-

tion of average delay does not lineally follow the increase of

the number of controllers. For example, the delay is almost

unchanged when the number of controllers increases from

8 to 16 for all schemes. The efficiency with this increase is
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very low. Particularly, there should be an optimal number of

controllers that adding another controller results in negligible

delay reduction. BC= Δt
ΔN (Benefit/Cost) is defined to find it,

where is the reduction of delay when Δt(us) is the increase

of the number of controllers. Figure 6 shows that the optimal

number of controllers is 8 when we consider BC > 0.1. A

significant delay range is covered when 8 controllers are con-

sidered. The delay ranges are 4.24µs–3.34µs, 4.46µs–3.5µs,

and 6.75µs–5.0µs for AAMcon, DCP-GK, and K-critical, re-

spectively. We can see that two adaptive solutions outperform

the static approach with a large advantage.

Fig. 6 Number of controllers for average delay

In summary, although numerical analysis and experiment

results have confirmed that more controllers can decrease the

delay, we need the tradeoff between the number of controllers

and delay.

4.2.3 CDF of the minimal required controllers to avoid

overload

During the experiment, placement quality varies widely.

A few placements are pathologically bad, while most are

mediocre, and only a small percentage is optimal. From an-

other perspective, Fig. 7 shows the distribution of delay,

which covers the number of controllers k = [65, 32, 16,

8, 4, 2, 1] for AAMcon, DCP-GK, and K-critical, respec-

tively, where the vertical axis is the CDF (cumulative dis-

tribution function) of the delay. Regardless of the number of

controllers, the delay of AAMconis less than that of DCP-GK

and K-critical when the number of controllers is the same.

With average latency, K-critical is 1.2×–1.7× larger than that

of AAMcon. When DCP-GK is used,it is 1.04×–1.06× larger

than that of AAMcon, as shown in Fig. 7. It also confirms the

other conclusion that AAMcon and DCP-GK are almost cross

with close performance when k = 32 and k = 16.

From the above analysis, we can conclude that AAMcon

utilizes a lower number of controller and ensures their higher

utilization than the DCP-GK and K-critical, which reduces

the overall system cost and energy consumption extensively.

4.2.4 Failure tolerance

Although the primary objective of our scheme is the load

adaptation, another aspect should be concentrated on failure

tolerance to confirm its scalability.

Fig. 7 Delay CDFs for all possible controller combinations for k = [65, 32,
16, 8, 4, 2, 1]

To evaluate the performance of the proposed scheme for

network fault, we randomly let the 3n link among the exper-

iment network topology to be invalid, where n is the number

of controllers. The number of fault link increases with the in-

crease in the number of controllers. The experiment aims to

observe the self-adaptive fault recovery of proposed scheme

when the same number of links are failed.

Figure 8 plots the obtained experiment results, where the

vertical axis is the increased average delay due to failure.

As shown in Fig. 8, as expected, the delay increase due

to fault correspondingly increased. However, with lower in-

creased average delay for percent, AAMcon shows the advan-

tage compared to DCP-GK and k-critical for different cases.

Particularly, AAMcon shows better robustness. This benefit
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from efficient switch-to-controller mapping that AAMcon can

adaptively adjust the mapping for switch-to-controller as pre-

sented as Section 3.2.2. Therefore, when the link of a switch-

to-controller, AAMcon can let the switch to self-adaptive se-

lect other controller through other links.

Fig. 8 Increased average delay due to failure

4.2.5 The load balance of controller

In this section, we analyze the load balance of each controller

in the network. To measure the load balance of each con-

troller, we introduce the Gini coefficient of the controller load

(Load_G), which is defined as:

Load_G =

N∑

i=1

N∑

j=1

|yi − y j|

2N2y
, (3)

where yi is the load of the controller i, y is the average of the

controller load, and N is the number of controllers. Higher

Load_G denotes highly unbalanced load.

Figure 9 shows Load_G in a variety of experimental sce-

nario for AAMcon, DCP-GK and k-critical, where the hor-

izontal axis is the number of controllers. The Gini coef-

ficient of AAMcon decreases slightly with the increase of

the number of controllers. Its low Gini coefficient indicates

that AAMconcan achieve the load balance between the con-

trollers. On the other hand, DCP-GK is also outperform k-

critical. It means that two adaptive solutions can provide

more load balance than the static approach with a large ad-

vantage. Particularly, AAMcon can provide the most perfor-

mance among them. This thanks to that AAMcon can adap-

tively adjust the mapping for switch-to-controller and the

number of controller as presented as Section 3.2. Therefore,

the load can be evenly assigned to controllers.

Fig. 9 Gini coefficient of controllers

4.2.6 Community modularity affects the delay

Well known, higher Q value denotes higher significance of

the community structure as presented as 3.1. To a network

with same number of edges and vertices, the average de-

lay decreases when the Q value increases. This paper also

uses Q value to observe how network topology with different

community structure affects the delay between the switch and

controller.

From Fig. 10, as expected, the average delay decreases

when the value of Q increases, which indicates that the

AAMcon scheme can show better performance to the network

with more significant community structure. On the other

hand, it also gives us one method to improve the performance

of SDN controller by adding or deleting edges to improve the

Q value when an SDN network is built. Besides, the delay is

sensitive to the change of Q value, and is reduced from 4.26

to 3.87 (with 10%) when the Q value increased from 0.904 to

0.92 (with 1.75%).

Fig. 10 Average delay with the value of Q
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5 Discussion

1) Controller migration/scaling

We have addressed some key challenges of AAMcon. The

switch migration between controllers is closely related to this

study. This is especially sensitive for in-network solutions

since the protocol packets shares the same links with traffic

load.

Migrating a switch from one controller to another in a

naive fashion can cause disruption in ongoing flows, which

can severely affect the various running applications. Thus,

certain configurations should be made in other switch nodes

before moving a controller elsewhere. In this case OpenFlow

packet-in is send to the right controller. This can maintain the

flow continuity while migrating a controller.

Dixit et al. [10] have introduced a novel 4-phase switch mi-

gration protocol to enable the load shifting. The state consis-

tency during the switch handover is guaranteed by a protocol

similar to a 2-phase commitment. Such a modified protocol

can be used in our study and the protocol for inter-controller

communication is outside the scope for this paper.

2) The average distance between switches and controllers

We have conducted the analysis for the average distance

between switches and controllers (Lavg) where the number

of controllers required for the network (Local_C) is assumed

to be known. If Local_C is not known, then this becomes a

multi-objective optimization problem as follows:

Min {Lavg = 1
N

∑N
i=1 d(vi, c j), Local_C},

s.t.

(i)
∑N

i=1{vi, c j} > 0,∀ j ∈ w, each controller connects to at

least one switch node.

(ii)
∑N

i=1{vi, c j} = 1,∀i ∈ N, each switch can only connect

one controller.

(iii) Max{d(vi, c j)} � Dreq, Qos guarantee.

(iv) Max{load_controller(c j)}< θ, ∀ j ∈ w, guaranteeing

each controller is not overloaded.

For multi-objective problems, we cannot identify a single

solution that simultaneously optimizes each objective. A ten-

tative solution is called Pareto optimal set if it cannot be elim-

inated from consideration by replacing it with another solu-

tion which improves an objective without worsening another

one.In practice, we can select one appropriate solution from

this set according to some principles.

3) The topics explored in the future

First, the community characteristic in a real network is

common, whether there is a relationship between the number

of controllers and the Q value. If this relation exists, then we

can reduce the number of controllers by adjusting the value

of Q.

Second, the information-centric networking (ICN) is an-

other future network architecture, where under the combi-

nation of SDN and ICN, multi-source transmission at the

network-layer can improve transmission efficiency [42].

Third, we have conducted the analysis for AMcon. On the

other hand, AAcon can be considered as a variant of TCP

Slow-Start algorithm for SDN. Therefore, we can also con-

duct the theoretical analysis for AAcon [43].

6 Conclusion

With distributed SDN controllers in data center networks,

this study proposed AAMcon to solve the following prob-

lems: very slow reaction time between the switch and con-

troller, the difficulty of the control plane in adapting to traf-

fic load variations for real networks, and the difficulty of

selecting controllers. The experiments have confirmed the

following conclusions: 1) with the number of controllers,

the provided controllers can greatly follow the demand, and

more controllers can reduce the delay between the switch

and controller. 2) On the other hand, using more than the

optimal number of controllers can be inefficient and costly

because the delay improvement is negligible. 3) With fail-

ure tolerance, AAMcon shows good robustness. 4) With the

delay, AAMcon scheme can show better performance to the

network with more significant community structure. In fact,

there is an inverse relationship between the Q value and av-

erage distance, i.e., the average delay decreases when the Q

value increases.
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Appendix

1) Community theory and modularity Q

Within a network with m edges and n vertices, we consider

a partition of a network into u communities. Let us define a

u × u symmetric matrix E whose element ei j is the fraction

of all edges in the network that link vertices in community

i to vertices in community j. Modularity Q is defined in the
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following way [37],

Q =
∑

i

(eii − a2
i ) = TrE − ‖E2‖. (4)

The trace of this matrix TrE =
∑

i eii is the fraction of edges

in the network that connect vertices in the same community,

while the row (or column) sums ai =
∑

j eii give the frac-

tion of edges that connect to vertices in community i. ‖E2‖
indicates the sum of the elements of the matrix E2. The Q

measures the degree of correlation between the probability of

having an edge joining two sites and the fact that the sites be-

long to the same community. Higher Q value denotes higher

significance of the community structure. Q = 1, which is

the maximum, indicate a strong community structure; con-

versely, Q = 0 means a random graph with no community

structure. In practice, Q value is greater than about 0.3 ap-

pear to indicate significant community structure. In weighted

complex network as shown as Fig. 1,the link weight also af-

fects the Q value.

This paper adopted betweenness to measure the importance

of node in a community. As with the reference [37], the node

betweenness is defined as follows:

Betw(v) =
∑

s�v�t∈V

σst(v)
σst
, (5)

where σst is the total number of shortest paths from node s

to node t, and σst(v) is the number of those paths that pass

through node v.

2) Detecting community structure in networks

On a network with m edges and n vertices, Fast algorithm is

the following:

Starting with a state in which each vertex is the sole mem-

ber of one of n communities, we repeatedly join communi-

ties together in pairs, choosing at each step the join that re-

sults in the greatest increase (or smallest decrease) in Q. The

progress of the algorithm can be represented as a “dendro-

gram,” a tree that shows the order of the joins. Cuts through

this dendrogram at different levels give divisions of the net-

work into larger or smaller numbers of communities and we

can select the best cut by looking for the maximal value of Q.

Since the joining of a pair of communities between which

there are no edges at all can never result in an increase of

Q, only those pairs between which there are edges need to

be considered, of which there will at any time be at most m,

where m is the number of edges in the graph. The change in

Q upon joining two communities is given by ΔQ = ei j + e ji −
2aia j = 2(ei j − aia j), which can clearly be calculated in con-

stant time. Following a join, some of the matrix elements ei j

must be updated by adding together the rows and columns

corresponding to the joined communities, which takes worst

case time O(n). Thus each step of the algorithm takes worst-

case time O(m + n). There are a maximum of n − 1 join op-

erations necessary to construct the complete dendrogram and

hence the entire algorithm runs in time O((m+ n)n), or O(n2)

on a sparse graph. The algorithm has added advantage of cal-

culating the Q value as it goes along, making it especially

simple to find the optimal community structure.
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