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Abstract Co-training is a famous semi-supervised learn-

ing algorithm which can exploit unlabeled data to improve

learning performance. Generally it works under a two-view

setting (the input examples have two disjoint feature sets in

nature), with the assumption that each view is sufficient to

predict the label. However, in real-world applications due to

feature corruption or feature noise, both views may be in-

sufficient and co-training will suffer from these insufficient

views. In this paper, we propose a novel algorithm named

Weighted Co-training to deal with this problem. It identifies

the newly labeled examples that are probably harmful for the

other view, and decreases their weights in the training set to

avoid the risk. The experimental results show that Weighted

Co-training performs better than the state-of-art co-training

algorithms on several benchmarks.

Keywords semi-supervised learning, co-training, insuffi-

cient views

1 Introduction

Traditional machine learning needs a large amount of la-

beled data to learn a good model. But it is expensive to assign

labels to the training data since it requires human efforts. In

real-world applications, unlabeled data are generally easy to

collect (e.g., with several lines of code you can implement a

crawler to crawl thousands of images in a few hours). Dur-

ing the past decade, researchers have shown great interest in

exploiting these abundant unlabeled data to help the learning

process. One famous paradigm is semi-supervised learning,

which automatically exploits unlabeled data in addition to

Received April 20, 2017; accepted August 7, 2017

E-mail: wangw@lamda.nju.edu.cn

labeled data to improve learning performance. Roughly

speaking, semi-supervised learning algorithms can be clas-

sified into four categories, i.e., generative methods [1, 2],

S3VM [3, 4], graph-based methods [5–7], and disagreement-

based methods [8,9]. Disagreement-based methods [10] usu-

ally train multiple classifiers for the same task and exploit

the disagreement among them to improve their performance,

where unlabeled data serve as a platform for exchanging in-

formation between classifiers.

Co-training [8] is a representative of the disagreement-

based method. It trains two classifiers separately on two suffi-

cient and redundant views (i.e., two disjoint attribute sets) and

lets them label some unlabeled data for each other. Some-

times the data don’t have two views, and researchers have

attempted to make co-training work on single-view data as

well. Nigam and Ghani [11] showed that when there is one

redundant attribute set, it can be randomly divided into two

views to apply co-training. However, if the attribute set isn’t

redundant enough, this method may perform poorly. Some

variants of co-training have been developed which can work

well on single-view data: Goldman and Zhou [12] used two

different decision tree algorithms to train two different mod-

els from a single view, and let them label data for each other;

Zhou and Li [9] proposed the tri-training algorithm which

trains three classifiers, and assigns labels to unlabeled data

by majority voting. Co-training and its variants have achieved

great success in many applications, such as natural language

processing [13–15] and computer vision [16].

There are also some studies on the theoretical supports

of co-training. Blum and Mitchell [8] showed that condi-

tional independence between the two views is sufficient for

co-training to succeed. Later, some researchers showed that

weaker assumptions can also guarantee the success of co-
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training, e.g., the weak dependence assumption proposed by

Abney [17] and the ε-expansion proposed by Balcan et al.

[18]. Finally Wang and Zhou [19] found a sufficient and nec-

essary condition for co-training to succeed. As for the single-

view setting, Wang and Zhou [20] proved that so long as

the two classifiers have large diversity, co-training style al-

gorithm can improve the learning performance by exploit-

ing unlabeled data. However, all these works assume that the

two views are sufficient to predict the label. In practice, both

views may be insufficient due to feature noise or corruption.

Wang and Zhou [21] found that this view insufficiency can

lead to performance degradation of co-training. Nevertheless,

they don’t give any algorithm to deal with insufficient views.

This inspired us to design a better co-training style algorithm

that can work with insufficient views.

In this paper, we propose a novel algorithm Weighted Co-

training to address the view insufficiency problem. Under in-

sufficient views the two optimal classifiers in the two views

are no longer compatible, some data labeled by one view may

be harmful for the other to learn the optimal classifier. We at-

tempt to detect the potentially harmful data and decrease their

weights in the training set, which can avoid the risk of de-

grading the performance. The experimental results show that

the proposed algorithm performs better than the state-of-art

co-training algorithms on several benchmarks.

The rest of this paper is organized as follows: in Section 2

we give some notations and definitions, then in Section 3 we

present our algorithm; we conduct the experiments in Section

4 and make a conclusion in Section 5.

2 Preliminaries

Let X = X1 × X2 denote the instance space, where

X1 and X2 represent the two views. We focus on bi-

nary classification, i.e., the label belongs to Y =

{−1,+1}. Let L ∪ U denote the data set, where L =

{(〈x1,1, x2,1〉, y1), . . . , (〈x1,l, x2,l〉, yl)} ⊂ X × Y is the set of la-

beled data, and U = {〈x1,l+1, x2,l+1〉, . . . , 〈x1,l+u, x2,l+u〉} ⊂ X is

the set of unlabeled data. Let Fv : Xv �→ [−1,+1] denote the

hypothesis space for Xv (v = 1, 2). For some hypothesis fv,

the corresponding label it predicted on xv can be denoted as

ŷv =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

+1, if fv(xv) > 0,

−1, otherwise.

The optimal classifier in Fv is denoted as f ∗v =

arg min f∈Fv
P(sign( f (xv)) � y). We follow the definition of

insufficiency given by Wang and Zhou [21]:

Definition 1 (Insufficiency) Let D denote the unknown

data distribution over Xv × Y. The insufficiency Υ(Xv,Y,D)

on the learning task with respect to the example spaceXv×Y
and distribution D is defined as

Υ(Xv,Y,D) = 1 −
∫

x∈DXv

|2P(y = 1|x) − 1| P(x)dx.

The view insufficiency can be interpreted as averaging the

quantity 1− |2P(y = 1|xv)− 1| over the distribution DXv . Usu-

ally it is hard to calculate the view insufficiency directly, but

Wang and Zhou [21] gave the following proposition to state

that the view insufficiency is related with the error rate of the

optimal classifier:

Proposition 1

Υ(Xv,Y,D) = 2P(sign( f ∗v (xv)) � y)).

From Proposition 1 we can see that if the view is very insuf-

ficient, the optimal classifier f ∗ has high error rate.

3 Weighted co-training

In original co-training [8], two classifiers are first trained with

the initial labeled data. Then, each classifier selects and la-

bels some high-confident unlabeled data for its peer. After

that, each classifier is updated with the newly labeled data

provided by its peer. The whole process repeats until no clas-

sifier changes or reaching a pre-set number of rounds. The

detailed description is in Algorithm 1.

When both views are sufficient, there exist theoretical sup-

ports guaranteeing co-training’s performance. But in prac-

tice the views are usually insufficient, as stated by Wang and

Zhou [21], those performance guarantees are no longer satis-

fied. They gave an error bound for the output classifier, which

is presented in Proposition 2:
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Proposition 2 (Theorem 9 in [21]) When the two views

are diverse, for (〈x1, x2〉, y) ∼ D, let ηv = P( f ∗v (xv) � y), (v =

1, 2) denote the error rate of the optimal classifier f ∗v ; Then

for any ε ∈ (0, 1/2) and δ ∈ (0, 1), with probability 1 − δ the

output classifiers f T
1 and f T

2 in Algorithm 1 satisfy

R( f T
v ) �

η1 + η2 + P(sign( f ∗1 (x1)) � sign( f ∗2 (x2)))

2
+ ε.

When the two views are insufficient, their optimal classifiers

are not compatible, i.e., P(sign( f ∗1 (X1)) � sign( f ∗2 (X2))) > 0.

Proposition 2 indicates that some labeled examples provided

by one view may be harmful for learning the optimal classi-

fier in the other view. In fact, these harmful examples are ex-

actly the ones inconsistent with f ∗v (here “inconsistent” means

their labels are different from the predictions of f ∗v ). Hence,

if we can reduce the effect of these harmful examples, the

performance of the algorithm will be improved.

To address the problem, we propose the Weighted Co-

training algorithm. In each iteration, the algorithm adjusts

the weights of the examples in the training set based on the

outputs of the updated classifier, so that the potential incon-

sistent examples’ weights will be decreased. In the following

part, we focus on one of the two views. For the sake of con-

venience, we use f to denote the classifier and use (xi, ŷi) to

denote the i-th example with its pseudo label provided by the

other view. Let Nt denote the newly labeled data provided by

the other view in iteration t, and N = |Nt| = p + n denote the

size of Nt. In iteration t, the updated classifier f is obtained

by minimizing the empirical risk:

f = arg min
f∈F

l+N·(t+1)
∑

i=1

I(sign( f (xi)) � ŷi).

As discussed above, some newly labeled examples are in-

consistent with the optimal classifier. To reduce the effect in

the learning process, we will decrease their weights in the

training set. Ideally, the weight vector wt+1 should be in the

form of

wt+1
i =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if sign( f ∗(xi)) � ŷi,

constant, otherwise.
.

However, it is hard to know wt+1 since the optimal classifier

f ∗ is difficult to achieve. Generally, the optimal wt+1 should

satisfy the optimization in Eq. (1):

wt+1 = arg min
wt+1∈Rl+N·(t+1)

‖wt+1‖=1

l+N·(t+1)
∑

i=1

wt+1
i I(sign( f ∗(xi)) � ŷi). (1)

Since the optimal classifier f ∗ is unknown, we use f t+1 to

approximate f ∗ and get Eq. (2) from Eq. (1):

wt+1 = arg min
wt+1∈Rl+N·(t+1)

‖wt+1‖=1

l+N·(t+1)
∑

i=1

wt+1
i I(sign( f t+1(xi)) � ŷi). (2)

Solving Eq. (2) directly would make the weight concen-

trate on a few examples with small loss while assigning zero

weight to the rest. To avoid such risk and make the weight

spread on more examples, we require that the entropy of wt+1

should be lower-bounded by some constant:

−
l+N·(t+1)
∑

i=1

wt+1
i log(wt+1

i ) > ξ, for some constant ξ > 0.

In the learning process, the loss should keep decreasing, i.e.,

l+N·(t+1)
∑

i=1

wt+1
i I(sign( f t+1(xi)) � ŷi) �

l+N·t
∑

i=1

wt
iI(sign( f t(xi)) � ŷi).

To summarize the whole process: in iteration t, train

f t+1 with (Lt ∪ Nt,wt) and solve the optimization in Eq. (3)

to obtain wt+1:

wt+1 = arg min
wt+1∈Rl+N·(t+1)

l+N·(t+1)
∑

i=1

wt+1
i L( f t+1(xi), ŷi), (3)

s.t.
l+N·(t+1)
∑

i=1

wt+1
i L( f t+1(xi), ŷi) �

l+Nt
∑

i=1

wt
iL( f t(xi), ŷi),

−
l+N·(t+1)
∑

i=1

wt+1
i log(wt+1

i ) � ξ for some ξ > 0,

‖wt+1‖ =
l+N·(t+1)
∑

i=1

wt+1
i = 1, wt+1 � 0.

Here L(·, ·) represents the surrogate loss function. When we

chooseL to be hinge loss (i.e.,L( f (x), y) = max(0,− f (x)y)),

the optimization in Eq. (3) can be solved by standard La-

grange multipliers method and the optimal wt+1 has the form

of:

wt+1
i =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Ci exp(−| f t+1(xi)|) if sign( f t+1(xi)) � ŷi,

C0 otherwise.
(4)

where Ci,C0 are some constants relevant to the parameter ξ.

For the examples that are inconsistent with f t+1, their weight

are reduced by multiplying a factor of exp(−| f t+1(xi)|), hence

an example’s weight will shrink more if it is wrongly clas-

sified with higher confidence. The algorithm is depicted in

Algorithm 2.
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4 Experiments

In order to study whether our algorithm could have bet-

ter performance, we conduct empirically studies on several

real-world data sets. In the experiments we use several clas-

sifiers as base learners, including naive bayes (NB, based

on multinomial distribution), support vector machine (SVM,

with linear kernel), logistic regression (LR), and decision tree

(TREE). We use the original co-training in [8] and DCPE co-

training in [22] as the baselines. In each iteration of DCPE

co-training, it encourages the two classifiers to label the ex-

amples on which they make the same prediction but have di-

verse confidence.

4.1 Results on two-view data sets

For two-view setting, we use data sets courses [8], ads [23],

and citeseer [24]. These data sets are often used for multi-

view learning in previous works [8, 19, 20]. The courses data

set has two views: a pages view (the Web page’s text con-

tent) and a links view (the hyper-link pointing to the page).

The data set contains 1,051 instances, of which 230 are posi-

tive and 821 are negative. The ads data set has five views and

we follow the setting in [20] to use the 1st and the 3rd views.

It consists of 138 positive and 845 negative instances. The

citeseer data set has four views: content, inbound, outbound,

and cites. Following the setting in [25] we use the content and

cites views in our experiment. The citeseer contains six dif-

ferent classes, in this paper we focus on binary classification,

and select classes 3 and 4 to serve as positive and negative

classes, which have 681 positive and 666 negative instances.

We first estimate the view insufficiency of the data sets. By

proposition 1, the insufficiency Υ can be calculated with re-

spect to the error rate of the optimal classifier:

Υ = 2 × Err( f ∗).

The optimal classifier is difficult to achieve, we approxi-

mate it by using the classifier trained on all labeled data. We

gradually increase the number of labeled data until the trained

classifier’s error rate converges, and the converged error rate

is used as Err( f ∗). The insufficiency is listed in Table 1, from

which we can see that all three data sets are insufficient.

Table 1 Empirical view insufficiency on two-view data

Insufficiency Υ
Configuration

View 1 View 2

courses-NB-NB 0.150 0.120

ads-SVM-SVM 0.146 0.108

citeseer-NB-NB 0.274 0.343

Note: Configuration “data-A-B” means “on data set data, train classifier A
on view 1 and B on view 2”.

For each data set, we randomly select 25% data as the test

set, and the remaining 75% as the training set. A small frac-

tion of the training set is selected as the initial labeled data

(the concrete size will be described later) while the rest are

the unlabeled data. Each experiment is repeated for 40 times

and the average result is reported.

The average test error rates are shown in Fig. 1. Each image

is split vertically into two parts, depicting the results in the

two views respectively. It can be observed that our algorithm

outperforms the original co-training and DCPE co-training

on data sets courses and ads. On the first view of the citeseer

data set, the performance of our algorithm is a little worse

than DCPE co-training. Nevertheless, DCPE co-training per-

forms badly on the ads data set and stops early since it cannot

find the required examples in the iterative process.

4.2 Results on single-view data sets

As mentioned in Section 1, co-training also works on single-

view data. We still use “view 1” and “view 2” to refer to the

two classifiers that are actually trained on the same feature
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Fig. 1 Test error vs. iteration numbers on two-view data sets. Figure name “data-A-B-c-d-p-n” means “on data set data, train classifier A on
view 1 and B on view 2 with c positive and d negative initial labeled data instances, then label p positive data and n negative ones on each view
for every iteration”. For example, “courses-NB-NB-3-9-1-3” shows result on data set courses, on which NB (Naive Bayes classifier) is used on
both view 1 and view 2; initial labeled data consist of 3 positive ones and 9 negative ones; and the algorithm labels 1 positive and 3 negative
unlabeled data every iteration for each view. (a) courses-NB-NB-3-9-1-3; (b) ads-SVM-SVM-4-24-1-6; (c)citeseer-NB-NB-8-8-1-1

set. We select several data sets from the UCI data reposi-

tory [26], including pendigits, nursery, mushroom, tic-tac-

toe, colic and vehicle. Among them, the data sets mushroom,

tic-tac-toe, and colic consist of binary classes: mushroom,

418 positive and 818 negative instances; tic-tac-toe, 626 pos-

itive and 332 negative instances; and colic, 232 positive and

136 negative instances. The remaining three data sets have

more than 2 classes, we choose the two largest classes for bi-

nary classification: nursery, class 1 and 0, with size 4266 and

4320; pendigits, class 3 and 5, with size 1055 and 1055. The

size of each class in vehicle is too small, we group classes 0

and 3 as negative class while the rest as positive class.

We examine the view insufficiency of these data sets in

Table 2 and present the test error rates in Fig. 2. On all but

the nursery data set, our algorithm outperforms the original

co-training. On the nursery data set, our algorithm has sim-

ilar performance as the original co-training, since the view

insufficiency of this data set is zero. Our algorithm also sig-

nificantly outperforms DCPE co-training on 4 data sets, i.e.,

pendigits, nursery, mushroom and vehicle. On tic-tac-toe and

colic data sets, Our algorithm also has comparable perfor-

mance with DCPE co-training.

Table 2 Empirical view insufficiency on single-view data

Insufficiency Υ
Configuration

View 1 View 2

pendigits-NB-TREE 0.020 0.000

nursery-SVM-LR 0.000 0.000

mushroom-NB-SVM 0.158 0.031

tic-tac-toe-TREE-SVM 0.369 0.033

colic-LR-TREE 0.321 0.516

vehicle-LR-TREE 0.106 0.541

Note: configuration “data-A-B” means “on data set data, train classifier A
on view 1 and B on view 2”.

4.3 Further experiments

In this section, we will examine whether our algorithm could

identify the inconsistent examples in the learning process. We

use the classifier trained on all examples to approximate the

optimal classifier, and compare its prediction with the pseudo

labels in the iterative process. Recall that in Algorithm 2,

Dt+1 denotes the set of potential inconsistent examples re-

turned by our algorithm (line 13 in Algorithm 2) in the tth

iteration, we denote the set of all potential inconsistent ex-

amples as D =
⋃T

t=1 Dt, and the inconsistency I between the

optimal classifier f ∗ and the pseudo labels of these examples

can be measured as:

I(D) =
1
|D|
∑

xi∈D
I( f ∗(xi) � ŷi).

The inconsistency I on the identified examples of our al-

gorithm is shown in Table 3 and Table 4 for the two-view

and the single-view data, respectively. From Table 3 and Ta-

ble 4 we can see that on all data sets, the optimal classifiers

have high inconsistency with the pseudo labels on the iden-

tified examples, i.e., these examples are harmful for learning

the optimal classifiers, and their weights should be decreased

dramatically in the training set. On View 1 of tic-tac-toe and

View 2 of nursery, mushroom, pendigits, colic, our algorithm

Table 3 The inconsistency between the optimal classifier and the pseudo
labels on the identified instances, for two-view data sets

Inconsistency I
Configuration

View 1 View 2

courses-NB-NB 1.0 0.923

ads-SVM-SVM 1.0 0.978

citeseer-NB-NB 1.0 0.833
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Fig. 2 Test error vs. iteration numbers on single-view data sets. (a) pendigits-NB-TREE-1-1-1-1; (b) nursery-NB-SVM-3-3-1-1; (c) mush-
room-NB-SVM-4-4-1-1; (d) tic-tac-toe-TREE-SVM-55-55-1-1; (e) colic-LR-TREE-20-30-1-2; (f) vehicle-SVM-NB-20-30-1-2

Table 4 The inconsistency between the optimal classifier and the pseudo
labels on the identified instances, for single-view data sets

Inconsistency I
Configuration

View 1 View 2

pendigits-NB-TREE 1.0 -

nursery-NB-SVM 0.8 -

mushroom-NB-SVM 0.667 -

tic-tac-toe-TREE-SVM - 0.975

colic-LR-TREE 0.84 -

vehicle-SVM-NB 1.0 0.92

Note: “-” means no inconsistent data are detected

does not identify any inconsistent examples, the correspond-

ing classifier’s performance on these data sets is similar as the

original co-training (Fig. 2).

5 Conclusion

In this paper, we propose a novel algorithm named Weighted

Co-training to make co-training suffer less from insufficient

views. Under insufficient views the newly labeled data may

be inconsistent with the optimal classifiers. Our algorithm

achieves better accuracy and robustness by identifying prob-

ably inconsistent examples and decreasing their weights in

the training set. We regard this paper as a preliminary work

towards safe co-training which can utilize unlabeled data to

help the learning process without risk of performance degra-

dation, and we expect that more researchers will follow this

direction.
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