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Abstract MapReduce, a parallel computational model, has

been widely used in processing big data in a distributed clus-

ter. Consisting of alternate map and reduce phases, MapRe-

duce has to shuffle the intermediate data generated by map-

pers to reducers. The key challenge of ensuring balanced

workload on MapReduce is to reduce partition skew among

reducers without detailed distribution information on mapped

data.

In this paper, we propose an incremental data alloca-

tion approach to reduce partition skew among reducers on

MapReduce. The proposed approach divides mapped data

into many micro-partitions and gradually gathers the statis-

tics on their sizes in the process of mapping. The micro-

partitions are then incrementally allocated to reducers in mul-

tiple rounds. We propose to execute incremental allocation

in two steps, micro-partition scheduling and micro-partition

allocation. We propose a Markov decision process (MDP)

model to optimize the problem of multiple-round micro-

partition scheduling for allocation commitment. We present

an optimal solution with the time complexity of O(K · N2),

in which K represents the number of allocation rounds and N

represents the number of micro-partitions. Alternatively, we

also present a greedy but more efficient algorithm with the

time complexity of O(K · N ln N). Then, we propose a min-

max programming model to handle the allocation mapping

between micro-partitions and reducers, and present an effec-

tive heuristic solution due to its NP-completeness. Finally,

we have implemented the proposed approach on Hadoop, an
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open-source MapReduce platform, and empirically evaluated

its performance. Our extensive experiments show that com-

pared with the state-of-the-art approaches, the proposed ap-

proach achieves considerably better data load balance among

reducers as well as overall better parallel performance.

Keywords incremental partitioning, data balance, MapRe-

duce

1 Introduction

MapReduce [1] is an enormously popular simplified paral-

lel data programming model for big data analytics. There are

currently many distributed systems built on MapReduce [2],

including Hadoop [3], a popular open-source implementa-

tion. A MapReduce program consists of alternate Map and

Reduce phases. In the Map phase, mappers transform input

tuples into key-value pairs, which are then divided into par-

titions and shuffled to reducers. In the Reduce phase, each

reducer executes specified operations on the partitions allo-

cated to it.

It has been pointed out [4, 5] that workload unbalance is

a common phenomenon on MapReduce. We observe that the

key challenge of ensuring workload balancing among reduc-

ers is partition skew. The basic strategy, which is the de-

fault solution implemented on Hadoop, is to specify a hash

or range partition function before mapping. The function can

usually result in each reducer receiving roughly the same

number of key blocks. However, due to size skew of key

blocks, it can not ensure data load balance among reduc-

ers. Actually, without detailed distribution information on
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mapped data, it is nearly impossible to predefine a partition

function that can balance data load in the Reduce phase.

Currently, there exist two approaches to address the short-

coming of the basic strategy. Some work [6] proposed to

first sketch data distribution by pre-sampling input tuples,

and then use the obtained information to design a balanced

partition function. This approach requires an additional run

of mapping on sampled data. Moreover, its effectiveness de-

pends on accurate sampling, which by itself remains a chal-

lenging task. The other approach [7–11] trades slow shuffle

start for distribution statistics garnering. It first defines a ten-

tative partition function to produce arbitrary-sized partitions

and gradually gathers the statistics on partition sizes in the

mapping process. Once the mapping task is completed up to

a preset progress point, it then adjusts the partitioning plan

based on the garnered distribution information. In this ap-

proach, mapped data are actually allocated to reducers at ad-

justment point. Note that the basic strategy as implemented

on Hadoop can start to shuffle mapped data once the first

mapper finishes its job. In contrast, this approach can only

begin to shuffle mapped data after adjustment point. Since

mapped data allocation occurs in a single round, the chal-

lenge of implementing this approach is to determine the opti-

mal adjustment point. If the adjustment point is set to be at an

early stage of mapping, the gathered distribution information

may not be accurate. On the other hand, if it is set to be later,

data shuffling has to be delayed accordingly.

We illustrate the shortcoming of the single-round allo-

cation approach by a comparative experiment, as shown in

Fig. 1. The naive Hadoop approach starts to shuffle data im-

mediately after the first mapper finishes its job. In contrast,

the single-round approach starts to shuffle data only after all

the mappers finish their jobs. The X-axis represents the num-

ber of mapper rounds required by a mapping task. The Y-axis

represents the total time consumed by the map and shuffle

Fig. 1 Illustration of slow reduce job start

phases. In the experiment, each round has totally 10 mappers

running simultaneously, each of which processes 64M data.

It can be observed that the single-round approach can con-

sume considerably more time than the naive approach, and

its performance disadvantage tends to deteriorate with the in-

creasing number of required mapper rounds.

To better manage the trade-off between sampling accuracy

and early reduce job start, this paper proposes a novel incre-

mental allocation approach. Our major contributions can be

summarized as follows:

• We propose an incremental data allocation approach to

reduce partition skew on MapReduce. It first divides

mapped data into many micro-partitions while gradu-

ally gathering the statistics on their sizes in the process

of mapping, and then allocates them to reducers in mul-

tiple rounds. Compared with existing techniques, it pro-

vides with a more effective mechanism to manage the

trade-off between sampling accuracy and early shuffle

start. On one hand, it enables immediate shuffling after

the first mapper finishes its job. On the other hand, par-

tition skew resulting from inaccurate sampling can be

corrected in later rounds of micro-partition allocation

(Section 4).

• We propose to execute incremental allocation in two

steps, micro-partition scheduling and micro-partition

allocation. Provided with multiple allocation deci-

sion points, the problem of micro-partition schedul-

ing chooses the micro-partitions for allocation commit-

ment at each decision point, and the problem of micro-

partition allocation maps committed micro-partitions

to reducers. For micro-partition scheduling, we pro-

pose a Markov decision process (MDP) model and

present an optimal algorithm with the time complexity

of O(K · N2), in which K represents the number of al-

location rounds and N represents the number of micro-

partitions. We also present a greedy but more efficient

algorithm with the time complexity of O(K · N ln N).

For micro-partition allocation, we propose a min-max

programming model and present an effective heuristic

solution due to its NP-completeness (Sections 5 and 6).

• We implement the proposed incremental approach on

Hadoop (Section 7) and compare its performance with

that of the state-of-the-art solutions. Our extensive ex-

periments show that it achieves considerably better data

load balance among reducers as well as overall better

parallel performance (Section 8).
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The rest of this paper is structured as follows: Section 2

reviews related work. Section 3 presents the preliminaries

and gives an overview on the existing solutions. Section 4

introduces the overview of incremental approach. Section 5

presents the solution for micro-partition scheduling. Sec-

tion 6 presents the solution for micro-partition allocation.

Section 7 presents the implementation on the native Hadoop.

Section 8 presents the experimental results. Finally, we con-

clude our work with Section 9.

2 Related work

Since the MapReduce programming model was first pro-

posed [1], the problem of workload unbalance has been

widely recognized [1, 5, 6, 12–16]. The existing workload

balancing techniques proposed for traditional parallel sys-

tems [17, 18] optimized job and task scheduling to minimize

the parallel execution time. The Map-Shuffle-Reduce phase

design renders them unfit for the MapReduce framework.

The simple approach for reducing partition skew [19–21]

decoupled the Map and Shuffle phases. It only begins to shuf-

fle data after all the mappers finish their jobs. Such an ap-

proach suffers from slow reduce job to start. An improved

approach was based on sampling. Sampling can be executed

by an independent process before Map phase [6]. Alterna-

tively, it can be integrated into Map phase. Vernica et al. [22]

sampled the input data in the process of mapping and used

an adaptive partitioner to generate balanced data at a specific

time point in the midst of mapping. Similarly, Ramakrishnan

et al. [23] added a separate sampling thread to gain the distri-

bution in the oracle loader for Hadoop. Grover and Carey [24]

selected parts of input splits as sampling data to evaluate the

whole input set. The Closer system [9,10] also inserted sam-

pling into the map function. More recently, Libra [11] pro-

posed an improved sampling method and used range partition

to avoid the skewed partition, the core contribution is allo-

cating one key to different reducers for part of applications.

Complementary to these work, Kolb et al. [7, 8] proposed to

sample the input data by blocks instead of tuples.

However, the common drawback of the sampling-based

techniques is that accurate sampling remains a challenging

task especially when only a small part of input data can be

sampled [25]. Further, allocation plan adjustment in the midst

of mapping would delay the shuffle start point. Therefore, in

practical implementation, it remains challenging to set an ad-

justment point that can optimize the trade-off between data

load balance and early reduce start. The incremental approach

we proposed in this paper can instead provide with a flexible

mechanism to better manage their trade-off. Its effectiveness

does not depend on accurate sampling either.

Workload unbalance among reducers is usually addressed

in two phases. The first one is to ensure workload balancing if

possible before the jobs start. Our work on partition skew falls

into this phase. The second one instead concerns about real-

locating the workload among computing nodes in the running

process of jobs. For dynamic workload balancing in the midst

of Reduce phase, the typical approach [25, 26] proposed to

identify idle computing nodes and reallocate some workload

on heavy nodes to the idle ones. Its effectiveness, however, to

a large extent depends on accurate estimation of the remain-

ing processing time on computational nodes.

There has been some work on [27,28] studying how to han-

dle data skew in parallel join on MapReduce. Since the pro-

posed incremental approach aims to address partition skew,

it can obviously be used to handle the skew of any reduce

operation (including join). As demonstrated by these work,

the join operation enables specific optimization techniques,

which are however beyond the scope of this paper.

There is also some work complementary to ours. Gufler et

al. [10] proposed the method for estimating the cost of the

tasks that are distributed to reducers based on a given cost

model. The SkewReduce system [29] used user-defined cost

functions to estimate the computational cost of partitions. To

ensure workload balancing, the incremental approach also re-

quires estimating the computational cost of micro-partitions.

It can use these proposed estimation techniques to optimize

performance in practical implementation.

3 Preliminaries

A MapReduce program consists of alternate Map and Re-

duce phases. In the Map phase, each mapper loads S plits

from local HDFS and maps them into 〈key, value〉 pairs. The

mapped data are divided by a hash function into partitions.

Each partition corresponds to a reducer. Once a mapper fin-

ishes its job, Hadoop starts to shuffle partitions to their cor-

responding reducers. An example of data flow is shown in

Fig. 2, in which mapped data are divided into two partitions,

P0 and P1. By default, the hash function is set to be key%R,

in which R is the total number of reducers. Suppose that each

key corresponds to a micro-partition. The default function can

usually ensure that each reducer receives a balanced num-

ber of micro-partitions. However, due to size skew of micro-

partitions, it does not necessarily result in balanced workload
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among reducers.

Fig. 2 Naive approach on Hadoop

An improved approach [9], as shown in Fig. 3, sched-

ules the allocation of mapped data in the process of map-

ping. Mapped data are first tentatively grouped into partitions

which are assigned to reducers. The resulting plan is tentative

in that it may be adjusted later. In the process of mapping, the

statistics on partition sizes are simultaneously gathered. After

the job of mapping progresses to a preset time point, which

is also referred to as the adjustment point, the tentative plan

is then adjusted based on the gathered distribution informa-

tion. At this point, the default partition function would be

amended as a new partition function to split the heavy parti-

tions. Then, the finished mappers could shuffle after splitting

the local heavy partitions. But for the unfinished mappers,

they have to group tuples by the amended partition function.

For instance, as shown in Fig. 3, the partition P1 is split into

P1a and P1b at the adjustment point which is defined as the

second round of mapper is finished. After that,P1b is allo-

cated to R0 instead of its original destination R1. The finished

mappers M0 and M1 could begin to be shuffled to reducers.

And for M2, its data must be partitioned with the amended

partition function. And with this rule, as shown in Fig. 3, its

data is partitioned into three parts: P0, P1a and P1b.

Fig. 3 Single-round allocation approach

4 Overview of the incremental approach

To enable flexible management on the trade-off between sam-

pling accuracy and early shuffle start, we propose to allocate

mapped data to reducers in multiple rounds. The process of

incremental allocation is sketched in Fig. 4. The mapped data

are first divided into many micro-partitions, the number of

which is usually significantly larger than the number of re-

ducers. The workload statistics of micro-partitions are con-

tinually gathered and sent to an allocation decision maker in

the process of mapping. The generated micro-partitions are

then allocated to reducers incrementally in multiple rounds.

Instead of using a single allocation decision point, the incre-

mental approach sets a series of discrete time points in the

mapping process as allocation decision points. At each deci-

sion point, some of uncommitted micro-partitions are chosen

and allocated to reducers. In the example shown in Fig. 4, the

micro-partitions, {P0, P1, P2}, are allocated at the decision

point D1, P3 and P4 are allocated at D2, and P5 is allocated

at D3. The discrete decision points can be set according to

mapping progress: each decision point corresponds to a per-

centage up to which the map job has been completed. For in-

stance, the decision points can be set to be {T1, T2, . . . , T10},

in which Ti represents the time point where (i · 10)% of the

map job has been completed.

Fig. 4 Incremental allocation approach

The ultimate purpose of workload balancing on Hadoop

is to optimize parallel performance. To this aim, the prob-

lem of incremental allocation has to consider the cost of data

shuffling as well as workload balancing among reducers. Sup-

pose that the intermediate data generated by mappers are di-

vided into N micro-partitions. Also suppose that there are to-

tal M reducers (N � M) and there are total K discrete deci-

sion points in the process of mapping, which are denoted by

{T1, T2, . . . , TK}. The solution of incremental allocation con-

sists of a series of allocation actions. Given a decision point
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Ti, an action allocates some uncommitted micro-partitions to

reducers. Note that all the N micro-partitions should be allo-

cated to reducers and each of them should be allocated only

once. The objective function of the optimization problem can

be represented by:

min max
j

( fs(R j) +
∑

i

(ai j · fc(S i))), (1)

in which S i denotes the size of the ith micro-partition, ai j

denotes the mapping between micro-partitions and reducers

(ai j = 1 if the ith micro-partition is allocated to the jth re-

ducer, and ai j = 0 otherwise), R j denotes the jth reducer,

fs(R j) represents the total shuffling cost at the reducer R j and

fc() represents the computational cost of a micro-partition.

In this paper, we focus on handling the reduce-side par-

tition skew, and thus assume that the workload of a micro-

partition can be accurately estimated beforehand by its size.

It can be observed that otherwise, workload skew has to

be balanced in the midst of the Reduce phase. For ease of

presentation, we use a micro-partition’s size and its com-

putational workload interchangeably in the rest of this pa-

per. On MapReduce, the shuffle job interleaves with the map

job. Therefore, the progress of a shuffle job at a reducer de-

pends on the progress of the map job, the sizes of the micro-

partitions allocated to the reducer, and the micro-partitions’

shuffle start points. We also note that the statistics of micro-

partition sizes (S i) are incrementally garnered. Their estima-

tions can fluctuate wildly in the process of mapping. There-

fore, we propose to execute incremental allocation in two

steps, micro-partition scheduling and micro-partition alloca-

tion. They are described as follows:

Problem 1 Micro-partition Scheduling. Given a series of

decision points and a set of micro-partitions, P, the prob-

lem of micro-partition scheduling refers to selecting a subset

of micro-partitions in P for allocation commitment at each

decision point. A feasible solution should satisfy that each

micro-partition is committed once and only once.

Problem 2 Micro-partition Allocation. Given a decision

time point Ti and a set of committed but unallocated micro-

partitions, Pu, the problem of micro-partition allocation

refers to allocating the micro-partitions in Pu to reducers. A

feasible solution should satisfy that each micro-partition is

allocated to one and only one reducer.

The solution to Problem 1 chooses the micro-partitions for

allocation commitment at decision points. Its objective is to

optimize the trade-off between workload balancing and early

shuffle start. The solution to Problem 2 allocates the com-

mitted micro-partitions to reducers. Its objective is to achieve

balanced workload among reducers. We formulate them and

study their optimization in Sections 5 and 6 respectively.

5 Micro-partition scheduling

In this section, we propose the algorithms based on Markov

decision process (MDP) to solve the optimization problem of

micro-partition scheduling.

5.1 The MDP model

A standard MDP model is a 5-tuple (S , A, P,R, γ), where S

denotes a finite set of states, A denotes a finite set of ac-

tions, P denotes the set of state transit probabilities upon ac-

tions, R denotes the state transit rewards and γ denotes the

discount factor representing the difference in importance be-

tween present and future rewards. For ease of presentation,

we use As to denote the finite set of actions available at a

state s, Pa(st, st+1) denoting the probability of state s at time

t transiting to state st+1 at time t + 1 as a result of the action

a, R(st, st+1) denoting the immediate reward of the state tran-

sition from st to st+1. The core problem of MDP is to find

a “policy” for the decision maker: a function that specifies

the action that the decision maker will choose when in state

s. The goal is to choose a policy that will maximize some

cumulative function of the random rewards, typically the ex-

pected discounted sum over a potentially infinite horizon:
∞∑

t=0

γt · R(st, st+1), (2)

where 0 < γ � 1.

We formulate the micro-partition scheduling problem as a

MDP. Suppose that there are total N micro-partitions and K

decision points. The state is represented by 2-tuple, s(Vt, t),

where Vt is a N-dimensional allocation vector and t repre-

sents a decision point. In Vt, {v1, . . . , vN}, each dimension

corresponds to a micro-partition, and vi = 1 if its correspond-

ing micro-partition has been committed for allocation at time

t, otherwise vi = 0. The action corresponds to commiting

some uncommitted micro-partitions for allocation. The state

transit can only occur from time t to time t+1. In a state tran-

sit from (Vt, t) to (Vt+1, t + 1), the value of vi remains to be 1

at time t + 1 if vi = 1 at time t. Committing a micro-partition

for allocation at time t would change the value of its vi from

0 at time t to 1 at time t + 1. As a result of a commitment ac-

tion at time t, a state s(Vt, t) would deterministically transit

to another state s(Vt+1, t + 1).
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The general MDP model is shown in Fig. 5. The initial

state is denoted by s(V0, 0). Since every micro-partition is

initially uncommitted, every dimensional value vi in V0 is

equal to 0. The final state is denoted by s(VK+1, K +1). Since

every micro-partition has to be committed for allocation at

the end of the planning process, every dimensional value in

VK+1 is equal to 1. At any decision point ti (1 � i � K), the

total number of commitment states of Vi is equal to 2N . A

MDP example with 2 micro-partitions and 2 decision points

is also shown in Fig. 6. The colored path represents a feasible

solution of state transfer, which allocates P1 at D1 and P2 at

D2.

Fig. 5 The general MDP model

Fig. 6 An example MDP

It is observed that committing a micro-partition for alloca-

tion would enable its immediate shuffling, but also reduce the

opportunities for later balancing adjustment. Therefore, the

definition of the reward function has to consider the trade-off

between these two conflicting factors. We define the reward

function as

Rat (st, st+1) =
Wt

c

W
· Nt

u

N
, (3)

in which W denotes the total size of all the micro-partitions,

Wt
c denotes the total size of the micro-partitions committed at

time t, N denotes the total number of micro-partitions and Nt
u

denotes the total number of micro-partitions remaining un-

committed after t. In Eq. (3), the first part of (Wt
c/W), which

corresponds to the size percentage of the micro-partitions

committed at t to all the micro-partitions, measures the bene-

fit of early shuffling. The second part of (Nt
u/N) represents

the penalty of reduced balancing opportunities as a result

of micro-partition commitment. Committing more micro-

partitions at a decision point t would result in an increased

value of Wt
c but a decreased value of Nt

u. It is worthy to point

out that both extreme choices, committing no micro-partition

or committing all the available micro-partitions at a decision

point, would result in the minimal reward of 0.

We consider the discount of a future reward as a penalty of

retrieving more accurate sampling results. In simple random

sampling method, the sampling accuracy increases with the

sample size. And the actual error is square root with the sam-

ple size [30]. In this paper, we borrow the definition of actual

error and support sampling accuracy is square root with the

sample size. We suppose the process speed is a constant for

each mapper. And the interval time is the same between each

adjacent decision point. So the total size of retrieved sample

at the last decision point (tK) is K times the sample size re-

trieved at the first decision point (t1). Correspondingly, the

sampling accuracy achieved at tK is
√

K times the sampling

accuracy achieved at t1. Combining formula Eq. (2) we have

γK−1 × √K = 1. (4)

Correspondingly, the value of the discount factor (γ) is spec-

ified by

γ = K−
1

2(K−1) . (5)

5.2 An optimal algorithm

The standard optimal algorithm for MDP repeats two types

of computations in same order for all the states until no fur-

ther state transit takes place. They are recursively defined as

follows:

V(s) :=
∑

s′
Pπ(s)(s, s′)

(
Rπ(s)(s, s′) + γV(s′)

)
; (6)

π(s) := arg max
a

⎧⎪⎪⎨⎪⎪⎩
∑

s′
Pa(s, s′)

(
Ra(s, s′) + γV(s′)

)
⎫⎪⎪⎬⎪⎪⎭ . (7)

At the end of the algorithm, π will contain the solution and

V(s) will contain the discounted sum of the rewards to be

earned (on average) by following that solution from state s.
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In the proposed MDP, the number of probable states is

O(K · 2N), in which K and N denote the number of decision

points and micro-partitions respectively. However, the num-

ber of the states probably traversed by an optimal solution can

be shown to be only O(K · N). Given a decision point ti, sup-

pose that the total number of uncommitted micro-partitions

is Ni. We can prove that the action taken at each decision

point,{ti, ti+1, . . . , tK}, as specified by an optimal solution,

would commit j top-sized uncommitted micro-partitions, in

which 0 � j � Ni. In other words, the optimal action always

commits the largest uncommitted micro-partitions at any de-

cision point. The optimal number of micro-partitions com-

mitted at each decision point, however, needs to be further

determined. We have the following lemma:

Lemma 1 In the proposed MDP model, the action is taken

at any decision point as specified by an optimal solution al-

ways commits the set of micro-partitions consisting of the

largest available ones.

Proof Suppose that in an optimal solution SL1, the action

at a decision point ti commits a set of micro-partitions, Pti ,

which are not the largest available ones. Then, there exists a

micro-partition p uncommitted at ti whose size is larger than

a micro-partition p′ in Pti (|p| > |p′|). We also suppose that p′

is committed at t j (ti < t j) in SL1. We construct an alternative

solution SL2. The solution SL2 takes the same actions as SL1

except that it commits the micro-partition p′ at ti and p at t j.

According to the definition of the reward function, we have

Ri, j(SL1)

Ri, j(SL2)
=

W1i
c · N1i

u + γ
j−i ·W1 j

c · N1 j
u

W2i
c · N2i

u + γ j−i ·W2 j
c · N2 j

u

, (8)

in which Ri, j(SL1) represents the sum reward that SL1

achieves at ti and t j, and W1i
c represents the sum size of micro-

partitions committed at ti in SL1, N1i
u represents the number of

micro-partitions remaining uncommitted after ti in SL1. Note

that N1i
u =N2i

u , N1 j
u =N2 j

u and N1i
u >N1 j

u . We also have

W1i
c −W2i

c = W2 j
c −W1 j

c = |p′| − |p| < 0. (9)

Therefore, we have

Ri, j(SL1) < Ri, j(SL2). (10)

Note that at any decision point other than ti and t j, the solu-

tions SL1 and SL2 achieve the same rewards. Therefore, SL2

achieves a total reward larger than that of SL1. Contradiction.

According to Lemma 1, the optimal algorithm only needs

to consider committing the top-k largest uncommitted micro-

partitions at each decision point. Therefore, we have the re-

cursive reward function as follows:

R(st−1) = max
at−1

{Rat−1 (st−1, st) + γ · R(st)}, (11)

in which R(st−1) represents the maximal reward that the state

st−1 can receive at the decision point t − 1, at−1 represents the

action of committing top-k largest available micro-partitions

at t− 1, st represents the state at t as a result of the action at−1

at st−1. The optimal algorithm, based on dynamic program-

ming, recursively computes R(si) beginning with the initial

state s0. In the process, the maximal reward of every prob-

able state is remembered to avoid redundant computations.

We have the observation that the number of probable states

at each decision point is bounded by O(N). As a result, the

total number of probable states are bounded by O(K · N). We

also observe that in Eq. (11), Rat−1 (st−1, st) can be computed

in an incremental way. The computation of Eq. (11) therefore

takes O(N) time. Therefore, we have the following theorem:

Theorem 1 The optimal dynamic programming algorithm

has the space complexity of O(K ·N) and the time complexity

of O(K · N2)

The purpose of the designed MDP model is to choose a se-

ries of micro-partition commitment actions at decision points

such that the cumulative sum of rewards is maximal. An opti-

mal MDP plan made at the first decision point t1, is based on

the retrieved sampling results up to t1. In principle, it can also

specify the optimal actions taken at every other decision point

besides t1. However, its effectiveness depends on the assump-

tion that the estimated sizes of micro-partitions remain stable

throughout the mapping process. Unfortunately, their estima-

tion sizes may instead fluctuate wildly in practice. Therefore,

the optimal MDP plan needs to be recomputed at each deci-

sion point after t1. At a decision point ti, the planner would

commit the micro-partitions as specified by the computed op-

timal plan at ti. The state at ti would then transit to another

state at ti+1 correspondingly.

5.3 A greedy algorithm

To reduce the MDP optimization overhead, we propose

a greedy but more efficient algorithm for micro-partition

scheduling.

At each decision point t, the greedy algorithm always

chooses to commit the top-k largest uncommitted micro-

partitions such that the immediate reward of state transit from

st to st+1 is maximized. In addition, the sorting would take

O(NlnN) time. The algorithm is sketched in Algorithm 1. Pu
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denotes the set of uncommitted micro-partitions before the

decision point t. Pc denotes the set of micro-partitions in Pu

selected for allocation commitment at t.

Algorithm 1 A greedy algorithm

Require: t, Pu (the set of uncommitted micro-partitions)

Ensure: Pc (a subset of Pu)

1: Sort the h micro-partitions in Pu, {p1, p2 , . . . , ph}, by size in the de-
creasing order;

2: Pc = ∅; //the set of committed micro-partitions

3: w=0; // the total weight of the committed micro-partitions

4: k=1; // the numbers of committed micro-partitions at each decision
point

5: R=0; // total rewards of the committed micro-partitions at each deci-
sion point

6: while k � h do

7: w=w+|pk |;
8: R’= w

W · h−k
N ;

9: // commit the micro-partition whose reward could increase the total
reward

10: R′ � R then

11: Insert pk into Pc;

12: R=R’;

13: k=k+1;

14: else

15: Break;

16: end if

17: end while

On the time complexity of Algorithm 1, we have the fol-

lowing theorem:

Theorem 2 The greedy algorithm as presented in Algo-

rithm 1 has the time complexity of O(K · N ln N).

5.4 Empirical validation

This subsection empirically validates the effectiveness of the

proposed MDP model. We use the synthetic data satisfying

the Zipf -γ distribution in empirical evaluation. The genera-

tor is the USF’s open source code, uses the parameter of γ,

which presents the value of the exponent characterizing the

distribution, to control the skew extent: a larger value means

a more skewed distribution. We totally run 5 rounds of map-

pers and each round simultaneously runs 10 mappers. Each

mapper processes 64MB data.

The detailed experimental results are presented in Fig. 7.

The X-axis represents the decision points. The Y-axis repre-

sents the number of micro-partitions committed at each de-

cision point. It can be observed that the optimal algorithm

and the greedy one perform very similarly. In both cases,

most micro-partitions are committed at several initial deci-

sion points. Generally (but with exceptions), the number of

committed micro-partitions decreases with time. The differ-

ence is that the plan generated by the greedy algorithm is

slightly more aggressive: it commits more micro-partitions

in the first two rounds. According to the experimental results,

most micro-partitions can begin to be shuffled at the early

stage of the map phase and only some smallest-sized micro-

partitions would be committed at the later stage. These results

demonstrate that the MDP plan is effective in balancing the

trade-off between reducing partition skew and early reduce

start.

Fig. 7 Empirical validation of MDP

It is also interesting to observe that the MDP model has a

desirable property: as the value of s increases, which means

the distribution becoming more skewed, the scheduling plan

would become more conservative. In other words, in the case

of more skewed distribution, the MDP plan would reserve

more micro-partitions for later commitment. For instance,

when s = 0.5, the optimal MDP plan commits 35 micro-

partition at the first decision point. In comparison, if s = 0.9,

it commits only 25 micro-partitions at the first decision point.

6 Micro-partition allocation

We formulate the problem of micro-partition allocation at a

decision point t as a generalized multiprocessor scheduling

problem [31]. Suppose that at t, the initial workload already

allocated to the ith (1 � i � M) reducer is Li. We also

suppose that according to the MDP plan, there are total h

micro-partitions supposed to be committed for allocation at t,

whose set is denoted by Pc. At the decision point t, the opti-

mization problem of micro-partition allocation is to allocate

these h micro-partitions to M reducers such that each reducer

achieves a balanced load. We use the variants xi j to denote

the mapping between the micro-partitions in Pu and reduc-

ers: xi j = 1 if the ith micro-partition is allocated to the jth
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reducer, and xi j = 0 otherwise. The micro-partition allocation

problem is an optimization problem which can be formulated

as follows:

min max
j
{L f

j }

s.t. ∀1 � i � h,
∑

1� j�M

xi j = 1, (12)

∀1 � j � M, Lf
j = L j +

∑

i

(xi j · ec
i ),

in which ec
i denotes the estimated size of the ith micro-

partitioin in Pu and L f
j denotes the estimated total size of

micro-partitions allocated to the jth reducer.

Theorem 3 The micro-partition allocation problem is NP-

complete.

Proof Multiprocessor scheduling problem (MSP) is an op-

timization problem, that was proved NP-complete by Ullman

in 1975 [31]. This problem is expressed as that nonpreemp-

tively scheduling n independent tasks on m identical parallel

processors with the objective of minimizing the “makespan”

T . We take an instance of multiprocessor scheduling as: Set

S of tasks, number m ∈ Z of processors, length l(s) ∈ Z for

each s ∈ S , and a deadline D ∈ Z. The question is “Is there

an m-processor schedule for S that meets the overall deadline

D?”.

And we also take an instance of micro-partition allocation

problem (MAP) as: Set S ′ contains n′ micro-partitions, num-

ber m′ ∈ Z′ of Reducers, the weight for each micro-partition

is l′(s′) ∈ Z for each s′ ∈ S ′, and the maximal weight of Re-

ducers is limit as D′. The question is “Is there an m′-Reducers

allocation plan for S ′ micro-partitions, which make the max-

imal weight of Reducers to meet the limit weight D′?”.

First, the micro-partition allocation problem is NP. Be-

cause we could verify the maximal weight of any solution

whether it is larger than D′ in polynomial time.

Next, we are going to reduce the known NP-complete

problem MSP to the new one MAP in polynomial time. We

transform the tasks to the micro-partitions and Reducers to

the processors. And the length function l(s) can be linearly

transformed to the weight function l′(s′). Therefore, we could

transform the input of MSP to the input of MAP in polyno-

mial time. Under the inputs, supposed there was a solution

using the cost function l(s) in MSP, that the solution must

be a solution using the cost function l′(s′) in MAP. And the

reverse is true. So we reduced the instance of MSP to MAP.

According to the above, we conclude that the micro-

partition allocation problem is NP-complete.

Therefore, we use the classical LPT (largest processing

time first) algorithm, which was originally proposed for the

multiprocessor scheduling problem, to solve it. With the ap-

proximation ratio of 4/3, the LPT algorithm has been empiri-

cally shown to be able to achieve good performance [32, 33].

It first ranks the micro-partitions in the decreasing order of

their sizes, and then allocates a micro-partition to a reducer

with the smallest data load one by one.

7 Implementation on Hadoop

In this section, we describe the details of implementing our

method on the native Hadoop.

The main implementation of allocating partitions to reduc-

ers on the native Hadoop is shown as the blocks without the

dotted-line in Fig. 8. On the native Hadoop, after a mapper is

finished, store the temporary data and write each partition’s

index-address in MapOutputFile on local. And send the “fin-

ished” message to JobTracker in Heartbeat. After JobTracker

gets this message, and randomly allocates one partition to a

reducer by sending one index-address message in Heartbeat.

For each launched reducer, it can acquire the allocated parti-

tion’s message and store it in LocalPartition on local and calls

Read() function to pull the finished mapper’s data. As reading

is multi-thread, each mapper’s index is stored in MapOutput-

Locations. Once all mappers are finished, reducers can run

the Reduce() For our method, we need to develop three func-

tion modules and four data structures on the native Hadoop,

which are the dotted-line blocks in Fig. 8. Compared with the

native implementation, our multiple allocation rounds strat-

egy is more complex. While a mapper is executing, instead of

writing 〈key, value〉 pairs into buffer directly, each pair would

be processed by Sample(). Sample() is used to describe the

distribution of micro-partition by summarizing the total num-

ber of keys which have the same micro-partition value. Af-

ter that, the distribution is stored in LocalSamplingTable in

memory. At each decision point, TaskTracker submits its own

LocalSamplingTable to JobTracker in Heartbeat. And then,

JobTracker would update GlobalSamplingTable by summer-

ing all LocalSamplingTable. Now, the distribution of all pro-

cessed data is stored in GlobalSamplingTable. So JobTracker

can run DecisionModel() to make an allocation plan by run-

ning Algorithm 1 and store the plan in GlobalAssignPlan. In

the next Heartbeat, JobTracker pushes the current GlobalAs-

signPlan to TaskTracker. When TaskTracker receives a new

plan, it can only sift micro-partitions allocated to it and store

them in LocalAssignPlan in local memory. At each decision
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point, AddNewP() would add new allocated micro-partitions

into LocalPartition. After that, like the native Hadoop, the

reducers would wait for the finished mapper’s data to run Re-

duce() function. function.

Fig. 8 The implementation in native Hadoop

8 Experimental evaluation

In this section, we empirically evaluate the performance of

the proposed incremental approach, which is denoted by IPS

(incremental micro-partition scheduling), by the comparative

study. We compare its performance with that of three alter-

natives: the native approach implemented on the open-source

Hadoop, the Closer approach [9] and Libra approach [11].

The Closer approach essentially allocates micro-partitions to

reducers in a single round based on partial size estimation re-

sults. In this comparative study, we set the adjustment point

of Closer to be the time points when 20% or 80% of mapper

jobs have been completed. The points of 20% and 80% rep-

resent the early and later adjustment points commonly used

in practical implementation respectively. In Libra, we sample

20 percent of the map tasks. In IPS, we set the default ampli-

fication coefficient, which refers to the times the number of

micro-partitions is to the number of reducers (or N/M), to be

50. And the number of decision points is 10. Since the opti-

mal and the greedy algorithms for micro-partition scheduling,

as presented in Section 5, perform very similarly, we present

the performance of IPS with the greedy scheduling algorithm

in our comparative study.

We use one synthetic data set and two real data sets, whose

details are presented in Table 1. The synthetic data set satis-

fies the Zipf distribution. Its generator uses the parameter of

γ, which presents the value of the exponent characterizing the

distribution, to control the skew extent: a larger value means

a more skewed distribution. The two real data sets are BTS

and UK-2002. The BTS data set records the departure and

arrival times reported by US air carriers. The UK-2002 data

set records a web page graph resulting from a 2002 crawl of

the UK domain performed by UbiCrawler. We run the simple

WordCount algorithm on the Zipf and BTS data sets, and the

PageRank algorithm on the UK-2002 data set.

The approaches are evaluated on three metrics: 1) coeffi-

cient of variation (cv) of data loads, σ/μ, in which σ and μ

represent the standard deviation and the mean respectively; 2)

maximum of data loads; 3) maximum of running time. Note

that the data load of a reducer is measured by the total size of

micro-partitions allocated to it. All the experiments were ex-

ecuted on a cluster consisting of one master machine and ten

slave machines. Each machine has an AMD processor with

162.20GHz cores, 16GB RAM, and 500GB hard disks. Each

machine was installed with the 64-bit Ubuntu Linux 10.04

and Hadoop 1.1.2. Each machine can run up to 16 mappers or

reducers simultaneously. We repeated each experiment three

times and reported the averaged running time.

The rest of this section is organized as follows: In Sub-

section 1, we briefly evaluate the performance of Closer. In

Subsection 2, we briefly evaluate the performance of IPS. In

Subsection 3, we present the comparative results on the syn-

thetic data. In Subsection 4, we present the comparative re-

sults on the real data set.

8.1 Performance of closer

This subsection evaluates how the performance of Closer

varies with the chosen adjustment point. We use the syn-

thetic data and set nine adjustment points varying from 10%

of mapping progress to 90%. The mapping phase is exe-

cuted in totally 10 rounds. The detailed evaluation results

Table 1 Details of the test datasets

Dataset Algorithm Size/GB Tuple/Billion Description

Zipf -γ WordCount 4 1 The standard Zipf distributions

BTS WordCount 60 19 Departure and arrival times reported by US air carriers

UK-2002 PageRank 2.5 0.18 A 2002 crawl of the uk performed by UbiCrawler
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are presented in Fig. 9. It can be observed that reducer data

loads tend to become more balanced as the point percentage

increases. The exceptions result from sampling fluctuation.

On the consumed map and shuffle time, the performance of

Closer instead deteriorates as the point percentage increases

due to slower shuffle start points.

Fig. 9 The evalution results of Closer on Zipf -0.7. (a) Coefficient of varia-
tion; (b) run time

8.2 Performance of IPS

In this section, we evaluate the effect of amplification coeffi-

cient and the number of decision points on the performance.

We experiment this part on two synthetic data sets Zipf -0.3

and Zipf -0.7, which contain 1,000 kinds of tuples to run the

WordCount instance.

The granularity of micro-partition is mainly affected by its

total number. In this paper, we use the hash partition function

and renew it to key%(M × λ). M is set to 20 and λ is denoted

as amplification coefficient. And we vary λ from 10 to 50,

increased by 10. When it is 50, each micro-partition contains

only one kind tuple who has the same value.

The experimental results are presented in Fig. 10. When

the value of λ is increased from 10 to 30, both coefficient of

variation and the max load are reduced obviously on two data

sets. And the results of Zipf -0.7 are more significant. Con-

tinually increasing its value, the changing curve of the coef-

ficient of variation and the max load is smooth. For Zipf -0.7,

the value of coefficient of variation is smaller than Zipf -0.3’s

from 30 to 50, while its max load is bigger. This is caused

by the distributions of the data set. In comparison, the perfor-

mance of IPS would be better with the large λ. And we can

increase the value of it for more skew datas. But for differ-

ent distributions, the effect can be smooth until some value.

Moreover, the larger the number of micro-partitions is, the

larger the load would be while shuffling. In our practice, it

would be fine if the value of λ is between 30 and 50. In the

rest of this paper, we set the value of λ to 50.

Fig. 10 Evaluate amplification coefficient on Zipf -0.3/0.7. (a) Coefficient
of variation; (b) the max load

The number of decision points impacts how many times

should all the micro-partitions be allocated on reducers. In

this paper, we define the decision point in term of mappers’

processing ratio. And we mark the first decision point as the

first mapper’s finished time, and do the same for the last. Then

we divide equally all the stage as some parts.

We do six groups of experiments and the results are pre-

sented in Fig. 11. When the number of decision points is in-

creased from 2 to 12 , both coefficient of variation and the

max load are reducing constantly, which are obvious when

the argument is changing from 2 to 8. And both of them are
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stable after 8. The reason of which is the decision points are in

the Map phase. By adding the decision points, we can correct

the deviation caused by the earlier allocation. But, for each

data set, there would be an optimal amount of decision points,

which is caused by the total number of micro-partitions. In

our practice, we find the number of decision points would be

better set as 10. Thus we set it to 10 in the rest of this paper.

Fig. 11 Evaluate decision numbers on Zipf -0.3/0.7. (a) Coefficient of vari-
ation; (b) the max load

8.3 Comparative evaluation on synthetic data

We generate 11 sets of Zipf -γ data, where the value of γ

varies from 0 to 1. The detailed evaluation results are pre-

sented in Fig. 12. Figure 12(a) reports the coefficient of varia-

tion among reducer data loads. It can be observed that the na-

tive Hadoop performs poorly even in the case of γ = 0, which

means that the micro-partition sizes are the least skewed. Its

coefficient of variation increases with the value of γ. The

Closer and Libra methods perform better than the native ap-

proach. It achieves well-balanced reducer workloads when

γ � 0.3. However, when γ � 0.4, the data loads among

reducers become considerably less balanced. It can also be

observed that IPS achieves better performance than both Na-

tive Hadoop, Closer and Libra. The results showed that IPS

achieved well-balanced reducer data loads when γ � 0.7. In

the cases of 0.8 � γ � 1, its coefficient of variation increases

dramatically but is still smaller than those of Native Hadoop

and Closer.

To get a closer look at the performance of IPS, we also

present the distribution of reducer data loads in the case of

γ = 0.8 as shown in Fig. 12(d). The X-axis denotes the

reducer IDs and the Y-axis denotes their data loads. The

numbers above the rectangles in histogram represent the to-

tal numbers of micro-partitions allocated to reducers. It can

be observed that the reducer with the largest load contains

only one micro-partition. The data loads on other reducers

are well balanced. Experimentally, the result achieved by IPS

can be said to be the best possible with the predefined micro-

partitions.

The evaluation results on the maximum of data load and

run time are presented in Figs. 12(b) and 12(c) respectively.

On data load maximum, IPS performs better than colorall of

Native Hadoop, Closer and Libar. Generally, its performance

advantage increases with the size skew of micro-partitions.

The experimental results on run time are similar.

8.4 Comparative evaluation on real data

We plot the distribution of key values in the BTS data in

Fig. 13(a). The X-axis denotes the key values and the Y-axis

denotes the occurrence frequency of each key. It can be ob-

served that the distribution is skewed: the majority of key

values have low or moderate frequencies and only a few have

high frequencies.

The experimental evaluation results on BTS in term of co-

efficient variation, maximum data load and run time are pre-

sented in Figs. 13(b), 13(c) and 13(d) respectively. The X-axis

denotes the number of reducers. On coefficient variation, it

can be observed that IPS performs significantly better than

both Native Hadoop, Closer and Libra. On maximum load,

IPS also consistently outperforms them. The evaluation re-

sults on run time are similar to what was observed on maxi-

mum load.

The evaluation results on the UK-2002 data set are also

presented in Fig. 14. Note that the PageRank algorithm has

to be executed iteratively on Hadoop. We suppose that the

mapping between micro-partitions and reducers remains un-

changed at each iteration. Figure 14 reports the results of the

first iteration. The experimental results are similar to what is

observed on the BTS dataset. IPS consistently outperforms

Native Hadoop and Closer. Note that on maximum load,

plotting all the comparative results in a figure would make

the performance of the three approaches appear very similar.

Therefore, in Fig. 14(b), we only present the comparative re-

sult with the number of reducers set to be 10. The evaluation



972 Front. Comput. Sci., 2019, 13(5): 960–975

Fig. 12 The evaluation results on Zipf -γ. (a) Coefficient of variation; (b) max load; (c) run time; (d) results on Zipf -0.8

Fig. 13 The evaluation results on BTS. (a) Distribution of key values; (b) coefficient of variation; (c) max load; (d) run time



Zhuo WANG et al. Reducing partition skew on MapReduce: an incremental allocation approach 973

Fig. 14 The evaluation results on uk-2002. (a) Coefficient of variation; (b) max load; (c) run time; (d) run time(reduce number=10)

results on other numbers of reducers are similar.

With the number of reducers set to be 10, we also present

the four approaches’ performance difference on the time con-

sumed by the map, shuffle and reduce phases in Fig. 14(d). It

can be observed that they consume roughly the same time on

the map phase. All of Native Hadoop, IPS and Libra can start

to shuffle mapped data once the first mapper finishes its job.

Therefore, they share the same shuffle starting point. Since

IPS reserves some micro-partitions for later allocation com-

mitment, it consumes slightly more time than Native on the

shuffle phase. Even though Closer may consume less time on

the shuffle phase, its shuffle phase has a later end point. Libra

using the range partition method is more unbalanced than the

hash partition method on UK-200. On the reduce phase, IPS

consumes the least time because it has the smallest maximum

load. IPS also achieves the best overall performance among

them.

9 Conclusion

In this paper, we propose an incremental allocation approach

to reduce partition skew on MapReduce. The approach con-

sists of two steps: micro-partition scheduling and micro-

partition allocation. We proposed effective and efficient so-

lutions for both problems. Finally, our extensive experiments

on synthetic and real data have shown that compared with the

state-of-the-art solutions, the incremental approach achieved

considerably better data load balance as well as overall better

parallel performance.
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