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Abstract Adaptive traffic light scheduling based on real-

time traffic information processing has proven effective for

urban traffic congestion management. However, fine-grained

information regarding individual vehicles is difficult to ac-

quire through traditional data collection techniques and its

accuracy cannot be guaranteed because of congestion and

harsh environments. In this study, we first build a pipeline

model based on vehicle-to-infrastructure communication,

which is a salient technique in vehicular adhoc networks.

This model enables the acquisition of fine-grained and ac-

curate traffic information in real time via message exchange

between vehicles and roadside units. We then propose an in-

telligent traffic light scheduling method (ITLM) based on a

“demand assignment” principle by considering the types and

turning intentions of vehicles. In the context of this principle,

a signal phase with more vehicles will be assigned a longer

green time. Furthermore, a green-way traffic light scheduling

method (GTLM) is investigated for special vehicles (e.g.,

ambulances and fire engines) in emergency scenarios. Signal

states will be adjusted or maintained by the traffic light con-

trol system to keep special vehicles moving along smoothly.

Comparative experiments demonstrate that the ITLM reduces

average wait time by 34%–78% and average stop frequency
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by 12%–34% in the context of traffic management. The

GTLM reduces travel time by 22%–44% and 30%–55% un-

der two types of traffic conditions and achieves optimal per-

formance in congested scenarios.

Keywords traffic light scheduling, vehicular ad hoc net-

works, pipeline model, vehicle-to-infrastructure communica-

tion, intersection

1 Introduction

In urban environments, the explosive growth in the number

of vehicles and limited capacity of road networks have led

to frequent occurrences of traffic congestion, particularly at

major intersections. These issues have increased travel costs

and negatively impacted road safety. Adaptive traffic light

scheduling methods have been proved to be the most econom-

ical and important means to alleviate traffic congestion [1],

thereby significantly improving traffic efficiency and safety.

One of the key challenges in designing efficient adap-

tive traffic light scheduling methods is how to precisely col-

lect real-time traffic information. Currently, traffic informa-

tion is mainly collected by video cameras [2–6], sensor net-

works [7–11], and vehicular adhoc networks (VANETs) [12–

18]. Video cameras and sensor networks have been widely

adopted over the past few decades. However, unfavorable
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conditions (e.g., rainy or foggy days) and vehicle occlusion

negatively affect the accuracy of vehicle statistics when uti-

lizing video cameras. Furthermore, because of the intrinsic

limitations of sensors, only a restricted amount of informa-

tion can be acquired. For example, loop detectors can only de-

tect the quantity of vehicles without considering vehicle types

and magnetic sensors are incapable of sensing immobile ve-

hicles [7]. In contrast to video cameras and sensor networks,

vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)

communications are comparatively less sensitive to harsh sur-

roundings and fine-grained information on vehicles, such as

lane position, speed, priority, among others, can be easily

collected via message exchange. Such information can be

utilized to design more reasonable and flexible traffic light

scheduling methods. For example, the authors in [15] esti-

mated the real-time queue length of vehicles based on the

individual positions and speeds of vehicles and implemented

a queue-based adaptive signal control method.

Compared to video cameras and sensor networks,

V2V/V2I communications are more reliable and efficient for

collecting real-time traffic information. However, several im-

portant, fine-grained information elements regarding vehi-

cles, such as their types and turning intentions, are typically

ignored in existing V2V/V2I communication-based methods.

Collecting this information is extremely important for effi-

cient traffic light control. For example, because of its length

or size, a heavy vehicle occupies more space and spends more

time passing through an intersection compared to a light ve-

hicle. Therefore, the types of vehicles should be considered

to distinguish their effects on traffic conditions. Furthermore,

because right-turning vehicles do not interfere with traffic

flow in other directions, they can pass through intersections at

any time if and only if the impacts of non-motorized vehicles

(e.g., bicycles) and pedestrians are not considered. In such

cases, the right-turning vehicle decides whether it should

obey current traffic control or pass through an intersection

immediately.

In this work, we first construct a V2I communication-based

pipeline model. Specifically, two road side units (RSUs) lo-

cated near an intersection constitute a virtual pipe for col-

lecting information regarding vehicles that move toward the

intersection in a specific area. Through message exchange be-

tween vehicles and RSUs, a vehicle’s fine-grained informa-

tion (identifier, traveling lane, type, and priority) is recorded

once the vehicle enters the pipeline. All the recorded fine-

grained information regarding vehicles will be processed and

delivered to the traffic signal control system as the basis for

traffic light scheduling. Based on the pipeline model, we then

propose an intelligent traffic light scheduling method (ITLM)

by considering vehicle types and turning intentions. Accord-

ing to the “demand assignment” principle, a signal phase

with a large number of vehicles will be assigned a longer

green time, which will ensure that average vehicle wait time

and stop frequency are significantly reduced. Furthermore, a

green-way traffic light scheduling method (GTLM) is investi-

gated for special vehicles (e.g., ambulances and fire engines)

to improve rescue times in emergency scenarios. Once a spe-

cial vehicle is noticed by checking its priority information,

the traffic light control system adjusts the current signal states

to allow special vehicles to pass through the intersection pref-

erentially.

Our main contributions are summarized as follows:

1) A V2I communication-based pipeline model is con-

structed with the aid of RSUs. The model provides the

ability to collect fine-grained and accurate real-time traf-

fic information for traffic light scheduling. Unlike exist-

ing V2V/V2I communication-based methods, several impor-

tant, fine-grained elements of vehicles are considered in our

model, such as vehicle types and turning intentions.

2) We propose an ITLM based on the pipeline model. The

ITLM focuses on improving driving quality at intersections,

meaning average vehicle wait time and stop frequency are

significantly reduced. Additionally, a GTLM is investigated

to improve the rescue times of special vehicles.

3) A number of comparative experiments are performed to

demonstrate the effectiveness of the proposed pipeline model

and traffic light scheduling methods.

The remainder of this paper is organized as follows. Sec-

tion 2 reviews related work. Section 3 details the models, as-

sumptions, and definitions utilized in this study. This is also

where the V2I communication-based pipeline model is de-

scribed. Sections 4 and 5 provide detailed explanations of

the ITLM and GTLM, respectively. In Section 6, we dis-

cuss the simulation results. Finally, we conclude this paper in

Section 7.

2 Related work

We will now review existing traffic information collection

techniques by categorizing them into three classes: 1) im-

age and video processing techniques, 2) sensor network tech-

niques, and 3) V2V/V2I communication techniques.

2.1 Image and video processing techniques

With recent progress in computer vision technology, video
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cameras have become a feasible and efficient method for traf-

fic flow monitoring. Image and video processing techniques

focus on detection, tracking, and recognition of lanes, vehi-

cles, incidents, and behaviors, which are important for han-

dling traffic-related problems.

Various image and video processing techniques for de-

tecting and recognizing vehicles were introduced in [2–4].

Specifically, Li et al. [4] proposed an effective vehicle detec-

tion approach based on the combination of an and-or graph

(AOG) and hybrid image templates (HITs) to circumvent the

problem of vehicle occlusion. Their approach included three

steps. First, the AOG for vehicle representation was con-

structed and the HITs were utilized to mathematically charac-

terize the AOG nodes. Then, training images were collected

to learn the parameters for the AOG. Finally, a bottom-up in-

ference model was utilized to detect vehicles in test images.

However, the proposed method cannot be applied in night-

time traffic conditions. The researchers in [5, 6] presented

methods to utilize live video feeds from cameras at inter-

sections for real-time traffic density estimation. Traffic light

scheduling algorithms were proposed according based on the

traffic density of the road. Similar to other image- and video-

based methods, the negative effects introduced by harsh envi-

ronments were unavoidable and not thoroughly discussed.

2.2 Sensor network techniques

As a relatively new mode of information acquisition and pro-

cessing, sensor networks have received significant attention

for traffic detection and avoiding traffic congestion [7].

Collotta et al. [8] proposed a dynamic traffic light control

system that combined a wireless sensor network (WSN) for

real-time traffic monitoring with multiple fuzzy logic con-

trollers. The WSN was responsible for detecting queued ve-

hicles during each signal phase and the number of queued

vehicles was utilized to determine the phase execution order.

Next, the fuzzy logic controllers calculated an appropriate

green time duration for each signal phase. One drawback of

this approach is that a large number of sensors must be de-

ployed because the queue length of vehicles may be several

hundred meters long and the types of vehicles are not distin-

guished by sensors. Yang et al. [9] constructed a system to

detect and classify vehicles based on three-axis anisotropic

magneto resistive sensors. Specifically, signal variance was

utilized by a fixed-threshold state machine algorithm to de-

tect vehicles within a single lane. The detected vehicles could

be classified into several types based on extracted signal fea-

tures and a hierarchical tree methodology. However, multi-

lane scenarios were not considered and the detection method

was effective only when the speed of vehicles fell within a

limited range.

2.3 V2V/V2I communication techniques

With the rapid development of intelligent transportation sys-

tems (ITS), VANETs have become a research hotspot in re-

cent years. VANETs are widely utilized in many fields based

on V2V/V2I communication techniques [19], such as coop-

erative downloading [20, 21] and safety message broadcast-

ing [22,23]. Furthermore, VANETs also provide a promising

means for collecting fine-grained traffic information and de-

signing adaptive traffic light control systems.

Sanguesa et al. [13] presented a V2X (i.e., V2V and V2I

combined) architecture, which was an upgraded version of

the solution proposed in [14], to estimate real-time traffic

density in urban environments according to the number of re-

ceived beacons. To make accurate estimations, both the num-

ber of beacons received per RSU and per vehicle were con-

sidered, as well as the characteristics of road map topology.

However, the beacons periodically emitted by vehicles are

prone to collide with each other. This phenomenon occurs

frequently in congested traffic conditions. Feng et al. [17] de-

signed an adaptive signal phase allocation algorithm based

on V2I communication techniques. Broadcasted safety mes-

sages that contain the locations and speeds of vehicles were

collected by RSUs for optimizing phase sequence and du-

ration, but the individual differences between vehicles were

ignored. Lee et al. [18] concluded that V2V/V2I communica-

tion techniques not only improve ride quality, but also have

positive effects in terms of energy saving and emission reduc-

tion.

Among the sensing and communication techniques de-

scribed above, V2V/V2I communication techniques are the

best method for acquiring real-time, fine-grained traffic in-

formation, and are the least sensitive to harsh environments.

However, the turning intentions and types of vehicles, which

can enhance the effectiveness of traffic light scheduling meth-

ods, are ignored in existing V2V/V2I communication-based

methods. In the method proposed in this paper, these impor-

tant elements of vehicles are considered.

3 Models, assumptions, and definitions

This section describes three models with specific assump-

tions: the 1) intersection model, 2) signal phase distribu-

tion model, and 3) V2I communication-based pipeline model.
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The intersection model and signal phase distribution model

are presented to represent basic research scenarios. The V2I

communication-based pipeline model is then described in de-

tail.

3.1 Intersection model

Cross-shaped intersections are simple, ubiquitous, and oc-

cupy an important position in urban traffic environments.

Therefore, optimizing an isolated intersection can improve

the performance of an entire traffic network [24]. In this pa-

per, we consider a typical cross-shaped intersection model is

considered with the following assumptions:

1) The shape of the intersection is a standard “cross” and

the traffic light control system is located in the center.

2) It is a three-lane road and the intersection allows vehi-

cles to go straight, turn left, and turn right. U-turns are for-

bidden.

3) The vehicles strictly follow the traffic signals and there

are no accidents.

4) The effects of non-motorized vehicles (e.g., bicycles)

and pedestrians on traffic flow are not considered.

Our proposed traffic light scheduling methods have no di-

rect relationship with the shape of the intersection. We only

assume a standard “cross” intersection here to simplify the

related descriptions.

3.2 Signal phase distribution model

To avoid interference between traffic flows, we assign four

signal phases to the intersection, as found on most roads. As

shown in Fig. 1, right-turning vehicles can pass through in-

tersection at any time because they do not interfere with other

traffic flows.

3.3 Pipeline model

To implement an adaptive traffic light control system, it is

necessary to collect information regarding vehicles approach-

ing intersections. As mentioned in Sections 1 and 2, video

cameras, sensors, and V2V/V2I communication-based meth-

ods can provide the ability to estimate traffic density. In con-

trast to video cameras and sensor networks, V2V/V2I com-

munications are less sensitive to harsh environments and fine-

grained information regarding vehicles can be easily col-

lected via message exchange. Therefore, V2V/V2I commu-

nications are considered to be the most promising means of

solving traffic control problems.

However, several important, fine-grained elements of vehi-

cles, such as vehicle types and turning intentions, are ignored

in existing V2V/V2I communication-based methods. To rem-

edy this issue, we first construct a V2I communication-based

pipeline model for detecting real-time, fine-grained informa-

tion regarding vehicles and consider the types and turning

intentions of vehicles.

Fig. 1 Distribution of signal phases. (a) 1st phase; (b) 2nd phase; (c) 3rd
phase; (d) 4th phase

3.3.1 Realization of pipeline model

The essence of the pipeline model is to collect and process

fine-grained information regarding vehicles in the pipeline

via RSUs. Such information includes vehicle identifiers, trav-

eling lanes, types, and priorities. The traffic light control sys-

tem will utilize the aforementioned information to allocate

appropriate green time for each signal phase.

Figure 2 presents a scenario of the pipeline model in which

the traffic flows are crossing the intersection from west to

east. The length of the pipeline is D and the length of road is

L. RSU1 and RSU2 are essential parts of the pipeline model

that are located on both sides of the pipeline for collecting

information regarding vehicles when they enter or leave the

pipeline. The central data server processes the vehicle infor-

mation that is forwarded by the RSUs and the traffic light

control system allocates reasonable green time for each phase

based on the processed information.

When a vehicle enters the pipeline, the vehicle sends an

arrival message (AM) to RSU1 that includes the vehicle iden-

tifier, traveling lane, type, and priority. When a vehicle leaves

the pipeline, the vehicle sends a departure message (DM) to

RSU2, which only includes the vehicle identifier. Upon re-
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ceiving an AM, RSU1 stores relevant information regarding

the vehicle in the central data server. Upon receiving a DM,

RSU2 deletes relevant information regarding the vehicle from

the server. Both RSU1 and RSU2 maintain real-time informa-

tion regarding vehicles inside the pipeline. The processed in-

formation is delivered to the traffic light control system for

allocating the green time for each phase.

Fig. 2 Scenario of the pipeline model

3.3.2 Driving rules within the pipeline

A three-lane road is considered in our work. It consists of a

left lane, straight lane, and right lane. According to the dis-

tribution of signal phases, vehicles in the pipeline should ob-

serve the following rules:

1) Left turn traffic flows drive on the left lane.

2) Right turn traffic flows drive on the right lane.

3) Straight traffic flows drive on the straight lane and left

lane simultaneously.

In general, straight traffic flows have more vehicles than

other traffic flows. Therefore, the model can improve the

smooth flow ability of traffic by permitting straight traffic

flows to drive on the straight lane and left lane simultane-

ously. According to the distribution of signal phases, left turn

traffic flows share the green time with straight traffic flows,

meaning they are in the same signal phase.

3.3.3 Length of the pipeline

In this paper, the maximum green time Tmax G is the basis for

calculating the length of the pipeline, meaning all queued ve-

hicles that see a green light in the pipeline can pass through

the intersection during Tmax G. Suppose that the pipeline is full

of queued vehicles and they begin to pass through the inter-

section one by one. The final queued vehicle should leave the

pipeline before Tmax G expires. As the vehicle travels through

three stages (i.e., waiting start, accelerating forward, and uni-

form forward), the above relationship can be represented as

tw + ta + tu � Tmax G. (1)

Here, tw, ta, and tu denote the waiting start time, accelerat-

ing forward time, and uniform forward time of the last queued

vehicle in the pipeline.

To calculate the vehicle waiting start time, we must know

how many vehicles can be queued in a single lane of

the pipeline. The types of vehicles are classified as small,

medium, and large in this paper. Correspondingly, the lengths

of the vehicles are denoted by La, Lb, and Lc, and the quan-

tities of the vehicles are denoted by Na, Nb, and Nc, respec-

tively, Additionally, the safety distance between two vehicles

is denoted by Lgap and the average length of vehicles is de-

noted by Lavg. Theoretically, the maximum number of vehi-

cles in a single lane of the pipeline can be calculated as

Nmax =
D

Lavg + Lgap
, (2)

where Lavg is calculated as

Lavg =
Na · La + Nb · Lb + Nc · Lc

Na + Nb + Nc
. (3)

By analyzing the final queued vehicle’s movement, we can

conclude that tw is equal to the overall reaction time of all

queued vehicles in a single lane, ta is equal to the ratio of

the vehicle maximum speed and acceleration, and tu is equal

to the ratio of the remaining pipeline’s length and accelera-

tion. Let trea denote driver reaction time and the parameter a

denote vehicle acceleration. From these values, we can get

tw = trea · Nmax, (4)

ta =
vmax

a
, (5)

tu =
D − 1

2 a · ta2

vmax
. (6)

By combining Eq. (1) through Eq. (6), we can calculate the

length of the pipeline as

D �
vmax ·

(
Lavg + Lgap

)
·
(
Tmax G − vmax

2a

)

vmax · trea + Lavg + Lgap
. (7)

3.3.4 Relative definitions

Definition 1 Traffic ability. The number of vehicles that can

pass through the intersection within an hour under current

traffic conditions.

Definition 2 Traffic volume. The number of vehicles that

will appear within an hour under current traffic conditions.

Definition 3 Waiting time. The total time that a vehicle re-

mains in a waiting state before passing through the intersec-

tion, denoted WT .
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Definition 4 Stop frequency. The number of stops before a

vehicle passes through the intersection, denoted SF.

Definition 5 Ride quality. Reflects vehicle driving perfor-

mance at an intersection. Specifically, a good ride quality

means that under the premise of ensuring traffic safety, there

is a short average WT and small average SF for all vehicles.

Definition 6 Maximum green time. The longest green time

allocated to one signal phase during normal traffic control,

denoted Tmax G.

Definition 7 Minimum green time. The shortest green time

allocated to one signal phase during normal traffic control,

denoted Tmin G.

4 Intelligent traffic light scheduling method
based on pipeline model

4.1 Basic concept of ITLM

An efficient traffic light scheduling method should reduce the

average WT and average SF as much as possible under the

premise of ensuring traffic safety. The pipeline model col-

lects real-time, fine-grained information regarding vehicles

as they enter or leave the pipeline, which provides the basis

for allocating green time for each signal phase according to

the “demand assignment” principle. In other words, a shorter

green time should be assigned to reduce WT when the traffic

volume is small. Otherwise, a longer green time should be

assigned to reduce SF.

4.2 Specific steps of ITLM

Allocating green time for each signal phase is actually the

process that determines the control of green time. When

a particular phase gets control, it will allocate appropriate

green time according to current traffic conditions. After the

green time expires, the control of green time will be trans-

ferred to the next phase.

Because of individual vehicle differences, it is inappropri-

ate to allocate green time based only on vehicle quantity or

density. Because there are three types of vehicles considered

in this paper, we can compute the total weight that influences

the allocation of green time by accumulating each vehicle’s

weight in the pipeline.

In the design of the ITLM, we ignore the impact of right-

turn traffic flows on green time allocation. We suppose that

there are N vehicles that see a green light in the pipeline dur-

ing the current signal phase. The weight of vehicle i is de-

noted Wi and the total weight is denoted Wsum. We can write

the expression for Wsum as

Wsum =

N∑

i=1

f lag ·Wi. (8)

Here, the values of f lag and Wi are calculated as

f lag =

⎧⎪⎪⎨⎪⎪⎩
1, straight or turn le f t,

0, turn right.
(9)

Wi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Wa, small vehicle,

Wb, middle vehicle,

Wc, large vehicle.

(10)

When in a particular signal phase, vehicles that belong to

that phase begin to pass through the intersection one by one.

As time passes, the frequency of passing vehicles decreases

and eventually equals the frequency of arriving vehicles. Ad-

ditionally, there is an increasing number of stopped vehicles

that belong to other phases and wish to pass through the inter-

section. To improve the use efficiency of green time, we must

allocate it to the next phase when the total weight Wsum of the

current phase is reduced to a certain value. Suppose that the

value, which is called the weight threshold in this paper, is

Wt. Then, the specific steps for allocating green time are as

follows:

Procedure 1
Step 1: When a vehicle i enters the pipeline, it sends AMi

to RSU1, which includes the vehicle’s identifier, traveling

lane, type, and priority. When the vehicle exits the pipeline,

DMi is sent to RSU2, which only includes the vehicle’s iden-

tifier.

Step 2: The central data server calculates the total weight

Wsum according to the collected vehicle information and for-

wards Wsum to the traffic light control system.

Step 3: The traffic light control system checks whether or

not the signal phase has control of the green time. If the sig-

nal phase has control, then the process proceeds to Step 4.

Otherwise, the process returns to Step 1.

Step 4: The traffic light control system compares Wsum and

Wt. If Wsum > Wt, this indicates that the road is relatively

congested and execution proceeds to Step 5. Otherwise, exe-

cution skips to Step 8.

Step 5: The traffic light control system allocates green time

for the current signal phase.

Step 6: The traffic light control system continues to com-

pare Wsum and Wt. If Wsum > Wt, this indicates that the road

is still relatively congested and execution proceeds to Step 7.

Otherwise, execution skips to Step 8.
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Step 7: The traffic light control system checks whether or

not the length of persistently allocated green time TG for the

current signal phase is longer than Tmax G − Tmin G. If so, then

the process proceeds to Step 8. Otherwise, the process returns

to Step 5.

Step 8: The traffic light control system allocates an addi-

tional Tmin G for the current signal phase.

Step 9: The traffic light control system transfers control of

green time to the next phase and the procedure is completed.

The process of allocating green time is illustrated in Fig. 3.

It is indicated in Fig. 3 that when traffic is sparse, the con-

dition Wsum > Wt is difficult to meet and the current signal

phase will be allocated a short green time. Conversely, when

traffic is dense, the condition Wsum > Wt can be satisfied for

a relatively longer duration and the current signal phase will

be allocated a longer green time. In other words, the length

of allocated green time is proportional to Wsum. Additionally,

Steps 7 and 8 ensure that the length of allocated green time

is between Tmin G and Tmax G. Therefore, the ITLM allocates

green time based on a “demand assignment” principle.

Fig. 3 The process of allocating green time

5 Green-way solution based on pipeline
model

The term ”special vehicles” typically refers to ambulances

and fire engines. To reach an accident site as quickly as pos-

sible, special vehicles do not have to obey traffic control un-

der the premise of ensuring road safety. However, they may

be blocked because of stopped vehicles due to red lights and

limited road capacity, which is exacerbated in congested traf-

fic conditions.

To solve this problem and save rescue time, we borrow the

basic concept from green-waved traffic control. Green-waved

traffic control is commonly considered to be one of the most

efficient strategies to regulate traffic signals on urban arteries.

It allows traffic flows to successfully pass through multiple in-

tersections [25]. However, only normal vehicles driving along

main roads can optimally benefit from this type of traffic con-

trol because typical green-waved traffic control is unsuitable

for special vehicles because of the uncertainly of their paths.

In this paper, by considering the control of traffic lights along

the paths of special vehicles, a variant of green-waved traffic

control called the green-way traffic light scheduling method

(i.e., GTLM) is presented based on the pipeline model.

5.1 Basic idea of GTLM

We assume that only special vehicles have the right to send

an AM with high priority. When RSU1 in the pipeline model

receives a vehicle’s AM, it can judge whether or not the ve-

hicle is a special vehicle by checking the priority informa-

tion in the AM. Once RSU1 receives an AM with high pri-

ority, it notifies the traffic light control system immediately.

The traffic light control system then adjusts the current signal

states to keep the special vehicle moving smoothly through

the pipeline. After the special vehicle leaves the pipeline, the

traffic light control system returns to its normal state.

5.2 Specific steps of GTLM

When a special vehicle enters the pipeline, it continuously

sends AMs with high priority to RSU1 until the vehicle re-

ceives a response. Once RSU1 receives these types of mes-

sages, it notifies the traffic light control system to make ap-

propriate signal adjustments according to the current signal

states. In other words, it transfers the control of green time to

the traffic flow that contains the special vehicle. This allows

the special vehicle and normal vehicles in front of it to pass

through the intersection as quickly as possible.

It is worth noting that the aforementioned scenario may

result in very short green times, especially if the signal sud-

denly switches states, which may lead to adverse effects on

driving safety. Therefore, the system must ensure that the du-

ration of the current green time is longer than Tmin G before

switching the signal states. Suppose that the duration of green
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time is Tl when the special vehicle enters the pipeline. The

specific steps for signal adjustment are as follows.

Procedure 2

Step 1: When a special vehicle enters the pipeline, it re-

peatedly sends AMs with high priority information to RSU1

until the vehicle receives a response. RSU1 reports this emer-

gency to the traffic light control system.

Step 2: The traffic light control system checks whether or

not the special vehicle will encounter a green light, if so, then

the process proceeds to Step 3. Otherwise, the process skips

to Step 4.

Step 3: The traffic light control system keeps the signal

states unchanged. Execution skips to Step 7.

Step 4: The traffic light control system checks whether or

not the duration of green time Tl is longer than Tmin G. If so,

execution proceeds to Step 5. Otherwise, execution skips to

Step 6.

Step 5: The traffic light control system switches the light to

green immediately for the special vehicle and execution skips

to Step 7.

Step 6: The traffic light control system keeps the sig-

nal states unchanged within the period Tmin G − Tl and then

switches the light faced by the special vehicle to green. Exe-

cution proceeds to Step 7.

Fig. 4 The process for adjusting signal phases

Step 7: If the special vehicle exits the pipeline, then it con-

tinuously sends DMs with high priority to RSU2 until the ve-

hicle receives a response. RSU2 reports this message to the

traffic light control system and execution proceeds to Step 8.

Otherwise, execution returns to Step 3.

Step 8: The traffic light control system restores the previ-

ous ITLM and the process ends.

The process for adjusting signal states is illustrated in

Fig. 4.

To some extent, special vehicles affect normal signal allo-

cation, meaning they affect driving quality at intersections.

However, compared to the number of ordinary vehicles, there

is typically a very small number of special vehicles. The

GTLM allows the traffic flows to be controlled normally once

special vehicles leave the pipeline. Therefore, this type of

green-way solution is effective. The greatest advantage of the

GTLM is that special vehicles are given the ability to choose

appropriate paths when they are performing rescue tasks. The

traffic light control system adjusts signal states according to

special vehicle paths, which reduces the rescue time of spe-

cial vehicles on the path.

6 Experiments and analysis

In this section, we first discuss our simulation environment

and data. We then analyze the performance of the ITLM un-

der three different traffic conditions. Specifically, we attempt

to determine how Tmin G and Wt influence ride quality. Finally,

the performance of the GTLM is evaluated in an emergency

scenario.

6.1 Simulation environment and data

“Vehicles in Network Simulation” (Veins) [26] is an open-

source framework for performing vehicular network simu-

lations. It is implemented based on the network simulator

“objective modular network tested in C++” (OMNeT++)

[27] and road traffic simulator “simulation of urban mobil-

ity” (SUMO) [28]. By utilizing OMNeT++ 4.6 and SUMO

0.21.0, we simulated a common urban traffic environment

based on Veins 3.0. The main simulation parameters are listed

in Table 1.

To evaluate the performance of the traffic light scheduling

methods in different situations, three types of traffic condi-

tions were defined and simulated in our study. Figure 5 de-

scribes simulated traffic data over a one-hour period, which

reflects the highly dynamic nature of traffic flows.

1) Sparse traffic conditions. All vehicles will pass through

the intersection directly or stop only once.

2) Moderate traffic conditions. A few vehicles may stop
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more than once before passing through the intersection, but

this will not lead to congestion.

Table 1 Simulation parameters

Parameters Value Parameters Value

D 200m vmax 50km/h

La, Lb, Lc 4m,6m,10m vmax S 90km/h

Na, Nb, Nc 7:2:1 Lab 500m

a 2.6m/s2 Lbc 800m

Lgap 2m Lcd 800m

trea 1.5s Lde 1000m

Pa, Pb, Pc 1:3:1 Le f 600m

Wa, Wb, Wc 1:1.75:2.25 Lf g 300m

Tmax G 60s

3) Dense traffic conditions. Many vehicles may stop more

than once before passing through the intersection, which will

result in congestion.

6.2 Simulation and analysis of the pipeline model

Figure 3 indicates that green time allocation is mainly af-

fected by the minimum green time Tmin G, maximum green

time Tmax G, and weight threshold Wt. To simplify the prob-

lem, Tmax G was set to be constant in our study and we mainly

focused on how Tmin G and Wt influence traffic flow quality,

average WT , and average SF.

6.2.1 Influence on traffic flow quality

Figure 6 reveals that traffic flow quality is relatively stable

when traffic is sparse or moderate. However, in dense traffic

conditions, when the value of Wt is small (less than 10), the

traffic flow quality decreases with an increase in Wt. The the-

oretical traffic volume in Fig. 6 represents the expected traffic

volume when all vehicles pass through the intersection in an

hour without any limitations.

6.2.2 Influence on average WT

As shown in Fig. 7, when traffic is sparse, average WT is

proportional to Tmin G. Additionally, average WT decreases

with an increase in Wt and will become stable when Wt is

sufficiently large (greater than 15). However, when traffic is

moderate or dense, average WT initially decreases with an in-

crease in Wt. It then it begins increasing when the value of Wt

is sufficiently large (greater than 20). Overall, a small Tmin G

and appropriate Wt result in a small average WT under any

traffic conditions.

6.2.3 Influence on average SF

Figure 8 demonstrates that when traffic is sparse, average SF

is proportional to Tmin G. Additionally, average SF decreases

with an increase in Wt and will become stable when Wt is

sufficiently large (greater than 15). However, when traffic is

moderate or dense, average SF initially decreases with an in-

crease in Wt. It then begins to increase when the value of Wt

is sufficiently large (greater than 15). Overall, a small Tmin G

and appropriate Wt result in a small average SF value under

any traffic conditions.

Fig. 5 Three types of traffic conditions. (a) Sparse traffic conditions; (b)
moderate traffic conditions; (c) dense traffic conditions
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Fig. 6 Influence on traffic flow quality. (a) Sparse traffic conditions; (b)
moderate traffic conditions; (c) dense traffic conditions

6.2.4 Conclusions of simulations

In the above simulations, we studied how Tmin G and Wt influ-

ence overall ride quality, which includes traffic flow quality,

average WT , and average SF. Our conclusions from these

simulations are as follows:

1) In the overwhelming majority of cases, Tmin G and Wt

have little influence on actual traffic flow quality. However,

under dense traffic conditions, real traffic flow quality will be

reduced because of congestion.

Fig. 7 Influence on average WT . (a) Sparse traffic conditions; (b) moderate
traffic conditions; (c) dense traffic conditions

2) When traffic is sparse, the average WT and average SF

are proportional to Tmin G.

3) When traffic is moderate or dense, the average WT and

average SF initially decrease with an increase in Wt. They

then begin to increase when the value of Wt is sufficiently

large.
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Fig. 8 Influence on average SF. (a) Sparse traffic conditions; (b) moderate
traffic conditions; (c) dense traffic conditions

4) A small Tmin G and appropriate Wt result in a short aver-

age WT and short average SF under any traffic conditions.

Therefore, to obtain better performance, one should utilize

a small Tmin G and appropriate Wt (approximately 15) in our

traffic light scheduling method.

6.2.5 Comparative experiments and results

The ITLM was compared to the fixed-timing method in our

comparative experiments. The length of one signal phase is

30 seconds and the values of Tmin G and Wt are 10 and 15,

respectively. Comparative experiments were conducted un-

der three different traffic conditions. As one can see from Ta-

ble 2, under the premise of ensuring traffic flow quality, the

ITLM reduces average WT by 34%–78% and average SF by

12%–34%, which significantly improves overall ride quality

at intersections.

6.3 Simulation and analysis of the GTLM

To evaluate the performance of the GTLM, a fire engine in

an emergency scenario was simulated. Its travel path is il-

lustrated in Fig. 9. Location A is the starting point, G is the

accident site, and the other points (i.e., B, C, D, E, and F) are

intersections along the path. The lengths of the road sections

are denoted by Lab, Lbc, Lcd, Lde, Le f , and L f g. The maximum

speed of an ordinary vehicle is vmax and that of the fire engine

is vmax S .

Fig. 9 Travel path of the fire engine

The GTLM was compared to the fixed-timing method in

this simulation. It is clear that traffic volume has an impact

on driving speed and that special vehicles may encounter dif-

ferent signal states due to different departure times. There-

fore, traffic volume and departure time are two important fac-

tors that affect rescue time. Furthermore, the length of signal

phases is another additional factor that should be considered.

First, in the case of a constant traffic volume (800 vehi-

cles per hour), we analyze how the departure time and length

of signal phases influences rescue time when utilizing the

fixed-timing method. We select ten different lengths of signal
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Table 2 Comparative results between the ITLM and fixed timing

Traffic Traffic ability(vehicles/hour) Average WT (seconds) Average SF (times)

conditions Fixed timing ITLM Theoretically Fixed timing ITLM Fixed timing ITLM

Sparse 2077 2091 2100 24.5 5.5 0.60 0.45

Moderate 3446 3467 3475 32.3 11.2 0.68 0.60

Dense 3787 3948 3998 58.6 38.4 1.00 0.66

phases ranging from 15 to 60 seconds at intervals of five sec-

onds. For each length, 10 trips with different departure times

were simulated. Specifically, the departure time of the fire

engine in the i-th experiment was

Tstart = 100 + 0.1 × i × T. (11)

Here, T denotes the signal cycle of the fixed-timing

method. The rescue time Tcost is calculated as

Tcost = Tend − Tstart. (12)

Here, Tend denotes the arrival time of the fire engine.

Fig. 10 Rescue times with different departure times. (a) Rescue times of
fixed-timing method; (b) average rescue time of fixed-timing method

The rescue times for the fixed-timing method with different

departure times are presented in Fig. 10(a) and the average re-

sults are presented in Fig. 10(b). It can be observed that the

rescue time is clearly influenced by the departure time and

that a longer fixed time leads to a longer rescue time.

Next, in the case of a constant traffic volume (800 vehi-

cles per hour), the two methods were compared with differ-

ent departure times. The length of one signal phase was 30

seconds. Ten trips with different departure times at intervals

of 12 seconds were simulated and the comparative results

are presented in Fig. 11. The results indicate that the rescue

time is stable when utilizing the GTLM and that the GTLM

achieves better overall performance compared to the fixed-

timing method.

Fig. 11 Comparison of rescue times

Finally, the two methods were compared under different

traffic conditions. The comparative results are presented in

Fig. 12.

Figure 12 reveals that the GTLM reduces rescue time by

30%–55% compared to the fixed-timing method and works

better under congested traffic conditions. Additionally, the

special vehicle is allowed to choose a more appropriate route

when performing rescues, meaning the traffic light control

system will adjust signal states according to the special ve-

hicle’s path. This mechanism is extremely beneficial for han-

dling emergencies.

7 Conclusions and future work

Adaptive traffic light scheduling methods are recognized as
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Fig. 12 Rescue times under different traffic conditions

the most economical and effective means of alleviating con-

gestion in urban transport. It is vital to collect real-time traf-

fic information when implementing these methods. However,

fine-grained information regarding individual vehicles can be

difficult to acquire because of the limitations of traditional

collection techniques, whose accuracy is easily affected by

congestion or severe environments. However, V2V/V2I com-

munication techniques provide the ability to handle these

problems.

This paper presented a V2I communication-based pipeline

model that is capable of detecting fine-grained, accurate,

and real-time traffic information via message exchange be-

tween vehicles and RSUs. In contrast to existing V2V/V2I

communication-based methods, the types and turning inten-

tions of vehicles are considered in our work. Based on the

analysis of collected information, two types of traffic light

scheduling methods were proposed. Specifically, the ITLM

dynamically allocates appropriate green time for each sig-

nal phase according to the “demand assignment” principle,

which can improve ride quality at intersections. The GTLM

was proposed for special vehicles in emergency scenarios. It

gives special vehicles priority to pass through intersections,

which reduces rescue times.

The experimental results revealed that the ITLM achieves

better performance than the fixed-timing method under var-

ious traffic conditions. It reduces average waiting time by

34%–78% and average stop frequency by 12%–34% under

the premise of ensuring traffic safety. Furthermore, rescue

time can be reduced by 30%–55% by the GTLM in emer-

gency scenarios. Based on our results and analysis, we can

conclude that the V2I communication-based pipeline model

presented in this paper is a promising methodology for de-

signing efficient traffic light scheduling methods for urban

transport. For future work, we plan to improve our proposed

pipeline model and the corresponding scheduling methods to

adapt to extremely overcrowded traffic conditions.
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