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Abstract Leader election protocols are fundamental for

coordination problems—such as consensus—in distributed

computing. Recently, hierarchical leader election protocols

have been proposed for dynamic systems where processes

can dynamically join and leave, and no process has global in-

formation. However, quantitative analysis of such protocols

is generally lacking. In this paper, we present a probabilistic

model checking based approach to verify quantitative prop-

erties of these protocols. Particularly, we employ the compo-

sitional technique in the style of assume-guarantee reasoning

such that the sub-protocols for each of the two layers are ver-

ified separately and the correctness of the whole protocol is

guaranteed by the assume-guarantee rules. Moreover, within

this framework we also augment the proposed model with

additional features such as rewards. This allows the analysis

of time or energy consumption of the protocol. Experiments

have been conducted to demonstrate the effectiveness of our

approach.

Keywords distributed computing, hierarchical leader elec-

tion protocol, dynamic systems, probabilistic model checking

1 Introduction

Eventual leader election protocols are fundamental to solve
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coordination related problems in distributed computing [1].

Generally speaking, in the leader election problem, there

are n processes in the system, each of which has a unique

identity. Upon termination of the protocol, exactly one pro-

cess announces itself as the leader [2]. A number of leader

election protocols have been designed for various kinds of

settings [3–5]. Recently, with the rapid development of net-

working technology, dynamic systems are becoming increas-

ingly popular. Different from the traditional assumption made

in the static system, in dynamic systems, processes can dy-

namically join and leave the system, and no process has the

global information on the whole [6]. Indeed, many applica-

tions exhibit the features of the dynamic system, and typical

examples include Peer-to-Peer systems, Internet-of-Things

systems, etc. Therefore, eventual leader election in dynamic

systems has been intensively studied in the literature [7–9].

The main challenge here is the inherent uncertainty of the un-

derlying dynamic models. This uncertainty, not only brings

difficulty to the protocol design, but also to the (quantita-

tive) analysis of the proposed protocols. Indeed, in [9], we

gave a theoretical proof of the protocol’s correctness. How-

ever, such correctness cannot answer questions such as how

many steps are needed, or how much energy is consumed, to

elect a global leader on average. Such quantitative analysis is

evidently of great interest to the end users of the protocol.

Model checking turns out to be an effective formal method

to verify a design artifact against certain properties, i.e.,
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checking whether a design is a model of the specification.

Normally, the design model is expressed as a labeled transi-

tion system and the property is written in temporal logics. Be-

cause the verification is conducted automatically and exhaus-

tively, and a counterexample can be provided when the spec-

ification is unsatisfied, model checking has been widely ap-

plied in practice [10]. However, conventionalmodel checking

techniques can only give a yes or no answer to the properties

in question — it cannot analyze systems which exhibit prob-

abilistic behavior in a satisfactory way. Probabilistic model

checking generalizes conventional model checking in that

it builds and analyzes probabilistic models such as Markov

chains and Markov decision processes [11]. By leveraging

probabilistic extensions of temporal logics, the quantitative

properties of these models can be specified or verified auto-

matically.

In light of these considerations, we adopt probabilistic
model checking to quantitatively verify properties — related
to the scalability and efficiency issues — of a hierarchical
leader election protocol for dynamic systems which was re-

cently proposed in the literature [9]. Particularly, we leverage

the PRISM model checker [12] to construct the hierarchical

model. PRISM is a leading open-source model checker and

has been applied in many fields, such as communication pro-

tocols, distributed algorithms and some other systems of spe-

cific subjects like biology. The paper is based on our previous

work on the design of hierarchical eventual leader election

protocols for dynamic systems [9] and probabilistic analy-

sis of regular leader election protocols without cluster hier-

archies [13]. In this paper, we make the following contribu-

tions:

1) We complement the analysis of our model proposed in

[9] with quantitative verification via probabilistic model

checking. To our best knowledge, this is the first case

study of applying probabilistic verification on a hierar-

chical eventual leader election protocol. The verifica-

tion gives deeper insights on the properties of the pro-

tocol.

2) We adopt a compositional reasoning technique, i.e.,

assume-guarantee, to verify hierarchical protocol de-

sign, which gives better scalability compared to the

holistic approach.

3) We extend the original protocol model in two aspects.

Firstly, we employ cost/rewards to model energy con-

sumption; secondly, we relax the assumption of reliable

communication. For both aspects, we use probabilistic

model checking to conduct quantitative analysis.

Moreover, as a minor contribution, we develop some

techniques to increase the expressiveness of PRISM model

checker and an automated code generation technique to in-

crease the scales of models. These techniques can be reused

as a library for other similar problems. The rest of the paper

is structured as follows: Section 2 briefly introduces the hi-

erarchical leader election protocol in dynamic systems. The

detailed model design of the protocol is described in Section

3 followed by the probabilistic verification in Section 4. Some

discussions and related work are given in Section 5 and Sec-

tion 6 respectively. Section 7 concludes our paper.

2 Hierarchical leader election protocol in a
nutshell

In this section, we first briefly introduce the hierarchical de-

sign of the protocol and assumptions of the model. We then

present some essential parts of the protocol. The details of the

protocol can be found in [9].

The hierarchical leader election protocol is designed for

the cluster based hierarchy topology, which has been widely

used in many fields such as consensus [14] and information

dissemination [9, 15]. Generally, the hierarchical election of

an eventual leader is achieved in two steps. In the fist step,

election is conducted to select a cluster head within a cluster.

In the second step, the election is conducted among cluster

heads which have been done in the first step to select the

globally unique leader. Correspondingly, the protocol con-

sists of two layers, i.e., the lower layer and the upper layer.

In the lower layer, cluster heads are elected with each clus-

ter, and then in the upper layer, election is conducted among

cluster heads so as to elect the eventual leader of the whole

system. Both layers adopt the query-response communication

primitives suited to the dynamic system. In a nutshell, there

are two communication primitives: broadcast and wait un-

til. The former is used to broadcast a query message to all of

the processes; the latter stipulates that the process waits un-

til a pre-defined number α of responses have been received.

Here, α defines the minimal number of stable processes; a

process is stable if it never leaves a cluster after joining the

cluster. It captures the progress requirement of the dynamic

system [6], and normally we assume α > �n/2�+1. The com-

munication channel is assumed to be reliable in the original

work for simplicity [9], but we shall relax this assumption to

a more realistic setting during the quantitative verification in

our model.

The election protocol in the lower layer is enacted within



Yu ZHOU et al. Probabilistic verification of hierarchical leader election protocol in dynamic systems 765

each individual cluster and the purpose is to select the head of

the corresponding cluster. The upper layer protocol stands on

the whole system and its task is to guarantee a unique leader

of the system to be elected. In short, the protocol runs se-

quentially: the cluster head is elected in the lower layer, and

then the eventual leader is elected among those cluster heads

in the upper layer.

• Lower layer protocol The original protocol in this layer

consists of four tasks, i.e., Task 1, Task 2, Task 3 and Task 4.

These four tasks are executed independently by the processes

in the lower layer. These tasks are interacted and synchro-

nized through message exchanges. Among them, Task 1 is the

core of the protocol. It is used for processes to exchange in-

formation and update cluster-head candidates. The main pur-

pose is to reduce the size of the candidate head set denoted

by trusti and to ensure a unique cluster head is elected even-

tually.

The data structures used in the lower layer protocol are

listed as follows:

• Π is the full set of processes;

• rec_ f romi is the set of processes from which process pi

receives a RESPONSE message;

• trusti is the candidate cluster head set;

• log_datei is the logical time which defines the age of

trusti;

• leaderi is the current global leader process;

• CHi is the local cluster head of process pi;

• RECFROMi is the union set of rec_ f rom

Algorithm 1 illustrates these data structures and their ini-

tialization. In Task 1, firstly, pi sends a QUERY message and

then keeps waiting until α RESPONSE messages have been

received. Next, it updates its rec_ f romi set based on the iden-

tities of those processes which have sent RESPONSE mes-

sages. After that it adjusts RECFROMi set by computing the

union of the rec_ f rom of all above the processes appearing in

rec_ f romi. Afterwards, trusti is modified by set intersection.

If the value of trusti is changed, then pi broadcasts another

message containing the TRUST set to the whole cluster so

that all processes in the cluster can adjust their leader infor-

mation accordingly.

Task 2 shown in Algorithm 2 is to ask a process to send a

RESPONSE message immediately after it receives a QUERY

message from other processes. We note that, in the original

protocol, it is assumed that the channel for message delivery

is reliable and thus no message could lost. This is, however,

an unrealistic assumption in the real networking environment.

To remedy this, we introduce a parameter ratio_suc to repre-

sent the probability of successfully sending messages.

Task 3 is designed to modify the trust set by comparing

to log_datei when receiving the TRUST messages. At the

same time, this task can also monitor the trust set and re-

set it if it is empty. Algorithm 3 illustrates Task 3. Once pi

receives a TRUST message from process p j, it should adjust

its trusti set accordingly. Task 4 is illustrated in Algorithm 4

and is used to update the cluster head of a process when it has

finished executing Task 3, i.e., the process with the smallest

identity in the candidate set will be announced as the cluster

head.

• Upper layer protocol The upper layer of this hierarchy-

based leader election protocol is to elect a global leader of

the whole system among all cluster heads which have been

elected in the lower layer. The following data structures are

used:

• accepti is the set of candidate leaders; seqnumi is a log-

ical time which defined the age of accepti;

• reci is the set of (Ck, k) from which pi received a RES

message;

• CLUSTERi is the union set of Ck

Two messages are used to exchange information.
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ALIVE(Ci, i, accepti, seqnumi) is a message to gossip with

other cluster heads, and RES(Ck, k, reck) is the response mes-

sage of ALIVE.

In this layer, there are three important tasks to elect a global

leader for the whole system, i.e., Task 1, Task 2, and Task 3.

Among them, Task 1 is the main body of the protocol which

decreases the number of the candidate leaders of the system

via continuously updating the leader set. Task 2 is an aux-

iliary task dealing with the condition where a cluster head

receives the ALIVE message. Task 3 is similar to its counter-

part in the lower layer targeting at updating the leader set. The

above three tasks are shown with pseudo-code in Algorithms

5–7.

Algorithm 5 illustrates Task 1 of the upper layer protocol.

At first, cluster head pi broadcasts an ALIVE message to all

cluster heads in the system, and keeps waiting until (n − f )

RES messages from different clusters received, in which n is

the number of clusters and f is the number of empty clus-

ters where there are no processes. Next, pi records the ids

of each cluster head and sends the values to reci. After that,

CLUSTERi is updated by computing the union of rec set of

cluster heads appearing in reci. Then, accepti is intersected

with the above CLUSTERi. Eventually, pi checks its accepti
to test whether or not a cluster has more than one cluster head

and then deletes the ids of those clusters.

Algorithm 6 illustrates Task 2 of the upper layer. In the first

place, when p j, the head of cluster Cj, receives an ALIVE

message from pi, p j modifies its value after comparing the se-

qnum values of two cluster heads. Next, p j checks its accept j

value to decide whether or not it is empty. If there is no el-

ement in this set, p j resets accept j with all elements. And

then, p j will check whether this message is sent from other

processes within the same cluster. If it is true, p j will update

the accepti by removing its cluster id; otherwise, it will send

a RES message.

Task 3 of the upper layer protocol finishes the election.

This task targets at electing the global leader of the whole

system. When pi finishes a cycle of the operation, it immedi-

ately updates its leader information according to the value of

accepti. This task is similar to the Task 4 of the lower layer

protocol. The above tasks constitutes the essential steps of
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the two layer eventual leader election protocol. We refer in-

terested readers to [9] for details.

3 Model of the protocol

In this section, we give the modeling of the protocol pre-

sented in the previous section using PRISM. We assume

that readers are familiar with the syntax and features of the

PRISM modeling language, for which unfamiliar readers can

refer to [12]. PRISM uses a state based language to construct

the models, and in this way, it has a natural correspondence

to the labeled transition system during model checking. The

paradigm of the state based modeling language is quite dif-

ferent from the imperative language we used to describe our

protocol. Therefore, the construction of the corresponding

PRISM model is not straightforward. On the other hand, as

we can see, the hierarchical protocol contains seven tasks in

total and if we faithfully modeled the protocol, there would

be too many intermediate states obstructing efficient verifi-

cation seriously. Thus we need to abstract some unnecessary

details away in the model design process. Concretely speak-

ing, we change the way of constructing the RECFROM set

and simplify the way of dealing with TRUST message.

1) Constructing the RECFROM. In this part, we show how

to reconstruct the RECFROM set via a simple way

without changing the essence of the original protocol.

From lower layer Task 1, we observe that RECFROM is

a union of the rec_ f rom sets of α processes having sent

RESPONSE messages. These α rec_ f rom sets contain

ids of the α processes. Based on this, we can redesign

some steps of the original protocol. During the period

of computing rec_ f rom set, we only need to focus on

the size of the set rec_ f rom which is always α — the

elements of rec_ f rom are irrelevant. Note that here, it

should be guaranteed that α � �n/2� + 1. Therefore,

when the cluster has n processes, there are
(
n
α

)
differ-

ent possibilities of selecting α processes from such a

cluster. In addition, we should pay attention to the con-

struction of RECFROM set. It consists of α rec_ f rom

each containing α different elements, and thus the to-

tal number is α2. However, some of these identities are

duplicate, and thus the number of non-redundant ele-

ments in this set is between α and n. Since there is no

difference among processes, for each configuration of

RECFROM set, we can use one instance to represent.

There are n − α + 1 such configurations.

2) Simplifying the way of dealing with the TRUST mes-

sage. When trusti is changed, process pi immediately

broadcasts a TRUST message to other processes in the

same cluster to update their own trust sets. Then the

related processes compare the value of log_datei and

reacts accordingly. Because in the same cluster, all pro-

cesses are executing in parallel, the change of log_date

information is totally stochastic, and thus we use the

nondeterminism provided by PRISM to model it and

select one of three operations randomly.

The original protocol [9] has an eventual cluster stability

assumption, which states that eventually at most f out of all

n clusters are empty, and at most s of the clusters are not

empty but with less than α members. It requires that after

some time, a stable cluster has no more process joining. Ac-

cordingly, in our model, we did not consider the processes

joining and leaving across different clusters and only consid-

ered the situations in stable clusters.

Below we present the modeling of the two layer’s protocol.

• Lower layer model First of all, we introduce some vari-

ables to model the lower layer protocol. Their definitions and

(intuitive) semantic explanations are summarized in Table 1.

Table 1 Variable definitions and explanations in lower layer

Variable Semantics

leaderi:[1..n] init 1 The leader of pi’s cluster,

initial value is its id

QUERYi:bool init false The flag mark of pi’s QUERY,

initial value is false

Ri j :bool init true The jth value of pi’s trust set,

initial value is true

TRUSTi:bool init false The listener of pi’s TRUST set,

initial value is false

si: init 0; The current step of pi’s execution,

initial value is 0

As defined in Task 1 of the lower layer protocol, process

pi broadcasts a QUERY message in its cluster. After that, pi

needs to update its state. In our model, we use the flag vari-

able QUERYi to label the state and set its value to be true

after the transition. Without loss of generality, we use p1 as
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the representative process throughout the paper. The corre-

sponding PRISM model snippet is given in Listing 1.

Listing 1 Broadcasting a query

[] (s1=0)&(QUERY1=false)->(s1’=1)&(QUERY1’=true);

Afterwards pi receives a collection of responses

RECFROM, whose contents are identities of peer processes.

As discussed previously, the range of RECFROM is between

α and n. So we can adjust the value of Rij to denote whether

the process p j is included in the response messages. This is

exemplified in Listing 2.

Listing 2 Broadcasting a query

[] (s1=1)&(QUERY1=true)-&>&r1:(s1’=2)

+r2:(s1’=2)&(R1_1’=false)

+r3:(s1’=2)&(R1_1’=false&R1_2’=false)

+r4:(s1’=2)&(R1_1’=false&R1_2’=false&R1_3’=false)

+ · · ·

Once getting the set of RECFROM, we need to decide

whether or not pi broadcasts the TRUST message to all pro-

cesses within the same cluster after updating trust. In our

model, we compare RECFROM and trust. If they are the

same, then it means the trust set will not be updated and nei-

ther will the update message be broadcast. This step is illus-

trated in Listing 3. In the example code of this step, n denotes

the number of processes involved in the election and t1_i rep-

resents the element of TRUST set.

Listing 3 Comparison between RECFROM and trust

[] (s1=2)->(s1’=3)&(TRUST1’=(R1_1=t1_1?false:true)

|(R1_2=t1_2?false:true)|· · · |(R1_n=t1_n?false:true));

If pi receives the TRUST message sent from other pro-

cesses, it will execute the corresponding operations and up-

dates its trust set. Different from previous steps, it requires

synchronization with other processes, i.e., upon receiving the

TRUST message, all processes need to stay synchronized.

Therefore, we use a variable A1 to denote this. The PRISM

code snippet is explained in Listing 4.

After this step, we proceed to update the trust set and

QUERY. If the set is empty, then we reset it with its initial

value. QUERY is set to be false so as to enable the repetition.

This is illustrated in Listing 5.

In order to select a leader of a certain cluster in the lower

layer, we set up a listener globally to update the leader in-

formation of each involved process. When the QUERY infor-

mation is updated, it will trigger the listener. Therefore, we

use the synchronization utility in PRISM to implement the

listener as illustrated in Listing 6.

Listing 4 Synchronizing the processes

//process p1

[A1] (s1=4)&(TRUST1=true)->(s1’=5)&(TRUST1’=false);

//process p2,...,pn

[A1](s1=4)&(TRUST1=true)->

1/3:(s2’=5)&(t2_1’=t2_1&t1_1)

&· · ·&(t2_n’=t2_n&t1_n)

+1/3:(s2’=5)&(t2_1’=t1_1)&· · ·&(t2_n’=t1_n)

+1/3:(s2’=5);

Listing 5 Resetting the trust set and query

[](s1=5)&(t1_1=false)&· · ·&(t1_n=false)->(t1_1’=true)

&· · ·&(t1_n’=true)&(s1’=6);

[](s1=5)&!((t1_1=false)&· · ·&(t1_n=false))->(s1’=6);

[](s1=6)->(QUERY’=false)&(s1’=0);

Listing 6 Resetting the trust set and query

[A2](s1=6)->(leader1’=(t1_1=true?1:

(t1_2=true?2:(· · · (t1_(n-1)=true?(n-1):n)))));

[A2](s1=6)->(QUERY’=false)&(s1’ = 0);

• Upper layer model Similarly, we first introduce ad-

ditional variables defined to facilitate the model design, and

then we present the essential steps for the upper layer proto-

col. We also use p1 as an example. p1 has a variable, i.e.,

Leader1, to record the head information of its cluster, a

Boolean variable ALIVE1 to denote whether it has broadcast

the ALIVE message to all cluster heads within the system.

The sets of accept and CLUSTER are the same as defined

in the upper layer protocol. These variables and explanations

are given in Table 2. The number of cluster heads are denoted

as a variable m.

Table 2 Variable definitions and explanations in upper layer

Variable Semantics

Leader1:[0..m] init 1 The leader of p1’s cluster,

initial value is its id

ALIVE1:bool init f alse The boolean flag mark of pi , whether or not

pi sends an alive message, initialized false

accept1 j :[0..1] init 1 The jth value of p1’s accept set,

initial value is 0

s1: init 0 The current step of pi’s execution,

initial value is 0

Firstly, p1 needs to broadcast an ALIVE message to all

processes within the system. we model this step and change

its states afterwards as illustrated in Listing 7.

After sending the ALIVE message, p1 and other processes

need to synchronize their reactions accordingly. For p1, it

just transfers to the next state; while for other processes, they
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need to start Task 2 of the upper layer protocol to handle the

ALIVE2 message. In the Listing 8, we use process p2 as a

representative of other processes. The r1, r2 and r3 are the

probability coefficients. The sum of the three values should

be equal to 1.

Listing 7 Broadcasting an ALIVE message

[](s1=0)&(ALIVE1=false)->(s1’=1)&(ALIVE1’=true);

Listing 8 Handling the ALIVE message

//For p1;

[ali](s1=1)&(ALIVE1=true)->(s1’=2); ...

//For other processes, e.g., p2;

[ali](s1=1)&(alive1=true)->

r1:(accept2_1’=(accept2_1=accept1_1)?accept2_1:0)&· · ·
&(accept2_m’=(accept2_m=accept1_m)?accept2_m:0)

&(s2’=2)+r2:(accept2_1’=accept1_1)&· · ·
&(accept2_m’=accept1_m)&(s2’=2)+r3:(s2’=2);

When p1 finishes the above operation, it will check the

emptiness of its accept set. If the set is empty, it will reset

with its initial value. Otherwise, it will move to the next state.

This step is illustrated in Listing 9.

Listing 9 Resetting the accept set

[s](s1=2)&(accept1_1=0)&· · ·&(accept1_m=0)->

(accept1_1=1)&· · ·&(accept1_6=1)&(s1’=3);

[s](s1=2)&!((accept1_1=0)&(accept1_2=0)

&· · ·&(acccept1_m=0))->(s1’=3);

Process p1 will get a CLUSTER set after broadcasting the

ALIVE message. We use the similar strategy of calculating

RECFROM in the lower layer protocol to get CLUSTER. The

code snippet is given in Listing 10.

Listing 10 Calculating the CLUSTER set

[](s1=4)->(s1’=5)&(accept1_1’=

(accept1_1=1&cluster1_1=1)?accept1_1:0)

&· · ·&(accept1_m’=(accept1_m=1

&cluster1_m=1)?accept1_m:0);

Listing 11 Update the leader information

[A2](s1=5)->(Leader1’=(accept1_1=0&accept1_2=0

&· · ·&accept1_m=0)?1:(accept1_1=1?1:

(accept1_2=1?2:· · · (accept1_(m-1)=1?(m-1):m)· · · )));

The above steps constitute the essential parts of the upper

layer leader election model. However, we also need an exter-

nal listener to update the leader information after each elec-

tion cycle. This step is similar to the one in the lower layer

protocol and is illustrated in Listing 11, where m denotes the

number of cluster heads participating the upper layer election.

4 Probabilistic verification

4.1 Assume-guarantee based compositional reasoning

Assume-guarantee verification is a frequently used technique

in compositional reasoning. It can be used to verify the sys-

tem S , which consists of the parallel composition of two sub-

systems S 1 and S 2, written as S 1||S 2, against certain property

G, written as 〈true〉S 1‖S 2〈G〉. In order to verify this asser-

tion, it is reduced to verify whether or not the two assertions

〈true〉S 1〈A〉 and 〈A〉S 2〈G〉 hold, where A is the assumption

and G is the guarantee. Assume-guarantee is a successful

compositional verification technique and has broad applica-

tions in model checking.

In [16, 17], Kwiatkowska et al. adapted the assume-

guarantee technique to probabilistic verification, which

means the assumption can also include quantitative proper-

ties. In our case, the hierarchical eventual leader election pro-

tocol is inherently a layered architecture and the whole elec-

tion process consists of two sequential sub processes, i.e.,

election within a cluster, and election within cluster heads.

This fact implies the opportunity of leveraging compositional

verification technique to tackle the complexity. From the de-

scription of the above protocol, we observe the precondition

of the upper layer election is that the lower layer cluster can

elect a unique head. Therefore, we introduce the assumption

that the model of lower layer can eventually elect a unique

head within a cluster.

As a result, the rules proposed in [16,17] can be applied in

our setting. The reason is that the focus therein is the paral-

lel composition of different modules, while here we need to

deal with the sequential composition, for which a new rule

is required. Let’s start with some basic definitions. We write

D(S ) for the set of probabilistic distributions over S .

Definition 1 (Probabilistic automata) A probabilistic au-

tomaton (PA) is a tuple T = (S , α, A,Δ, L) where

• S is a set of states;

• α is the initial distribution;

• A is a set of actions;

• Δ ⊆ S × A ×D(S ) is a probabilistic transition relation;

• L : S → 2AP is a labeling function.

Intuitively, at any state s of a PA T , a transition s
a→ μ,

where a ∈ A is an action label and μ is a discrete probability
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distribution over S , is available if (s, a, μ) ∈ Δ. In an execu-

tion of the model, the choice between the available transitions

at each state is nondeterministic; the choice of successor state

is then made randomly according to the distribution μ.

We define a sequential composition operator ◦ over two

probabilistic automata, T1 = (S 1, α1, A1,Δ1, L1) and T2 =

(S 2, α2, A2,Δ2, L2) where A1 ∩ A2 = ∅ and S 1 ∩ S 2 = ∅. Note

that these conditions can be easily satisfied by renaming. The

operator ◦ is parameterized by (F, π) where

• F ⊆ S 1 is a subset of absorbing states of T1.

• π : F → S 2 is a total function from F to S 2.

For the sake of simplicity, when applying the operator ◦, we

assume tacitly the associated F, π are given.

Formally, T1 ◦ T2 is given as

(S , α, A,Δ, L),

where

• S = S 1 � S 2, i.e., the disjoint union of S 1 and S 2;

• α = α1;

• A = A1 � A2;

• Δ = Δ1 �S 1\F ∪Δ2 ∪ {(s,−, δπ(s)) | s ∈ F}; and

• L(s) =

⎧⎪⎪⎨⎪⎪⎩
L1(s), if s ∈ S 1;

L2(s), if s ∈ S 2.

Note here Δ1 �S 1\F := {(s, a, μ) ∈ Δ1 | s ∈ S 1 \ F}, δπ(s) is the

Dirac distribution, and − means the action name is irrelevant

here.

It is straightforward to verify that T1 ◦ T2 is indeed a PA.

We introduce the following assume-guarantee rule, specially

for the reachability property. Admittedly this is limited com-

paring to the one in [16, 17] which addresses general safety

fragment of PCTL. However, it is sufficient for the purpose

of the current paper.

Recall that T |= [♦F]�p if for all schedulers of T , the prob-

ability of reaching F is no less than p.

Proposition 2 The following rule holds:

〈true〉T1〈[♦F1]�p1〉 〈α(π(F1)) = 1〉T2〈[♦F1]�p2〉
〈true〉T1 ◦ T2〈[♦F1]�p1·p2〉

.

The correctness of the rule is a direct consequence of the

Markov property and the definitions and hence is omitted. We

note that the rule indeed can be generalized in different ways,

for instance, the condition of α(π(F1)) = 1 can be weakened.

It is not our focus to formulate a most general rule – instead,

a relatively simple, but sufficient, rule is favored.

4.2 Design of property verification

The foremost interested property of the protocol is its

correctness, i.e., whether or not a unique leader will be

elected finally. As discussed previously, we leverage assume-

guarantee verification technique, and the assumption is the

lower layer model can eventually elect a unique head within

a cluster. We will verify this property first in the lower layer,

and then verify the upper layer model. Since the two elections

are conducted sequentially, this feature simplifies the compo-

sitional verification greatly.

Before starting verification, we need to set up a signal in-

dicating the fact that a unique leader of a cluster/system is

elected. As we know, if and only if all the variables CH or

leader have the same value, then it can be regarded that a clus-

ter head or leader has been elected. Therefore, we label this

state as “elected”. There are several ways to specify the state

“elected”. In our experiment, we can calculate the minimum

probability of successfully electing a cluster head or leader.

If the minimum probability equals to 1.0 (100%), it means

that such “elected” is always reachable. Thus the property is

expressed as: Pmin = ? [F “elected”]. On the other hand,

we can also specify the property in other ways, for example,

from the initial state, all paths can eventually reach the same

destination that the “elected” state is satisfied. In this way, the

property can be written as: P >= 1[F “elected”].

In our experiment, we adopted the first approach to calcu-

late the probability of reaching the final “elected” state. To

scale up, we set up two parameters, i.e., “N” and “M”, where

“N” is the number of processes within a cluster, and “M”

is the number of clusters of the system. Moreover, we also

measured the number of explored states, transitions and the

time needed to perform the complete verification. The exper-

iments were conducted on a PC with an Intel i7-4790 pro-

cessor of 3.6GHz and 32.0GB RAM running Ubuntu 14.04

LTS OS. The versions of PRISM and JDK are 4.3.1 and

1.8.0 respectively. To maximize the performance, in our ex-

periments, the option values of “PRISM_JAVAMAXMEM”,

“PRISM_JAVASTACKSIZE” and “CUDD” are configured to

“Xmx20g”, “Xss1536m” and “10g” respectively.

The results of lower layer model verification is given in

Table 3. The number of processes is denoted as N. From the

table, we can find that across all the configurations with the

number of processes N ranging from 6 to 10, a unique head

with probability value 1.0 was eventually elected. Our model

can scale up to 10 processes given the experiment environ-

ment described above with the value of α equal to �N/2�+ 1.

Time is measured in the unit of seconds, and consists of two
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parts, i.e., model construction and verification.

Table 3 Verification in lower layer

Time/s

N Results State Transition (construction,

No. No. verifiation)

6 1.0 1.596 × 107 6.054 × 107 (5.98, 4.34)

7 1.0 2.222 × 108 1.012 × 109 (20.20, 15.08)

8 1.0 3.095 × 109 1.658 × 1010 (151.30, 54.25)

9 1.0 4.322 × 1010 2.675 × 1011 (1844.60, 286.63)

10 1.0 6.057 × 1011 4.261 × 1012 (19056.65, 1389.92)

11 NC NC NC NC

Note: NC: not counted

The verification result of lower layer protocol indicates that

the assumption of successful election in lower layer holds.

Then we proceed to verify the upper layer model. The exper-

iment result is given in Table 4. The number of clusters is de-

noted as M and the time unit is second. From the table, we can

observe that as long as the assumption holds, the probability

for the system to reach the “elected” state is 1.0. Based on

the principle of assume-guarantee technique, we prove that

a global leader could be eventually elected by our protocol

from the formal verification perspective. Since the maximum

number of processes in a cluster and the maximum number

of clusters are both 10, our model can support up to 100 pro-

cesses in total.

Table 4 Verification in upper layer

Time/s

M Results State Transition (construction,

No. No. verifiation)

6 1.0 1.772 × 106 6.352 × 106 (1.96, 2.48)

7 1.0 1.766 × 107 7.405 × 107 (5.42, 2.61)

8 1.0 1.765 × 108 8.490 × 108 (25.14, 7.21)

9 1.0 1.768 × 109 9.603 × 109 (179.21, 26.46)

10 1.0 1.766 × 1010 1.074 × 1011 (4083.19, 169.87)

11 NC NC NC NC

Note: NC: not counted

In order to demonstrate the superior productivity of prop-

erty verification by separate layers, we conduct a contrast ex-

periment with the verification of a holistic manner. The ex-

periment is based on a system combining with the lower and

the upper layer part, and its target is to elect a global leader

of the system directly. As the system is influenced by two

important factors, the number of clusters and the number of

processes of each cluster, we should design the experiment

comprehensively considering both factors at the same time.

Firstly, we set the cluster number and gradually increase the

average number of processes within one cluster. Next we in-

crease the cluster number and repeat the step. The experi-

ment result is summarized in Table 5 in which CNo. denotes

the number of clusters and PNo. denotes the number of pro-

cesses in one cluster. From Table 5 we can find the number of

processes of holistic verification is around 24. By using com-

positional reasoning, we can increase to 100, and get four

times enhancement in terms of scalability.

Table 5 Holistic verification

CNo., Results State Transition Time/s

PNo. No. No. (construction,

verifiation)

4, 3 1.0 5.092 × 1011 4.668 × 1012 (1.03, 4.27)

4, 4 1.0 1.551 × 1014 1.875 × 1015 (2.50, 10.99)

4, 5 NC NC NC NC

5, 4 1.0 1.844 × 1019 2.825 × 1020 (6.56, 32.00)

5, 5 NC NC NC NC

6, 4 1.0 1.162 × 1023 2.136 × 1024 (15.33, 66.28)

6, 5 NC NC NC NC

Note: NC: not counted

4.3 Extension of rewards

To analyze the quantitative properties of the protocol,

we extended the model with the energy consumption via

cost/rewards, and conducted the second experiment. Energy

consumption is an important concern, especially for wire-

less sensor networks [18, 19]. Thus the energy consumption

analysis model of a protocol is much needed. Based on the

work [20] and many others [21], the energy consumption of

internal operation is usually 1.0–1.5 times of communication.

Therefore, we assume that the unit energy consumption of

communication is 1 and that of the internal operation is 1.5.

In PRISM, by the concepts of costs and rewards, we aug-

ment the transition steps with real values denoting the en-

ergy consumption. Listing 12 describes the part of the aug-

mented model. The communication happens when processes

exchange the messages, for example, TRUST messages and

rec_from messages, so we add the rewards statements with

the synchronization label.

After assigning the rewards to the transitions, then we can

calculate the accumulated energy consumption of selecting

an eventual leader. In PRISM, we specify as a property, i.e.,

Rmin =?[F “elected”] and Rmax = ? [F “elected”], where Rmin

denotes the minimum accumulated rewards to reach the spec-

ified states and Rmax denotes the maximum rewards. The ex-

periment is conducted in the lower layer and upper layer sep-

arately, since both layers contain the election steps. Tables

6 and 7 summarize the energy consumptions in lower layer

and upper layer respectively in which the minimum rewards,



772 Front. Comput. Sci., 2018, 12(4): 763–776

the maximum rewards and the average rewards of electing a

leader are given. From the tables, we could also observe that

the scale of models suffers because of the additional states

and calculations introduced by rewards.

Listing 12 Modeling the energy consumption with rewards

rewards "consumption"

//execute TRUST operations

[A1] true : 1; ...

[An] true : 1;

//update leader info. of every cluster

[A1_1] true : 1; ...

[An_1] true: 1;

//internal operation rewards

[] true : 1.5; ...

endrewards

Table 6 Energy consumption in lower layer

Process No. Minimum Maximum Average

5 15.622 58.916 37.269

6 17.496 90.988 54.242

7 NC NC NC

Note: NC: not counted

Table 7 Energy consumption in upper layer

Cluster head No. Minimum Maximum Average

5 33.518 38.469 35.993

6 39.078 44.338 41.708

7 44.156 50.036 47.096

8 NC NC NC

Note: NC: not counted

4.4 Extension of unreliable channel

As aforementioned, the original model holds a strong as-

sumption that the underlying network is reliable. However,

real networks are subject to accidental events and message

lost during transmission happens frequently. We extend the

protocol and modeling the channel reliability with proba-

bility. Particularly, we use a single probability variable to

present the channels of both layers, and use quantitative anal-

ysis to calculate the numerical possibility of a successful

eventual election. Then we can measure the relationship be-

tween the channel reliability and the election result quantita-

tively. If the probability of successful election of lower layer

is p1 and that of upper layer is p2, based on the product prin-

ciple, we can get the final probability of global election by

p1 × p2.

Listing 13 illustrates our modeling for unreliable commu-

nication channels partially. For example, in the QUERY mes-

sage transmission phase, it is possible that the message gets

lost. We assign it a value p1 to represent the probability of

message loss. Moreover, we define a threshold t for the num-

ber of re-sending the message and set an integer variable

timeN for each process (N shall be replaced with the pro-

cess id) to count the number of fault times. If the value of t is

zero, then it reduces to the case of best-effort service where

there is no re-sending mechanism applied. Otherwise, when

the value of time1 is equal to that of t, it represents a fault and

the process will not retry.

Listing 13 Unreliable communication channel modeling

[s] (time=true)&(success=false)&(s1=0) ->

p2:(s1’=1)+p3:(s1’=1)&(R1_1’=false)+

p1:(s1’=0)&(time1’=time1+1);

· · ·
formula time=(time1<=t)&(time2<=t)· · · (timeN<=t);

In this experiment, we fix the number of clusters and pro-

cesses but make the reliability and re-sending times as vari-

ables. Particularly, in each cluster, we have four processes,

and the α value is three. The number of clusters is four. The

experiment consists of two parts. In the first part, we set the

retry number to be zero, i.e., re-sending the message is not al-

lowed in case of message loss. The message loss probability

changes from 0.005 to 0.2, and the resulting election success

probability drops from 0.8778 to 0.0719 accordingly. Table

8 summarizes the relation between the message loss rate and

the election success probability. Figure 1 illustrates this pic-

torially.

Table 8 Election with unreliable channels without retry mechanism

p1 0.005 0.01 0.05 0.1 0.2

Lower layer 0.9801 0.9606 0.8145 0.6561 0.4096

Upper layer 0.8956 0.8106 0.4674 0.3130 0.1756

Total 0.8778 0.7787 0.3807 0.2054 0.0719

Fig. 1 Experimental results without retry mechanism

In the second part of the experiment, we add the factor of

retry in case of message loss and make the channel of reliabil-

ity fixed. Particularly, we set the retry value from one to five,
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and the ratio of message loss to be 0.2. The results are sum-

marized in Table 9 and illustrated in Fig. 2. From the table,

we can observe that the value of successful election probabil-

ity increases gradually as the retry times go up.

Table 9 Election with unreliable channels with retry mechanism

Retry times 1 2 3 4 5

Lower layer 0.8493 0.9684 0.9961 0.9994 0.9999

Upper layer 0.5310 0.7696 0.9208 0.9796 0.9944

Total 0.4510 0.7453 0.9172 0.9790 0.9943

Fig. 2 Experimental results with retry mechanism

5 Discussion

As mentioned before, PRISM model checker uses a state-

transition based language which is quite different from im-

perative languages. Therefore, we have to abstract away some

operation details during the modeling phase. Secondly, the

protocol contains many set operations, such as union and

intersection. The set data structure is not supported by the

PRISM modeling language explicitly. We use Boolean bit

vectors to mimic the set operation. Concretely, we asso-

ciate each set element with a corresponding Boolean Vec-

tor. Since we know the value of the elements in the set be-

forehand, if it appears in the set, we set the correspond-

ing Boolean bit to be true, and otherwise false. For exam-

ple, we have two Sets, i.e., A = {1, 2, 3}, B = {3, 4}, then

we define a superset as S = {1, 2, 3, 4} and a Boolean bit

vector for each set accordingly. Thus for set A, the bit vec-

tor is {true, true, true, f alse}, and for set B, the bit vector is

{ f alse, f alse, true, true}. Therefore, to calculate A ∪ B, we

can set the bit vector to be {true, true, true, true}; to calculate

A ∩ B, we set the bit vector to be { f alse, f alse, true, f alse}.
Moreover, in our verification experiment, we need to mea-

sure the performance of systems with different number of

processes. However, PRISM does not provide the template

functionality to facilitate scaling-up the model. Manual cod-

ing is time-consuming and error-prone. We observe that in

the model, the processes are essentially the same except for

their identities and the operations are quite similar. Hence,

we leverage a code generation technique to automate this

process. Concretely, we extract the patterns of internal op-

eration and external communication, and leverage the rule-

based code generation technique to output the corresponding

PRISM models. For example, given a cluster of ten processes,

a process needs to monitor the QUERY or TRUST messages

from other processes, the code pattern is illustrated in List-

ing 14. Although the number of statements can be different

among different system, it is associated with the number of

processes. Thus we can make the process number as the pa-

rameter and automate the system model generation process.

The parameterized model generation as well as the above ab-

straction technique can also be used in other similar protocol

verification settings.

Listing 14 Communication pattern illustration

[A2] (s2=3) & (TRUST2=true) -> action · · · ;
[A2] (s2=3) & (TRUST2=false) -> action · · · ;

6 Related work

There are two relevant threads of research in the field. One is

about the leader election protocol design in distributed com-

puting, and the other is the formal analysis of protocols based

on model checking. In this section, we briefly review some

representative work in each category.

In [6], Mostefaoui et al. adapted an existing leader election

protocol designed for static systems and then customize it so

as to work in dynamic systems. The correctness of the proto-

col is established through theoretical proof. Different from

our work, the protocol cannot be applied in the hierarchi-

cal cluster based settings and neither did they give a quan-

titative analysis of their work based on formal verification.

Larrea et al. [7] considered the eventual leader election in an

asynchronous system prone to process crashes and they pro-

posed a specification of Ω suited to dynamic systems. Then

they verified its correctness and introduced the notation of

an eventual leader suited to dynamic systems and simultane-

ously an additional property related to the stability of sys-

tems. Gupta et al. [22] proposed a scalable leader election

protocol suitable for large process groups under a weak mem-

bership requirement. The protocol supported quite good guar-

antees about termination in the sense of the classical spec-

ification of the election problem and of generating a fixed

number of processes, both independent of group size. Differ-

ent from our work, neither of the above two approaches con-

sidered quantitative properties based on formal verification.
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In [23], Jiménez et al. proposed a novel leader election pro-

tocol to cope with the situations where a unique identify for

a process is not always possible. However, it is constrained

within the scope of static systems instead of dynamic systems

as considered in our work.

Meanwhile, probabilistic model checking, as a typical

method of formal verification, plays an important role in the

verification against the safety and security properties of var-

ious kinds of protocols. In [24], Duflot et al. provided an

overview of this area and discussed two approaches to the

implementation of quantitative verification of these protocols

based on probabilistic model checking. Baier et al. [25] fo-

cused on the strength and limitations of probabilistic model

checking in the context of a multi-disciplinary project, in

which they applied formal approaches for reasoning about

energy-awareness and other quantitative aspects of low-level

resource management protocols. Naskos et al. [26] concen-

trated on the on-demand resource provisioning in cloud com-

puting, referred as cloud elasticity. They proposed a method

about the development of more formalized and dependable

elasticity policies and presented an extensible way to en-

force elasticity through the dynamic instantiation and online

quantitative verification of Markov decision process by using

probabilistic model checking. In [27], He et al. leveraged the

probabilistic model checking to verify a newly proposed pipe

protocol in the domain of Internet-of-Things where quanti-

tative analysis can be conducted. The application of prob-

abilistic verification of these works is similar to ours, but

they did not deal with the consensus problems addressed

by eventual leader election protocols in distributed comput-

ing. Zhang et al. [28] proposed a method to verify properties

of the Timing-sync Protocol for Sensor Netowrks (TPSN).

Different from ours, the quantitative aspect of verification

is mainly conducted based on statistical verification, which

is essentially a simulation-based approach. The quantitative

analysis of eventual leader election protocols by probabilistic

model checking were conducted in [5,13,20]. But in all these

works, either they only dealt with the static environment set-

tings [5, 20], or they did not consider the hierarchical cluster

based system models [13].

7 Conclusion and future work

Recently, a lot of efforts have been given to the design of

eventual leader election protocols in different environmen-

tal settings, but relatively little emphasis has been put to the

formal verification and quantitative analysis. In this paper,

we complement this by using probabilistic model checking

to verify a newly proposed hierarchical leader election pro-

tocol for dynamic system. Particularly, we use a composi-

tional verification technique, i.e., assume-guarantee to verify

the two layers respectively, and demonstrate a performance

boost compared with holistic verification. We also augment

the original model with additional features by cost/rewards,

and with unreliable communication channels by probability,

and thus more quantitative properties can be analyzed, such

as energy consumption, and the relation between eventual

election and the message loss rate. Although we only con-

sider the hierarchical leader election protocol in our paper, the

technique can also be extended to model and verify other sim-

ilar consensus protocols or resource-restricted routing proto-

cols [14, 18] in wireless sensor networks.
To the best of our knowledge, this is the first work to ap-

ply quantitative verification techniques to the hierarchical

leader election protocol design. However, the potential of

probabilistic model checking has not been fully exploited,

and future research possibilities include more detailed inves-

tigation on the fully dynamic settings prior to arriving at the

stable phase, and the property analysis on the model of more

sophisticated reliability control mechanisms against commu-

nication channels.
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