
Front. Comput. Sci., 2019, 13(4): 760–777

https://doi.org/10.1007/s11704-018-7198-6

Fault-tolerant precise data access on distributed log-structured
merge-tree

Tao ZHU, Huiqi HU , Weining QIAN, Huan ZHOU, Aoying ZHOU

School of Data Science and Engineering, East China Normal University, Shanghai 200062, China

c© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract Log-structured merge tree has been adopted by

many distributed storage systems. It decomposes a large

database into multiple parts: an in-writing part and several

read-only ones. Records are firstly written into a memory-

optimized structure and then compacted into in-disk struc-

tures periodically. It achieves high write throughput. How-

ever, it brings side effect that read requests have to go through

multiple structures to find the required record. In a distributed

database system, different parts of the LSM-tree are stored in

distributed fashion. To this end, a server in the query layer has

to issues multiple network communications to pull data items

from the underlying storage layer. Coming to its rescue, this

work proposes a precise data access strategy which includes:

an efficient structure with low maintaining overhead designed

to test whether a record exists in the in-writing part of the

LSM-tree; a lease-based synchronization strategy proposed

to maintain consistent copies of the structure on remote query

servers. We further prove the technique is capable of working

robustly when the LSM-Tree is re-organizing multiple struc-

tures in the backend. It is also fault-tolerant, which is able

to recover the structures used in data access after node fail-

ures happen. Experiments using the YCSB benchmark show

that the solution has 6x throughput improvement over exist-

ing methods.

Keywords distributed data storage, log-structured merge

tree, linearizability, fault tolerance

Received June 10, 2017; accepted November 3, 2017

E-mail: hqhu@dase.ecnu.edu.cn

1 Introduction

Modern applications store TB-sized or even PB-sized data in

database systems. The amount of data is too huge to store in

a single server entirely. As a result, it leads to the fast devel-

opment of distributed database systems [1]. To better satisfy

the storage requirement, many distributed database systems

choose to implement the log-structured merge-tree (LSM-

tree) [2]. The LSM-tree organizes records in multiple compo-

nents: a Memtable and several SSTables, following the nota-

tions used in [3]. The Memtable is a memory-based structure,

optimizing for high write throughput. The SSTable is a disk-

based structure, offering large storage capacity and servicing

read requests only. Records are written into the Memtable

in the first, and then migrated into a SSTable in batch. The

LSM-tree offers high write throughput compared with the

conventional storage mechanism (e.g., B-tree). It has been

widely implemented by distributed storage systems such as

BigTable [3] and Cassandra [4], where the Memtable and

SSTables are kept in the main memory and distributed file

system (e.g., GFS [5]) respectively.

However, the LSM-tree sacrifices the read performance to

some extent. To read a record, a read operation has to iterate

over the Memtable and all SSTables until find the required

data item. The dedicated record only exists in one structure

and accessing the others is useless. The problem becomes

even worse when the query layer is decoupled from the stor-

age layer in distributed systems. Though systems using LSM-

tree offer excellent performance, they lack some important

features. Hence, some database systems (e.g., Megastore [6]



Tao ZHU et al. Fault-tolerant precise data access on distributed log-structured merge-tree 761

and Percolator [7]) build a query layer upon these storage

systems to add SQL interface or transaction support. A node

in the query layer interacts with the underlying storage layer

through network communication. As a result, querying the

distributed LSM-tree will issue many useless communica-

tions and increase the data access latency.

Realizing the limitation of LSM-tree in data access, some

work [3] relies on major compaction to merge multiple SSTa-

bles together and reduce the number of SSTable to be visited.

Some work [3, 8] tries to filter unnecessary SSTable read by

using the Bloom filters [9]. These techniques only aim at re-

ducing the SSTable access(see details in Section 2.1). But

none is able to answer whether to access the Memtable or

not. Reducing useless Memtable read is of great importance.

Firstly, useless read requests only compete for shared soft-

ware and hardware resources (e.g., latches, processors) of

the Memtable server with write requests. Secondly, access-

ing Memtable is useless for most data entries. It is because

the LSM-tree only stores recently committed data entries in

the Memtable. Most data entries are held by SSTables.

This work targets at the distributed database system where

Memtable, SSTables and query processing nodes, noted as

p-node in the following, are deployed on different servers

and proposes an effective way to precisely locate the storage

structure for accessing. Before processing a read request, a p-

node is able to identify the right structure for reading without

contacting the storage layer. The problem is challenging as a

p-node is difficult to determine whether the remote Memtable

contains the required record especially when the Memtable

keeps changing. Based on the designed precise data access

mechanism, we consider two practical issues that make it

to provide continuous services for applications: (i) ensuring

consistent data access when the LSM-Tree is re-organizing

its data storage in the backend; (ii) providing fault-tolerant

data access service, which is able to recover all in-memory

data structures required by our mechanism when node fail-

ures happen under a distributed system. We make the follow-

ing contributions which can be summarized as follows:

1) A Bloom filter with low maintaining and synchroniza-

tion overhead is designed to encode data existence for the

Memtable.

2) A lease-based strategy is designed for p-nodes to keep a

copy of the Bloom filter of Memtable, which helps the precise

data access achieve the linearizability [10] consistency.

3) Our approach is designed to work robustly even node

failures happens or the LSM-Tree compacts multiple index

structures in the backend.

4) We conduct comprehensive experiments to evaluate our

proposed method, results show that our method has 6x per-

formance improvement over existing designs.

The paper is organized as follows. Section 2 revisits the

mechanism of LSM-tree and formalize its precise data access

problem. Section 3 presents a Bloom filter with low main-

taining overhead in synchronizing data existence information

from the Memtable server to p-nodes. Section 4 presents the

lease-based Bloom filter synchronization. Section 5 discusses

how to enable precise data access at the same time when the

LSM-Tree compacts data storage. Section 6 discuss how to

recover the structures used for precise data access in face of

node failures. Experimental evaluations are showed in Sec-

tion 7. We present related work in Section 8 and make con-

clusions in Section 9.

2 Preliminary

This section briefly reviews the design of LSM-tree in the

distributed system and analyze its inefficiency in data access.

Based on these, we formalize the precise data access prob-

lem.

2.1 Storage model

We target at a distributed database system built upon the log-

structured storage. A typical structure is illustrated in Fig. 1.

Basically, it consists of a Memtable, several SSTables and

multiple p-nodes.

Fig. 1 Data storage and access on distributed LSM-tree

Memtable is the in-memory structure which services read

and write requests. As in the LSM-tree, data writes are only

allowed to perform on the Memtable, it resides in main mem-

ory to facilitate write performance. The Memtable can be

implemented as any index structure that optimized for main

memory access, such as bw-tree [11]. For a write request, if

an entry is inserted, it is directly added into the Memtable; if

an entry is updated, its new value is added into the Memtable.

Since the Memtable is kept completely in the main mem-

ory to improve write performance, data loss is possible when

the Memtable server crashes. In order to avoid data loss, redo

log entries [12] are forced into durable storage for recovery

purpose. When a write operation arrives, its redo log entry



762 Front. Comput. Sci., 2019, 13(4): 760–777

is firstly constructed and then be flushed into the commit

log stored in durable device. After the redo entry has been

flushed, its content is then written into the Memtable and

published. As the current disk device only supports limited

input/output operations per second (IOPS), it is extremely ex-

pensive to run a disk I/O for per redo log entry. An important

technique named group commit [13] is used to improve I/O

throughput by collecting multiple redo log entries together

and then flushing them in a single disk write.

SSTable is the on-disk and immutable structure where data

is stored in lexicographic order based on their primary key.

The SSTable is generated by freezing an active Memtable.

The frozen Memtable is transferred into distributed file sys-

tem and becomes the SSTable. A new Memtable replaces

the old one for servicing further write requests. Thus, the

SSTable is a read-only data structure. In short, the log-

structured storage firstly keeps written data in the Memtable.

It then freezes and shifts the Memtable into durable storage

when the Memtable reaches a certain size. As time goes by, it

will generate several SSTables as illustrated in Fig. 1, where

SSTable-1 is the latest created one and SSTable-3 is the oldest

one.

Data access Figure 1 illustrates how a p-node in the query

layer pulls a record from the underlying storage layer. To read

a record entry with key k from the distributed LSM-tree, a

p-node has to go through the 1st Memtable, 2nd SSTable,

3rd SSTable, . . ., until seeing a record with k as its key. The

data access is a limitation for the such storage model as a p-

node has to visit multiple structures to locate a record. What

is worse, Memtable and SSTables are stored in a distributed

fashion so that a p-node has to issue many remote procedure

calls to visit these structures. Basically, there are two kinds

of optimizations taken by existing systems to reduce SSTable

access namely major compaction and Bloom filter.

Major compaction To reduce the access overhead and avoid

maintaining too many SSTables at the same time, major com-

paction is conducted in back-end to merge multiple SSTa-

bles together. A write process would read key-value entries

from multiple SSTables and merge them into a single one.

With the completeness of the major compaction, all old ones

become expired and the new one comes into service. Ma-

jor compaction helps control the number of SSTables in the

LSM-tree within a proper size. With the help of compaction,

data access can visit a single well-merged SSTable instead of

multiple small ones.

Bloom-filter of SSTable Another optimization is to main-

tain a Bloom filter [9] for a SSTable. The Bloom filter has

been proven to be efficient in testing whether an element is a

member of a set. It has a 100% recall rate but allows only few

probabilities of appearance of false positives. If an element is

a member of a set, then all hashing bits in the Bloom filter

should be 1. After being constructed, the Bloom filter is im-

mutable and can be easily cached on remote servers. When

a server tries to read an entry from a SSTable, firstly, it can

check the Bloom filter to judge whether the target entry ex-

ists or not. If the entry does not exist, it can simply ignore the

SSTable and neglect the remote access.

Both the major compaction and the SSTable Bloom filter

only reduce the SSTable access. However, each read request

is still required to visit multiple structures as accessing the re-

mote Memtable is inevitable. In this paper, we seek a way to

precisely locate a single structure for reading so that a p-node

can judge locally to determine visiting either the Memtable

or one SSTable.

2.2 Precise data access

In a distributed database (e.g., Percolator [7], Megastore [6])

built upon distributed LSM-tree, a read request has to invoke

multiple remote procedure calls. Intuitively, if a p-node is

able to determine whether a Memtable or SSTable contains

the required data entry precisely, it can directly visit the ded-

icated structure without making other nonsense communica-

tions. Previous works have designed methods to filter useless

SSTable access. In a difference, this work aims at seeking effi-

cient methods to filter useless Memtable access. As our work

aims at filtering Memtable access, there is no essential differ-

ence between one SSTable or multiple. We assume there is a

Memtable and one SSTable in the following.

The precise data access is to let a p-node determine visit-

ing either the Memtable or one SSTable without contacting

the underlying storage servers. Formally, it can be described

as follows:

Definition 1 (Precise data access) Given an evolving struc-

ture Memtable m whose owned key set can be denoted as:

Km = {km
1 , k

m
2 , . . . } and an immutable structure SSTable s

whose owned key set can be denoted as set: Ks = {ks
1, k

s
2, . . . },

a p-node is required to answer the following membership

query q(k) without contacting storage servers before access-

ing a data entry e indexed by k:

q(k) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m, k ∈ Km,

s, k � Km
∧

k ∈ Ks,

none, else.

By getting the answer, the p-node can directly visit the tar-

get server to get the required data entry. In the above formula,



Tao ZHU et al. Fault-tolerant precise data access on distributed log-structured merge-tree 763

it is easy to answer whether k ∈ Ks by caching the Bloom fil-

ter of SSTable on p-nodes (as discussed in Section 1). But,

answering whether k ∈ Km is of much more difficulties.

The kernel problem is to answer whether a remote evolv-

ing set contains a typical element or not. An intuitive solution

is to maintain a Bloom filter for the Memtable as well, and

synchronize the structure to multiple p-nodes. Each p-node

checks its local Bloom filter to determine whether an entry

exists in the Memtable or not. However, there are two diffi-

culties here. Firstly, since the Memtable is stored in remote,

its Bloom filter has to be synchronized to p-nodes through

network. But the Bloom filter is of large size. Direct synchro-

nization tends to exhaust the network bandwidth. Secondly,

as the Memtable services data writes, it is evolving over the

time, a copy of its Bloom filter on a p-node may not remain

the same with the source one after the last synchronization.

The potential difference between the primary Bloom filter

and its copies tends to lead to inconsistency read (i.e., if an

entry e is newly created on the Memtable and it changes its

bit in the Bloom filter from 0 to 1. But the bit in the copy is

still 0 before re-synchronized. A read operation is not aware

of the existence of e by examining the copy of the Bloom fil-

ter. It would neglect the Memtable access and return a stale

version of the record stored in the SSTable.).

To address these problems, Section 3 discusses how to

maintain a Bloom filter on the Memtable and synchronize that

to a p-node. Section 4 presents a lease-based mechanism to

guarantee that using a copy of the Bloom filter on a p-node

still guarantees the linearizability consistency.

3 Entry existence identification

The first problem is to determine whether the Memtable con-

tains an entry or not. A straightforward method is to main-

tain a Bloom filter (Bm) for Memtable in the same way for

SSTable(Bs). For each entry in the Memtable, its correspond-

ing hashing bits in Bm are marked as 1. A problem is that

the Bloom filter does not allow any element to be deleted. It

is worthwhile to remind that the Memtable also never delete

any data items. Even though a query tries to delete a record

from the database, the record is not directly removed from

SSTable or Memtable, instead, an entry with a deleted flag

is inserted into the Memtable for the record to be deleted.

Hence, the DELETE query is treated as a special UPDATE

and the Memtable never directly remove any existing entry.

As mentioned before, the Bloom filter would be synchro-

nized from the Memtable server to multiple p-nodes. It is crit-

ical to reduce the network overhead. However, the method in-

volves much synchronization overhead for INSERT queries.

Once an entry is inserted into Memtable, its hashing bits in

Bm are set to 1. The change of these bits must be synchro-

nized to each copy of Bm, introducing considerable over-

head. We propose an efficient method which totally avoids

synchronization cost for data insertion by carefully designing

the maintaining policy of Bm and its usage in data access.

3.1 Overview

Figure 2 illustrates how Bm is maintained and synchronized.

When write operations are executed on the Memtable, redo

log entries are prepared to avoid data loss caused by node

failures. Before flushing a group of redo entries into disk, up-

dates on Bm are generated from redo log entries based on the

policy in Section 2. These updates act as the modification log

entries of the Bm (short for bf-logs in the following). To re-

duce synchronization cost, Bm is not directly sent to p-nodes,

instead bf-logs are transported to p-nodes and a copy of Bm

on a p-node catches up with the source by applying (replay-

ing) the identical bf-logs (See Section4).

Fig. 2 The Bloom filter maintenance and synchronization

3.2 Maintenance of Bm

The Memtable can be probably changed by the following

types of operations: INSERT, UPDATE, DELETE. We dis-

cuss with the policy that each operation modifies the Bloom

filter of Memtable. Considering an entry e with key k:

UPDATE A UPDATE operation modifies an existing record

entry e. There are two situations: (i) If k � Km, then e is newly

created in the Memtable. A bf-log is generated for k, which

adds existence of k into Bm; (ii) If k ∈ Km, then some previ-

ous operation has added k into Km and handled its update on

Bm, the current one does nothing.

DELETE A DELETE operation removes an existing record

entry e. As discussed in the beginning of the section, It is

treated as special UPDATE operation, which adds an deleted
flag for k. A read operation can identify whether the entry is

deleted by reading the flag. Thus, the DELETE operation is

treated the same to the UPDATE. (i) If k � Km, then k is mod-

ified for the first time. An entry with the deleted flag will



764 Front. Comput. Sci., 2019, 13(4): 760–777

write into the Memtable. It is required to add the existence of

k into Bm; (ii) If k ∈ Km, then some previous operation has

updated or deleted the entry e and processed its modification

on Bm, thus the current one does nothing.

INSERT An INSERT operation writes a non-existing record

entry e into the Memtable. (i) If k � Km, then k � Ks must

also stand. To read e, a p-node can easily find k � Ks by

checking Bs and then e can only be found in the Memtable.

The p-node can infer the fact without querying Bm. Thus,

there is no necessity in modifying Bm when inserting e into

Memtable. (ii) If k ∈ Km, this means the entry must be tagged

with a deleted flag, its bits inBm must have been already pro-

cessed by a completed DELETE operation. Therefore, we do

not need to modify Bm again.

Table 1 summarizes when an operation should update Bm.

It is only modified when an entry is newly created on the

Memtable by a UPDATE or DELETE operation.

Table 1 The maintenance policy of Bm

State INSERT UPDATE DELETE

k ∈ Km × × ×
k � Km × √ √

3.3 Data access based on Bm

Considering the query q(k) in Definition 1, we denote k ∈ Bm

or k ∈ Bs when all hashing bits of the key k are 1 in the (copy

of) Bm (Bs) respectively. Temporarily, we assume there is no

false positive in the Bloom filter and leave the issue in the

next. There are totally four situations here:

(1) If k � Bm and k � Bs, then e is either non-existing

or newly inserted into Memtable. In this situation. A

p-node will access Memtable. If existed, a p-node can

read e from the Memtable. If not, a p-node announce its

non-existence. Since reading a non-existing entry is rare

in real workload and does not affect the performance a

lot.

(2) If k � Bm and k ∈ Bs, then e never receives any modifi-

cation after it is written into the SSTable. A p-node will

directly access the SSTable.

(3) If k ∈ Bm and k ∈ Bs, e is stored on SSTable at first and

then get modified. A p-node should visit the Memtable

to read the entry.

(4) k ∈ Bm and k � Bs is infeasible to appear. Since k � Bs

is 0, the entry does not exist in the SSTable. Hence, it

does not exist in the database before it is added into

the Memtable. Thus, the entry can only be brought into

the Memtable by INSERT operation. However, INSERT

never adds the key filed of an entry into the Bm. On the

other hand, after k is added intoKm, no operation would

modify Bm for the entry again. We should have k � Bm,

which contradicts with the assumption that k ∈ Bm.

Thus, the case is not possible.

Based on the above discussion, Table 2 summarizes the

location of an entry under different combinations of Bloom

filter states. Note that the false positive is not considered in

the table.

Table 2 The Bloom filter state and the access matrix

k ∈ Bm k ∈ Bs Location Comment on the entry

0 0 Memtable
Not existed or newly

INSERT erted into Memtable

0 1 SSTable Stored in the SSTable

1 0 - Not possible

1 1 Memtable
Stored in SSTable and

has updates in Memtable

Handling false positives The Bloom filter permits false

positives to happen. Two kinds of false positives can happen

here:

a) The false positive of Bm: there is k ∈ Bm, but the entry

is not found in the Memtable. In this case, reconsider

the situation (3) above, if k ∈ Bs stands, it is required to

further access the SSTable.

b) The false positive of Bs: there is k ∈ Bs, but the entry

is not found in the SSTable. Reconsider the situation (2)

above, the entry is either non-existing or newly inserted

into the Memtable. Accessing the Memtable is required

for the case.

Precise data access algorithm The pseudocode of pre-

cise data access is shown in Algorithm 1. As discussed, the

Memtable is selected as the destination if and only if k is

contained by Bm or not by Bs (k ∈ Bm or k � Bs). 1) If the

condition stands, a p-node pulls e from Memtable in line 2–3.

If it is not found and k is also contained by Bm, the p-node

continues to access the SSTable in case of false positives in

line 4–5 and 9–10. 2) If the condition fails, then a p-node

pulls e from the SSTable in line 7. When nothing is returned,

the p-node access Memtable in case of false positives in line

8–10. As Bloom filter potentially contain false positives, an

entry may not exist in Memtable or SSTable even if Bm or

Bs confirms its existence respectively. When the entry is not

found, re-access is used to handle any potential false positive

in line 9–10.



Tao ZHU et al. Fault-tolerant precise data access on distributed log-structured merge-tree 765

3.4 Log-based synchronization

A p-node is required to synchronize the remote Bloom filter

of the Memtable to the local. A straight way is to send Bm

from Memtable server to each p-node. Generally, the Bloom

filter could occupy several MBs in order to encode more than

a million elements. Apparently it is not proper to synchronize

such a large object frequently among servers.

Lightweight synchronization We propose a lightweight

method by simply sending the bf-logs, which act as the mod-

ification logs of Bm. A copy of Bm replays bf-logs to catch

up with the source. As discussed above, only a small part of

operations generate bf-logs, the number of bf-logs is much

smaller than that of redo log entries. It means that the bf-

log synchronization has lower network overhead than the log

replication [14], which is essential for implementing a fault-

tolerant service.

Implementation Each bf-log is indexed by a monotoni-

cally increasing serial number. The Memtable server keeps

the newest bf-logs in a circular buffer. In synchronization, a

p-node pulls bf-logs from the remote by sending the largest

serial number N ever received. The Memtable server replies

with all bf-logs whose serial number is bigger than N. Since

the circular buffer has limited memory space, some new bf-

logs may overwrite the oldest ones in the buffer. When any

required bf-log has been overwritten, the p-node would be

directly replied with the whole Bm. It happens when a p-node

is firstly connected into the system and it tries to synchronize

its local empty Bloom filter with Bm the first time.

4 Consistence maintenance

A copy of Bm (noted as B′m) kept by a p-node may differ with

the source after synchronization. When B′m is out-of-date, a

record has a newer version in the Memtable, but a p-node

(using Algorithm 1) may skip it and reads the record from

the SSTable and returns a stale version to clients. To address

the problem, we discuss how to guarantee strong consistency,

namely the linearizability [10], for the precise data access.

Figure 3 is used throughout this section to explain our design.

4.1 Linearizability

Linearizability is a consistency model. It requires that 1) each

operation has a linearization point at some instant between its

start time and complete time, and 2) each operation appears

to occur instantly at that point. If all read operations visit both

Memtable and SSTable, the property is easily guaranteed. For

a read operation, its linearization point is the time when it

reads the Memtable. For a write operation, its linearization

point is the time when its data modification is applied into

the Memtable. With these linearization points, all operations

behave properly, i.e., each read operation always returns the

value created by the last write operation that occurs before it.

However, the precise data access changes the behavior of

read operations. Consider that a read operation Rx(e) tries to

retrieve record e and it determines to ignore the Memtable

access after checking B′m. For Rx(e), its linearization point

can be the time when it checks B′m. At that point, (i) if the

Memtable does not contain e, no write operation happened

before the time point. Rx is still linearizable because it can re-

turn the latest version of e by accessing the SSTable only. (ii)

If the Memtable contains e, a write operation must occur be-

fore the time point. Rx is non-linearizable because it misses

a newer version of e stored in the Memtable. In all, Rx is

Fig. 3 Group commit and lease management



766 Front. Comput. Sci., 2019, 13(4): 760–777

linearizable if e is not in the Memtable when Rx checks B′m.

Before we discuss how to ensure the linearizability of Rx, we

define the well-constructed relationship between a Bloom fil-

ter and a Memtable in Definition 2.

Definition 2 A Bloom filter B is well constructed for a

Memtable m if: for each record in m, its key is or is not added

into B using the policy in Table 2.

Actually, the record e is guaranteed to be not in the Memtable

if B′m is well constructed for the Memtable. Its correctness is

proofed in the following.

Proof Assume B′m is well constructed for the Memtable at

Rx’s linearization point, and e exists in the Memtable.

Since Rx ignores the Memtable access, B′m must deny the

existence of e and Rx must fetch e from the SSTable suc-

cessfully in Algorithm 1. As e does exist in the SSTable,

it can only be brought into the Memtable by a UPDATE or

DELETE operation. In both cases, its key must be added into

B′m according to the policy in Table 2, which contradicts with

the fact that B′m denies the existence of e. The conjecture is

proved by contraction.

Hence, if Rx(e) ignores the Memtable access when using a

well-constructedB′m in precise data access, e is guaranteed to

be not in the Memtable and then Rx is linearizable.

Clearly, The key to support linearizability is to refresh B′m
properly and make sure that it is well constructed for the re-

mote Memtable when it is used in precise data access. In the

following, we present a lease-based mechanism to refreshB′m
properly. To begin our discussion, we study how Memtable

and Bm are changed by write operations in the first.

4.2 Group commit

In the Memtable, write operations are committed in group.

Group commit is carried out with following steps:

1) Generation. Redo log entries are generated for write op-

erations and buffered in the main memory. A write thread

would force these redo entries into the disk in a fixed period,

called the group interval (e.g., time from ts(g1) to ts(g2) in the

figure).

2) Start phase begins at a time ts(gx) with a group of redo

entries formed. Then, bf-logs are generated from the group

and applied into Bm (e.g., from ts(g1) to tw(g1)). After that,

the write thread starts to flush the group into the disk.

3) Write phase begins at a time tw(gx). The write thread is

writing redo entries into the disk (e.g., from tw(g1) to tp(g1) in

the figure). Generally, it takes several milliseconds to finish a

disk write under hard disk driver (HDD, see Wikipedia).

4) Publish phase begins at a time tp(gx) after the write

thread has finished disk writing. Data modifications of the

group are applied into the Memtable in the phase (e.g., from

tp(g1) to te(g1) in the figure). After the group is published, it

ends at a time te(gx).

Invariance In the above procedure, both Bm and the

Memtable keep invariant during a period. Considering two

successive groups g1 and g2, Bm is invariant from tw(g1) (i.e.,

after bf-logs of g1 are applied) to ts(g2) (i.e., before bf-logs

of g2 are applied) and Memtable is invariant from te(g1) (i.e.,

after g1 is published) to tp(g2) (i.e., before g2 begins to pub-

lish). By taking advantage of the invariance of Memtable and

Bm, we design a lease-based mechanism to ensure the read

consistency when a p-node uses a copy of Bm in data access.

4.3 Lease management

Definition 3 A lease Lx is a contract given by the Memtable

server and held by each p-node. It contains an invariant

Bloom filter B′m (a version of Bm at some time point) and an

expiration time tx, which ensures that B′m is well constructed

for the remote Memtable before tx is reached. Therefore, dur-

ing the lease, the precise data access provides the linearizabil-

ity consistency if B′m is used in Algorithm 1.

Basic design As discussed above, the Memtable keeps in-

variant after a group ends and before the next group begins to

publish. A direct design is to give a lease which starts at the

end of a group and finishes before the publish phase of the

next group, so that the Memtable does not change during the

lease. Considering two successive groups: g1 and g2 in Fig. 3,

a p-node can useBm at tw(g1) between te(g1) and tp(g2). Obvi-

ously, the version of Bm is well constructed for the Memtable

during the period. But a limitation is that each lease starts

after the previous one ends. When a lease is expired on a p-

node, the new one is just generated on the Memtable server.

Since it takes time to deliver a new lease from the Memtable

server to a p-node, there is no valid one on the p-node be-

fore the new one is received. Thus, it is impossible to provide

p-nodes with a valid lease all the time, making such design

impractical. To this end, we consider designing lease with

overlap.

Lease design A lease can begin after a group has updated

Bm, i.e., tw(gx), and end before the next group begin to pub-

lish, i.e., tp(gx+1). For example, L1 can last from tw(g1) to

tp(g2) and B′m is the version of Bm at tw(g1). We proof that

such design generates valid leases as well.

Correctness Between tw(g1) and tp(g2), the Memtable has



Tao ZHU et al. Fault-tolerant precise data access on distributed log-structured merge-tree 767

two versions while B′m is constructed with all bf-logs gener-

ated by g1 and all previously ended groups. 1) Before tp(g1),

the Memtable m0 contains records committed by all groups

those end in prior to g1. B′m is well constructed for m0 be-

cause all bf-logs generated by these groups have been applied

in B′m. Actually, bf-logs of g1 are also applied in B′m. And

it does not change the well-constructed relationship between

B′m and m0. 2) After tp(g1), the Memtable m1 contains records

committed by g1 and all previously ended groups. NowB′m is

still well constructed for m1. In both bases, B′m is well con-

structed for the Memtable.

Since two successive leases have overlap in the time-line
under such design, a new lease is available for acquisition be-
fore the in-using one is going to be expired. In Fig. 3, L0

and L1 overlap with each other between tw(g1) and tp(g1)
(i.e., g1 is in writing phase), which lasts several milliseconds.
When L0 is going to be expired, L1 is already available for
acquisition. It is sufficient for a p-node to extend L1 from the
Memtable server before L0 is totally expired.

Note that in the overlap of two leases, both their B′m work

correctly in accessing Memtable. Taking L0 and L1 as an ex-

ample, they have overlap from tw(g1) to tp(g1). In the period,

B′m of L0 is well constructed for the Memtable. On the other

hand, B′m of L1 also works for the Memtable, which is dis-

cussed by the Case 0 in the above proof.

4.4 Lease implementation

In order to support the lease management, clocks of all

servers are synchronized using the precision time protocol

(PTP), which achieves clock inaccuracy within 50 µs on a

local area network. Overall, the lease management is done

with the following steps. 1) A p-node tries to acquire a lease

by sending an acquisition request to the Memtable server.

2) When the request is received by the Memtable server, it

replies the p-node with the newest generated lease and all

bf-logs required to refresh the copy of Bm on the p-node. 3)

After the p-node receives the reply, it updates its local copy of

Bm and renew the expiration time of the lease. 4) The p-node

tries to send a new acquisition request when it considers the

current lease is going to be expired. In the following, we dis-

cuss how to generate a lease, to acquire a lease and to check

the expiration of a lease in detail.

Generation A lease Lx is generated at the time tw(gx), con-

taining the current largest bf-log serial number N and the ex-

piration time tx. Its B′m is created by replaying all bf-logs

whose serial number is small than N. Its expiration time tx

is allowed be set as tp(gx+1), the time that the next group be-

gins to publish. However, it is not known in advance, but

can be inferred by adding the current time, the group inter-

val and time spent on disk writing together (e.g., L1 in Fig.

3). Local processing time (ts(gx) to tw(gx)) is ignored because

it is relatively very short. Group interval is given by system

configuration. Disk write time can be estimated from the time

used for previous groups.

Commit wait Since tx is estimated, it can be smaller or

bigger than its real value tp(gx+1). 1) If tx > tp(gx+1), the

Memtable should not allow gx+1 to publish its content. Oth-

erwise, inconsistent read may happen since Lx is not expired

now. As a result, the publish phase of gx+1 is blocked until

tx is reached. It is called as commit wait. 2) If tx < tp(gx+1),

the lease is expired early than the next group begins to pub-

lish. Thus, it does not block the next group from publishing.

To avoid commit wait, we prefer to use the lower bound of

the estimated disk write time in determining the tx, making

tx < tp(gx+1). Note that choosing a small tx does not harm cor-

rectness because B′m of Lx is always usable before tp(gx+1).

Lease acquisition In each synchronization, a p-node pulls

a lease and bf-logs whose serial numbers are in (N1,N2] from

the Memtable server (N1 the largest serial number ever re-

ceived, N2 is the one specified by the lease). Synchronization

is required when the lease is going to expire soon. Generally,

a p-node tries to acquire a new lease when the in-using one

will be expired in 400 µs. The number is chosen based on

the time used for the round-trip communication, which takes

about 200 µs under the 1 Gigabit Ethernet. Since the com-

munication is fast, a p-node receives response early than the

current lease is expired.

In Algorithm 1, a p-node first checks whether the Bloom

filter is usable by confirming that the expiration time of the

lease is not reached. If that is true, it is safe to use B′m in data

access. A problem is the clock inaccuracy between servers.

Since the expiration time tx of a lease Lx is specified by the

Memtable server, to check whether a lease Lx is expired,

tx ought to be compared with tm (i.e., the system time of

the Memtable server). Since the comparison is done by the

p-node, it is required for the p-node to calculate the upper

bound of tm. Actually, a p-node can calucate the upper bound

of tm as tl + DELETEta. Here tl is the time of its local clock

and DELETEta is the maximal amount of clock difference

under the PTP.

5 Compaction

The size of Memtable increases when more and more data

are accumulated. To release the utilized memory, the current



768 Front. Comput. Sci., 2019, 13(4): 760–777

active Memtable has to be compacted into a SSTable when its

size reaches a threshold. To distinguish the concept of com-

paction with SSTables in Section 2, we call the process that

compact the Memtable into the SSTable minor compaction.

In this section, we first introduce the process of minor com-

paction, then we discuss how to achieve precise data access

when the minor compaction happens.

5.1 Minor compaction

The minor compaction consists of three general steps: 1)

freeze the current active Memtable m1 and make it im-

mutable; 2) create a new Memtable m2 to serve future write

requests; 3) the immutable Memtable m1 is converted into

SSTable format and moved into a distributed file system. To

freeze m1, the server writes a compaction log entry (short for

CLE) into the redo log. The compaction log entry acts as the

boundary for data writes. For redo entries written before the

CLE, their corresponding data are written into m1. For redo

entries written after the CLE, their data are written into m2.

Respectively, before flushing the CLE into the disk, the

Memtable server appends a special bf-log entry, noted as bf-

change, into the bf-log buffer. When the special log entry is

received by a p-node, the p-node creates a new empty Bloom

filter for m2. For any bf-log entry received after the bf-change,

it would be replayed into the new Bloom filter. Clearly, the

usage of bf-change entry is similar with that of the CLE,

which acts as the boundary for bf-log entries belonging to

different Bloom filters. The CLE and bf-change entry ensure

that if a redo entry applies its writes into m1, its bf-log entry

is added into Bm of m1, otherwise, its bf-log entry is added

into Bm of m2. Hence, each Memtable has its Bm constructed

correctly.

After the CLE is flushed, a new Memtable m2 is created.

For redo entries written after the CLE, they write their data

into m2. And the m1 becomes an immutable Memtable now. A

daemon thread moves m1 into the distributed file system and

stores that as a new SSTable file. Once m1 has been totally

stored as SSTable, the Memtable server persists the position

of the latest CLE into a file, named as replay-position. The

file informs the recovery procedure the start position for re-

playing the redo log when the Memtable server is restarted

after node failure.

5.2 Data access of minor compaction

Being different from normal cases, there are an active

Memtable m2, an immutable Memtable m1, and the old

SSTable s0 in the system during the minor compaction, where

m1 and m2 are stored in the same Memtable server, s0 is

stored in the distributed file system. Since m1 and m2 are kept

in the main memory of the same server. A p-node can access

both of them efficiently by communicate with the Memtable

server once.

A p-node maintains three Bloom filters at the same time:

Bs for s0, Bm1 for m1, and Bm2 for m2. Given a query key k,

the precise data access is carried out with the following steps.

In the first, we infer whether the entry exists in s0 by ex-

amining k ∈ Bs or not. Two cases are possible:

Case 1: if k � Bs, then the entry is guaranteed to be not in s0.

Hence, the entry can only be found in m1 or m2. It accesses

m2 in the first, if the entry is not found, it then accesses m1.

As m1 and m2 are stored in the main memory of the same

server, accessing m1 and m2 can be serviced by a single net-

work communication.

Case 2 : if k ∈ Bs, then the entry may exist in s0. The p-node

examines Bm1 and Bm2 before issuing remote data access.

a) If k ∈ Bm1 or k ∈ Bm2, then the entry may be stored

in m1 or m2. The p-node accesses both m2 and m1 to

find the entry. (i) If the entry is found in m1 or m2, then

p-node only access Memtable; (ii) If the entry is not

found due to false positives, the p-node tries to access

s0 again.

b) If k � Bm1 and k � Bm2, then the p-node tries to ac-

cess s0 in the first. (i) the entry is found in s0. In this

situation, the entry is guaranteed to be not in m0 and

m1. This can be proved as: assuming op to be the first

operation that brings the entry into Memtables, op can

only be Update or Delete because Insert only operates

on non-existing entry. As a result, op must update Bm1

or Bm2 before writing the entry into Memtables, con-

tradicting with the fact that k � Bm1 and k � Bm2. (ii)

the entry is not found in s0, which results from the false

positive of Bs. An Insert operation may write the en-

try into Memtables. It does not update Bm1 or Bm2 as

discussed in Section 3. Hence, the p-node is required to

access m0 and m1.

Algorithm 2 summarizes the data access methods de-

scribed in the above. Line 1 checks whether the entry is possi-

bly stored in m1 or m2 using the rules discussed in the above.

If the condition stands, line 2 tries to read e from m1 and

m2. A p-node reads the m1 and m2 at the same time using a

single network communication with the Memtable server. If

the condition of line 1 does not stand, line 6 tries to read e

from s0. A p-node reads the s0 by communicating with the



Tao ZHU et al. Fault-tolerant precise data access on distributed log-structured merge-tree 769

SSTable server. Line 8 checks whether e is not found in the

first remote data access, which happens due to the false pos-

itive of the Bloom filter. In this case, line 9 accesses the rest

structures to find the entry.

In addition to minor compaction, the LSM-Tree also

adopts the major compaction to merge multiple SSTable files

into a single one. When it happens, the SSTable and its Bs

are updated. A p-node only needs to cache a new Bs for the

new SSTable generated by major compaction.

6 Fault tolerance

Node failure is common in distributed environment. In case

of node failures, this section introduces how to recover a

failed node and re-construct the structures used by precise

data access. In all, there are three types of node failures: 1) a

server that stores the Memtable is failed, noted as Memtable

server failure; 2) a server that stores the SSTable is failed,

noted as SSTable server failure; 3) a p-node that handles

query processing is failed, noted as processing unit failure.

Obviously, A SSTable server does not lose data when

a node failure happens. It is because the SSTable is disk-

resident structure. When a SSTable server is restarted, it is

only required to re-construct its in-memory bloom filterBs by

scanning its local SSTable data. In the following, we mainly

discuss the recovery of Memtable server and p-node.

6.1 Memtable server failure

Both the Memtable and the primary Bm is kept in the main

memory. When a server is restarted after node failure, the re-

covery procedure is responsible for restoring both Memtable

and Bm, which is achieved by replaying redo log entries.

A redo entry can be abstracted as a quadruple:

〈LogId,DML,Key,Value〉, where LogId field is the unique

identifier for each log entry. It is assigned in monotonically

increasing order, DML represents the type of the operation,

i.e., insert, update or delete, Key and Value fields correspond

to key and value parts of a record.

The recovery procedure replays redo log entries in the or-

der of LogId, i.e., the log entry with smaller LogIds are re-

played before those with larger LogIds. In the first, the re-

playing procedure read the replay-position file, which keeps

the compaction log entry (CLE) position of the last finished

minor compaction. Then, the procedure replays all log entries

whose LogIds are bigger than that of the CLE.

Given each redo entry, the (Key, Value) pair is firstly writ-

ten into the Memtable. In the next, Bm and the bf-log buffer

are restored based on the (DML, Key) fields of the redo entry

using the same policy described in Section 3.

If a CLE is encountered, the replaying procedure creates a

new Memtable, a new Bm, and writes a bf-change entry into

the bf-log buffer. Next redo entries are replayed into the new

Memtable and newBm. When the recovery procedure is com-

pleted, data will be written into the newest Memtable. The old

immutable Memtable continues to be converted into SSTable

format and be stored into the distributed file system.

Next we proof the correctness of the above procedure that

Memtable (or Memtables) are correctly recovered without

losing data.

Proof The recovery procedure correctly restores the

Memtable as well as the Bm. 1) No data is lost. For redo en-

tries whose LogIds are smaller than the CLE, their data has

been already stored as SSTable in the durable storage. Thus,

there is no necessity to replay these redo entries. For redo

entries with LogIds being bigger than the CLE, they are re-

played by the recovery procedure. Hence, their data does not

get lost either. 2) Multiple Memtables and their associatedBm

are correctly recovered. The compaction log entry (CLE) acts

as the boundary for redo log entries belonging to different

Memtables. For those in front of the CLE, they are recovered

into an old Memtable; for those in behind of the CLE, they

are recovered into a new Memtable. Hence, multiple Memta-

bles can be correctly recovered. On the other hand, eachBm is

re-created using redo entries belonging to the corresponding

Memtable. Hence, each Bm can be recovered correctly.

6.2 Processing unit failure

A p-node is required to recover the data structures (Bs and

Bm) used to precise data access. 1) For SSTable, a p-node



770 Front. Comput. Sci., 2019, 13(4): 760–777

communicates with the SSTable server to fetch the Bs. 2) For

Memtable, a p-node acquires the latest copy of Bm using the

policy described in Sections 3 and 4.

When a p-node is restarted, it has not received any bf-log

from the Memtable server. The largest serial number N for

bf-log is initialized to 0 (see Section 3). A p-node sends the

number N = 0 to the Memtable server. The Memtable server

tries to reply with the p-node with all bf-logs whose serial

numbers are bigger than 0. If any bf-log has been overwritten

in the circular buffer, then the server directly sends the whole

Bm back to the p-node. If multiple Bm exist when the minor

compaction is started and there are a frozen Memtable and an

active one, all of them are sent to the p-node. By pulling Bs

from SSTable server, acquiring a copy of Bm, the p-node can

continue to use the precise data access algorithm.

6.3 Replication

In the above, we discuss how to recover a failed server. But,

before a failed server comes back, it can not process any user

requests. In order to provide continuous service, replication

can be adopted to improve system availability [15]. Here we

discuss how to maintain replicas for each kind of server.

SSTable server Since a SSTable is read-only structure, it

can be easily replicated over multiple servers without wor-

rying about data consistency. In default, a SSTable has three

replicas on three distinct servers. Each can process read re-

quests of the SSTable correctly. Whenever one is down, the

rest two can still provide service. Hence, a SSTable is avail-

able when at least one replica is alive.

Memtable server To maintain replicas for a Memtable, we

use the distributed consensus protocol Raft [16]. In default,

the Memtable is replicated over three distinct servers. Using

the Raft protocol, one of them is elected as the leader while

the others become followers. All read/write requests of the

Memtable are processed by the leader. For each write request,

the leader is required to synchronize its redo entry to follow-

ers. A write request is considered to be successfully commit-

ted only when its redo entry is durable on more than half of

all replicas.

By replicating the Memtable over three servers, the system

can tolerate the failure of one server. If a follower is down,

the leader processes read requests of the Memtable as usual.

For write requests, the leader replicates their redo entries to

the other living follower. Therefore, write requests get com-

mitted because their redo entries become durable on more

than half of all replicas. If the leader is down, a follower will

be elected as the new leader and continue to service user re-

quests. Hence, with only one server being down, the system

can still process read/write requests of the Memtable. More

details of the Raft-based replication mechanism can be found

in [16, 17].

When the leader is down, a follower is elected as the new

leader. In precise data access, a p-node begins to read the

Memtable, pull theBm and extend leases from the new leader.

Hence, it is necessary to guarantee that the Memtable on

the new leader contains all previous committed data and the

corresponding Bm is well constructed. In implementation, a

write request is successfully committed only when the leader

has synchronized its redo entry to half of all followers. When

a follower has received consecutive redo entries, it flushes

them into its local disk in the first. Then, a follower replays

redo entries to restore Memtable and Bm using the algorithm

discussed in Section 6.1. Once a follower is elected as the new

leader, the Raft protocol guarantees that the server has all pre-

vious committed redo log entries [16]. Hence, the Memtable

on the new leader contains all committed data and the corre-

sponding Bm is well constructed.

P-node A p-node is only responsible for receiving user

requests, reading records from storage servers, processing

user-defined relational operators and writing records into the

Memtable server. Since a p-node does not store data, it does

not require any replica. Whenever a p-node is down, user re-

quests can be processed by any other living node.

Summary Table 3 summaries how to recover different kinds

of servers from node failures, and how to provide fault toler-

ant service using replication. Firstly, a SSTable server does

not need to recover its data because all records are stored in

the disk. It re-constructsBs by scanning the SSTable and add

all record keys into Bs. If a SSTable has k replicas (in default

k = 3), the system can tolerate at most k−1 replicas to be lost.

Secondly, a Memtable server recovers its data by replaying

the redo log. Its Bm is recovered by replaying bf-logs, which

can be generated from the redo log. When 2k + 1 replicas are

configured for the Memtable (in default k = 1), the system

can tolerate at most k Memtable servers to be lost. Lastly, a

p-node does not require data recovery since it does not store

any data. When a p-node is restarted, it pulls Bs and Bm from

storage servers. And there should be at least one p-node left

so that the system can service user requests.

Network partition In addition to the node failure, another

kind of failure is the link failure, which leads to the net-

work partition among servers. Link failures split a distributed

system into several subsets. For servers in the same subset,

they can communicate with each other. For those from dif-

ferent subsets, there are communication errors among them.

If network partition happens, the system is available only



Tao ZHU et al. Fault-tolerant precise data access on distributed log-structured merge-tree 771

Table 3 Recovery and replication of different servers

Server type Data recovery Bloom filter recovery Replicas Minimum requirement

SSTable server Not necessary Re-build Bs by scanning SSTable k 1

Memtable server Replay the redo log Re-generate and replay bf-logs 2k + 1 k + 1

p-node Not necessary Pull Bs or Bm from remote servers k 1

when there is a subset, which contains more than half of

Memtable replicas, at least one SSTable replica and one p-

node. In such a subset, a Memtable server can be elected as

the new leader by the Raft protocol. The leader is able to han-

dle read/write requests of the Memtable. The living SSTable

server can process read requests of the SSTable. And the p-

node can pull a copy of Bm and extend lease from the leader

Memtable server. Then it can use precise data access to fetch

records from the Memtable or the SSTable.

7 Experiment

We have implemented our method into Oceanbase, a dis-

tributed relational database developed by Alibaba. It has two

layers: a query processing layer and a storage layer. In the

storage layer, the Memtable is kept by a server named Up-

dateserver and the SSTable is stored on Chunkserver.

All the experiments are conducted on a cluster with 20

servers. Each has two 2.00 GHz 6-Core E5-2620 processors,

192GB DRAM and 1 TB HDD, connected by a 1 Gigabytes

switch. Three servers is used to host Memtable and three are

used to host the SSTable. Both Memtable and SSTable are

replicated over three servers. Among three Memtable servers,

one acts as the leader and the others are followers. The rest

14 servers are used to deploy p-nodes.

All experiments use the YCSB benchmark, which is pop-

ular in evaluating the read/write performance for a database

system. We populate 1 million records in the database. In de-

fault, 95% records are initially stored in the SSTable and 5%

are stored in the Memtable. We further adjust the storage dis-

tribution in Section 2. The workload contains unlimited read

requests and a fixed rate of write requests (50K writes/sec). In

default, records are accessed in uniform distribution. Skewed

access distribution is considered in Section 2.

In the following experiments, three methods are evaluated.

1) In NDA, we use the naive data access method. A p-node

firstly pull records from the Memtable, if no record is re-

turned, it accesses the SSTable in further.

2) In BDA, a p-node examines the Bloom filter of SSTable

to avoid unnecessary access as discussed in Section 1.

3) In PDA, we use the techniques designed in this work.

In these methods, a p-node would try to cache data from

SSTable. Since a SSTable is immutable, such cache mecha-

nism can reduce duplicate remote access efficiently. A Bloom

filter uses 2 million bits and 4 hash functions. Performance of

different methods are evaluated by read operations processed

per second (ops).

7.1 Concurrency & scalability

Concurrency Figures 4–6 shows the performance of differ-

ent methods by varying the number of clients connected with

the system. 9 p-nodes are deployed to service requests. Figure

4 shows the performance under a read-only workload. Over-

all, PDA has the best performance under all cases. It reaches

about 1,100k ops when 450 clients are used, which is about

six times that of the NDA or BDA. The performance of NDA

and BDA increases with more clients are simulated, but sta-

bilizes once the Memtable server is overloaded. They easily

make the Memtable server be performance bottleneck since

they have to access the Memtable for every request. On the

other hand, performance of PDA improves all the time and

does not witness bottleneck from Memtable access. Figures

5 and 6 add 50k and 100k writes/second into the workload

respectively. The peak performance of NDA and BDA de-

creases when more writes requests are added into the work-

load. They have performance bottleneck on the Memtable

access but writes requests are also heavily processed by

the Memtable server. Performance of PDA also slightly de-

creases because more records are brought into Memtable by

ongoing writes operations and less Memtable access is fil-

tered by PDA.

Fig. 4 Varied clients, read-only workload

An important observation is that NDA and BDA share sim-

ilar performance in all cases, as well as in the following

experiments. It is because the SSTable is well merged and



772 Front. Comput. Sci., 2019, 13(4): 760–777

cached on each p-node. Reducing SSTable access does not

contribute to performance at all. Actually, BDA shows its

benefits only when there are many small SSTable files in

the system and no SSTable cache is maintained on each p-

node. Hence, reading an entry has to issue many SSTable ac-

cess. And SSTable access is expensive since no local SSTable

cache is enabled on a p-node.

Fig. 5 Varied clients, 50k writes/second

Fig. 6 Varied clients, 100k writes/second

Scalability Figures 7–9 evaluates performance by varying

the number of p-nodes connected with storage servers. In

each case, we adjust the number of clients used to achieve the

best performance. By deploying more p-nodes, the synchro-

nization overhead of PDA is increased. But PDA still shows

linear scalability with respect to the number of p-nodes used.

The overhead introduced by Bloom filter synchronization is

negligible compared with those unnecessary Memtable ac-

cess eliminated by PDA. On the other hand, BDA and NDA

achieve their peak performance when about 10 p-nodes are

deployed. They are severely influenced by the mass useless

Memtable access. By adding write requests into the work-

load, NDA and BDA still witness a performance decrease due

to the overloaded Memtable server. In all, it is worthwhile to

adopt PDA in processing a read-intensive workload.

7.2 Storage & access distribution

Storage distribution In the previous experiments, 5%

records have their latest versions stored in Memtable. Fig-

ure 10 shows the performance by varying the percentage of

records in the Memtable. When about 50% records should

be read from Memtable, PDA achieves about 300k ops. With

the percentage goes down, the performance keeps increasing.

In comparison, both NDA and BDA are not sensitive to the

parameter. Given a record who has its lasted version in the

Memtable, PDA process in the same with the others. Thus,

when the percentage of these records increases, the perfor-

mance of PDA would get closer to that of NDA/BDA. But it

still shows about 200% improvement even when 50% records

should be read from Memtable. In real workload, Memtable

would not contain a large percent of records. For utilizing

hardware resources better, a large Memtable would be frozen

and transformed into SSTable.

Fig. 7 Varied p-nodes, read-only workload

Fig. 8 Varied p-nodes, 50k writes/second

Fig. 9 Varied p-nodes, 100k writes/second

Fig. 10 Varied data storage distribution



Tao ZHU et al. Fault-tolerant precise data access on distributed log-structured merge-tree 773

Skewed access distribution Figure 11 shows the perfor-

mance under a skewed access distribution. In YCSB, request

parameters are generated under a Zipfian distribution, which

uses θ to adjust the skewness. If the θ is larger, the distribution

is skewer. Under a skew access distribution, some records

are “hot” being frequently updated and read, and some are

“cold” being seldom accessed. When θ = 0.9, PDA achieves

about 187k ops while NDA/BDA is about 128k ops. PDA has

about 1.46x improvements. It is because most records read

are also get updated under a very skewed workload. When θ

goes down, performance of PDA increases. Under θ = 0.1,

it achieves 921k ops and has about 4.93x improvements over

that under θ = 0.9.

Fig. 11 Skewed access distribution

7.3 Synchronization & clock inaccuracy

Synchronization overhead Figure 12 shows the overhead

of the Bloom filter synchronization. A p-node refreshes its

local Bloom filter when the current lease is going to be ex-

pired. The Memtable server compute a lease’s expiration time

based the group interval and disk write time. Figure 12 shows

the synchronization time and frequency by varying the group

interval. Firstly, it always takes about 200 µs for a p-node

from sending a synchronization request to receiving the re-

sponse. The time used is relatively very short compared with

the group interval. Secondly, when Memtable flushes one

group of redo entires per 2ms, each p-nodes issues about 700

synchronizations per second. Synchronization frequency de-

creases when a longer group interval is used and a p-node is

granted with a longer lease. An exception is the case where

1ms group interval is used. Its synchronization frequency

is also smaller than the case where 2ms group interval is

used. By using a short group interval, many small groups

are formed. Writing small groups increases the average disk

write time because HDD favors large sequential writes. As a

result, the disk write time is increased, making each p-node

receive a longer lease again.

Clock inaccuracy In precise data access, all servers should

have their system clocks synchronized. Here, we use the pre-

cision time protocol (PTP) to synchronize their clocks. On a

local area network, it achieves clock accuracy in the degree

of microseconds. As discussed in Section 4, the inaccuracy

of clock has impact on the usability of a B′m on each p-node.

If the clock is very inaccurate, a p-node may overestimate the

time of Memtable server and consider the current lease to be

expired. As a result, it is not possible for the p-node to use

PDA. Instead, it is only allowed to use BDA since Bs can be

used to filter some SSTable access.

Fig. 12 Synchronization overhead

Figure 13 studies the impact of clock inaccuracy on the

performance. Here we simulate the maximal amount of clock

inaccuracy between two servers. To achieve that, we assume

all server clocks are exact accurate under the PTP. When

a p-node fetches its system time, its clock returns the time

by pulsing current time with a random number. The ran-

dom number is chosen between [−DELETEta,DELETEta]

with a truncated normal distribution. Hence, the maximal

amount of inaccuracy between a p-node and the Memtable

server is DELETEta. In the experiment, we gradually in-

crease DELETEta and evaluate its influence on the perfor-

mance. When DELETEta increases from 1ms to 3ms, the

throughput changes a little. It is because the group commit

happens in every 5ms and the generated lease lasts longer

than 5ms. The lease is long enough to ensure that a new one

can be extended before the current one is considered to be ex-

pired. When the amount of inaccuracy continues to increase,

the throughput begins to drop because a p-node may consider

its current lease to be expired due to overestimating the time

of the Memtable server. As a result, a p-node can only uses

the BDA instead of the PDA. When the inaccuracy reaches

20ms, the throughput of PDA (about 160 k) is still slightly

bigger than that of BDA (about 120k) or NDA (about 110k).

Fig. 13 Impact of clock inaccuracy



774 Front. Comput. Sci., 2019, 13(4): 760–777

7.4 Compaction & fault tolerance

Compaction Figure 14 shows the impact of data com-

paction. We keep tracks of the throughput of the system by

running it with the default workload for a period and con-

ducting data compaction. 1) A minor compaction operation

starts at 0′15′′. The operation has little impact on the perfor-

mance since it only freezes the active Memtable and replace it

with a new one on the Memtable server. 2) At 0′45′′, the ma-

jor compaction is started to merge the old SSTable with the

one created by minor compaction. The major compaction op-

eration also notifies the p-node to read the new SSTable from

SSTable servers. Though the new SSTable is not physically

created yet, a SSTable server would access multiple SSTable

files, and return the latest version when a p-node tries to read

the new SSTable. Since each p-node never caches data items

for the new SSTable, it has to issue more network commu-

nications with SSTable servers. As a result, the performance

drops. With more and more data items of the new SSTable

are cached on p-nodes, the performance keeps increasing and

returns to the normal level at about 2′30′′.

Fig. 14 Impact of compaction

Fault tolerance In Figs. 15–18, we simulate the impact of

node failures by running the default workload. Different types

of servers are killed at a given time.

In Fig. 15, one of ten p-nodes is kill at 0′30′′. The perfor-

mance drops a bit because some clients can not send queries

any more since they lose their connections with the failed p-

node. The p-node is started at 1′00′′ and clients are able to

re-connect into the system again. Then the performance re-

turns again.

Fig. 15 Failure of p-node

In Fig. 16, one of three SSTable servers is killed at 0′30′′,

which has little impact on the performance. It is because the

SSTable is replicated over three servers and is also cached

on p-nodes. When a server is lost, SSTable access can be

serviced by the local cache of the p-node or replicas on the

other SSTable servers. The killed SSTable server is restarted

at 1′00′′ and it still has little impact on the performance.

Fig. 16 Failure of SSTable Server

In Fig. 17, the leader of three Memtable servers is killed at

0′30′′. Since all p-nodes can not communicate with the leader

any more, they can not synchronize their local Bm, extend

leases or access the Memtable. As a result, the throughput

drops to zero. It takes about 8 seconds to elect a new leader

among the rest living Memtable servers. After that, each p-

node establishes connections with the new leader. Both read

operations and write ones can be serviced again. At 1′00′′, we

restart the killed Memtable server. It re-joins into the cluster

and acts as a follower now. In Fig. 18, a follower of three

Memtable servers is killed at 0′30′′. Its failure has little im-

pact on the performance, because the follower is not responsi-

ble for processing any user requests directly. As long as both

the leader and the other follower are still living, the system is

able to service both read and write operations as usual. The

failed server re-joins into the cluster at 1′00′′ and still acts as

a follower.

Fig. 17 Failure of Memtable server (leader)

Fig. 18 Failure of Memtable server (follower)



Tao ZHU et al. Fault-tolerant precise data access on distributed log-structured merge-tree 775

8 Relate works

The design of the log-structured storage can be found in some

early works which utilize a write-optimized structure and

some read-optimized structure(s) for database storage. Sev-

erance and Lohman [18] proposes the differential files for

storing a large database. It separates a large database into

two parts: a differential file and a main file. A consistent and

read-only database snapshot is stored in the main file, while

all data modifications on the snapshot are consolidated into

a relatively small storage area, called differential file. Later,

O′Neil et al. [2] proposes the log-structured merge tree. The

author exploits a multi-level structure for large database stor-

age. The LSM-tree allows multiple read-only structures used

and re-organized multiple structures better than [18]. Both [2]

and [18] are used to index records on a single node. And

O′Neil et al. [2] is implemented in LevelDB and RocksDB.

Storing all data in a single node avoids the performance over-

head brought by extra remote data access. However, a sin-

gle node only provides limited storage capacity. When the

database get larger, the performance can be greatly limited

by the disk I/O as fewer records could be cached in the mem-

ory. In comparison, the precise data access is built upon the

distributed LSM-Tree. When the database gets larger, a dis-

tributed LSM-Tree is able to scale out its storage capacity by

deploying more SSTable servers.

BigTable [3] implements the LSM-Tree in the distributed

fashion. In BigTable, the writing part of the LSM-Tree in

stored in the memory and the read-only part is stored in the

Google file system [5]. Its design is inherited by other dis-

tributed NoSQL systems, such as Apache HBase. Some other

database systems are built upon BigTable. Percolator [7] and

Megastore [6] build their application servers directly on the

BigTable. The major drawback of a distributed LSM-Tree is

that processing each read operation requires several network

communications, which increases the latency. Our work acts

as a data access optimization between the query layer and the

storage layer of a database system. It helps avoid most unnec-

essary remote data access.

Some other optimizations are also designed for LSM-Tree.

bLSM-tree [8] uses the Bloom filter [9] to reduce disk ac-

cess on a SSTable, which is adopted in [3]. The method only

works well in filtering unnecessary SSTable access. It does

not work for the Memtable. Since the SSTable is a read-

only structure, its Bloom filter is immutable after being con-

structed. Hence, there is no consistency issue when caching

the Bloom filter on a p-node. In a different, the problem be-

comes much more difficult considering that the Memtable

changes over time. This work proposes methods to synchro-

nize the Bloom filter efficiently when its Memtable receives

new updates. Besides, our data access algorithm guarantee

the linearizability consistency when using a Bloom filter in

filtering Memtable access. Muhammad [19] improves the

performance of major compaction so that multiple SSTable

files can be merged more quickly. It helps reduce the number

of SSTable so that a read operation is required to access fewer

SSTables. However, all read operations are still required to

access the Memtable even if all SSTables are merged into a

single one using the method proposed by [19]. Diff-Index

[20] designs secondary index for distributed LSM-tree. The

work offers four index update schemas with different con-

sistency guarantee and analyze their performance. It allows a

read operation to read a record using its non-primary-key col-

umn without scanning the whole table. The proposed method

reduces the maintenance overhead of the secondary index at

the cost of weakening the consistency guarantee. In a differ-

ent, our work is mainly designed for querying a record using

its primary key. We improve the performance as well as en-

suring the linearizability consistency.

In comparison, the precise data access is able to filter most

unnecessary Memtable access without weakening the consis-

tence. However, it also has the following disadvantage. It is

limited to be used on a local area network, because the lease

management requires all server clocks to be well synchro-

nized. Under a wide area network, the clock inaccuracy is too

large to make our method work. Besides, it also takes much

longer for a p-node to extend a lease from the Memtable

server if they are deployed in different regions.

This work is an extended version of [21], which firstly

presents the precise data access algorithm for distributed

LSM-Tree. However, Zhu et al. [21] does not take data com-

paction and component failures into consideration when de-

signing the algorithm. In this work, we make the algorithm

fault-tolerant. The distributed LSM-Tree can correctly re-

cover the data structures used by the algorithm after node fail-

ures happens. In addition, the minor compaction of the LSM-

Tree is carefully designed, so that our algorithm work cor-

rectly and efficiently even if the LSM-Tree is re-organizing

its data storage in the backend.

9 Conclusion

This work presents the precise data access for the distributed

LSM-tree. Primarily, it is designed for applications whose



776 Front. Comput. Sci., 2019, 13(4): 760–777

database is more than terabytes in size. Such database is

better to be stored in the distributed LSM-tree, and the pre-

cise data access help improve its performance in servicing

read heavy workloads. For example, some online shopping

websites stores TB-sized or PB-sized data and is required

to service massive user queries at the peak time. By main-

taining low overhead structures among servers, the precise

data access help reduce most unnecessary remote Memtable

access. Extensive experiments have shown that our solution

improves the performance a lot. At the present, the Bloom

filter-based mechanism only handles point query efficiently.

A future direction is to consider how to reduce unnecessary

remote range scan on both Memtable and SSTable.

Acknowledgements This work was partially supported by National
Hightech R&D Program (2015AA015307), the National Natural Science
Foundation of China (Grant Nos. 61702189, 61432006 and 61672232),
and Youth Science and Technology - “Yang Fan” Program of Shanghai
(17YF1427800).

References

1. Chen J C, Chen Y G, Du X Y, Li C P, Lu J H, Zhao S Y, Zhou X. Big

data challenge: a data management perspective. Frontiers of Computer

Science, 2013, 7(2): 157–164

2. O’Neil P E, Cheng E, Gawlick D, O’Neil E J. The log-structured

merge-tree. Acta Informatica, 1996, 33(4): 351–385

3. Chang F, Dean J, Ghemawat S, Hsieh W C, Wallach D A, Burrows

M, Chandra T, Fikes A, Gruber R E. Bigtable: a distributed storage

system for structured data. ACM Transactions on Computer Systems,

2008, 26(2): 4

4. Lakshman A, Malik P. Cassandra: a decentralized structured storage

system. ACM SIGOPS Operating Systems Review, 2010, 44(2): 35–

40

5. Ghemawat S, Gobioff H, Leung S T. The Google file system. In: Pro-

ceedings of ACM Symposium on Operating Systems Principles. 2003,

29–43

6. Baker J, Bond C, Corbett J C, Furman J J, Khorlin A, Larson J, Leon

J M, Li Y W, Lloyd A, Yushprakh V. Megastore: providing scalable,

highly available storage for interactive services. In: Proceedings of the

5th Biennial Conference on Innovative Data System Research. 2011,

223–234

7. Peng D, Dabek F. Large-scale incremental processing using distributed

transactions and notifications. In: Proceedings of USENIX Symposium

on Operating Systems Design and Implementation. 2010, 1–15

8. Sears R, Ramakrishnan R. BLSM: a general purpose log structured

merge tree. In: Proceedings of ACM SIGMOD International Confer-

ence on Management of Data. 2012, 217–228

9. Bloom B H. Space/time trade-offs in hash coding with allowable errors.

Communications of the ACM, 1970, 13(7): 422–426

10. Herlihy M, Wing J M. Linearizability: a correctness condition for con-

current objects. ACM Transactions on Programming Languages and

Systems, 1990, 12(3): 463–492

11. Levandoski J J, Lomet D B, Sengupta S. The Bw-Tree: a B-tree for

new hardware platforms. In: Proceedings of the 29th IEEE Interna-

tional Conference on Data Engineering. 2013, 302–313

12. Mohan C, Haderle D J, Lindsay B G, Pirahesh H, Schwarz P M.

Aries: a transaction recovery method supporting fine-granularity lock-

ing and partial rollbacks using write-ahead logging. ACM Transactions

on Database Systems, 1992, 17(1): 94–162

13. DeWitt D J, Katz R H, Olken F, Shapiro L D, Stonebraker M, Wood D

A. Implementation techniques for main memory database systems. In:

Proceedings of ACM SIGMOD International Conference on Manage-

ment of Data. 1984, 1–8

14. Gray J, Helland P, O’Neil P E, Shasha D E. The dangers of replica-

tion and a solution. In: Proceedings of ACM SIGMOD International

Conference on Management of Data. 1996, 173–182

15. Tang Y, Sun H L, Wang X, Liu X D. An efficient and highly available

framework of data recency enhancement for eventually consistent data

stores. Frontiers of Computer Science, 2017, 11(1): 88–104

16. Ongaro D, Ousterhout J. In search of an understandable consensus al-

gorithm. In: Proceedings of USENIX Annual Technical Conference.

2014, 305–319

17. Wang D H, Cai P, Qian W N, Zhou A Y, Pang T Z, Jiang J. Fast

log replication in highly available data store. In: Proceedings of Asia-

Pacific Web and Web-Age Information Managemet Joint Conference

on Web and Big Data. 2017, 245–259

18. Severance D G, Lohman G M. Differential files: their application to

the maintenance of large databases. ACM Transactions on Database

Systems, 1976, 1(3): 256–267

19. Ahmad M Y, Kemme B. Compaction management in distributed key-

value datastores. Proceedings of the VLDB Endowment, 2015, 8(8):

850–861

20. Tan W, Tata S, Tang Y Z, Fong L L. Diff-index: differentiated index in

distributed log-structured data stores. In: Proceedings of International

Conference on Extending Database Technology. 2014, 700–711

21. Zhu T, Hu H Q, Qian W N, Zhou A Y, Liu M Z, Zhao Q. Precise

data access on distributed log-structured merge-tree. In: Proceedings

of Asia-Pacific Web and Web-Age Information Managemet Joint Con-

ference on Web and Big Data. 2017, 210–218

Tao Zhu is a PhD candidate in the School of

Data Science and Engineering, East China

Normal University, China. His research in-

terests mainly include database system im-

plementation, transaction processing and

distributed system.

Huiqi Hu is currently a lecturer in the

School of Data Science and Engineering,

East China Normal University, China. He

received his PhD Degree from Tsinghua

University, China. His research interests

mainly include database system theory and

implementation, query optimization.



Tao ZHU et al. Fault-tolerant precise data access on distributed log-structured merge-tree 777

Weining Qian is currently a professor in

computer science at East China Normal

University, China. He received his MS and

PhD in computer science from Fudan Uni-

versity, China in 2001 and 2004, respec-

tively. He served as the co-chair of WISE

2012 Challenge, and program committee

member of several international confer-

ences, including ICDE 2009/2010/2012 and KDD 2013. His re-

search interests include Web data management and mining of mas-

sive data sets.

Huan Zhou is a PhD candidate in the

School of Data Science and Engineer-

ing, East China Normal University, China.

Her research interests include in-memory

database system implementation, parallel

computing and transaction processing.

Aoying Zhou is a professor on computer

science at East China Normal University,

China where he is heading the Institute for

Data Science and Engineering. He got his

master and bachelor degree in computer

science from Sichuan University, China in

1988 and 1985 respectively, and won his

PhD degree from Fudan University, China

in 1993. He is now acting as the vice-director of ACM SIGMOD

China and Technology Committee on Database of China Com-

puter Federation. He is serving as a member of the editorial boards

of some prestigious academic journals, such as VLDB Journal,

and WWW Journal. His research interests include Web data man-

agement, data management for data-intensive computing, and in-

memory data analytics.


