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1 Introduction

Data in real world is usually dirty, i.e., it may contain in-

consistent, noisy, incomplete or duplicated values. Generally

speaking, the identified dimensions of data quality manage-

ment can be summarized as the following five types: ac-

curacy, consistency, completeness, timeliness and reliability

[1]. Dirty data can lead to incorrect conclusions and false

decisions on both public and private scales (see Wikipedia).

Thus it is urgent and crucial for organizations to improve the

quality of data or to clean the data efficiently.

There are some approaches to improve the accuracy or ef-

ficiency of data cleaning by leveraging statistical and learn-

ing methods such as Bayesian belief network [2] and ma-

chine learning [3]. Although these existing data cleaning ap-

proaches are effective in their own scenarios, the drawbacks

of these approaches are obvious: 1) State of the art ap-

proaches (e.g., [4]) depend on the involvement of human ex-

perts or external information to detect and repair data errors.

2) Many other approaches (e.g., [5]) depend on the avail-

ability of off-the-shelf patterns/rules when repairing the er-

rors. 3) Some approaches (e.g., [2]) depend on the availabil-

ity of a clean data table to learn data quality patterns/rules

or learn data quality patterns/rules directly from the noisy

data. Though several approaches can learn data quality pat-

terns/rules from data, the accuracy of data cleaning is not high

due to the lack of inference.
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In this paper, we focus on the problem of cleaning dirty
data without either existing data quality patterns/rules or in-
volvement of human experts. We proposed an unsupervised
data cleaning method based on statistical relational learning.
Firstly, we learn a model of data in the form of Bayesian
network [2], which reflects the dependency relationships be-
tween different attributes of the database table. Then, we
translate the dependency relationships between attributes into

first-order logic formulas, and convert first-order logic for-

mulas into Markov logic networks by assigning a weight for

each formula. Secondly, we transform the Markov logic net-

works into DeepDive inference rules and execute these rules

on DeepDive platform. The results of inference are used to

estimate the most likely repairs of dirty in data.

The main contributions of this paper are summarized as

follows:

1) We present an unsupervised data cleaning framework

based on statistical relational learning. Our approach

involves converting the dependency relationships be-

tween attributes into Markov logic networks and infer-

ence on DeepDive platform.

2) We propose an algorithm to generate first-order logic

formulas based on the dependency relationships be-

tween attributes, and present an approach to calculate

the weights of first-order logic formulas based on the

mutual information involved in the formulas.

3) The final contribution of this paper is an experimental

study. We conduct several experiments to evaluate the

accuracy and applicability of our approach. The exper-

iments are performed on real-world datasets. We show
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that our approach has higher accuracy in terms of dif-

ferent situations and is universal for different kinds of

datasets.

The technical details, proofs and evaluations can be found

in the support information.

2 Unsupervised data cleaning

Owing to the absence of explicit data quality patterns/rules,

we propose to learn the dependencies between the attributes

of data table and obtain a Bayesian network of the attributes.

We transform the Bayesian network into Markov logic net-

work and calculate the weight of each formula based on the

mutual information of the attributes involved in the formula.

We transform the Markov logic networks into DeepDive in-

ference rules and execute these rules on DeepDive platform,

then estimate the most likely repairs of dirty in data based on

the inference results of DeepDive.

Figure 1 shows the framework of our data cleaning ap-

proach. We generate preliminary data quality rules from raw

data set or the sample of raw data set in accordance with

the volume of data. In the component of rules management,

we transform the preliminary data quality rules into Markov

logic network and construct DeepDive inference rules based

on Markov logic network. In the component of statistical pro-

cessing, we estimate the most likely data repairs by leverag-

ing inference on DeepDive. The estimated data repairs can be

used to clean the original dirty data.

Fig. 1 Framework of the unsupervised data cleaning approach

In this paper we use GeNIe Modeler to learn the numerical

parameters of Bayesian network. Ultimately, we get a com-

plete Bayesian network and we generate data cleaning rules

based achieved Bayesian network.

We generate the data cleaning rules based on first-order

logic at first.

For a relation R with attributes set Attrs(R)={A1, A2, . . .,

Am}, we define the atomic sentences attr-A1(id, vA1 ), . . ., attr-

Am(id, vAm ), where attr-Ai(id, vAi ) means that the attribute

value of the ith attribute Ai in Attrs(R) of the tuple with

key=id in R is vAi . We define the relation constants as fol-

lows:

Equality: equal-A(id1, id2) signifies that the attribute value

of A in R of the tuple with key=id1 equals that of the tuple

with key=id2.

Matching: match-A(id1, id2) means that the attribute val-

ues of A in R of the tuple with key=id1 and the tuple with

key=id2 are matched.

we specify the first-order logic formulas of a learned

Bayesian network from data. Assuming that there is a di-

rected edge between attribute A1 and A2 and pointing from

A1 to A2, we formalize the dependency relationship between

A1 and A2 in the form of first-order logic as follows:

attr-A1(id1, v) ∧ attr-A1(id2, v)⇒ equal-A2(id1, id2)

Here v is the value of attribute A1 in the tuples of id1 and

id2.

In another case, if there are more than one attribute point-

ing to the same attribute together, for instance, attribute A1,

A2, . . ., Ai point to attribute A j, then the dependency relation-

ship between A1, A2, . . ., Ai and A j can be formalized in the

form of first-order logic as follows:

attr-A1(id1, vA1 ) ∧ attr-A1(id2, vA1 ) ∧ attr-A2(id1, vA2 ) ∧
attr-A2(id2, vA2 ) ∧ · · · ∧ attr-Ai(id1, vAi ) ∧ attr-Ai(id2, vAi)

⇒ equal-A j(id1, id2)

Here vA1 , vA2 , . . ., vAi are the values of the attributes A1, A2,

. . ., Ai in the tuples of id1 and id2.

We assign infinite weights to hard rules in the experiments,

whereas set the weights of soft rules to positive real numbers.

The weight of a soft rule is positively related to the degree of

dependence between the attributes involved in the soft rule.

We learn the weights of soft rules based on the information

theory in this paper. The degree of dependence can be mea-

sured by the mutual information between the attributes. The

mutual information of two attributes X, Y can be expressed in

terms of divergence between marginal and conditional prob-

ability distributions of the values of X and Y as follows [6]:

I(X; Y) =
∑

x∈VX

∑

y∈VY

P(x, y)log
P(x, y)

P(x)P(y)
. (1)

Here VX is the set of X’s values and VY is the set of Y’s val-

ues, P(x) and P(y) are the marginal probability distributions

of X and Y, and P(x, y) is the joint probability distribution of

X and Y.
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Similarly, the conditional mutual information of three at-

tributes X, Y and Z can be expressed as follows:

I(X; Y|Z) =
∑

x∈VX

∑

y∈VY

∑

z∈VZ

P(x, y, z)log
P(x, y|z)

P(x|z)P(y|z)
. (2)

Here P(x, y, z) is the joint probability distribution of X, Y

and Z, P(x, y|z) is the conditional probability of X and Y given

condition Z, and P(x|z) is the conditional probability of X

given condition Z, etc.

For each soft rule F with more than two attributes involved,

assuming that there are n+1 attributes X, Y1, Y2, . . ., Yn and X

depends on Y1, Y2, . . ., Yn. The mutual information of X given

Y1, Y2, . . ., Yn is I(X; Y1, Y2, . . . , Yn). We define the weight of

F based on the e exponential of I(X; Y1, Y2, . . . , Yn) as follows:

wF = eI(X;Y1,Y2,...,Yn) − 1. (3)

Now that I(X;Y) � 0 and I(X; Y1, Y2, . . . , Yn) � 0, thus

eI(X;Y) − 1 � 0 and eI(X;Y1,Y2,...,Yn) − 1 � 0. The introduction

of e exponential function in the weights calculating enforces

the weights of soft rules with higher degree of dependence

and enlarges the gap of weights with different dependence

degrees meanwhile.

Markov logic network constructs a probabilistic knowl-

edge base system that combines first-order logic formulas

with probabilistic graphical model (undirected Markov net-

works). We perform probabilistic inference on top of the

Markov networks.

In this paper we perform inference on DeepDive frame-

work. An example of DeepDive rule is as follows:

q() : −S (x, y),weight = w, (4)

where S (x, y) is the body predicate of q(), and x, y are vari-

ables in S (x, y). S (x, y) can be grounded by replacing the vari-

ables with constants in the possible world of variables.

3 Experimental results

We evaluate the cleaning quality, scalability, and sensitivity

to error types of our algorithm on two real-world datasets.

To measure these three kinds of errors, we use the notions of

Precision, Recall and F-measure. Our experiments were con-

ducted on two real-life datasets as follows: HPT dataset is a

real-world dataset published by the U.S. Centers for Medi-

care & Medicaid Services. CAR dataset is a real-life dataset

that contains information on sales, prices and characteristics

of the car models sold in Europe during 1970–1999.

We select a Bayesian data cleaning method [7] and a data

repairing method [8] based on statistical technique as the

baselines and marked as BAYC, BYWP respectively, while

mark our data cleaning method as ADCS. We assess the scal-

ability of our approach by varying sizes of datasets from 10K

to 50K tuples when running the experiments. We leverage

DeepDive as the inference engine of Markov logic rules.

The experimental results demonstrate the following: (i)

ADCS outperforms BAYC and BYWP significantly in Pre-

cision, Recall and F-measure respectively on both datasets

of different ratio noi% of noise ranging from 2% to 10%; (ii)

ADCS outperforms BAYC and BYWP distinctly in Preci-

sion, Recall and F-measure on different datasets sizes rang-

ing from 10K to 50K; (iii) the employment of e exponential

function in calculating the weights of formulas is conducive

to the improvement of accuracy; and (iv) ADCST surpasses

ADCSR remarkably in accuracy on different datasets sizes.
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