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Abstract The task of next POI recommendations has been

studied extensively in recent years. However, developing a

unified recommendation framework to incorporate multiple

factors associated with both POIs and users remains challeng-

ing, because of the heterogeneity nature of these information.

Further, effective mechanisms to smoothly handle cold-start

cases are also a difficult topic. Inspired by the recent success

of neural networks in many areas, in this paper, we propose

a simple yet effective neural network framework, named

NEXT, for next POI recommendations. NEXT is a unified

framework to learn the hidden intent regarding user’s next

move, by incorporating different factors in a unified manner.

Specifically, in NEXT, we incorporate meta-data information,

e.g., user friendship and textual descriptions of POIs, and two

kinds of temporal contexts (i.e., time interval and visit time).

To leverage sequential relations and geographical influence,

we propose to adopt DeepWalk, a network representation

learning technique, to encode such knowledge. We evaluate

the effectiveness of NEXT against other state-of-the-art al-

ternatives and neural networks based solutions. Experimental

results on three publicly available datasets demonstrate that

NEXT significantly outperforms baselines in real-time next

POI recommendations. Further experiments show inherent
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ability of NEXT in handling cold-start.
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1 Introduction

The huge volume of check-in data from various location-

based social networks (LBSNs) enables studies on human

mobility behavior in a large scale. Next POI recommenda-

tions is the task to predict the next POI a user will visit at

a specific time point given her historical check-in data. This

task has been studied extensively in recent years.

Next POI recommendations is different from typical rec-

ommendation tasks (e.g., movies, songs, books) because a

wide range of contextual factors are related to the user spatial

behaviors. These auxiliary factors include the temporal con-

text, sequential relations, geographical influence, and auxil-

iary meta-data information (such as textual description, user

friendship). However, these factors are heterogeneous in na-

ture. While some relevant aspects are continuous values (e.g.,

geographical distance, the time interval), others are in the

form of discrete values (e.g., friendship, textual words, day

of the week). Harnessing useful signals from all these het-

erogeneous factors to predict user’s next move is not an easy

task. Existing solutions based on matrix factorization and em-

bedding learning techniques have delivered encouraging per-
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formances. These solutions project users and POIs and the

associated context factors into a shared hidden space with

dense vector representations (i.e., embeddings). The prefer-

ence score is then calculated directly based on these vectors

through the inner product operation.

However, shallow factor/embedding learning is too limited
to express the complex knowledge underlying user spatial be-
haviors with multiple context factors [1]. In existing methods,
different context factors are often modeled separately. Then
a simple combination is applied to derive the final recom-
mendation score [2–5]. That is, we need to devise an individ-
ual model for each context factor. This modeling methodol-
ogy is complicated and the resultant solution would be infe-
rior, since the different factors carry varying degrees of useful
knowledge and their interactions could be much more com-
plex. Some other methods incorporated multiple context fac-
tors as additional constraints to guide the learning process
[6–8]. For example, check-ins made at a specific time period

are grouped together for dynamic feature learning. However,
these constraints may not always be useful to match user-
POI interactions. A single factor/embedding learning could
inevitably incur information loss through a joint optimization
of both preserving the constraints and matching user-POI in-

teractions. One plausible solution is to enlarge the dimension
number. However, given the sparsity nature of user-POI in-
teraction data, it would easily result in data overfitting. The
neural network (NN) with dense vector representation based

techniques provide a new way of modeling these factors in a

unified manner. This offers two benefits:

• By adding nonlinear transformations on top of the em-

beddings of users, POIs and their associated factors,

we can separate the embedding learning and high-level

spatial intent learning to better understand user spa-

tial behavior, leading to a better recommendation accu-

racy. Specifically, we encode the semantic relatedness

or constraints among POIs/users into the correspond-

ing embeddings. For example, users at Golden Gate

Overlook are likely to visit Baker Beach in San Fran-

cisco, and vice versa. Therefore, Golden Gate Overlook

and Baker Beach are projected closer in the embed-

ding space. Without the need to match user-POI interac-

tions, the embedding learning would capture the latent

features for users, POIs and the associated constraints

to its fullness. Also, both new users and POIs may be

covered partially by the associated auxiliary meta-data

(e.g., textual description, friendship). With dense vector

representations, we can easily estimate the spatial intent

from the associated meta-data for these cold-start cases.

• Since not all constraint information or latent features

are useful for all user-POI interactions, the nonlinear

transformation operation is adopted to learn how to ex-

tract high-level spatial intent for next POI recommen-

dations. We can also devise factor-based nonlinear ex-

tractions to accommodate some specific context fac-

tors that are strongly relevant to spatial intent extrac-

tion. Through a unified framework with neural treat-

ment and dense representations, the complex interac-

tions among the context factors, users and POIs can be

learnt smoothly without handcrafted modelling for each

factor alone.

Although the outlook is encouraging, the challenge is how

to jointly utilize these context factors effectively in NN. In

this paper, we take a special interest on developing a uni-

fied neural network based framework to address the above

challenge. We propose a simple yet effective neural network

framework for next POI recommendation task, named NEXT.

With a single layer of feed-forward neural network super-

charged by ReLU (i.e., rectified linear unit), NEXT is able to

incorporate temporal context, sequential relations, geograph-

ical influence and auxiliary meta-data information, in an in-

tegrated architecture.

Specifically, NEXT utilizes one-layer of nonlinearity to
learn high-level spatial intent for a user from both the user
and her latest POI visit information. In other words, NEXT
does not calculate an inner product directly on the embed-
dings of users and POIs in a common hidden space as many
existing embedding learning approaches did [3,5,9]. Instead,
NEXT utilizes two parallel non-linear transformations to ex-
tract the user-based and POI-based spatial intents separately.
Empowered by this separation and nonlinearity extraction,
we can easily incorporate temporal context, auxiliary meta-
data information into the user-based and POI-based intent

learning process, in an integrated manner. To further lever-
age the sequential relations and geographical influence in the

context of POI recommendation, we devise a strategy to pre-

train POI embeddings. The resultant POI embeddings could

encode both the sequential relations and geographical influ-

ence.

Based on three real-world datasets, the proposed NEXT

achieves significantly better recommendation accuracy than

existing state-of-the-art approaches and neural network based

alternatives. In summary, the main contributions of this paper

are as follows:

• We present a novel neural network based solution for

the task of next POI recommendations. The proposed
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NEXT is a unified framework such that temporal con-

text, sequential relations, geographical influence and

auxiliary meta-data information can be exploited natu-

rally as a single model. By injecting auxiliary meta-data

information into the intent learning process, we endow

NEXT with the inherent ability to handle cold-start rec-

ommendations.

• We adopt the network representation learning technique

to pre-train POI embeddings. This pre-training strategy

enables us to retain the sequential relations and geo-

graphical influence for better model learning. This is

a flexible strategy such that other constraints besides

these two context factors can also be captured.

The rest of this paper is organized as follows. We start with

a literature review about POI recommendation and neural net-

works in Section 2. In Section 3, we present the proposed

framework in detail. In Section 4, we conduct experimental

evaluation of the proposed NEXT framework against state-

of-the-art alternatives, followed by detailed analysis about

NEXT. We conclude this paper in Section 5.

2 Related work

Our work is related to two lines of literatures, POI recommen-

dation and neural networks. We review the recent advances in

both areas.

2.1 POI recommendation

The conventional collaborative filtering (CF) techniques have

been widely studied for POI recommendation [4, 6, 8]. Ye et

al. proposed a friendship-based collaborative filtering (FCF)

approach for POI recommendation based on common visited

POIs of friends [6]. Temporal context information and geo-

graphical constraints were then proven to be effective for POI

recommendation [4, 8, 10, 11].

Recently, recommendation models based on matrix factor-

ization and embedding learning have been intensively stud-

ied. Cheng et al. proposed a multi-center Gaussian model to

capture user geographical influence and combined it with ma-

trix factorization model to recommend POIs [12]. In [2], a

tensor-based model called FPMC-LR is proposed by consid-

ering first-order Markov chain for POI transitions and dis-

tance constraints. Xiong et al. proposed a tensor factoriza-

tion based framework which takes temporal context into ac-

count to derive the latent features in a dynamic manner [7].

Specifically, they take the user-POI visit records within a pe-

riod of time to construct a particular tensor. The latent fac-

tors of users, items and monthes are then learnt based on

the corresponding tensors through a Gibbs sampling proce-

dure. However, the temporal context modeled in their work

is too coarse (i.e., one month period). Li et al. proposed a

ranking based factorization method for POI recommenda-

tion which performs factorization by fitting user’s preference

over POIs, where the preference was measured in terms of

POI visit frequency [5]. Feng et al. integrated sequential in-

formation, individual preference and geographical influence

into a personalized ranking metric embedding model to im-

prove recommendation performance [3]. Liu et al. proposed

a general latent factor framework to learn personalized pref-

erences for POI recommendation [13, 14]. It incorporates

both the user mobility and geographical influence into a uni-

fied factor model. Gao et al. introduced matrix factorization

based POI recommendation algorithm with temporal influ-

ence based on two temporal properties: non-uniforms and

consecutiveness [15]. He et al. proposed a tensor-based latent

model which incorporates the date information, geographical

distance and personal POI transition patterns into a unified

framework [16]. Zhao et al. developed a ranking-based pair-

wise tensor factorization framework, named STELLAR [17].

STELLAR incorporates fine-grained temporal contexts (i.e.,

month, weekday/weekend and hour) and brings significant

improvement. These works tried to fit the model by max-

imizing the interaction between users and POIs, where the

recommendation decision is made based on the last POI visit

alone. Recently, Xie et al. proposed an embedding learning

approach that utilizes a bipartite graph to model a pair of

context factors in the context of POI recommendation, named

GE model [9]. Four pairs of context factors: POI-POI, POI-

Region, POI-Time, POI-Word were modeled in a unified op-

timization framework. Experimental results showed that GE

significantly outperforms alternative algorithms for next POI

recommendations.

2.2 Neural networks

Neural networks techniques have experienced great success

in natural language processing area such as language mod-

eling [18, 19], machine translation [20, 21], question answer-

ing [22], summarization [23], etc. Conventional neural net-

works such as artificial neural network (ANN) [24] and mul-

tilayer perceptron (MLP) architectures [24–26] are among

the first invented networks. Although relatively simple, it has

been proven that a MLP with a single hidden layer containing

a sufficient number of nonlinear units can approximate any
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continuous function on a compact input domain to arbitrary

precision [27]. Recently, several works have been proposed

for various recommendation tasks by utilizing deep neural

network models [1, 28–31]. Covington et al. introduced a

deep MLP network for video recommendation in YouTube

platform [28]. In their approach, the heterogenous features

(e.g., video categories, user search tokens, video descrip-

tions, users’ geographic regions) are represented as individual

embeddings. They then combine the concatenation of all re-

lated embeddings and hand-crafted user based demographic

features as the input to a deep MLP network for candidate

ranking. Kim et al. integrated convolutional neural network

(CNN) into probabilistic matrix factorization for item rec-

ommendation [29]. They utilized an one-layer CNN model

to learn the item feature vector based on the associated tex-

tual description. Similarly, Zheng et al. [31] proposed a joint

neural network model that utilizes CNN model to learn the

user and item feature vectors respectively. Then, they intro-

duced factorization machine (FM) [32] as the second layer

to derive the final recommendation score. Recently, He et

al. developed a deep neural network based matrix factoriza-

tion approach for collaborative filtering with implicit feed-

back data [1]. Based on the embeddings of items and users,

they applied multiple layers of MLP to extract the high-level

hidden features by maximizing user-item interactions.

Among the various neural network structures, recurrent

neural networks (RNN) have been widely used to model se-

quential data of arbitrary length with its recurrent calculation

of hidden representation [18,33]. For example, RNN has been

successfully adopted in the tasks like poem generation [34]

and sequential click prediction [35]. However, RNN suffers

from the exploding or vanishing gradients problem [36]. That

is the distant dependencies within a longer sequence could

not be learnt appropriately. Two RNN variants: long short-

term memory (LSTM) and gated recurrent unit (GRU), were

proposed to tackle this problem to enable long-term depen-

dency learning. LSTM utilizes three gates and a memory cell

to control the information flow [36]. It forgets the irrelevant

signals by turning off the corresponding three gates and up-

dating memory content. LSTM has been widely used in dif-

ferent tasks involving sequence modeling [37, 38]. GRU is a

recent variant of RNN with two gates and no memory cell

[20]. The two gates control the expose of the previous hidden

output and the update of the new hidden output respectively.

GRU has been proven to capture the long-term dependencies

just like LSTM [39]. There is very limited studies on using

neural network for the task of next POI recommendations.

Liu et al. proposed a RNN-based neural network solution by

modeling user’s historical POI visits in a sequential manner

[30], named STRNN. STRNN adopts time-specific transition

matrices and distance-specific transition matrices in a recur-

rent manner under the framework of RNN model. Recently,

Manotumruksa et al. proposed a deep recurrent collaborative

filtering framework for POI recommendation [40]. Similarly,

Feng et al. proposed an attentional recurrent network for mo-

bility prediction from lengthy and sparse trajectories [41].

The proposed NEXT here differs significantly from STRNN

in several aspects. First, NEXT is a single-layer feed-forward

neural network based model where only the latest POI visit

is taken as input. On the contrary, STRNN (and also other

RNN variants) has to take all historical POI visits as input

and processes in a sequential (or recurrent) manner, which in-

creases the complexity of the model. Second, while STRNN

only incorporates temporal context and geographical influ-

ence for recommendation, NEXT is able to incorporate multi-

ple context factors (i.e., temporal context, geographical influ-

ence, auxiliary meta-data) in a unified framework. Third, in-

stead of applying distance-specific latent feature extraction in

STRNN, NEXT encodes sequential relations (transition be-

haviors and geographical information) within the pre-trained

POI embeddings by adopting DeepWalk technique [42]. Our

experimental results show that NEXT delivers superior per-

formance than existing matrix factorization and embedding

learning based models as well as the neural network based

techniques.

3 Our approach

In this section, we first formally define the research problem

and then present the proposed neural network framework for

next POI recommendation task, named NEXT. We first in-

troduce the basic neural architecture of NEXT to extract the

hidden intent regarding the user’s next move. We then de-

scribe the mechanism to accommodate NEXT with the tem-

poral context modeling. Next, a pre-training strategy based

on the network representation technique (i.e., DeepWalk) is

introduced to integrate the sequential relations and geograph-

ical influence. We also discuss the traits of NEXT to interpret

the hidden intent features and to handle the cold-start issue.

3.1 Next POI recommendations

We first define the problem of next POI recommendations.

Given a user with a sequence of historical POI visits Lu
i =

{qu
t1 , q

u
t2 , . . . , q

u
ti−1
} up to time ti−1, the task is to calculate a

score for each POI based on Lu
i and a time point ti. Higher
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score indicates higher probability that the user will like to

visit that POI at time ti. The POI with the highest score will

then be recommended.

In most LBSNs, in addition to the sequence of histori-

cal POI visits, users and POIs are associated with auxiliary

meta-data information. For example, a user could build con-

nections with other users (e.g., friends) to share their activ-

ities and opinions. A POI could contain textual description

or category labels. Here, we denote the auxiliary meta-data

associated with user u and POI q asAu andAq, respectively.

3.2 Neural architecture

Basic model Different from existing works that directly take

the shallow embeddings of users and POIs for score calcula-

tion (i.e., an inner product), in NEXT, we introduce an ad-

ditional feed-forward neural network layer to model user’s

spatial intent, on top of the embedding.

Let uu ∈ Rd be the embedding of user u, q� ∈ Rd be the

embedding of a candidate POI q� to be recommended, and

qu
ti−1
∈ Rd be the embedding of POI qu

ti−1
, the last visited POI

by user u at time ti−1.1) We model the hidden intent of next

visit by a nonlinear activation function, rectified linear unit:

ReLU(x) = max(x, 0).

hq
ti = ReLU(W1qu

ti−1
+ b1), (1)

hu = ReLU(W2uu + b2), (2)

c� = ReLU(W3q� + b3). (3)

In the above modeling, the hidden intent vector hq
ti is expected

to capture semantics regarding user’s next move at time ti
based on her last POI visit. Intent vector hu captures user spe-

cific knowledge on spatial preference of a particular user. c� is

the intent representation of candidate POI �. W1,W3 ∈ Rd×d

and W2 ∈ Rd×d are transition matrices from POI embeddings

and user embeddings respectively, to the hidden intent space.

b1, b2 and b3 are all d-dimensional bias vectors.

With the hidden intent vectors hq
ti , hu, and c�, the recom-

mendation score yu,ti,� of POI q� for user u at time ti is com-

puted as follows:

yu,ti,� = (hu + hq
ti )

Tc�. (4)

In simple words, in NEXT, instead of directly using em-

bedding vectors of users and POIs, a feed-forward network

layer is used to transform the embeddings to intent vectors.

Recommendations are made based on the intent vectors. The

transition matrices and bias vectors make it possible to iden-

tify the most useful information from the embeddings. By

separating the intent vectors and embedding vectors, NEXT

framework also makes it simple and straightforward to be ex-

tended by incorporating information from different context

factors. Figure 1 illustrates the basic model of NEXT.

Fig. 1 Basic model of NEXT, where uu, q� and qti−1 are the embedding
vectors of the user, candidate poi, and the last visited POI

Incorporating meta-data information Since the associated

meta-data information could offer complementary knowledge

about users and POIs respectively, it is expected to enhance

the understanding of user movement by further considering

these auxiliary semantics. For example, a user could hold a

similar trajectory and preference over POIs with her friends.

Also, a POI could contain textual descriptions or user re-

views. These textual information could enable us to better

learn the user intent from the last visited POI. Hence, we fur-

ther enrich NEXT framework by taking these auxiliary meta-

data information into the intent calculations. We assume that

the meta-data information associated with users and POIs are

discrete data. That is, Au and Aq are the sets of meta-data

items associated with user u and POI q respectively. First, we

calculate the embedding mq to represent auxiliary meta-data

information ofAq as follows:

mq =
1
|Aq|

∑

m∈Aq

mm, (5)

where mm is the embedding of item m in meta-data set Aq.

When a POI’s textual description is available, Aq works as

the set of the words mentioned in the description. In this case,

mm refers to the embedding of word m. Based on mq from

Eq. (5), we rewrite Eqs. (1) and (3) as follows:

hq
ti = ReLU

(
W1

(
αqu

ti−1
+ (1 − α)mqu

ti−1

)
+ b1

)
, (6)

c� = ReLU
(
W3

(
αq� + (1 − α)mq�

)
+ b3

)
, (7)

where α works as a tuning parameter, controlling the impor-

tance of meta-data information. Similar to Eqs. (5) and (6),

1) For model simplicity, we set intent vectors, POI embeddings, user embeddings, word embeddings to be of the same dimension
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we rewrite Eq. (2) with auxiliary meta-data setAu as follows:

mu =
1
|Au|

∑

m∈Au

mm, (8)

hu = ReLU
(
W2 (βuu + (1 − β)mu) + b2

)
, (9)

where mm is the embedding of item m in the meta-data Au,

and β is a tuning parameter like α in Eq. (6). WhenAu is the

set of friends of user u, mm refers to the embedding of friend

m. In this case, mu and uu are two distinct embedding vectors.

Both Eqs. (5) and (8) are taking the average of the embedding

vectors and this is a standard approach in neural networks.

Note that the embeddings of users (i.e., uu) and the em-

beddings of POIs (i.e., qq) are not fixed to be within the same

hidden space. In this sense, given the types of meta-data in-

formation are homogenous forAu andAq, NEXT is flexible

to associate two sets of embeddings for the meta-data infor-

mation. This is reasonable because these two kinds of meta-

data may convey very different semantics. For example, both

users and POIs can be associated with textual labels. While

the users use labels to indicate their tastes and preferred lo-

cations, the labels of POIs may cover the related services in-

stead.

3.3 Incorporating temporal context

Temporal context has been widely used in existing POI rec-

ommendation studies and proven to be effective. Here, we ac-

commodate NEXT with temporal context by influencing the

computation of the hidden intent.

There are two kinds of temporal context available: (i) the

time interval between two successive POI visits (i.e., ti− ti−1),

and (ii) the particular time point of next POI visit (i.e., ti).

For example, a POI visit happened 12 hours ago could con-

tain less guidance about the user’s current spatial intent. Sim-

ilarly, users could express different spatial intents at different

time slots, e.g., lunch hours, or at different days of a week,

e.g., weekend. That is, temporal context for next POI recom-

mendations involves both the continuous and discrete infor-

mation. Here, we design a mechanism to incorporate several

kinds of temporal context into the POI based intent calcula-

tion (Eq. (6)).

The time interval from the last POI visit is critical to de-

cide the user’s next move. It is intuitive that the historical POI

visits with different time intervals could provide with varying

spatial intents. And the interplay between the intent and time

interval could be complicated and subtle. Here, we replace

W1 in Eq. (1) with a time interval t dependent transition ma-

trix Wπ(t) as follows:

Wπ(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

π − t
π

W0 +
t
π

Wπ, for t < π,

Wπ, for t � π,
(10)

where W0,Wπ ∈ Rd×d are two transition matrices, π is an in-

terval threshold. Equation (10) adopts a linear interpolation

between W0 and Wπ to derive the interval dependent transi-

tion matrix. When time interval t is close to 0, W0 is mainly

in charge of intent calculation, otherwise, Wπ leads the com-

putation when t approaches π. π works as a window, and Wπ

is only used when the time interval is larger than π.

As to the visit time information, there exist several aspects

in discrete forms. We can split a day into 24 time slots, each

of which spans one hour (e.g., 17:00 - 18:00). Each time slot

is associated with a specific bias vector b. Assigning each

time slot with a specific bias vector is reasonable, because

users generally express different POI preferences in different

time slots [8]. For example, users at the time slots of 20:00

- 22:00 prefer entertainment. The bias vector for each time

slot is expected to store such preference information and cor-

rect the mistake incurred by considering the last visited POI

alone. For example, a user goes from office to a restaurant.

If this transition happens in the midnoon, she probably will

come back to the office again. However, it is likely for her

to go home when this transition takes place during the time

period 18:00 - 20:00. Similarly, we can introduce a specific

bias vector for each day of the week, or each month. Let At

be the aspects associated with visit time t, we calculate the

bias vector bt for t as follows:

bt =
∑

a∈At

ba, (11)

where ba is the bias vector associated with aspect a. Finally,

NEXT calculates the hidden intent hq
ti as follows:

hq
ti = ReLU

(
Wπ(ti−ti−1)

(
αqu

ti−1
+ (1−α)mqu

ti−1

)
+ bti

)
. (12)

Here, the interval dependent transition in Eq. (10) is similar

to the work in STRNN [30]. However, STRNN takes all his-

torical POIs within the interval window for consideration in a

recurrent manner, which is computational expensive. Further,

STRNN does not consider time-specific bias vector bti (i.e.,

discrete aspects).

3.4 POI embeddings pre-training

The sequential relations refer to the transition probability that

a user visits POI qb after visiting POI qa (i.e., qa → qb).
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Hence, the transition probabilities convey the general transi-

tion patterns, (e.g., from an airport to a hotel). Also, since

users like to visit the nearby POIs and their activities are of-

ten constrained within a few regions, the visiting behaviors

are affected a lot by geographical influence. Sequential rela-

tions and geographical influence are validated to be effective

for the POI recommendation in many studies [3–5, 43, 44].

In NEXT, we propose a POI embedding pre-training strat-

egy to encode the sequential relations and geographical influ-

ence among POIs. Because the non-convexity of the objective

function in NEXT, there does not exist a global optimal so-

lution. In such case, current optimization strategy is to find a

local optimum. It is widely accepted that a good embedding

initialization scheme could result in a faster convergence and

superior performance of neural network models [1]. In this

sense, POI embedding pre-training can also benefit the model

learning.

We adopt DeepWalk [42], a network representation learn-

ing technique, to learn the embedding of each POI. DeepWalk

builds short sequences of nodes based on random walk over

the network structure. Then a neural language model Skip-

Gram [19] is adopted to learn the embeddings of the nodes

by maximizing the probability of seeing a node’s neighbor in

the sequences.

In order to retain these two kinds of information in the la-

tent embedding space, we build a network structure by taking

each POI as a distinct node in the network. Specifically, we

create the random walk sequences over POIs by using a mix-

ture of both the POI transition patterns and the geographical

influence. The random walk transition probability from POI

qi to POI q j over the network is calculated as follows:

p(q j|qi) = ρ
κ(qi, q j)∑
k κ(qi, qk)

+ (1 − ρ) fqi ,qj∑
k fqi ,qk

, (13)

κ(qi, q j) = 1/(1 + e5
d(qi ,q j )−d̄

σ(d) ), (14)

where d(qi, q j) denotes the Euclidean distance between POIs

qi and q j by using their coordinates, d̄ and σ(d) are the mean

and standard deviation of d(qi, q j) respectively, fqi ,qj is the

transition frequency from qi to q j in the training dataset.

In Eq. (13), the first term in the right part captures the in-

herent geographical influence between POIs, while the sec-

ond term captures the transition behaviors of massive users.

Here, the transition behaviors of massive users refer to the

frequent POI transition pairs that have been made by a sig-

nificant number of users. For example, users at Golden Gate

Overlook are likely to visit Baker Beach in San Francisco,

and vice versa. ρ is used here to balance the two compo-

nents. For each POI, we generate τ random walks of length

r according to Eq. (13) as in [42]. Then SkipGram language

model with hierarchical softmax is applied over these random

walk sequences. A POI’s embedding is learnt to maximize the

probability of seeing its neighbors in the sequences. Based on

Eq. (13), the POIs that are close in geographical distance and

likely to be visited successively by users will be closer in

the embedding space than two random POIs. After finishing

the embedding learning by SkipGram, we use the pre-trained

POI embeddings as the initialization in model training. In the

evaluation part (Section 4), we find that this pre-training strat-

egy delivers better recommendation accuracy.

Furthermore, we use the pre-trained POI embeddings to

initialize user embedding uu. This is reasonable since uu is

expected to carry the personalized preference for user u. And

this preference is strongly relevant to her historical POI visits.

We first count the frequency of the POI a user u has visited

in the training dataset, and then use the normalized frequency

as the weight to initialize user embedding:

uu =
1
|Lu|
∑

j

f u
j · q j, (15)

where |Lu| is the number of POI visits of user u in the train-

ing set, f u
j is the frequency of POI q j being visited by user

u. Although we observe trivial performance improvement by

using this initialization strategy, we do obtain the faster con-

vergence for the model training.

3.5 Model discussion

Cold-start The proposed NEXT can inherently handle POI

recommendation for both cold-start users and cold-start POIs.

In Eq. (4), the final intent calculation is the sum of hq
ti and hu.

This additive mechanism has a potential merit for cold-start

problems. Given a new user with very few historical visits

(i.e., user embedding uu is not available), we can directly rec-

ommend the POIs based on Eq. (4) by using hq
ti alone. Fur-

ther, with Eq. (9), we can calculate hu by using her meta-data

information Au (i.e., by setting β = 0). This is particularly

helpful for freshers that have no historical visit records. We

will investigate the effectiveness of NEXT for cold-start users

in Section 4.4. For a cold-start POI q that has not been visited

by any user. It is possible to calculate hq
ti in Eq. (6) based on

its nearby POIs and meta-data informationAq.

Overview Figure 2 summarizes the overall network ar-

chitecture of NEXT. In comparison with the basic model

illustrated in Fig. 1, we jointly utilize the user/POI and

their associated meta-data information for hidden spatial in-

tent learning respectively, in a linear interpolation manner
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(Eqs. (5)–(9)). The temporal context information is then en-

coded within a nonlinear calculation of the spatial intent

learning (Eqs. (10)–(12)). The sequential relations and geo-

graphical influence are retained in the pre-training strategy

based on a network representation learning technique (i.e.,

DeepWalk [42]). Further possible constraints among POIs

can be seamlessly integrated into NEXT by using this pre-

training process. For example, other existing network repre-

sentation learning techniques (e.g., TADW [45] and GENE

[46]) can be easily adopted in NEXT to encode the POI cate-

gorical information or text-based relevance. That is, the pro-

posed NEXT provides a unified framework to incorporate

various heterogeneous information, i.e., users, POIs, the aux-

iliary meta-data information and contextual factors, under the

neural network paradigm.

3.6 Training

The parameters of our model are: Θ = {W∗,M,B,U,Q,
b2, b3}, where W∗ refers to all transition matrices W0, W2,

W3, Wπ; and M contains all item embeddings for the asso-

ciated meta-data of both users and POIs; B contains all bias

vectors for the discrete aspects associated with the visit times.

U contains all user embeddings, and Q contains all POI em-

beddings.

The model training aims to optimize above parameters

such that each POI visit in the sequence of a user’s POI visits

in the training set can be predicted successfully. We adopt a

softmax function to calculate the predicted POI probability

vector pu
ti for user u at time ti:

pu
ti (k) =

eyu,ti ,k

∑
j eyu,ti , j

. (16)

Then, we use the cross-entropy error between the ground

truth POI distribution (i.e., in a one-hot form) and predicted

POI distribution by Eq. (16) as the cost objective:

J =
1
U

U∑

u

∑

t∈Lu

Q∑

k

q̂u
t (k) · log pu

t (k) + λ‖Θ‖2, (17)

where Lu is the set of historical POI visits in the training set

for user u, Q is the number of all POIs under consideration,

q̂u
t is the ground truth POI distribution at time t with 1-of-Q

coding scheme, λ controls the importance of the regulariza-

tion term, and U is the number of users under consideration.

To minimize the objective, we use stochastic gradient de-

scent (SGD) and back propagation to update the parame-

ters. Although POI embeddings Q is pre-trained based on

the sequential relations and geographical influence, the em-

beddings are fine tuned based on the cost objective. Several

tunable parameters are used to control the impact of the corre-

sponding contextual factors (e.g., α, β, π, ρ). Here, we choose

to optimize these parameters in an incremental manner based

on the validation set, similar to incremental testing. For ex-

ample, starting with the basic model illustrated in Fig. 1

(Eqs. (1)–(4)), we add the auxiliary meta-data associated

with users and choose the optimal α value. After α is fixed,

we add the auxiliary meta-data associated with POIs and

choose the optimal β value. Then β is fixed. This incremental

Fig. 2 Overall architecture of NEXT, mu, m� and mqti−1 are the embedding vectors of the meta-data associated with the user, candidate POI
and the last visited POI respectively
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optimization process continues until all the parameters are

optimized.

4 Experiments

In this section, we first conduct experiments to evaluate the

proposed NEXT against the state-of-the-art alternatives over

three real-world datasets in Section 4.3. Then, we evaluate

the performance of NEXT in the scenario of recommenda-

tion for cold-start users in Section 4.4. A detailed analysis

about NEXT is provided in Section 4.5. The experimental re-

sults show that our proposed framework delivers promising

performance for next POI recommendations, including cold-

start users. At last, we discuss the architecture settings with a

deeper network structure for NEXT in Section 4.6.

4.1 Datasets

Foursquare Singapore (SIN) dataset is a collection of

194, 108 check-ins made within Singapore from 2, 321 users

at 5, 596 POIs between August 2010 and July 2011 in

Foursquare [8]. This dataset has previously been used in other

studies [3, 5, 8].

Gowalla dataset contains 736, 148 check-ins made within

California and Nevada between February 2009 and October

2010 in Gowalla [43]. The Gowalla dataset has previously

been used in [3, 5, 8, 30].

CA dataset is a collection of 483, 813 check-ins made in

Foursquare by 4, 163 users living in California. Each distinct

POI is provided with a text description indicating its content.

There are total 50 distinct words in all descriptions. More-

over, each user is connected to a number of other users (i.e.,

friendship). This dataset has previously been used in [11].

Note that, this is the only dataset that contains auxiliary meta-

data for both users and POIs, and the date information (i.e.,

day of the week) for each POI check-in record.

In all three datasets, each check-in is associated with a

timestamp indicating when the user made this check-in and

a latitude-longitude coordinate pair indicating its physical lo-

cation. Following the work of PRME-G in [3], we remove

the less frequent users and POIs from each dataset, such that

each user has at least 10 check-ins, and each POI has been

visited by at least 10 users. The data statistics on these three

datasets after preprocessing is reported in Table 1. In CA

dataset, there are on average 2.67 descriptive words for a POI

and 4.36 friends for a user. We also calculate the distance be-

tween two random POIs for each dataset based on the Haver-

sine formula2). The average distance for SIN, Gowalla and

CA datasets is 6.9KM, 306.5KM and 795.5KM respectively.

We can see that the distance between two POIs is positively

correlated with the size of the area covered by the dataset.

For performance evaluation, we use the last 20% POI visits

of each user as test set, the earliest 70% POI visits as train-

ing set, and the remaining 10% data as validation set to tune

parameters.

Table 1 Statistics on the three datasets

Meta-data
Dataset #User #POI #Check-in #AvgC

#Avg(Au) #Avg(Aq)

SIN 1,918 2,678 155,514 81.08 - -

Gowalla 5,073 7,020 252,945 49.86 - -

CA 2,031 3,112 105,836 52.1 4.36 2.67

Note: #User: the number of users; #POI: the total number of POIs; #Check-
in: the total number of check-ins; #AvgC: average number of check-ins
per user; #Avg(Au): average number of items in Au; #Avg(Aq): average
number of items inAq

4.2 Experimental setup

Methods and parameter settings We compare our model

against the following recent state-of-the-art POI recommen-

dation approaches.

• PMF is a method based on conventional probabilistic

matrix factorization over the user-POI matrix [47].

• WMF is a method with implicit feedbacks based on the

weighted matrix factorization [48]. The user-POI inter-

actions are weighted to reflect the hidden perference.

• BPTF incorporates temporal information into a tensor

factorization algorithm [7]. It also utilizes a Bayesian

treatment to automatically tune the parameters. We use

the released code and recommended settings by the au-

thors.

• FMFMGM fuses matrix factorization with geographi-

cal and social influence for POI recommendation [12].

The geographical influence is modeled by a multi-

center Gaussian model (MGM). The recommendation

score is calculated as the product of MGM and MF

parts. The optimal parameters are tuned on the valida-

tion set.

• GeoPFM [14] is an extended version of GT-BNMF

[13]. It is a general geographical probabilistic frame-

work which takes personal preferences, geographical

factors and user mobility behaviors into a unified factor

model. The optimal parameters are tuned on the valida-

2) see Wikipedia
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tion set.

• PRME-G embeds user and POI into the same latent

space to capture the user transition patterns [3]. The

geographical and temporal influence are incorporated

in PRME-G through a simple weighting scheme. We

use the recommended settings with 60 dimensions and

π = 6h as in their paper.

• Rank-GeoFM is a ranking based geographical factor-

ization approach [5]. Rank-GeoFM learns the embed-

dings of users, POIs by fitting the user’s POI frequency.

Both temporal context and geographical influence are

incorporated in a weighting scheme. We use the recom-

mended settings with K = 100, k = 300 as in their paper

and fine-tune the parameters α and β on the validation

set.

• Graph based embedding (GE) jointly learns the em-

beddings of POIs, regions, time slots, and auxiliary

meta-data (i.e., descriptive words of POIs) in one com-

mon hidden space [9]. The recommendation score is

then calculated by a linear combination of the inner

products for these contextual factors. We tune hyper-

parameters N and �T on the validation set.

• Neural matrix factorization (NeuMF) is a recent

state-of-the-art deep neural network based algorithm

over implicit feedback [1]. NeuMF combines both gen-

eralized matrix factorization and MLP under one frame-

work to learn latent features. Like PMF, we apply

NeuMF over the user-POI matrix for the recommenda-

tion. The best performance is reported by tuning hyper-

parameters.

• STRNN is a RNN-based model for next POI recom-

mendations [30]. It incorporates both the temporal con-

text and geographical information within recurrent ar-

chitecture.

• RNN is a standard RNN model for sequence modeling,

upon which the above STRNN model was built [18]. In

the context of POI recommendation, the hidden feature

vector hu
ti of user u at time ti is calculated recurrently

based on the whole historical POI visits:

hu
ti = σ(W4qu

ti−1
+ Chu

ti−1
), (18)

where W4 is the transition matrix from the input em-

bedding to the hidden state, C is the state-to-state re-

current weight matrix, σ is chosen to be the sigmoid

function. Following the work in [30], we calculate the

recommendation score yu,ti ,� of POI � for user u at time

ti as follows:

yu,ti,� = (hu
ti + uu)Tq�. (19)

• LSTM is a variant of RNN model which contains a

memory cell and three multiplicative gates to allow

long-term dependency learning [36]. We calculate the

recommendation score by using Eq. (19).

• GRU is a variant of RNN model which is equipped with

two gates to control the information flow [20]. We cal-

culate the recommendation score by using Eq. (19).

Other reported alternatives are empirically found to be

inferior to STRNN, PRME-G, and Rank-GeoFM, in their

works respectively3). Hence, we do not repeat the compari-

son. Note that, the proposed TRM model in [11] can be eval-

uated based on CA dataset. However, due to the shortness of

POI description and the smaller number of POIs after pre-

processing, TRM only achieves a slightly better performance

than PMF. Therefore, we exclude TRM from further compar-

ison. The first eight baseline methods listed above are conven-

tional factorization or embedding learning based techniques.

The next five baseline are neural networks based methods,

which apply the nonlinearity for high-level transformation.

Note that GRU and LSTM have not been evaluated in previ-

ous work on the task of next POI recommendations. More-

over, we need to highlight that the task of next POI recom-

mendations is different from general POI recommendation

problems. As defined in Section 3.1, we need to predict the

POI that a user will visit at a specific time point for next POI

recommendations. In this sense, at a specific time point, there

is only one POI that a user will visit. On the contrary, the task

of general POI recommendations is to predict the POIs that a

user will visit in the future. Among the methods in compar-

ison, PMF, WMF, FMFMGM, GeoPFM and NeuMF are the

methods for general POI recommendations. Here, we evalu-

ate these general POI recommendation methods as a perfor-

mance reference.

Metrics Following the existing works [9, 16, 30], two stan-

dard metrics are used for performance evaluation: Acc@K

and Mean Average Precision (MAP). For a specific test in-

stance (i.e., a user visited a POI in the test set), Acc@K is 1

if the visited POI appears in the top-K ranking; otherwise

0 is taken. The overall Acc@K is the average value over

all test instances. Here, we choose to report Acc@K with

K = {1, 5, 10}. MAP is widely used to evaluate the quality

3) Some recent works (e.g., [16, 17]) that incorporate POI categories, are excluded for comparison, because our datasets do not contain these meta-data
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of ranking. The higher the ground truth POI is ranked, the

larger the MAP value, which indicates a better recommenda-

tion accuracy.

Hyperparameters and training The interval threshold π in

Eq. (10) is empirically set to be 6/6/72 hours for SIN, Gowalla

and CA datasets respectively. The dimensionality for the em-

beddings and the hidden intent are fixed to be 60 for neural

network based methods for fair comparison (i.e., d = 60 in

NEXT). The regularization parameter λ is 0.01 and the learn-

ing rate γ is 0.005. As to incorporating auxiliary meta-data

information, we set α = 0.3, β = 0.2 in NEXT. We apply the

early stop based on the validation set, or a maximum of 50

epochs are run for neural network based methods.

As to POI embeddings pre-training, we set τ = 50 and

r = 20 as in the original work of DeepWalk [42]. In Eq. (13),

ρ = 0 is used in generating random walks for performance

comparison. The impact of ρ will be studied in Section 4.5.

4.3 Performance comparison

For performance comparison, we report the recommenda-

tion accuracy of different methods over the three datasets in

Table 2, where significance test is by Wilcoxon signed-rank

test. We make the following observations:

First, the proposed NEXT model performs significantly

better than all existing state-of-the-art baselines evaluated

here on the three datasets on all the metrics. NEXT out-

performs the conventional matrix/tensor factorization method

PMF, BPTF, FMFMGM and GeoPFM significantly by a large

margin. Specifically, NEXT outperforms the four methods by

around 468.1%–5581.5%, 541.2%–8486.9%, and 243.4%–

5629.0% in terms of MAP metric on SIN, Gowalla and CA

datasets respectively. As to the three embedding learning

based solutions (i.e., PRME-G, Rank-GeoFM, GE), NEXT

outperforms them by around 62.0%–552.5%, 46.5%–602.8%

and 50.9%–67.0% in terms of MAP metric on SIN, Gowalla

and CA datasets respectively. Note that both PRME-G and

Rank-GeoFM incorporate information from temporal context

and geographical influence within their models on SIN and

Gowalla. The large improvement suggests that high-level in-

tent features extracted through a nonlinearity in NEXT better

catch user’s spatial behaviors. Moreover, NEXT consistently

outperforms four RNN-based methods: RNN, LSTM, GRU,

and STRNN. The performance gain provided by NEXT over

these four counterparts is about 22.1%–48.6% and 35.8%–

83.0% in terms of MAP metric on SIN and Gowalla respec-

tively. Note that no temporal context information can be in-

corporated by the vanilla RNN, LSTM and GRU models.

This indicates that the mechanism to absorb two kinds of

temporal context in NEXT is effective for the task of next

POI recommendations.

Second, both PMF and BPTF obtain much worse perfor-

mance on three datasets in all metrics, because the user-POI

matrix is very sparse on these datasets, and no fine-grained

temporal context or geographical influence is leveraged at all.

On the other hand, both FMFMGM and GeoPFM perform

better than PMF and BPTF, which indicates the significance

of geographical influence in POI recommendations. Simi-

lar results are observed on NeuMF, a neural network based

collaborative filtering technique based on implicit feedback

information. Since both PRME-G and Rank-GeoFM utilize

ranking based optimization strategy, the data sparsity issue

Table 2 Performance comparison over three datasets by Acc@K and MAP

SIN Gowalla CA
Method

Acc@1 Acc@5 Acc@10 MAP Acc@1 Acc@5 Acc@10 MAP Acc@1 Acc@5 Acc@10 MAP

PMF 0.0013† 0.0311† 0.0731† 0.0235† 0.0002† 0.0149† 0.0418† 0.0125† 0.0006† 0.0050† 0.0109† 0.0106†

WMF 0.0374† 0.1366† 0.2331† 0.0985† 0.0355† 0.1281† 0.1956† 0.0888† 0.0532† 0.1605† 0.2262† 0.1104†

BPTF 0.0055† 0.0129† 0.0196† 0.0038† 0.0018† 0.0048† 0.0083† 0.0023† 0.0035† 0.0061† 0.0077† 0.0031†

FMFMGM 0.0114† 0.0501† 0.0843† 0.038† 0.0158† 0.0401† 0.0511† 0.0308† 0.0270† 0.0676† 0.0905† 0.0516†

GeoPFM 0.0102† 0.0364† 0.0693† 0.0325† 0.0158† 0.0314† 0.0508† 0.027† 0.0213† 0.0612† 0.0669† 0.0413†

PRME-G 0.0751† 0.1156† 0.1357† 0.0991† 0.1088† 0.1600† 0.1783† 0.1348† 0.0888† 0.1287† 0.1520† 0.1130†

Rank-GeoFM 0.0705† 0.1870† 0.2575† 0.1313† 0.0488† 0.1428† 0.1997† 0.1000† 0.0540† 0.1505† 0.2085† 0.1061†

GE 0.0123† 0.0486† 0.0735† 0.0326† 0.0100† 0.0158† 0.0488† 0.0281† 0.0894† 0.1402† 0.1651† 0.1174†

NeuMF 0.025† 0.0854† 0.1341† 0.0654† 0.0230† 0.0682† 0.1082† 0.0549† 0.0437† 0.0944† 0.1361† 0.0781†

RNN 0.1063† 0.2397† 0.3072† 0.1742† 0.084† 0.1859† 0.2364† 0.1376† 0.0865† 0.1877† 0.2370† 0.1397†

LSTM 0.1032† 0.2344† 0.3015† 0.1701† 0.0868† 0.1979† 0.2535† 0.1443† 0.0931† 0.2028† 0.2583† 0.1511†

GRU 0.0999† 0.2211† 0.2864† 0.1626† 0.0838† 0.2015† 0.2644† 0.1454† 0.0924† 0.1974† 0.2505† 0.1482†

STRNN 0.0826† 0.1948† 0.2636† 0.1431† 0.0557† 0.1539† 0.2081† 0.1079† 0.0713† 0.1637† 0.2181† 0.1221†

NEXT 0.1405 0.2917 0.3649 0.2159 0.1282 0.2644 0.3339 0.1975 0.1134 0.2403 0.3097 0.1789

Note: The best results are highlighted in boldface on each dataset. † indicates that the difference to the best result is statistically significant at 0.05 level
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is alleviated by making use of unobserved data to learn the pa-

rameters. Moreover, temporal information and geographical

influence are incorporated in these two methods. Therefore,

a large performance improvement is obtained by PRME-G

and Rank-GeoFM over PMF, BPTF, FMFMGM, GeoPFM

and NeuMF. The same phenomenon was also observed in the

related works [3, 5, 30]. It is interesting to note that WMF

obtains superior performance against the conventional matrix

factorization methods like PMF and BPTF across the three

datasets. The results validate that explicitly discriminating the

user-POI interactions could enable a better understanding of

the users’ spatial behaviors.

Third, NeuMF significantly outperforms conventional la-

tent factor based methods. This suggests the superiority of

nonlinearity for extracting hidden high-level features. As be-

ing an embedding learning technique, GE performs much

worse than PRME-G and Rank-GeoFM on both SIN and

Gowalla datasets. The probable reason is that no region in-

formation is available on these two datasets. The region in-

formation works as the geographical influence for GE model.

The region information is provided in CA dataset, and we ob-

serve that GE achieves very close performance to PRME-G

and Rank-GeoFM.

Fourth, the three RNN-based methods (i.e., RNN, LSTM,

GRU) perform much better than PMF, BPTF, GeoPFM,

FMFMGM, PRME-G and Rank-GeoFM on most metrics.

This is consistent with our above discussion that non-linear

transformation operation as provided by the neural network

models enables better high-level spatial intent learning. Al-

though LSTM and GRU were designed to alleviate the ex-

ploding or vanishing gradients problem, no superiority is

observed for them over the vanilla RNN model on the SIN

dataset. Reported in Table 1, the users in SIN have more

POI visits on average. Because RNN-based models accumu-

late all historical information in the last hidden feature vec-

tor [22], the longer POI sequence could introduce much ir-

relevant information that hurts the performance. This result

indicates that the visiting behaviors performed a long time

ago are irrelevant to next POI recommendations. We observe

that STRNN only achieves similar performance with Rank-

GeoFM and PRME-G. STRNN even performs much worse

than RNN, LSTM and GRU. Desipte our best efforts (in-

cluding contacting the authors), due to various restrictions we

could not get the source code of STRNN. Therefore, we im-

plement STRNN based on the original paper [30]. Also, the

datasets used here are completely different ones. Note that

Gowalla used in our work excludes inactive POIs and users

(see Section 4.1). However, no filtering was applied in the

work of STRNN [30]. We argue that these factors could con-

tribute to the inconsistent performance, compared with the

ones reported in the original paper.

As described in Section 4.2, two main categories of base-

line methods are evaluated here for performance comparison:

1) factorization or embedding learning based methods, i.e.,

PMF, WMF, BPTF, FMFMGM, PRME-G, Rank-GeoFM,

and GE; 2) neural network based methods, i.e., NeuMF,

RNN, LSTM, GRU, STRNN, and NEXT. These neural net-

work based methods can be further classified into two sub-

categories: 1) sequence modeling based methods by tak-

ing higher-order sequential relations into account, i.e., RNN,

LSTM, GRU, and STRNN; 2) pointwise based methods by

taking each interaction or latest visit record into account, i.e.,

NeuMF and NEXT. That is, the underlying methodologies of

these methods are quite different.

Although the proposed NEXT delivers superior recom-

mendation accuracy over other existing alternatives signifi-

cantly, it is interesting to examine to what extend NEXT has

complemented the weakness of the methods with a differ-

ent methodology. Hence, we conduct a detailed performance

analysis by comparing NEXT with two representative meth-

ods of different methodologies: PRME-G and LSTM. As

mentioned in Section 4.2, PRME-G is an embedding learn-

ing based method by incorporating both temporal context and

geographical influence for next POI recommendations. And

LSTM is a recurrent neural network based method that mod-

els the historical POI visits as a sequential sequence. We like

to check the number of test instances that NEXT performs

correctly on, but the existing methods fail on, and vice versa.

Table 3 lists the performance comparison of NEXT against

PRME-G and LSTM in three distinct cases on metric Acc@K

with K = {1, 5, 10} across three datasets. Symbol � refers to

the number of test instances that NEXT successfully recom-

mends in terms of Acc@K, but PRME-G/LSTM fails on; �
refers to the number of test instances that both NEXT and

PRME-G/LSTM success in; and � refers to the number of

test instances that PRME-G/LSTM successes in but NEXT

fails on. We make the following observations:

First, all the instance numbers for�, � and� cases increase

as K becomes larger in both comparisons. Specifically, the

increasement for � case is much larger than that of � and �
cases when NEXT is compared against PRME-G. We also

observe that the corresponding instance number for � is al-

ways larger than that of � case with different K values across

the datasets. Similar preformance comparison is also ob-

served by comparing NEXT against Rank-GeoFM (results

not shown). This indicates that the nonlinearity operation
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Table 3 Performance comparison between NEXT and PRME-G/LSTM on three datasets

SIN Gowalla CA
Methods Acc@K

� � � � � � � � �

1 3283 1244 1199 4695 2125 3660 1635 785 673

NEXT - PRME-G 5 6499 2780 1118 9097 4797 3846 3526 1613 673

10 8097 3493 1101 11753 5970 3660 4473 2017 729

1 2136 2391 885 3725 3095 1474 908 1512 535

NEXT - LSTM 5 2956 6323 1301 5908 7986 2429 1554 3585 874

10 3240 8350 1495 7153 10570 2772 1867 4623 1057

utilized by NEXT is more appropriate to capture the com-

plex interactions between users and POIs. On the contrary,

the increasement for � case is much smaller than � case

when NEXT is compared against LSTM. Moreover, the in-

stance number for � case by LSTM is much larger than that of

PRME-G in all K settings and datasets. Note that neither tem-

poral or geographical information is incorporated in LSTM.

One possible reason for this observation is that LSTM also

utilizes a nonlinearity to extract the hidden spatial intent for

each user, leading to its superiority over PRME-G.

Second, both PRME-G and LSTM perform better than

NEXT in varying number of test instances across the three

datasets. In terms of Acc@10, PRME-G performs better than

NEXT in 1, 101, 3, 660 and 729 test instances over the three

datasets respectively. These numbers for LSTM are 1, 495,

2, 772 and 1, 057. This observation sheds light on the poten-

tial direction of further enhancement for better next POI rec-

ommendations. That is, the methods with different underly-

ing methodologies complement each other to some extent.

Hence, we plan to explore the possible fusion strategy to

combine the merits of the different methodologies in our fu-

ture work.

In summary, the experimental results show that the pro-

posed NEXT can successfully learn user’s spatial intent, lead-

ing to superior performance of next POI recommendations.

4.4 Experiments on cold-start

Here, we evaluate the performance of NEXT and other com-

petitors for cold-start users. Specifically, since each dataset is

preprocessed to retain only active users and POIs (see Section

4.1), we therefore take 200 inactive users that were excluded

from the training for evaluation. We conduct the experiments

on CA dataset, because it is the only dataset containing aux-

iliary meta-data information.

For each cold-start user u, we randomly pick a POI transi-

tion record (qi, q j) such that the user visited q j after her latest

visit at qi. For evaluation purpose, we restrict to the record

of both qi and q j being included in the training set. Here, we

test to recommend q j by utilizing both her latest POI visit

and meta-data. Among the baseline methods, only PRME-

G, STRNN, RNN, LSTM and GRU can be adapted here by

utilizing only the POI information. STRNN, RNN, LSTM

and GRU are all RNN-based models. Since LSTM achieves

the best performance on CA dataset among these RNN vari-

ants (see Table 2), we choose LSTM as the baseline method,

and report its performance for cold-start user recommenda-

tion. Other variants are found to be inferior than LSTM for

this experiment. Table 4 reports the performance of differ-

ent methods. We observe that NEXT outperforms PRME-G

and LSTM in most metrics. This confirms that incorporating

meta-data information is positive for addressing the recom-

mendation for cold-start users. Based on Eqs. (5)–(9), differ-

ent kinds of auxiliary meta-data can be incorporated by us-

ing dense vector representations. That is, we can exploit the

auxiliary meta-data information in NEXT to smoothly derive

user intent in a unified way.

Table 4 Performance comparison for cold-start users

Method Acc@1 Acc@5 Acc@10 MAP

PRME-G 0.0550 0.0650 0.0800 0.0631

LSTM 0.0300 0.1200 0.1900 0.0765

NEXT 0.0600 0.1400 0.1850 0.1045

Note: The best results are highlighted in boldface

4.5 Analysis of NEXT

We now investigate the impact of different parameter settings

in NEXT. Note that when studying a specific parameter, we

set the other parameters to the values used in Section 4.2.

Here, we choose to report the performance of NEXT under

different settings on the test set directly. The similar perfor-

mance patterns are also observed on the validation set.

Temporal context We first investigate the effect of the two

kinds of temporal contexts in NEXT. Table 5 lists the per-

formance comparison over three datasets, where � refers to

the model with the corresponding temporal information. Note

that only CA dataset can provide with the date information for
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each POI visit (i.e., day of the week). Observe that incorpo-

rating either time interval or visit time information leads to

better performance. More performance gain is obtained by

introducing the time interval dependent transition, compared

to using visit time specific aspects alone. This validates that

the time interval since the latest POI visit plays a critical role

in learning spatial intent from historical spatial behavior. Fur-

ther improvement is obtained by incorporating both time in-

terval and visit time information together. This indicates that

these two kinds of temporal context provide complementary

benefits for next POI recommendations. We also observe that

marginal improvement is obtained by incorporating the day

of the week information. This is reasonable since the scale of

a day is too big to hold fine-grained spatial preference.

Table 5 Impact of the temporal contexts

Dataset TI TS DW Acc@1 Acc@5 Acc@10 MAP

- - - 0.1161 0.2576 0.3250 0.1869

� - - 0.1322 0.2833 0.3569 0.2077
SIN

- � - 0.1272 0.2690 0.3414 0.1986

� � - 0.1405 0.2917 0.3649 0.2159

- - - 0.0986 0.2254 0.2861 0.1630

� - - 0.1172 0.2535 0.3250 0.1868
Gowalla

- � - 0.1058 0.2310 0.2919 0.1691

� � - 0.1282 0.2644 0.3339 0.1975

- - - 0.0942 0.2104 0.2661 0.1553

� - - 0.0994 0.2185 0.2782 0.1607

- � - 0.1058 0.2281 0.2898 0.1691
CA

- - � 0.0978 0.2146 02715 0.1558

� � - 0.1115 0.2396 0.3038 0.1772

� � � 0.1134 0.2403 0.3097 0.1789

Note: TI: time interval; TS: time slot; DW: day of the week. The best results
are highlighted in boldface on each dataset

We further study the impact of π value in NEXT. Recall

in Eq. (10), a larger π indicates that the user’s spatial in-

tent changes temporally slower, while a smaller π indicates

that the user’s spatial intent is mainly determined by the

nearby movement. Table 6 reports the performance of dif-

ferent π values over the three datasets. The optimal π values

are 12h, 6h and 72h on SIN, Gowalla and CA datasets re-

spectively. This finding is consistent with the statistic prop-

erties of the time interval between two successive POI visits

on the three datasets. The median time intervals are 19.3h,

13.1h and 47.3h on SIN, Gowalla and CA datasets respec-

tively. These numbers correlate well with the optimal π val-

ues for the three datasets. We note that the performance starts

to degrade on SIN and Gowalla datasets when π is larger than

72h. However, little performance fluctuation is observed for

a wide range of π values across the three datasets. Based on

the results, we set π to be 6/6/72 hours for SIN, Gowalla and

CA datasets respectively in our experiments.

Table 6 Effect of different π values

Dataset π Acc@1 Acc@5 Acc@10 MAP

6h 0.1405 0.2917 0.3649 0.2159

12h 0.1418 0.2912 0.3658 0.2168

SIN 24h 0.1396 0.2929 0.3657 0.2155

48h 0.1364 0.2873 0.3585 0.2113

72h 0.1321 0.2798 0.3548 0.2068

6h 0.1282 0.2644 0.3339 0.1975

12h 0.1200 0.2542 0.3251 0.1890

Gowalla 24h 0.1244 0.2574 0.3250 0.1924

48h 0.1211 0.2520 0.3204 0.1880

72h 0.1155 0.2483 0.3153 0.1829

24h 0.1112 0.2354 0.2980 0.1750

48h 0.1094 0.2343 0.2979 0.1738

CA 72h 0.1134 0.2403 0.3097 0.1789

96h 0.1097 0.2338 0.2965 0.1738

120h 0.1100 0.2337 0.2976 0.1744

Note: The best results are highlighted in boldface on each dataset

Number of dimensions We study the effect of the number

of dimensions of hidden vectors and POI embeddings. Here,

we vary the number of dimensions from 10 to 100. Figure 3

shows the MAP and Acc@10 values for varying dimension

numbers on the three datasets. NEXT achieves stable perfor-

mance in the range of [50, 100]. We observe that NEXT out-

performs RNN, LSTM and GRU even when the number of

dimensions is as small as 20. The results further confirm the

superiority of the proposed NEXT for next POI recommen-

dations.

Fig. 3 Effect of the number of dimensions in NEXT. (a) MAP; (b) Acc@10

Auxiliary meta-data We further study the impact of incor-

porating auxiliary meta-data information to the recommen-

dation accuracy in NEXT. Table 7 reports the performance
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with/without incorporating the associated friendship and tex-

tual description on CA. We observe that NEXT achieves sig-

nificant better performance by incorporating auxiliary meta-

data information. Following the parameter tuning strategy

mentioned in Section 3.6, we set α = 0.3 and β = 0.2 for CA

dataset. Figure 4 plots the performance of NEXT by varying

β and α values after fixing α = 0.3 and β = 0.2 respectively.

Observe that the performance of NEXT starts decrease as ei-

ther α or β increases towards 1. The optimal range of β is

[0.1, 0.3]. Also, the optimal range of α is [0.3, 0.6]. We ar-

gue that the meta-data information associated with the users

could be more useful on CA dataset. Overall, the experimen-

tal results demonstrate that the proposed NEXT is competent

to exploit the auxiliary meta-data for better recommendation

accuracy.

Table 7 Impact of incorporating auxiliary meta-data in NEXT

Meta-data Acc@1 Acc@5 Acc@10 MAP

- 0.1007 0.2173 0.2793 0.1615

� 0.1134 0.2403 0.3097 0.1789

Note: The best results are highlighted in boldface on each dataset

Fig. 4 Performance of NEXT with different β and α values by fixing
α = 0.3 and β = 0.2 respectively

Though the optimal values for α and β can be determined

based on the validation set, it is interestng to derive a net-

work to adjust these two values automatically based on the

representations of the users and meta-data information. The

calculation of α and β can be implemented through an atten-

tion mechanism4):

α = σ(v1qu
ti−1
+ v2mqu

ti−1 ), (20)

β = σ(v3uu + v4mu), (21)

where v1, v2, v3, v4 are the attentive parameters, and σ is the

sigmoid function. With this attention mechanism, we allow

the model to automatically balance the influence of different

meta-data information. The experiments on CA dataset sug-

gest that the attention mechanism achieves a MAP of 0.1656.

Also, inferior performance is also observed in terms of

Acc@1, Acc@5 and Acc@10 respectively (0.1040, 0.2233

and 0.2866). It suggests that setting α and β values based

on a validation set is still a better option when the training

instances are adequate. However, since the performance de-

terioration is just minor, the attention mechanism would be

a desired solution when the training instances are relatively

scarce.

POI embeddings pre-training DeepWalk is used to gen-

erate POI sequences in NEXT to encode the sequential rela-

tions and geographical influence among POIs. Table 8 reports

the performance of different ρ values over the three datasets,

where symbol − refers to the model without using the pre-

trained POI embeddings for initialization. First, we observe

that the models initialized with pre-trained POI embeddings

outperform the model without this initialization by a large

margin. The performance gain by using pre-training strategy

is at least 28.6%, 61.4% and 131.5% in terms of MAP on SIN,

Gowalla and CA datasets respectively. This validates the ef-

fectiveness of utilizing geographical distance and transition

pattern between two POIs to pre-train POI embeddings. Sec-

ond, all the settings with varying ρ values achieve similar per-

formance. On SIN and Gowalla datasets, the optimal ρ val-

ues are 0.7 and 0.5 respectively. However, on CA dataset, the

optimal ρ value is 0, indicating that transition patterns carry

enough discriminative signal to help understand user’s spatial

intent. The close performance obtained with varying ρ values

suggests that the geographical distance and transition patterns

do not contain much complementary information. Based on

Tobler’s first law of geography, “Everything is related to ev-

erything else, but near things are more related than distant

things.” This indicates that when a user visits the next place,

she will likely to visit a place near the place she visited last

time. In this sense, the geographical influence could be en-

coded within the transition patterns, as being validated by the

results. Accordingly, we set ρ = 0 in our experiments.

Efficiency On a workstation with a NVIDIA GTX 1080

GPU, we implemented the proposed NEXT framework based

on Theano. NEXT takes 16, 30 and 14 minutes to finish one

epoch of model training on SIN, Gowalla and CA datasets

respectively. For recommendation score calculation, NEXT

takes 1.75, 2.67 and 2.0 milliseconds per test instance (i.e.,

2.06M/Hr, 1.35M/Hr and 1.8M/Hr) on the three datasets

respectively. That is, after the model training, NEXT can

be easily adopted in real-time applications with parallel

4) We have investigated the calcaultion in different forms. Equations (20) and (21) produce the best performance
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Table 8 Performance of NEXT with varying ρ values

SIN Gowalla CA
ρ

Acc@1 Acc@5 Acc@10 MAP Acc@1 Acc@5 Acc@10 MAP Acc@1 Acc@5 Acc@10 MAP

- 0.1019 0.2378 0.3119 0.1722 0.0662 0.1728 0.2404 0.1245 0.0383 0.101 0.1406 0.0744

0 0.1405 0.2917 0.3649 0.2159 0.1282 0.2644 0.3339 0.1975 0.1134 0.2403 0.3097 0.1789

0.3 0.1428 0.2958 0.367 0.2189 0.1306 0.2666 0.3361 0.2000 0.1023 0.2145 0.2747 0.1626

0.5 0.1447 0.2973 0.3684 0.2202 0.1316 0.2660 0.3386 0.2009 0.1015 0.2077 0.2713 0.1605

0.7 0.1456 0.2964 0.3697 0.2214 0.1174 0.2504 0.3228 0.1860 0.1026 0.2148 0.2779 0.1628

1 0.1408 0.2919 0.2673 0.2163 0.1265 0.2605 0.3307 0.1949 0.106 0.221 0.2813 0.1666

Note: The best results are highlighted in boldface on each dataset

computing technique.

4.6 A single layer vs. multiple layers

In NEXT, we utilize an additional feed-forward neural net-

work layer to deduce the users’ spatial intent. Many exist-

ing works have validated the superiority of using a deep

network structure for the recommendation tasks [1, 28, 31].

Does a deeper network structure deliver better recommenda-

tion performance under the framework of NEXT? To answer

this question, here, we investigate the potential of adding

further hidden layers within NEXT. Motivated by the exist-

ing work [1, 31], we study the following two variants with a

deeper network structure on the basis of NEXT:

• NEXT-k A straightforward strategy is to stack more

nonlinear layers to extract the higher-level intent fea-

tures. Specifically, with c�, hu and hq
ti from Eqs. (7), (9)

and (12) respectively, we calculate the hidden intent

vectors of kth layer as follows:

h2 = ReLU(Wh
2(hu + hq

ti ) + bh
2),

c�2 = ReLU(Wc
2c� + bc

2),

· · ·
hk = ReLU(Wh

khk−1 + bh
k),

c�k = ReLU(Wc
kc�k−1 + bc

k),

where Wc
k, Wh

k , bh
k and bc

k are the transition matrices and

bias vectors for kth layer. The recommendation score

yu,ti,� is then calculated as follows:

yu,ti,� = hT
k c�k.

Hence, NEXT can be considered as being equivalent to

NEXT-1. Figure 5 illustrates the network architecture

of Next-k.

• NEXT-C Concatenating hidden features of different

components has been widely adopted in multimodal

deep learning work [49]. Following the approach pro-

posed in NeuMF [1], we apply a vector concatenation

on the hidden vectors hu, hq
ti and c�, and learn their inter-

actions via a standard MLP. Formally, the recommenda-

tion score yu,ti,� is calculated as follows:

h1 = (hu + hq
ti ) ⊕ c�,

h2 = ReLU(Wc
2h1 + bc

2),

· · ·
hk = ReLU(Wc

khk−1 + bc
k),

yu,ti,� = σ(wT hk + b), (22)

where ⊕ denotes the concatenation operation, Wc
k and

bc
k are the transition matrix and bias vector for the kth

layer, σ is chosen to be sigmoid function. In Eq. (22),

we derive the recommendation score yu,ti ,� with a logis-

tic regression based on the hidden features extracted by

the kth layer, where w works as the weight vector and

σ is choosen to be the sigmoid function. We denote this

model with k hidden layers as NEXT-C-k. Figure 6 il-

lustrates the network architecture of NEXT-C.

Fig. 5 Overall architecture of NEXT-k

Note that we set the nonlinear activation function to be

ReLU for both NEXT-k and NEXT-C-k. This setting has also

been used in NeuMF for its deep network structure [1]. ReLU

has the advantage of alleviating vanishing gradient problems

when the network is deep [50]. Also, this setting leads to a
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fair comparison with NEXT, since we adopt ReLU as the ac-

tivation function in NEXT to faciliate interpretation ability.

Moreover, since NEXT-k and NEXT-C-k share the same ar-

chitecture with NEXT for the first layer, we set the same set-

ting as used by NEXT in Section 4.3 for a fair comparison.

Fig. 6 Overall architecture of NEXT-C

Figures 7(a) and 7(b) plot the performance of NEXT-2 and

NEXT-C-2 under different dimension settings for the sec-

ond layer, where the performance of NEXT are also plot-

ted as a reference (in dotted lines). First, we observe that

both models with a deeper network structure result in a much

poorer recommendation performance, compared to NEXT.

Both NEXT-2 and NEXT-C-2 achieve the optimal perfor-

mance with the dimension number of the second layer be-

ing 60/60/50 on SIN/Gowalla/CA datasets respectively. Also,

the performance deteriorates significantly when the dimen-

sion number of the second layer becomes smaller.

Second, we observe that NEXT-2 obtains much better rec-

ommendation performance than NEXT-C-2 across the three

datasets under different dimension numbers. Under the op-

timal settings, NEXT-2 delivers a relative performance re-

duction of 12.9%, 9.3% and 18.3% in terms of MAP for

SIN, Gowalla and CA respectively, compared to NEXT. Sim-

ilarly, the relative performance reduction obtained by NEXT-

C-2 over NEXT is 29.8%, 31.1% and 33.5% respectively.

Note that neural networks can approximate any continuous

function to arbitrary precision [27]. Stacked nonlinear trans-

formations and vector concatenation operations enable us to

better learn complex interactions between user and item fea-

tures [1]. The inferior performance obtained by NEXT-2 and

NEXT-C-2, however, validate that the context factors are

more critical in understanding the user’s spatial behavior. Re-

call the workflow of NEXT demonstrated in Fig. 2: a) we en-

code the sequential relations in POI embedding pre-training

phase; b) then, we combine the embedding vectors from the

users, POIs and their associated meta-data information; c)

at last, we apply nonlinearity transformations (with tempo-

ral context) to derive the latent intent vectors for users and

POIs. The experimental results suggest that a single nonlin-

earity layer (with temporal context) applied over the embed-

dings encoded with sequential relations leads to a compact

intent feature learning process. More complicated modeling

attached to this architecture degenerates the effective feature

learning. That is, the mechanisms proposed in NEXT to in-

corporate temporal context, sequential relations, geographi-

cal influence and auxiliary meta-data information work to-

gether as an integrated architecture, leading to superior per-

formance for next POI recommendations.

Fig. 7 Performance of NEXT-2 (a) and NEXT-C-2 (b) with varying dimen-
sion numbers for the second layer. (a) NEXT-2; (b) NEXT-C-2

5 Conclusion

In this paper, we propose a simple neural network framework

for next POI recommendations, named NEXT. NEXT derives

the spatial intent for a user by calculating POI-based intent

and user-based intent separately based on two individual

ReLU nonlinearities. Under this framework, we incorporate

different contextual factors to enhance next POI recommen-

dations in a unified architecture. Specifically, we incorporate

two kinds of temporal context to enhance the intent calcu-

lation process. Furthermore, we adopt DeepWalk to encode

the spatial constraints such as geographical information and

sequential relations pattern into POI embeddings through a
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pre-training scheme. Comprehensive experiments are con-

ducted on three real-world datasets. The experimental results

show that the proposed NEXT outperforms existing state-

of-the-art alternatives in terms of MAP and Acc@K. We

further show that NEXT achieves promising performance in

the task of cold-start user recommendations. This uniqueness

makes NEXT a preferable choice in real-world applications.

As a future work, we plan to devise some effective fusion

strategies to combine the different modeling methodologies

together for better next POI recommendation accuracy. Also,

the proposed NEXT involves several tunable parameters. The

guideline to ease optimal parameter setting would be a de-

sirable feature for real-world applications. We will further

investigate this possibiity in future work. We observed that

WMF achieves much better performance than PMF and other

factorization based models. It is interesting to devise an atten-

tion mechanism to discriminate the user-POI interactions for

better performance. Moreover, we like to devise mechanisms

based on the semantic context factors to enable recommen-

dation explanation for next POI recommendations. Note that

we can also fuse the POI embedding learning and recom-

mendation modeling as a unified model. This joint learning

strategy will be investigated in the future.
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