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Abstract Redundant array of independent SSDs (RAIS) is

generally based on the traditional RAID design and imple-

mentation. The random small write problem is a serious chal-

lenge of RAIS. Random small writes in parity-based RAIS

systems generate significantly more pre-reads and writes

which can degrade RAIS performance and shorten SSD life-

time. In order to overcome the well-known write-penalty

problem in the parity-based RAID5 storage systems, several

logging techniques such as Parity Logging and Data Log-

ging have been put forward. However, these techniques are

originally based on mechanical characteristics of the HDDs,

which ignore the properties of the flash memory.

In this article, we firstly propose RAISL, a flash-aware

logging method that improves the small write performance

of RAIS storage systems. RAISL writes new data instead of

new data and pre-read data to the log SSD by making full

use of the invalid pages on the SSD of RAIS. RAISL does

not need to perform the pre-read operations so that the orig-

inal characteristics of workloads are kept. Secondly, we pro-

pose AGCRL on the basis of RAISL to further boost perfor-

mance. AGCRL combines RAISL with access characteristic

to guide read and write cost regulation to improve the per-

formance of RAIS storage systems. Our experiments demon-

strate that the RAISL significantly improves write perfor-

mance and AGCRL improves both of write performance and

read performance. AGCRL on average outperforms RAIS5

and RAISL by 39.15% and 16.59% respectively.
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1 Introduction

Due to mechanical properties, the speed of HDD already can-

not satisfy the needs of users. SSD is increasingly deployed

to construct RAID [1, 2] in enterprise environments with its

price dropping and technology maturing [3–6]. The design of

SSD is completely different from HDD. SSD has high perfor-

mance and low power consumption because it does not seek

and rotate when reading and writing [7,8]. However, RAIS is

generally based on the traditional redundant array of indepen-

dent disks design and implementation [9,10]. When handling

random writes, the parity-based RAIS has to read and write

the parity blocks frequently which degrades the performance

and shortens SSD lifetime.

Numerous studies are conducted on logging techniques to

improve the traditional RAID write performance. In order to

overcome small-write problem, Parity Logging [11] delays

parity update by writing the parity updates to the log disk se-

quentially. Menon [12] propose a log-structure array (LSA)

that combines LFS, RAID5, and a non-volatile cache. Instead

of writing in-place, LSA writes the updated data into a new

disk to improve the write performance of RAID5. Unfortu-

nately, these techniques were devised for HDD, which cannot

fully exploit the characteristics of SSD.

In addition to out-of-place update, SSD has a write and

read cost characteristic as well. The write operation of flash

memory is performed by the incremental-step pulse program-



914 Front. Comput. Sci., 2019, 13(5): 913–928

ming (ISPP) [13] scheme, which uses a small verification

voltage to reliably program flash cells to their specified volt-

ages. The level of the verification voltage will affect the write

and read cost of the SSD. In brief, with a large step size

in the ISPP process, the write cost is reduced, but the read

cost increases. With finer step size in the ISPP process, the

write cost increases, but the read cost decreases. Li et al. [14]

propose AGCR, an access characteristic guided cost regula-

tion scheme, which exploits the above tradeoff to improve

flash performance. Based on workload characteristics, logi-

cal pages receiving more reads will be written using a finer

step size so that their read cost will be reduced. Similarly,

logical pages receiving more writes will be written using a

coarser step size so that their write cost will be reduced.

AGCR presents a study on the access characteristics of sev-

eral workloads; and the performance improvement of AGCR

is based on this access characteristics. However, when work-

loads are handled by RAID controller, there are many pre-

read operations, which can change the access characteris-

tics of the workloads. Thus, AGCR cannot be used in the

RAIS storage systems directly. But the original access char-

acteristics of the workloads can be guaranteed with the help

of RAISL, which removes the pre-read operations. AGCRL

combines RAISL and AGCR to further improve the RAIS

storage systems performance. The contributions of this arti-

cle are described as follows:

• We present the study on the access characteristics of

some workloads before and after RAID controller han-

dling. Most of the requests access read-only or write-

only pages before handling by RAID controller. How-

ever, most of the requests access interleaved-access

pages after handling by RAID controller.

• We propose RAISL, a flash-aware logging technique to

improve the small write performance of RAIS storage

systems by delaying parity update. RAISL makes full

use of the invalid pages to remove the pre-read opera-

tions.

• We propose AGCRL on the basis of RAISL to further

boost performance of RAIS storage systems.

• We prototype and evaluate the proposed RAISL and

AGCRL. For performance comparison, we also imple-

ment the Parity Logging scheme and Data Logging [15]

scheme in the RAIS5, which are called RAIS_PL and

RAIS_DL, respectively.

The rest of this paper is organized as follows. We present

the background and the motivation in Section 2. The design

and implementation of RASL and AGCRL are described in

Section 3. The experimental results are presented in Sec-

tion 4. We review the related work in Section 5 and conclude

our paper in Section 6.

2 Background and motivation

2.1 SSD and FTL

Most modern SSDs are constructed by using NAND flash

memory. Generally, NAND flash memory can be divided into

two categories: single-level cell (SLC) and multi-level cell

(MLC). A SLC flash memory cell stores one bit and a MLC

flash memory cell can store two bits or more. SSD has several

special features. First, SSD cannot update in-place. A page

can be written only after it is erased. The unit of read and

write operations is a page, whereas the unit of erase opera-

tion is a block. Each block is composed of 64 to 256 pages.

The size of a page is 2KB or 4KB. Second, the erase times

of the flash memory cell is limited. A SLC flash memory has

around 100,000 erase cycles and a MLC flash memory has

only around 10,000 erase cycles or less. Third, SSD has a

write and read cost characteristic. If the write cost of a page

is high, then the read cost is low; if the write cost of a page is

low, the read cost is high.

Flash translation layer (FTL) is a software layer of SSD,

which mainly contains three modules: address mapping,

garbage collection, and wear-leveling [16, 17]. When re-

writing a logical page, SSD controller assigns a new page

for writing and the old page is marked as an invalid. The ad-

dress mapping module manages a mapping table in the pro-

cess. When there is not enough free space in the SSD, the

garbage collection module reclaims the invalid pages. The

wear-leveling module ensures that the erase times of each

physical block are almost the same.

2.2 Bio

Bio is the main unit of I/O for the block layer and lower lay-

ers. It represents a read or write request from the upper level.

Each bio in Linux kernel mainly has the following items:

• bi_bdev: block device descriptor of the request.

• bi_sector: the start disk sector number to transfer.

• bi_size: residual I/O count.

• bi_rw: I/O operation flag (bottom bits represent read or

write, top bits represent priority).

• bi_flags: status of the request.
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• bi_io_vec: segment descriptor array.

• bi_next: pointer to the next bio that belongs to the same

request queue.

In Linux kernel, each bio defines 12 kinds of states as

shown below:

• BIO_UPTODATE: I/O has completed without error.

• BIO_RW_BLOCK: I/O would block.

• BIO_EOF: out-out-bounds error.

• BIO_SEG_VALID: bi_phys_segments valid.

• BIO_CLONED: bio does not own data.

• BIO_BOUNCED: bio is a bounce bio.

• BIO_USER_MAPPED: bio contains user pages.

• BIO_EOPNOTSUPP: not supported.

• BIO_CPU_AFFINE: complete bio on same CPU as

submitted.

• BIO_NULL_MAPPED: bio contains invalid user pages.

• BIO_FS_INTEGRITY: filesystem owns integrity data.

• BIO_QUIET: make bio quiet.

2.3 Access characteristics of workloads

Li et al. [14] defined three types of data accesses: read-only,

write-only, and interleaved-access. If almost all the accesses

(>95%) to a page are read requests, this page is characterized

as read-only. If almost all the accesses (>95%) to a page are

write requests, this page is characterized as write-only. If the

accesses to a data page are interleaved with reads and writes,

this page is characterized as interleaved-access. They ob-

served that most read requests access read-only pages, most

write requests access write-only pages, and only a small part

of requests access interleaved-access pages. The main idea of

the access characteristic guided read and write cost regulation

method is to apply low-cost writes for write-only pages, low-

cost reads (enabled by applying high-cost write), for read-

only pages, and medium-cost accesses for interleaved-access

pages.

Table 1 shows the basic characteristics of 10 representative

workloads from Microsoft Research (MSR) Cambridge [18].

All workloads are converted to replay in a simulator. The log-

ical block address (LBA) and length of each request are mod

8. We observe that most of the workloads are mainly consist

of small write requests. When RAID controller handles write

request, it divides the request into sub-requests and adds them

on the corresponding stripes, then computes the new parity

blocks of each stripes, and writes the new data and parity

blocks at last.

Table 1 Trace information

Trace File
Total request

number

Write request

ratio

Average

size/KB

mds_0 91,021 90.49% 7.27

rsrch_0 102,037 90.76% 8.88

rsrch_2 17,573 52.87% 4.13

src2_0 91,139 87.91% 6.86

stg_0 129,590 90.72% 9.30

usr_0 168,422 60.41% 18.66

wdev_0 80,147 78.10% 9.09

hm_0 244,890 68.68% 8.51

proj_0 164,971 64.41% 16.37

proj_3 135,150 1.45% 11.13

There are usually two alternative methods to generate the

new parity block, namely, reconstruction-write and read-

modify-write respectively [19–21]. The main difference be-

tween the two methods lies in the data blocks that must

be pre-read for the computation of the new parity block

[22, 23]. Reconstruction-write method needs to pre-read the

data blocks that are not to be updated. Read-modify-write

method needs to pre-read the parity block and the data blocks

that are to be updated. The RAID controller dynamically

chooses the method that leads to less pre-read operations and

it will choose reconstruction-write when the pre-read opera-

tions are the same.

When handling the small write dominated workloads, the

controller chooses the read-modify-write and generates many

pre-read operations that read the pages to be written. Fig-

ure 1 shows the total access pages number before and after

RAID controller handling. The result shows that the total ac-

cess pages numbers of the workloads after RAID controller

handling are much more than that before handling. The in-

creased access pages numbers are almost three times of the

corresponding write access pages number. Because one small

Fig. 1 Total access pages number before and after handling by RAID con-
troller
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Fig. 2 Distribution of read and write requests on the three access characteristics. (a) Distribution of write requests before handling by RAID
controller; (b) distribution of read requests before handling by RAID controller; (c) distribution of write requests after handling by RAID
controller; (d) distribution of read requests after handling by RAID controller

write request leads to two pre-reads and two writes. The

pre-read operations corrupt the original characteristic of the

workloads. The pre-read operation reads the page that will be

written later, which makes the page change from write-only

to interleaved-access.

Figure 2 shows the distribution of read and write requests

on the three access characteristics before and after RAID

controller handling. Most of the requests access read-only or

write-only pages before handling by RAID controller. How-

ever, most of the requests access interleaved-access pages

except proj_3 which mainly consists of read requests after

handling by RAID controller. The pages that most write re-

quests access change from write-only to interleaved-access

after handling by RAID controller. The ratio of the write re-

quests is higher, the ratio of the requests access to interleaved-

access pages is larger after handling by RAID controller.

Thus, the access characteristic guided read and write cost

regulation method [14] cannot be used directly in the RAIS5

storage systems when the workloads consist mostly of write

requests.

We measure four combinations of read and write costs

in RAIS5 storage systems: 1) All the writes are performed

with a high cost, followed by low-cost reads (HWLR);

2) All the writes are performed with a medium cost, fol-

lowed by medium-cost reads (MWMR); 3) All the writes

are performed with a low cost, followed by high-cost reads

(LWHR); 4) All the writes are performed with a low cost

and all the reads are performed with a low cost (LWLR).

The detailed settings for the regulator can be found in Sec-

tion 4. Figure 3 presents the comparison of access latency

for different workloads from MSR. Compared to the HWLR,

MWMR, and LWHR, LWLR improves overall performance

by 35.21%, 31.75%, and 36.96%, on average. For ran-

dom write dominated workloads, the overall performance of

LWHR is better than that of HWLR and MWMR. For read

dominated workloads, the overall performance of HWLR is

better than that of LWMR and MWMR. The results show that

if page is written and read with low cost, the storage systems

can get significant performance improvement.

Fig. 3 Overall performance comparison with different access costs

2.4 Logging techniques

As we know, most of the above workloads are small write

request dominated. RAID5 has to read the old data and the
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old parity, and write the new data and the new parity to ser-

vice the small write request. One small write request results

in four I/O operations. Consequently, the small write perfor-

mance of RAID5 is very bad. There are many logging tech-

niques that delay the parity update to improve the small write

performance. Parity Logging scheme writes the XOR result

of the old data and the new data to the log disk sequentially.

Parity Logging delays the parity block update and transforms

random writes into sequential writes to improve performance.

However, the existing log records cannot be reused in the

Parity Logging scheme. Thus, the Data Logging scheme is

proposed. Instead of writing the XOR result of the old data

and the new data, Data Logging scheme writes the old data

and the new data to the log disk sequentially. When writing

a data block, Data Logging must find whether the data block

has been logged or not. If the data block has not been logged,

Data Logging needs to write the old data and the new data to

the log disk.If the data block has been logged, Data Logging

only writes the new data to the log disk.

2.5 Motivation

There are two problems when all the workloads in Table 1

are replayed in RAIS5 systems. The first is the small write

problem. The second is that the original characteristic is cor-

ruption as described in Section 2.2. Because of parity blocks

updating frequently in RAIS5 systems, the small write re-

quest not only affects the overall performance, but also af-

fects the lifetime of each SSD. Although the traditional log-

ging techniques can improve the small write performance,

they do not take the features of SSD into account. We pro-

pose a novel flash-aware logging technique, called RAISL,

to improve small write performance. There are many invalid

pages in SSD. RAISL makes full use of the invalid pages to

removes the pre-read operations so that the original character-

istics of workloads are kept. Additionally, combined RAISL

with access characteristic guided read and write cost regula-

tion, AGCRL can further improve the performance of RAIS

storage systems.

3 Design and implementation

3.1 RAISL

When handling write request, RAISL writes the new data in

home location and writes the new data to the log SSD sequen-

tially without updating parity block and pre-reading any other

data blocks. Figure 4 shows an illustration of Parity Logging,

Data Logging,and the proposed RAISL schemes. We denote

each request as a pair (M, N), where M denotes the access

mode (Read/Write), and N is the block to be accessed. When

D0 is first updated, Parity Logging writes XOR result of D0

and D0′ to the log SSD, and Data Logging writes D0 and D0′

to the log SSD. When D0′ is updated, Parity Logging writes

XOR result of D0′ and D0′′ to the log SSD. But, Data Log-

ging only writes D0′′ to the log SSD. During this process,

Parity Logging reads D0 and D0′, and Data Logging reads

D0, and write the data block or the XOR result to the log SSD

in order to recovery data when there is a failure in other SSDs.

For example, when #SSD1 fails, data block D1 needs D0 to

recover. Data is updated in-place in the traditional disk. So the

traditional logging techniques need to read and write certain

data blocks to ensure the reliability when delaying parity up-

date. However, data is updated out-of-place in SSD. D0 and

D0′ are still in existence before they are erased by GC oper-

ation. Therefore, RAISL only needs to write the new data of

the updated block to the log SSD, and does not need to pre-

read any data block by recording the physical page number

of D0.

To the best of our knowledge, RAISL is the first log tech-

nique to delay parity blocks update in RAIS5 storage sys-

tems. Parity Logging and Data Logging are the logging tech-

niques that are designed based on the HDDs mechanical char-

acteristic. Compared to Parity Logging and Data Logging,

RAISL improves the performance by reducing the number

of pre-read operations. As shown in Fig. 4, Parity Logging

needs 2 pre-read operations, Data Logging needs 1 pre-read

operation, and RAISL needs 0 pre-read operation. In addi-

tion, RAISL writes 2 data blocks to the log SSD while Data

Logging writes 3 data blocks.

RAISL must record some invalid pages by extending the

mapping table when updating data blocks. These pages are

valuable before the corresponding parity blocks are updated.

RAISL marks these pages as semi-valid state. A semi-valid

page becomes invalid when the corresponding parity block is

updated. In Fig. 4, when D0 is first updated, D0 is marked as

a semi-valid page. When D0′ is updated, D0′ is marked as an

invalid page and the state of D0 is still semi-valid.

3.2 Key data structures

There are two key data structures: hash list and extended

mapping table as shown in Fig. 5. The hash list, which is com-

posed of a table head array and several entry lists, is used to

record the updated data. The table head array contains some

hash slots and each slot points to an entry list. Each entry
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Fig. 4 Illustration of Parity Logging in RAIS5 (RAIS_PL), Data Logging in RAIS5 (RAIS_DL), and the proposed RAISL schemes. (a) Parity
logging in RAIS5 (RAIS_PL); (b) data logging in RAIS5 (RAIS_DL); (c) RAISL

in the entry list corresponds to an updated data block. Each

entry has the following items:

• LBA: logical block address of the data block in the

RAIS storage system.

• Log_LBA: logical block address of the new data in the

log SSD.

• Next: pointer to the next entry.

Fig. 5 Key data structures. (a) Hash list; (b) extended mapping table

To search a data block in the hash list, RAISL first finds the

corresponding hash slot by hashing the logical block address

of the data block, and then finds the corresponding entry in

the entry list. If there is an entry in the entry list satisfying the

condition that its LBA item equals the logical block address

of the data block, this entry corresponds to the data block;

otherwise, the data block has not been updated and does not

have a corresponding entry in the hash list.

The extended mapping table adds an Old_PPN entry to

record the old data of the updated blocks. The Old_PPN with

NULL represents that the data block has not been updated

since the parity block is last updated. The main variables are

explained below:

• LPN: logical page number in SSD.

• PPN: physical page number in SSD.

• Old_PPN: physical number of semi-valid page in SSD.

Figure 6 shows how the value of structure entry changes

when updating data block D0 twice as Fig. 4. We assume that

the size of data block D0 is the same as a page, the LBA of D0

is 0, and the LPN of D0 in #SSD0 is 0. When data block D0

is first updated, the new data is written to the physical page

number 4, and it is also written to the logical block address 0
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Fig. 6 How the value of structure entry changes when updating data block

in the log SSD. The page in PPN 0 is a semi-valid page, so

the value of Old_PPN entry is 0. When D0 is updated once

again, the new data is written to PPN 5, and it is also written

to LBA 1 in the log SSD. The page in PPN 4 is an invalid

page, and the value of Old_PPN entry does not change.

3.3 Data recovery from disk failures

Disk failures can occur either in the SSDs of RAIS or in the

log SSD. If the log SSD fails, the parity re-synchronization

operation is initiated. For each stripe that contains updated

data blocks, the parity block needs to be re-computed.

If the failed disk is a SSD of RAIS, the data recovery

process is triggered. The data SSD recovery process flow is

shown in Algorithm 1. For each parity stripe, if the failed

block is a parity block, the failed data can be re-computed

by the latest surviving data in the stripe. If the failed block

is a data block that has been updated, its recovery data can

be directly copied from the log SSD. In more detail, RAISL

reads out the log record addressed by Log_LBA from the log

SSD as the recovery data. However, if the failed block is a

data block that has not been updated, the failed data can be

recovered by XORing all other surviving old data and the old

parity in the stripe. For each surviving data block, if it has

been updated, RAISL reads the data addressed by Old_PPN.

Otherwise, RAISL reads the data addressed by PPN.

For example, if #SSD3 fails after D0 is updated twice in

Fig. 4, the failed block P0 is a parity block. RAISL uses the

XOR result of D0′′, D1 and D2 as the recovery data. The

failed block D5 is an non-updated block and all the data

blocks in its corresponding stripe are not updated. RAISL

uses the XOR result of D3, D4 and P1 as the recovery data.

If the failed disk is #SSD0, the failed block D0 is an up-

dated data block. RAISL reads D0′′ from the log SSD as

the recovery data. If the failed disk is #SSD1, D1 is an

non-updated block but its corresponding stripe contains up-

dated data block, RAISL uses the XOR result of D0, D2 and

P0 as the recovery data. The address of D0 is recorded by

Old_PPN.

Algorithm 1 Process flow of RAISL to recover from data SSD failures

for each parity stripe do

if the failed block is a parity block then

The failed data can be re-computed by the latest surviving data in
the stripe.

else

if the failed block has been updated then

Copy the new data from the log SSD.

else

for surviving block do

if it is updated then

Read out the data addressed by Old_PPN.

else

Read out the data addressed by PPN.

end

end

The failed data can be recovered by XORing all other surviving
old data and the old parity in the stripe.

end

end

end

3.4 AGCRL

Since RAISL keeps the original features of workloads, the

access characteristic guided read and write cost regulation

method can be used on the basis of RAISL. AGCRL com-

bines RAISL with the access characteristic guided read and

write cost regulation method. Figure 7 provides an archi-

tectural overview of the proposed AGCRL system. When

AGCRL services a write request, the new data blocks are up-

dated in home location and written to the log SSD sequen-

tially to delay the parity update.

AGCRL has seven key functional modules: Adminis-

tration, Monitor, Classifier, Request Handle, Parity Re-

synchronization, Data Recovery, and Data Director. The Ad-

ministration module sets the threshold size of the log SSD
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and other parameters of the system. The Monitor module is

responsible for monitoring the system failure. The Classifier

module is responsible for identifying the access characteristic

of a page. The Request Handle module manages the user re-

quests. When the log SSD fails or the number of blocks used

by the logging data reaches the threshold or the system is idle,

the Parity Re-synchronization module is started for cleaning

the log data. The Data Recovery module will be triggered

when a data SSD fails. Meanwhile, the Request Handle mod-

ule, Parity Re-synchronization module, and Data Recovery

module all need to query and update the hash list which is

stored in memory.

Fig. 7 AGCRL architecture

The difference between AGCRL and RAISL is the ex-

istence of the Classifier module. RAISL does not need

this module to identify the access characteristic of a page.

AGCRL identifies the access characteristic of a page by us-

ing the history window to record the access request types of

the page. The size of history window, which affects the stor-

age overhead as well as the identification accuracy, is an im-

portant parameters in Classifier module. To understand the

effect of the window size on identification accuracy, we use

4 different sizes in the identification method, and the identifi-

cation accuracies are shown in Fig. 8. The results show that a

larger window results in a higher accuracy. When the history

window size is set to 1, 2, 3, and 4, respectively, the average

identification accuracies are 95.91%, 97.18%, 97.67%, and

97.90%. First, the increase in accuracy decreases as the size

increasing. Second, the average identification accuracies are

all between 97% and 98% when the history window size is

set to 2, 3, and 4, respectively. Thus, AGCRL sets the length

of the history window to 2 to trade-off the storage overhead

and identification accuracy. When the history window size is

2, it means to use the most recent request and the upcom-

ing request to identify the access characteristic of a page. If

the most recent request and the upcoming request are both

writes, the page is marked as a write-only page. If the most

recent request and the upcoming request are both reads, the

page is marked as a read-only page. Otherwise, the page is

marked as an interleaved-access page.

Fig. 8 Window size impact on identification accuracy

Except identification, the process flow of AGCRL is the

same as RAISL on the RAID level. However, when request is

handling in data SSD, AGCRL has to regulate the cost of the

upcoming request based on the identified access characteris-

tics of the page. When writing a write-only page, AGCRL

applies a low-cost write, as shown in Fig. 9(a). When writing

an interleaved-access page, AGCRL applies a medium-cost

write, as shown in Figs. 9(c) and 9(d). For a read-only page

with low-cost, nothing should be done, as shown in Fig. 9(b).

When reading an interleaved-access page, AGCRL does not

regulate the read cost, as shown in Figs. 9(c) and 9(d). If a

read-only page was not written with a high cost before, its

corresponding read cost is high or medium (denoted with H
or M in Figs. 9(c)and 9(d)), and it needs to be re-write with a

high-cost write during idle time. The re-write operation must

be completed before upcoming reads of the page.

3.5 Global garbage collection

When the space of RAIS is not enough, local garbage collec-

tion is performed in each SSD of RAIS. The local garbage

collection leads to performance degradation. In the RAIS

storage system, uncoordinated garbage collection amplifies

these performance degradation. AGCRL and RAISL perform

two types of garbage collections: a local garbage collection,

and a global garbage collection. The local garbage collec-

tion reclaims invalid pages. The global garbage collection re-

claims semi-valid pages.

Similar to that in [24], AGCRL and RAISL trigger the

local garbage collection on different SSDs synchronously in
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Fig. 9 Example on the access characteristic identification and cost regulation: access cost, L - low-cost, M - medium-cost, and H - high-cost.
(a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4

order to minimize the impact on RAIS performance. If the

free space is still not sufficient, the global garbage collection

is triggered. The global garbage collection finds the stripes

whose parity blocks are delayed updating, and prioritizes the

stripe that has more semi-valid pages. After choosing one

stripe, the global garbage collection computes and updates

the parity block, then marks the corresponding semi-valid

pages as invalid state. The invalid pages are reclaimed at last.

3.6 Overhead analysis

AGCRL has time overhead and space overhead. The results

in Li et al. [14] show that the percentage of re-write opera-

tions is negligible, and no more than 1% of all accesses issued

by the host. Thus, the time overhead, which is caused by the

re-write operations, is negligible. The performance of SSD

is many orders of magnitude slower than memory. Thus, the

time overhead, which is caused by the hash list and the ex-

tended mapping table, is also negligible. The space overhead

is due to the hash list and the extended mapping table. The

hash list is stored in memory and the extended mapping table

is stored in the internal memory of SSD. The total hash list

size is n × c/r, where n is the number of bytes per hash list

entry, c is total updated data size, and r is the data block size.

The total size of the extended mapping table is m×c/p, where

m is the number of bytes that are allocated for each mapping

relationship, c is total updated data size, and p is the page

size. We assume that there is 1TB data in the AGCRL system

and 10 percent data is updated. If the data block size is 4KB

and each item in the hash list accounts for 4 bytes, it needs

300MB memory to store the hash list. If the AGCRL consists

of 10 SSDs, the page size is 4KB and each mapping rela-

tionship accounts for 4 bytes, each SSD needs extra 10MB

memory.

3.7 System reliability

Due to the parity blocks, RAID5 storage systems can tolerate

one disk failure. However, parity blocks are delayed to up-

date in AGCRL storage system. As described in Section 3.3,

when the log SSD fails, the parity re-synchronization opera-

tion must be done to guarantee system reliability. When one

SSD of RAIS5 fails, AGCRL can recover the failed data ac-

cording to the Algorithm 1. Therefore, AGCRL also can tol-

erate one SSD failure. If the extended mapping table is lost,

it can be regarded as the corresponding SSD fails.

If there is no SSD failure but the hash list is lost be-

cause of sudden power outage, AGCRL can do parity re-

synchronization to guarantee reliability. When the hash list

is lost, the parity blocks that have been delayed to update

should be re-computed as soon as possible. Because an SSD

failure during this period will cause data loss. AGCRL can-

not know which stripes are in an inconsistent state without

the hash list. Thus, for each stripe, AGCRL computes a new

parity block by XORing the data blocks, then compares the

new parity block with the old parity block. If the two par-

ity blocks are different, AGCRL writes the new parity block

to the corresponding location and marks the corresponding

semi-valid pages as invalid state; otherwise, the stripe is in a

consistent state and AGCRL skips the stripe.

However, if the hash list is lost during the AGCRL recon-

struction period, the data will be lost. To prevent the loss of

the hash list because of sudden power outage or a system

crash, AGCRL can store the hash list in a nonvolatile RAM

(NVRAM).

3.8 Customization on SSDs and RAID controller

To implement the RAISL and AGCRL, we should customize

the bio, RAIS controller, and SSDs.

1) Bio. When there is an SSD fails, RAIS controller may

need to read the semi-valid pages. Thus, there is information

interaction between RAIS controller and SSDs. SSDs need

to know whether a read request is to read normal valid pages

or corresponding semi-valid pages. When an SSD writes a

page, if the value of the corresponding Old_PPN is NULL,

the SSD change it to the value of PPN. However, SSD in-

ternal erase operations also generate write requests. To deal

with the internal generation write requests, the SSD does not
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have to consider the Old_PPN. Therefore, SSDs also need

to know whether a write request comes from the RAIS con-

troller or themselves. Besides, when RAIS controller sends

requests to the SSDs, the SSDs needs to know which latency

is deployed to service the requests. These information can be

recorded in bio. In the bio structure, there is a bi_flags field

that represents the state of the bio. In Linux kernel, each bio

defines 12 kinds of states. Bi_flags is a short integer variable

with 16 bits. 12 kinds of states only require 4 bits to indi-

cate. We can use another 4 bits of bi_flags, which have not

been used, to transfer information between the RAID con-

troller and SSDs. We use w_flags and req_flags to represent

the first 2 bits in the 4 bits, and use cost_flags to represent the

last 2 bits. If w_flags is set to “1”, it indicates that the read

request needs to read the semi_valid pages. If w_flags is set

to “0” and the request is read, it indicates that the read request

needs to read the normal pages. If req_flags is set to “1”, it

indicates that the request comes from the RAIS controller.

If req_flags is set to “0”, it indicates that the request comes

from the SSDs. If cost_flags is set to “00”, it indicates that

the SSDs do not need to adjust latency. If cost_flags is set to

“01”, it indicates that the SSDs can use low-cost to service the

request. If cost_flags is set to “10”, it indicates that the SSDs

can use medium-cost to service the request. If cost_flags is set

to “11”, it indicates that the SSDs can use high-cost to service

the request. The RAIS controller sets the values of w_flags,

req_flags, and cost_flags, and the SSDs perform the corre-

sponding processing according to the values of these bits.

2) RAIS controller. As shown in Fig. 7, there are seven

key functional modules and a Hash list in AGCRL. Adminis-

tration, Monitor, Request Handle, Parity Re-synchronization,

Data Recovery, and Data Director are included in the tra-

ditional RAID controller. We just need a few modifications

on these functions to implement AGCRL. In addition, RAIS

controller has to add a Classifier module and a hash list. The

hash list is used to record the data blocks that have been

written to the log SSD. How AGCRL identifies the access

characteristic of a page has been described in Section 3.4.

After identifying the type of a page, RAIS controller needs

to set the cost_flags. When RAIS controller writes a write-

only page, the cost_flags is set to “01”. When RAIS con-

troller writes an interleaved-access page, the cost_flags is set

to “10”. When RAIS controller reads a page, the cost_flags is

set to “00”. If a read-only page was not written with a high

cost before, RAIS controller needs to generate a high-cost

write (i.e., the cost_flags is set to “11”) to re-write the page

during idle time. It is easy to modify these functions in the

Linux kernel MD module.

3) SSDs. To implement the AGCRL, the SSDs must have
three capabilities: a) record the semi-valid pages; b) be able
to recognize the semantic information in bi_flags that are
transmitted by the RAIS controller; c) dynamically regu-
late read and write cost. As shown in Fig. 5(b), the SSDs
can record the corresponding semi-valid pages by adding an
Old_PPN entry to the mapping table. When the SSD han-
dles a read request and checks that the w_flags is set to “1”,
it reads the page that the corresponding Old_PPN points
to. Otherwise, it reads the page that the corresponding PPN
points to. When the SSD handles a write request and checks
that the req_flags is set to “1”, it need to change the value
of the corresponding Old_PPN if it is NULL. Otherwise, it
does not need to consider the Old_PPN. If a flash page is
written with a higher cost by using a finer step size during
the incremental-step pulse programming (ISPP) process, it
can be read with a relatively low cost due to the time saved

in sensing and transferring, and vice versa [14]. By adjust-

ing the step size, SSDs can dynamically regulate read and

write cost. To achieve the aforementioned three capabilities,

we must modify the internal drivers and FTL. Thus, we have

to work with manufacturers to customize the SSDs.

4 Performance evaluations

4.1 Experimental setup

We implemented the RAISL and AGCRL scheme using the
SSD extension on Disksim developed by Microsoft research
[25]. We select 10 representative traces from MSR to evalu-
ate the proposed schemes. We choose the first 12 hours of the
workloads; and the basic characteristics of the workloads are
shown in Table 1.

The parameters of the simulator are shown in Table 2.
The top part describes the parameters of SSD and the bot-
tom part shows the parameters of RAlS storage systems. We
have implemented RAIS5, RAIS_PL, RAIS_DL, RAISL and
AGCRL based on the simulator. RAIS_PL is a log-assisted
RAIS5 storage system that uses Parity Logging scheme to
improve small write performance. RAIS_DL is a log-assisted
RAIS5 storage system that uses Data Logging scheme to im-

prove small write performance. The simulated storage sys-
tems are configured with eight chips. Each chip has eight
planes. Each plane has 2,048 blocks. Each block has 256
pages and the page size is 4 KB. The read and write cost has
three different types.

4.2 Performance results

In this section, read, write, and overall performance of
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Table 2 Parameters of the simulator

SSD configuration

Total capacity 128 GB

Reserved free blocks 15%

# of chips per device 8

# of planes per chip 8

# of blocks per plane 2,048

# of pages per block 256

Page size 4 KB

Low Medium High
Page read latency

0.07 ms 0.17 ms 0.31 ms

Low Medium High
Page write latency

0.8 ms 0.6 ms 0.45ms

Block erase latency 3 ms

RAID configuration

# of SSD 6

Chunk size 64K

RAID level RAID5

RAISL and AGCRL are evaluated and compared with

RAIS5, RAIS_PL, and RAIS_DL. For RAIS5,RAIS_PL,

RAIS_DL, and RAISL, all writes are performed with low-

cost, followed by high-cost reads. Figures 10 and 11 show the

access latency compared to RAIS5, RAIS_PL and RAIS_DL.

From Fig. 10, we can see that AGCRL performs the best for

all workloads in terms of overall average latency. Specifically,

AGCRL, on the average, outperforms RAIS5, RAIS_PL,

RAIS_DL, and RAISL by 39.15%, 36.77%, 22.89%, and

16.59%, respectively. RAISL performs better than RAIS5,

RAIS_PL, and RAIS_DL for all workloads in terms of over-

all average latency. RAISL, on the average, outperforms

RAIS5, RAIS_PL, and RAIS_DL by 26.03%, 22.29%, and

7.40%, respectively.

Fig. 10 Overall performance comparison

As shown in Figs. 11(a) and 11(b), AGCRL reduces the la-

tency by (35.52%, 55.65%), (31.36%, 55.47%), and (11.89%,

55.44%) on the average, compared to RAIS5, RAIS_PL, and

RAIS_DL. The first parenthesized pair is the improvement

achieved by AGCRL over RAIS5 for the average write and

read performance. The second parenthesized pair is the im-

provement achieved by AGCRL over RAIS_PL for the av-

erage write and read performance. The third parenthesized

pair is the improvement achieved by AGCRL over RAIS_DL

for the average write and read performance. The experiment

results show that the average write performance of RAISL

is almost the same as AGCRL, and the average read perfor-

mance of RAISL is almost the same as RAIS5, RAIS_PL,

and RAIS_DL. The reason is that RAISL, RAIS_PL, and

RAIS_DL are all using the logging technique to improve

the small write performance of RAIS, and they have no ef-

fect on read performance. All writes are performed with low-

cost, and all reads are performed with high-cost in RAISL.

While most writes and reads are performed with low-cost

in AGCRL; thus, compared to RAISL, AGCRL mainly de-

creases the average read latency. AGCRL reduces read la-

tency more than 55%, on the average.

Fig. 11 Access latency comparison. (a) IO latency for write requests; (b)
IO latency for read requests

To evaluate the space cost of the embedding data structures

like the hash list and the extended mapping table, we counted

the number of the updated pages, the size of the hash list,

and the size of extra extended mapping table. As shown in

Table 3, for all workloads, the memory that the hash list

needs is no more than 1MB. The memory that the extra ex-

tended mapping table needs is no more than 0.3MB. The re-

sults show that AGCRL can improve performance efficiency

at the cost of much less amount of space overhead.

Figures 12 and 13 show the effect of the write cost

on RAISL. All writes are performed with high-cost and
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all reads are performed with low-cost in RAISL_HWLR.

All writes and reads are performed with medium-cost in

RAISL_MWMR. All writes are performed with low-cost and

all reads are performed with high-cost in RAISL_LWHR.

The experiment results show that AGCRL outperformed

RAISL_HWLR, RAISL_MWMR, and RAISL_LWHR. As

shown in Fig. 13(a), the average write latency of AGCRL and

RAISL_LWHR are the best. As shown in Fig. 13(b), the aver-

age read latency of AGCRL and RAISL_HWLR are the best.

As the write-cost decreasing in RAISL, the average write la-

tency decreases, but the average read latency increases. For

random write dominated workloads, low-cost write can re-

sult in a satisfactory overall performance in RAISL. For read

dominated workloads, high-cost write can result in a satis-

factory overall performance in RAISL. No matter what the

write ratio is and what the write cost is in RAISL, AGCRL

outperforms RAISL for overall performance.

Table 3 Space cost

Trace file
Number of

updated pages

Hash list

size/MB

Extra mapping

table size/MB

mds_0 33,004 0.38 0.13

rsrch_0 34,252 0.39 0.13

rsrch_2 3,907 0.04 0.01

src2_0 26,293 0.30 0.10

stg_0 31,458 0.36 0.12

usr_0 54,936 0.63 0.21

wdev_0 32,991 0.38 0.13

hm_0 63,603 0.73 0.24

proj_0 41,502 0.47 0.16

proj_3 5,895 0.07 0.02

Fig. 12 Overall performance comparison

The average write handling overhead is mainly determined

by the pre-read operation and the pages that are written to

the log SSD. Figure 14 shows the normalized pre-read num-

ber. Figure 15 shows the normalized number of pages that

are written to the log SSD. RAIS_PL scheme should gener-

ate one read operation and one write operation additionally

to delay parity updating for each page write request. Thus,

in the RAIS_PL system, the pre-read number and the num-

ber of pages that are written to the log SSD are both the

same as the updated pages number. Since RAIS_DL scheme

writes the pre-read data blocks and the updated data blocks to

the log SSD, the number of pages that are written to the log

SSD in RAIS_DL is more than that in RAIS_PL. If the data

block to be updated has been updated before, RAIS_DL does

not need any pre-read operation. The total pre-read number

of RAIS_DL is much smaller than that of RAIS_PL scheme

thanks to local principle. RAISL and AGCRL do not have any

pre-read operation as shown in Fig. 14. Due to that RAISL

and AGCRL only write the updated data blocks to the log

SSD, the numbers of pages that are written to the log SSD in

RAISL and AGCRL are the same as that in RAIS_PL.

Fig. 13 Access latency comparison. (a) IO latency for write requests; (b)
IO latency for read requests

Fig. 14 Normalized pre-read number
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Fig. 15 Normalized number of pages that are written to the log SSD

5 Related work

There are a lot of logging technologies used in the traditional

RAID storage systems to improve write performance. Parity

Logging [11], Data Logging [15], and RAID6L [22] are all

using logging technology to delay parity update for perfor-

mance improvement which transform random write into se-

quential write. Due to high performance and low power con-

sumption, SSD gradually replaces the HDD to construct array

systems. In order to reduce the time of programming in SSD,

HPDA [3] and HerpRap [26] both use several SSDs and one

HDD to form a RAID4 where the data disks are SSDs and

the parity disk is HDD. Since the capacity of HDD is usually

much larger than SSD, the free space of the parity disk is used

as a log region to absorb the small random write requests. To

enhance energy efficiency, performance, and reliability, Zeng

et al. [27] propose a new logging architecture for RAID6 sys-

tems which is called HRAID6ML. In HRAID6ML, several

SSDs and two HDDs form a RAID6 where the data disks are

SSDs and the parity disks are HDDs. The free space of the

two parity disks is also used as mirrored log region for the

whole system to absorb the small random writes requests.

In the RAID5 systems, the load of each disk is almost the

same, because parity blocks are evenly placed on all disks.

Thus, all SSDs in the RAIS5 systems are almost wear out at

same time. When one SSD in RAIS5 fails towards the end of

its lifetime, the risk of data loss is higher than the traditional

RAID5. Balakrishnan et al. [7] propose Diff-RAID, a parity-

based redundancy solution that creates an age differential in

an array of SSDs. Diff-RAID distributes the parity blocks un-

evenly across the array, leveraging their higher update rate

to age devices at different rates. SSDs can exhibit significant

performance degradations when garbage collection conflicts

with an ongoing I/O request stream. In SSD-based RAID sys-

tems, the lack of coordination of the local GC processes am-

plifies these performance degradations. In order to coordinate

GC cycles across each SSD in the RAIS, Kim et al. [24] pro-

pose a global garbage collection (GGC) mechanism. When

one SSD in RAIS needs to do GC, this mechanism forces all

SSDs in the RAIS to do GC at the same time.

Flash memory has many characteristics, such as out-of-

place update, write and read cost interconnections, and so on.

By taking full advantage of the update characteristic, CD-

RAIS [9] combines static striping and dynamic striping to

form a novel striping strategy, which can place the unnec-

essarily consecutive logical blocks that comes from differ-

ent SSDs in one stripe. CD-RAIS alleviates the write request

increase due to parity block update and thus improves the

system response time and extends the SSD lifetime. With

SSD capacity increasing, the performance can be improved

by making use of parallel structure, but reliability is a serious

challenge. For both high performance and reliability, Im and

Shin [28] propose PPC, a novel flash-aware RAID technique

for flash memory SSD. PPC delays the parity update to re-

duce the parity update cost. In addition, PPC uses the partial

parity technique to reduce the number of read operations re-

quired to calculate a parity by exploiting the characteristics

of flash memory. Chung and Hsu [29] combine the PPC and

data cache management to form a new method that can im-

prove the RAIS performance. The proposed method adds a

new cache to keep the original data which can reduce read

operations when updating the partial parity. When write re-

quests hit the cache, the method can reduce writing SSD and

thus extends the SSD lifetime.

Greenan et al. [8] propose a new SSD-based RAID4 ar-

chitecture, which adds a NVRAM. In order not to update the

parity blocks frequently, the NVRAM is used to store the lo-

cal parity blocks. The parity block is updated until all the

data blocks in the corresponding stripe are updated. The FRA

scheme [30] also can reduce the parity write frequency for

multiple write requests to the same area by delaying parity

update. Instead of using a NVRAM to store the parity block,

FRA uses a dual-mapping table in FTL to identify which par-

ity has been delayed.

Several strategies have been recently proposed for exploit-

ing the write and read cost characteristics of flash memory to

regulate read and write costs for performance improvement

on flash memory. Li et al. [31] propose a novel method to re-

duce the latency of IO requests by reducing access conflict la-

tency on flash memory storage system. This method uses low-

cost writes for write conflict reduction, and high-cost writes

for read conflict reduction. Pan et al. [32] and Liu et al. [33]

reduce write costs by relaxing the retention time requirement
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of the programmed pages, which are motivated by the signif-

icantly short lifetime of most data in several workloads com-

pared to the predefined retention time. Li et al. [14] propose

a comprehensive approach called AGCR, which exploits the

access characteristics of workloads for cost regulation to im-

prove flash memory performance. AGCR observes that most

accesses from the host are performed on either read-only or

write-only pages. For read-only page, low-cost read is pre-

ferred and for write-only page, low-cost write is preferred.

Thus, read and write costs can be regulated to significantly

improve the overall performance.

6 Conclusion

In this article, we first propose RAISL, a flash-aware log-

ging technique to improve the write performance of RAIS.

RAISL makes full use of the invalid pages in SSD and only

needs to write the new data to the log SSD. RAISL needs

not to perform the pre-read operations so that the original

characteristics of workloads are kept. Secondly, we propose

AGCRL that combines RAISL with access characteristic

guided read and write cost regulation to further improve the

performance of RAIS storage systems. Our simulation re-

sults show that AGCRL is effective, reducing I/O latency by

as much as 39.15%, 36.77%, 22.89% and 16.59%, compared

to RAIS5, RAIS_PL, RAIS_DL and RAISL.
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