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Abstract With the proliferation of sensor-equipped

portable mobile devices, Mobile CrowdSensing (MCS) us-

ing smart devices provides unprecedented opportunities for

collecting enormous surrounding data. In MCS applications,

a crucial issue is how to recruit appropriate participants from

a pool of available users to accomplish released tasks, satis-

fying both resource efficiency and sensing quality. In order

to meet these two optimization goals simultaneously, in this

paper, we present a novel MCS task allocation framework by

aligning existing task sequence with users’ moving regularity

as much as possible. Based on the process of mobility repet-

itive pattern discovery, the original task allocation problem

is converted into a pattern matching issue, and the involved

optimization goals are transformed into pattern matching

length and support degree indicators. To determine a trade-off

between these two competitive metrics, we propose greedy-

based optimal assignment scheme search approaches, namely

MLP, MDP, IU1 and IU2 algorithm, with respect to match-

ing length-preferred, support degree-preferred and integrated

utility, respectively. Comprehensive experiments on real-

world open data set and synthetic data set clearly validate

the effectiveness of our proposed framework on MCS task

optimal allocation.
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1 Introduction

With the dramatic proliferation of sensor-equipped portable

mobile devices, a novel sensing paradigm named Mobile

Crowdsensing (MCS) [1,2] has become an effective way to

sense and collect data about the environment, human soci-

ety and individuals. Instead of deploying static and expensive

distributed sensors, MCS utilizes built-in sensors in smart-

phone and human power to acquire environment conditions

(i.e., air quality, noise level, emergent events, etc.). Up un-

til now, many MCS-related applications have been emerged,

such as travel recommendation [3], public information dis-

semination [4], queue time estimation [5], online opinion for-

mation [6], urban computing [7–9] and so on.

In MCS applications, there are three players: requestor

publishes sensing tasks and provides incentive rewards to mo-

tivate participants, participant is the mobile user who per-

forms sensing tasks and submits measurements to platform,

and platform is responsible for managing tasks, coordinat-

ing requestor and participant, etc. In reality, MCS requestors

with limited incentive budget are usually expect to achieve

reliable results from collected data set. The role of incentive

rewards is to compensate incurred cost of participant users,

such as travelling distance, communication overhead, energy

consumption and so on. However, this creates a dilemma:

when we simply cut down requestors’ incentive budget, as

the payment is not enough to cover participant users’ sensing

cost, it will hinder users’ participation in MCS, and may bring
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about risks of participant churn. Consequently, the quality of

MCS sensing data could not be guaranteed, and the perfor-

mance of MCS application will deteriorate observably.

Given an MCS task, the cost incurred in accomplishment

phase is diversiform for different candidate participants, due

to the various mobility distribution over spatiotemporal di-

mensions, devices status and so on. Recent studies have es-

tablished that spatial location holds a dominant position in

participants’ potential cost, and also plays an important role

in the quality of MCS results [10,11]. Therefore, how to de-

crease sensing cost of MCS task, particularly the travelling

cost, has become a critical issue to improve the whole re-

source efficiency, both lighten the burden of participant users

and requestors. Especially, under multi-task allocation cir-

cumstances [12–15], this problem will become more com-

plicated and challenging considering the spatiotemporal di-

versity and involved constraints.

We make an important observation that it can significantly

decrease travelling cost by taking advantage of a synchronous

sensing manner, which is to allocate MCS tasks according to

participant users’ potential moving routes. As illustrated by

the example in Fig. 1, there are three participant users u1, u2

and u3, and five sensing tasks, ti, 1 � i � 5, which are dis-

tributed over different spatial locations. Assuming that par-

ticipant u1 will pass loc5 and loc6 in the near future, hence

it is appropriate to allocate t4 and t5 to him. However, if the

sensing process is conducted specially, for example, allocat-

ing task t1 to user u1, u1 will have to change his scheduled

route. It is clear that extra traveling distance denoted by red

dotted line will be imposed to u1. Accordingly, u1’s sensing

cost will increase, and requester’s budget cost will also grow

relatively. Actually, allocating t1 to u1 is essentially a local

optimal approach, which is nearest first strategy used com-

monly in the existing studies [12–14,16].

The previous observation motivates us to align MCS task

with participant users’ moving route, and so the sensing pro-

cess can be regarded as a “by-product” compared with users’

main business. In this way, extra movement distance partic-

ipant users travel around to perform tasks can be avoided,

and requestor’s budget cost will also be reduced significantly.

More importantly, as the assigned task is conducted during

users’ scheduled route, the quality of collected sensor read-

ings could be improved, due to the phenomena that users fake

measurement readings without visiting specific locations will

be restrained. In addition, we hire a bundle strategy to fur-

ther improve the resource efficiency, which is to maximize

the number of assigned tasks per user. In this case, sensing

activity cost per task can be reduced, which is consistent with

scale effect in economics and will be verified by a question-

naire investigation in later part. Therefore, our focus shifts to

assign tasks to participant users as much as possible based on

participant users’ moving route.

Fig. 1 A scenario of MCS tasks allocation

In response to the above-mentioned concerns, we explore

the relationship between MCS task allocation and user mobil-

ity regularity in this papaer, and introduce a resource-efficient

MCS task allocation framework. More specially, by discover-

ing the implicit mobility regularity from historical traces, the

original task allocation problem is transformed into the form

of matching discovered mobility patterns with MCS task se-

quences, with the goal of minimizing sensing cost and max-

imizing sensing quality. Based on this framework, we pro-

pose efficient allocation algorithms taking into account of

cost budget and sensing quality. The main technical contri-

butions made in this paper are summarized as follows:

• To accommodate MCS task optimal allocation, we for-

mulate the implicit mobility regularity as user-support

mobility repetitive behavior, and leverage a breadth-

first strategy to discover the behavior patterns.

• By aligning task sequences with user mobility route, we

convert and formulate the task allocation problem into

pattern matching issue. Under pattern matching sce-

nario, with respect to two competing optimal indices,

we devise different greedy-based task sequence match-

ing algorithms with the objectives of achieving resource

efficiency and quality assurance.

• We conduct extensive experiments using real-world and

synthetic data sets to evaluate our proposed algorithms.

The results show the effectiveness and efficiency of our

proposed task allocation problem solving approaches.

The rest of this paper is organized as follows. Section 2
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discusses related work and verifies our hypothesis via a ques-

tionnaire survey. Section 3 characterizes crowd participant

users’ implicit mobility repetitive behavior regularity. Section

4 gives the problem definition, transforms original problem

into pattern matching issue, and proposes effective allocation

algorithms to optimally distribute MCS tasks. We report our

experimental results in Section 5, and conclude our study in

Section 6.

2 Related work and hypothesis validation

2.1 Related work

In MCS applications, the platform recruits participant users

to complete released tasks. Considering the requirements of

sensing task (e.g., temporal and spatial constraints, back-

ground knowledge, etc.), not everyone is well qualified to

undertake a specific task. Roughly speaking, how to select an

appropriate user from participant candidate pool to perform a

given sensing task is a critical problem, it can directly affect

the final sensing quality. There has been recently works on

MCS task allocation and participant selection. Among them,

two types of task allocation have been studied in previous

works.

• Single task allocation Studies in this stream allo-

cate a single task to candidate participant users [17–20].

Reddy et al. [17] propose a recruitment framework to iden-

tify well-suited participant users for data collection accord-

ing to spatial-temporal availability and participation habits.

Pournajaf et al. [18] propose a dynamic data driven spatial

crowd sensing task assignment model by building a synergis-

tic feedback loop between application simulations and data

collection. Zhang et al. [19] devise a participant selection

framework to assist task requestors to identify users, with an

optimization objective to minimize the budget payments. In

[20], Xiong et al. propose a task allocation framework, named

iCrowd, to achieve dual optimal goals which are k-depth cov-

erage maximization and incentive payment minimality.

•Multi task allocation Studies in this stream assign multi

tasks to candidate participant users [12–15,21,22]. Kazemi et

al. [12] define a maximum task assignment problem, in which

participant users report their current location to platform and

platform allocates to each user his nearest tasks with the goal

of maximizing the overall number of assigned tasks. He et al.

[13] study the problem of location-dependent task allocation

with time budgets for participant users. Based on bargain-

ing theory, they devise an approximation algorithm to maxi-

mize the rewards of platform. Liu et al. [14] study the multi-

task allocation problem and propose a participant selection

framework, TaskMe. In [14], two typical situations are in-

vestigated, that is few participants, more tasks and more par-

ticipants, few tasks. Based on the Minimum Cost Maximum

Flow theory, two optimal algorithms are proposed to achieve

the optimization goal. Kandappu et al. [22] conduct exper-

iments in campus environment to investigate the user skew

and results veracity problem.

The most relevant work to this paper includes [15,21]. In

[15], a statistical result of each participant user’s historical

locations is used to derive the probability that user will pass

by a specific location in the next day. It also follows mobil-

ity prediction in task allocation process, but only consider-

ing isolated location prediction instead of moving sequence

(i.e., moving route). Moreover, it strives to optimize the cost

budget and fixes data quality as a pre-specified upper bound.

While our work attempts to optimize these two involved ob-

jectives simultaneously. By leveraging a hypothetical model

TLW, Hachem et al. [21] predict mobile users’ future loca-

tions in next time time window. From the prediction they

choose a minimal number of participants expecting to achieve

a certain coverage in target area in the next time slot. How-

ever, the mobility estimation model assumes that users have

a constant speed and a uniformly distributed direction. Obvi-

ously, it may not correspond to reality, and is inadequate to

characterize complicated practical scenarios. Therefore, the

prior solutions could not be directly applied into our work.

2.2 Hypothesis validation

In order to verify our proposed hypothesis that synchronous

sensing manner can achieve resource efficiency, we conduct

a questionnaire survey. We define two different sensing man-

ner: special manner and synchronous manner, in which the

former is to complete tasks specially, and the latter one is

to complete tasks during their moving routes. Some vir-

tual crowd sensing tasks (such as noise measurement, tak-

ing photo) are provided, and subjects are required to answer

questions or make a choice among some given options. The

results show that about 73.67% believe there exist obvious

differences between these two sensing manners.

• Sensing task price Given a sensing task, subjects are re-

quired to declare a price among four given options, such as 1–

5, 6–10, 11–15 and 16–20 dollars. The resultant distribution

of declared prices is reported in Table 1. Plainly, it shows that

the average price in special sensing manner is 1.885 times

more than synchronous manner’s. Among 73.67% survey re-

spondents whose opinion supports our hypothesis, the dif-
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ferences between these two sensing manner rise up to 2.76

times.

Table 1 Sensing cost investigation

1–5

dollars

6–10

dollars

11–15

dollars

16–20

dollars

Special manner 12 28 11 10

Synchronous manner 41 9 1 6

• Multiple task price To investigate the multi-task sit-

uation, we devise a mobility route, such as {library →
restaurant → public garden→ gymnasium}, and four sens-

ing tasks are associated with these involved locations. As-

suming that respondents will follow the given moving routine

in the near future, at each time we allocate each participant

one, two and three tasks, respectively. The subjects are re-

quired to declare a price at every turn. Finally, we found that

74.2% subjects’ declared prices of multi-tasks are less than

the cumulation of relative micro-tasks’ price. More specifi-

cally, the results are reported in Table 2, where Price denotes

average price of the 74.2% subjects. The average prices of

task 1, task 2 and task 3 are $ 11.10, $10.70 and $ 10.34, re-

spectively. The multi-task’s price of task 1 and 2 is $16.625,

which is less than the summation of these two tasks, such

as 11.10 + 10.70 = 21.80, by about 28.51%; and the aver-

age price of whole tasks is less than the cumulation of these

three tasks by about 32.57%. In other words, the more allo-

cated tasks to a participant user, the lower the average price

per task. This phenomenon can be explained by the theory of

Scale Economies Effect, and some recent research also sup-

port it [22,23]. Therefore, in order to decrease sensing cost,

an effective strategy is to assign more tasks per user. That is

to say, given sensing task set, if the number of selected partic-

ipant users can be reduced, we can achieve the optimal goal

of minimizing the total sensing costs.

Table 2 Task price in multi-task allocation situation

Task 1 Task 2 Task 3 Task 1+2 Total tasks

Price/$ 11.10 10.70 10.34 16.625 21.67

3 Characterizing mobility repetitive regular-
ity of participant users

In this section, we exploit and discover the implicit mov-

ing regularity of participant users from historical behavior

recordings. Then according to the obtained moving regular-

ity, we can achieve a predicted mobility route of volunteer

participants’ in the future.

3.1 Mobility repetitive behavior modeling

In reality, human user’s mobility behavior usually exhibits a

repetitive characteristic to some extent. For example, a mov-

ing behavior, such as: leave home→ arrive at office→ shop-

ping at supermarket, may repeats periodically from day to

day. Obviously, by leveraging human user’s mobility obser-

vations, it is possible to statistically characterize and extract

this repetitive mobility regularity for each user [24,25]. Let

T D = {(uk, loc1, time1), (uk, loc2, time2), . . . , (uk, locn, timen)}
be the original movement database of a mobile user uk, in

which the samplings are recorded in chronological order, and

an element (loci, timei), i = 1, 2, . . . , n, implies that uk is lo-

cated at position loci at time instance timei. Given a set of

trace recordings, in this paper, our primary job is to model

and discover participant’s repetitive mobility regularity in or-

der to accommodate MCS task allocation problem.

Before formulating the mobility regularity, we firstly de-
fine some conceptions to elaborate the hidden mobility regu-
larity. An observation period P is defined as a time duration
across users’ historical observed movement traces. Given a
specific observation period P, for each participant user, it
will be split into many non-overlapped cycles with the equal
length of Clen. In addition to accommodating MCS applica-
tion setting requirements, divided cycle C can represents how
long a repetitive mobility behavior periodically repeats once
again. For example, given a historical trace data set across
one week, if the length of divided cycles Clen is specified as
“one day”, we can obtain seven time slots accordingly. How-
ever, in practice, each participant user could not appear in
every cycle, and participant users’ trace records are inhomo-

geneous over split sensing cycles (i.e., some active users fre-
quently appear in trace history; while some inactive users ap-
pear occasionally in records) [26,27]. To represent this char-
acteristic, in this paper, split cycle in which uk does indeed ap-
pear is named as valid cycle; while the cycle does not record
uk’s mobility trace is invalid cycle. As we only need to fo-
cus on valid cycles for each participant user, given a specific
observation period, each user’s original trace data set will be

divided into N valid cycle subsets in which the time interval

equals to Clen. In order to depict the frequency of mobility

behavior in trace history, by borrowing the conception in fre-

quent itemset mining, we employ support to represent each

mobility behavior’s recurrence rate throughout valid cycles.

Formally, it is defined as the fraction of N cycles that contain

this specific behavior to the number of divided cycles C.

Obviously, due to the properties described above, the repet-

itive mobility regularity or behavior is different from common

period pattern mining process. 1) The period pattern mining
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only focuses on the knowledge of frequent pattern itself, but

ignores the pattern’s contributor. However, in our scenarios,

as each MCS task must be allocated to a specific participant

user, the information of behavior pattern’s holder must be

recorded. 2) As different mobile users may support an iden-

tical mobility pattern, but the corresponding support values

for each user may be quite diverse. Thus, the corresponding

support value of one specific frequent pattern should also be

noted. However, the period pattern mining does not distin-

guish the frequent patterns whose support is no more than

a given threshold value. 3) As explained above, participant

users may have different valid split cycles in trace records,

on the one hand, the number of valid cycles reveals the ac-

tive degree of participant users; on the other hand, to some

extent, it also indicates the probability of one participant will

appear in the future sensing cycle. Therefore, the number of

valid cycles must also be associated with any of repetitive

mobility behavior. That is to say, in our approach, repetitive

mobility behavior, support degree, corresponding contributor

and valid cycle all must be correlated to each other. Hence,

an appropriate index structure should be devised to organize

mobility pattern.

Now, we define the above-mentioned repetitive mobility

regularity as the user-support mobility repetitive behavior as

follows.

Definition 1 A behavior mp which is represented as the

form of {loci → loc j, sup, uk,N(uk)} is a repetitive mobility

pattern, if it occurs no more than the user-specified thresh-

old minsup times across N(uk) split cycles in user uk’s orig-

inal training data set. In mp, the symbols loci and loc j rep-

resent different spatial locations, and the symbol sup denotes

its support degree which can be formulated as follows:

sup =
f re(mp)
N(uk))

, (1)

where f re(mp) denotes the frequency of occurrence of mo-

bility behavior mp. Note that the repetitive mobility pattern

{loci → loc j, sup, uk,N(uk)} denotes that mobile user uk

moves from location loci to loc j, and this behavior repeats

sup times in uk’s N(uk) valid sensing cycles.

3.2 User-support mobility repetitive behaviors discovery

In the following, we will elaborate the discovery process of

user-support mobility repetitive behaviors. First of all, a sens-

ing cycle should be determined to accommodate the require-

ments of MCS tasks. As in this paper, we focus on no-time

critical sensing task, i.e., the task can be completed with-

out emergency. Thus, we specify the sensing cycle with the

length of 24 hours (We suppose that every sensing task can

be completed with one day in this paper). If it is applied into

different situation, it can be tuned accordingly.

For each participant user, we construct a mobility behav-

ior subspace Ω which contains his/her mobility regularity. In

the process of repetitive behavior discovery, the search op-

eration is conducted in every subspace Ω with such a par-

allel manner. Taking advantage of breadth-first search strat-

egy [28], we employ the pattern growth approach which in-

cludes candidate pattern generation and data set scanning to

extract mobility repetitive patterns one by one. More specifi-

cally, we make multiple scans over the N partitioned subsets

(i.e., split cycles) to recognize hot locations which are visited

frequently by the current user. And then, 1-length repetitive

pattern, such as {loci, sup, uk,N(uk)} is recorded. Afterwards,

the discovered mobility repetitive patterns found in the pre-

vious pass are used to generate candidate repetitive patterns.

And by comparing with a given minimum support threshold

minsup, we can determine which candidate mobility patterns

are actually repetitive patterns. This discovery process will

terminate when there are no mobility repetitive patterns at

the end of one traversal, or no candidate patterns can be gen-

erated. The discovery of mobility repetitive behavior is for-

mulated as shown in Algorithm 1, where the symbols Q and

L denote the candidate repetitive patterns and real patterns,

respectively.

Algorithm 1 Mobility repetitive pattern discovery

Input: Crowd trace data set T D, split cycle C, support threshold minsup.

Output: Mobility repetitive patterns Mp = {mpi, i = 1, 2, . . . , n}.
for each mobile user uk do

Construct mobility behavior subspace Ω(uk);

Recognize hot region set L1;

L1 = {q ∈ Q1 |c.sup � minsup};
repeat

Qi = Generate candidate from Li−1;

Calculate Qi’s support sup;

Li = {q ∈ Qi |q.sup � minsup};
i = i + 1;

until Qi � ∅ or Li � ∅

Mp = Mp ∪ Mp(uk);

end

4 MCS task allocation based on pattern
matching

4.1 Problem definition

The mobile participants are denoted by a set of U =

{u1, u2, . . . , un}, and sensing tasks to be performed are rep-
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resented by T = {t1, t2, . . . , tm}, in which ti = (locti , timeti )

represents that task ti’s spatial location is locti , and published

time stamp is timeti . Note that the platform assigns existing

tasks according to their chronological orders (i.e., timeti ) with

batch form.

• Problem According to users’ mobility repetitive reg-

ularities, MCS platform strives to assign published tasks to

suitable participants, with the goal of minimizing overall

sensing cost, while maximizing the quality of returned read-

ings. For mobile user uk, suppose sensing tasks which are al-

located to him is represented as TUk = {tk
1, t

k
2, . . . , t

k
l }, thus the

rewards paid to user uk is Cos(TUk). With respect to the qual-

ity of MCS data, it is defined as task coverage degree which

is the probability that user uk will visit the physical location

locti . For uk, the coverage degree of assigned tasks TUk is

formulated as: Cov(TUk), which equals to support value sup

of mobility pattern tk
1 → tk

2 → · · · → tk
l .

• Constraints 1) Although our goal is to assign more

tasks to each user, considering accomplishment capability

and resulting monopoly among all users, we restrict a maxi-

mum workload constraint which denotes the maximum num-

ber of allocated tasks per user, i.e., upper bound gk. For sim-

plicity, in this paper, each user’s upper bound value equals to

a constant value g.

2) Moreover, in order to guarantee the reliability of col-

lected sensing data for each task ti, a popular method is to

gather more than one readings from each MCS task, so a

more truthful value can be achieved by aggregating the col-

lection of returned samplings [16,19,20]. In our scenario, we

assume that each task ti needs to collect ci independent mea-

surements to ensure the sensing quality, where the parameter

ci is determined by the specific requirements of task ti. For

complicated sensing tasks which cover more area, the cor-

responding independent measurements ci should be larger to

comprehensively understand the target area. In practice, in-

dependent measurements of a MCS task can be regarded as a

set of different sensing tasks which are associated with same

spatial location. It is note that one volunteer participant could

not be allocated a same sensing task more than once.

Then, our problem can be formulated as following:

⎧
⎪⎪⎨
⎪⎪⎩

min :
∑n

k=1 Cos(TUk) =
∑n

k=1 Cos(
∑l

i=1 tk
i ),

max :
∑n

k=1 Cov(TUk) =
∑n

k=1 Cov(
∑l

i=1 tk
i ),

(2)

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

∑l
i=1 tk

i � g, (1 � k � n),
∑n

k=1 tk
i ≡ ci, (1 � i � m).

(3)

Obviously, there are dual-objective to be optimized in our

problem, which are overall cost budget
∑n

k=1 Cos(TUk) and

coverage degree
∑n

k=1 Cov(TUk). In most cases, these two ob-

jectives are competing. For constrain conditions,
∑l

i=1 tk
i �

g denotes maximum workload g that user uk can be as-

signed maximum tasks each time, while the second equation
∑n

j=1 t j
i ≡ ci represents that the independent measurements of

a sensing task ti should be equal to the number of duplicates

ci.

4.2 Problem convertion

As explained above, via matching the allocated sensing tasks

with user’s mobility repetitive patterns, the resource effi-

ciency of MCS platform can be improved. Concretely, with

respect to the optimization dual-objective, we will transform

the original optimization problem under the framework of

mobility behavior pattern matching. Firstly, let’s consider

the cost budget minimum goal. Obviously, if more tasks are

matched with user uk’s predicted moving route, the incurred

sensing cost would be reduced. In other words, it is equivalent

to achieving a longer task sequence matching with mobility

pattern. However, in essence, the sup value of longer mo-

bility patterns is usually lower than the short ones, because

longer pattern usually has low repetition rate compared with

short pattern. This means that if we just pursuit long pattern

matching (i.e., minimizing cost budget), the support degree

of obtained task sequence assignment may decrease. As a re-

sult, the second optimization goal, task coverage degree, will

reduce accordingly.

In the following, we will employ a toy example to demon-

strate it. Given a set of MCS tasks which are located at

loc1, loc2, loc3, loc4, from the perspective of minimizing cost

budget goal, it is sensible to choose mobility pattern mp1 as

it can match longer task sequence (i.e., all existing tasks).

However, its corresponding coverage degree (i.e., 0.55) is the

lowest among these three available patterns. If pattern mp2 is

chosen, we can obtain the maximum coverage degree, but the

incentive cost is not optimized compare with mp1. Thus, it

is necessary to find a trade-off between these two competing

metrics.

Under the pattern matching paradigm, the original opti-

mization problem in Eq. (2) would be converted into another

form as follows.
⎧
⎪⎪⎨
⎪⎪⎩

max :
∑n

k=1 matlg(TUk,Mp(uk)),

max :
∑n

k=1 matdg(TUk,Mp(uk)),
(4)

where matlg(TUk,Mp(uk)) and matdg(TUk,Mp(uk)) denote

the matching length and matching support degree between

user uk’s allocated sensing task bundle TUk and his mobility

repetitive pattern set Mp(uk).
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4.3 Optimal task allocation approaches

4.3.1 Allocation solution structure

For a given MCS sensing task set T = {t1, t2, . . . , tm}, we em-

ploy a matrix structure ATU, as shown in Eq. (5), to record

and update the task allocation solutions. In ATU, the number

of rows denotes candidate participant user pool scale, while

the column is the size of tasks to be allocated. If zi, j equals to

1, it means that task t j is allocated to user ui; otherwise, it is

not. The sum of elements in each row i represents the number

of tasks which are allocated to user ui (i.e.,
∑m

j=1 zi, j = |TUk|),
and the sum of each column equals to the value of indepen-

dent measurements of task t j (i.e.,
∑n

i=1 zi, j = c j). By this

calculation, it is easily to verify whether the constraints of

the optimization objective in Eq. (3) are satisfied.

ATU =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1,1 · · · z1,m

...
...

zn,1 · · · zn,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

4.3.2 Task allocation workfolw

Towards these optimization objectives described in Eq. (4),

we can prove that the task allocation problem is a NP-

hardness problem via a reduction from the classical Travel-

ling Salesman Problem (due to space limit, we do not present

here). Hence, in this paper, we devise optimal algorithm

which is greedy-based to iteratively derive the desired solu-

tions.

More specially, in each allocation iteration, we take a sub-

set of sensing tasks T ∗, in which there is no reduplicate el-

ements (i.e., each task has only one independent measure-

ment in T ∗), to select specific participant users. Then the ex-

isting mobility repetitive patterns discovered in advance will

be retrieved to search for the matched patterns with task se-

quences in T ∗, ordered by tasks’ released time stamp. This

matching process is substantially a comparison calculation

between matching length and matching support degree. If

tasks in T ∗ are matched entirely or partially by a repetitive

pattern mp, we say that task set T ∗ can be matched with this

pattern. The number of elements which are shared with T ∗

and mp is regarded as the matching length matlg. For the

given task set T ∗, there may be more than one mobility pat-

terns can be matched with it. Among these matched mobility

patterns, their matching length and corresponding support are

diverse as shown in Fig. 2. To find a trade-off between these

two metrics, we must synthetically consider matching length

and support degree. The corresponding search strategies will

be described in detail in the next section.

Fig. 2 Mobility patterns matching with different support values

According to the evaluation calculations for each matched

patterns, one with maximum evaluation will be selected as the

winner, and the corresponding elements shared with T ∗ will

be allocated to the holder (i.e., candidate participant user) of

chosen pattern. In T ∗, tasks which have not been allocated

in this iteration will be returned to the original task set T .

Also, the allocated tasks’ independent measurement will be

reduced by one. If the number of independent measurements

for task t j becomes zero, we exclude t j from T . For partici-

pant user ui, we assign value one to entry zi, j in matrix ATU

if task t j is allocated to ui. If ui’s allocated tasks reaches the

upper bound g, his mobility patterns will be eliminated from

the candidate pattern sets. This allocation process is repeated

until no task t j exists in T . The workfolow of task allocation

procedure is shown in Fig. 3.

Fig. 3 Workflow of optimization task allocation

4.3.3 Task allocation strategies

Based on the indicators of matching length matlg and support

value matdg, how to compare different matched patterns’ fit-

ness with respect to task set T ∗ becomes a key issue in our

task allocation framework. In this section, with respect to

these two metrics, we will devise different evaluation func-
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tions to guide the task allocation process. In the following,

four different utility calculation strategics are proposed.

1) Matching Length-Preferred (MLP) To be specific, if

the matching length matlg is preferred (i.e., matlg-first strat-

egy) , the matching degree of patterns with larger matlg val-

ues will be greater. In other words, this strategy only concerns

with minimizing sensing cost budget objectives, without con-

sidering the task coverage degree index.

2) Matching Degree-Preferred (MDP) This strategy is

the complete opposite of the first MLP strategy. This strat-

egy’s focus is on coverage degree index, so one matched

pattern mp with more matched support value matdg will be

given greater utility value.

3) Integrated Utility-1 (IU1) The IU1 strategy considers

both two optimization objectives simultaneously, in which we

strive to optimize sensing cost goal with coverage degree as a

pre-specified threshold ∂. For any two matched patterns, one

pattern whose matdg value is less than threshold ∂ will be

eliminated firstly. If these candidate patterns’ support value

are both larger than ∂, the one having longer matching length

matlg will be chosen as the final assignment.

4) Integrated Utility-2 (IU2) Similar to the third strategy,

IU2 also incorporates both these two optimization objectives.

It employs a product form as matlg ∗ matdg, candidate pat-

terns whose value of matlg ∗ matdg is maximum will be se-

lected as the resultant assignment.

According to different utility construction strategies, we

devise four task allocation algorithms, namely MLP, MDP,

IU1 and IU2. Obviously, these four proposed algorithms’ ba-

sic assignment procedures are similar, as shown in Fig. 3, the

only different part is how to build utility function. Thus, we

will not present all algorithms’ pseudo code but only MLP in

Algorithm 2.

5 Performance evaluation and discussion

In this section, We systematically evaluate the performance

of our proposed techniques using a real-world data set and

a synthesized data set. Our experiments and latency obser-

vations are conducted on a standard server (Windows), with

Intel Core i3-3110M CPU, 2.40 GHz and 4 GB main mem-

ory.

5.1 The data set

An open WTD data set which is published by researchers at

UCSD [26] is utilized as the experimental data set. In campus

environment, WTD records all access points (AP) sensed by

the user every 20 seconds. Due to the sparse distribution in

WTD data set, we filter some APs and users having too little

recordings, and obtain a final data set which contain 124 APs

and 68 mobile users. In the stage of mobility model training,

we employ a 30-day period sampling data set to extract mo-

bility repetitive behavior regularity. Based on the behavior

regularity, a set of MCS tasks will be assigned to available

users. As each AP has a unique identification number, so we

can extract mobile users’ behavior patterns related to APs.

Moreover, the location of participants and sensing tasks are

both related to AP’s id.

Algorithm 2 MLP algorithm

Input: A set of MCS tasks T , upper bound g, mobility repetitive pattern
set Mp.

Output: A task allocation matrix ATU .

Initialize matrix ATU;

repeat

T ∗ = non-repetition(T );

MatP = pattern-matching(T ∗ ,MP);

for each matched pattern in MatP do

Calculate matching length with matlg;

end

Select the target pattern with maximum matlg;

if selected user’s allocated task no more than g;

then

Allocate MCS tasks based on target pattern;

Update ATU and T ;

end

until T � ∅;

Considering the small-scale and sparse distribution of

WTD data set, in order to comprehensively verify our pro-

posed approaches on a larger scale, we synthesize a set of

simulation data set based on the real data. More specially, fol-

lowing the statistical probability of users’ behavior in WTD,

additional 100 virtual mobile users are produced (i.e., 168

available users), and the relevant APs have also increased up

to 284.

5.2 Experiment setting and baselines

5.2.1 Experiment setting

In sensing task allocation phase, we employ the mobility pe-

riodic pattern base obtained under the condition of minsup =

0.5. The value of pre-specified threshold ∂ in IU1 equals to

0.7. In these experiments, we investigate the performance of

our proposed assignment approaches by varying the scale of

sensing tasks, maximum workload parameter g. We use the

following means of measurement to evaluate the performance

of our proposed optimal task allocation approach, including
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average allocated tasks per user, average coverage degree

per task, task allocation efficiency and task completion ratio.

Among these above-mentioned four measurements, average

allocated tasks per user is used to evaluate cost budget indi-

rectly. Given a set of MCS tasks, the more average allocated

tasks per user, the less overall cost budget. The task alloca-

tion efficiency is hired to measure the operational efficiency

of proposed algorithms. The task completion ratio is to eval-

uate the completion results of different allocation schemes.

5.2.2 Baseline algorithms

Most existing MCS task allocation work leverages a statisti-

cal model to characterize users’ mobility regularity and pre-

dict their future location [15,20,31]. More specifically, a sta-

tistical probability is utilized to predict whether mobile user

uk will pass a given isolated location loc j. Based on Bayesia’

rule, statistical probability pk, j can be calculated as follows:

p(loc j|uk) =
p(loc j, uk)

p(uk)
. (6)

According to the location probability estimation p(loc j|uk),

it is reasonable to choose participant user uk with probabil-

ity p(loc j|·) which is more than a specified threshold Pthld

for task location loc j. Based on the statistical probability-

based MCS task allocation approaches [29–31], we adapt

two baseline algorithms, including increment greedy-based

assignment (i.e., IGA) and bipartite graph-based assignment

(i.e., BGA), to accommodate our problem scenario and evalu-

ate the performance of proposed approaches. And the thresh-

old value Pthld in statistical probability model is set to 0.5.

5.3 Experiment and result analysis

5.3.1 Frequent mobility periodic pattern discovery

Based on WTD data set, the mobility periodic pattern discov-

ery technique is evaluated by varying the support threshold

value (60%–90% with 10% increment). The corresponding

results are reported in Fig. 4. The number of discovered mo-

bility patterns versus the support values from 60% to 90%

are shown in it, in which the vertical axis is represented with

logarithmic scale, such as 101, 102, 103 and 104. Obviously,

it is observed that the number of discovered periodic patterns

increases exponentially as the support minsup reduces. The

reason is plain that when the support value increases, less

mobility patterns will satisfy the given requirements. In order

to remove the redundant patterns and improve the matched

pattern retrieval efficiency, we pick out the closed patterns of

each user (i.e., user intra closed patterns) and all participant

users (i.e., user inter closed patterns). For each given sup-

port value, the number of discovered total mobility periodic

patterns is largest, followed by user intra closed patterns and

user inter closed patterns.

Fig. 4 Discovered frequent patterns

5.3.2 Varying the number of sensing tasks

In this part, we investigate the performance of proposed as-

signment approaches by varying the number of sensing tasks

in real-world and synthetic data set. Figures 5 and 6 show

the results under several different sensing task sizes. Here,

“20–38” means that the number of tasks is 20 and the cor-

responding independent measurements are 38. The maximal

independent measurement size is set to 3, and the maximum

workload per user equals to 6. For each situation, we con-

ducted ten times of experiments to get the average values. In

Figs. 5 and 6, we report the performance comparison on av-

erage assigned tasks per user and average coverage degree

per task for our proposed approaches and two baseline algo-

rithms.

As shown in Fig. 5, MLP algorithm outperforms the rest

of task allocation approaches, followed by IU2, BGA, IU1,

MDP and IGA approach. The reason is that MLP algorithm

employs a longest matching pattern-first strategy to assign

tasks, it can assign more tasks to each participant user at one

time according to the discovered repetitive pattern’s length. In

our cases, the maximum assigned tasks per user can achieve

the maximum workload setting. Thus it can achieve best

performance with respect to the metric of average assigned

tasks per user (i.e., cost budget objective). MDP algorithm

achieves poor performance with this metric due to the fact

that it adopts matching-degree preferred strategy, so it usually

does not prefer matching length but support degree. While the

integrated utility-based approaches, IU1 and IU2 can be re-

garded as a compromise between MLP and MDP algorithms.
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The IGA approach does not utilize moving route regularity,

but only a location-user pair (locti , u j) to predict the potential

probability. By employing an increment assignment strategy,

it only determines one user-task pair in each iteration, so the

average assigned task is less than other algorithms. The BGA

algorithm searches connection edges between user node and

task node in graph construction. By hiring a strategy of user

with maximum connections first, it achieves better perfor-

mance compared with most approaches.

Fig. 5 Average assigned tasks per user. (a) Real-world data set; (b) synthe-
sized data set

With regard to the measurement of coverage degree, the

corresponding results are listed in Fig. 6. It is interesting to

note that the results are opposite to average assigned tasks

per user (i.e., the cost budget). This is coincidence with the

above discussion that these two measurements are compet-

ing. Among our proposed four strategies, MLP and MDP al-

gorithms are two extremes with respect to cost budget and

coverage degree. While IU1 and IU2 obtain a trade-off be-

tween these two measurements. Moreover, as IGA algorithm

ranks the qualified users for one specific task according to the

predicted visiting probability (i.e., coverage degree), it also

achieves a better overall performance of coverage degree.

Fig. 6 Average coverage degree per task. (a) Real-world data set; (b) syn-
thesized data set

5.3.3 Varying maximum workload

Via the real-world data set, we also study the impact of maxi-
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mum workload on the performance of task allocation by vary-

ing g from 4 to 8 with two increments. The corresponding

results of the six algorithms under 40 tasks (i.e., 78 indepen-

dent sensing measurements) are shown in Fig. 7. The maxi-

mal independent measurement of each task to be allocated is

set to 3. We can found that, similar to the results in different

task allocation situations, MLP has maximum average tasks

per user among these testing approaches. Moreover, there is a

subtle trend that the average assigned tasks per user increases

with the rise of maximum workload value g. The reason for

this observation lies in the fact that, when g becomes larger,

each participant user can undertake more tasks. Thus the final

selected user size will decrease accordingly, and the average

assigned tasks per user will increase for a given set of tasks.

Fig. 7 Effects of maximum workload on two metrics (Real-world data set)

Moreover, for different task allocation approaches, we also

study the effect of maximum workload setting on coverage

degree metric. As shown in Fig. 7, the result demonstrates

that maximum workload g can also influence the average cov-

erage degree per task. Plainly, as maximum workload g in-

creases, some user-task pair with less coverage degree will

also be determined as the assignment scheme in order to ex-

tend the average assigned tasks for each user. Because MLP

allocation algorithm is matched pattern length-first strategy,

the influence of g will be more obvious than others. While

BGA algorithm is also insensitive to the value of g. The pos-

sible reason is that participant users’ trace history shows a

relatively homogeneous distribution among different APs.

5.3.4 Task allocation efficiency

The allocation efficiency of these algorithms under different

sensing task pool size is shown in Fig. 8. The maximum

workload g is set to 8. Generally speaking, the number of

allocation iteration will grow with the increase of task pool

size. Among these six algorithms, MLP algorithm outper-

forms other assignment approaches obviously. The reason is

plain enough, as explained above, MLP employs a longest

matching pattern-first strategy, so it can assign more tasks to

a candidate user at each iteration. While for IGA algorithm,

at each iteration, it calculates all the valid user-task pairs,

and determines one based on the evaluation of overall per-

formance. Thus, the allocation iteration is equal to the tasks

multiply by its corresponding independent measurement (i.e.,

the number of task copies). In other words, once the number

of sensing tasks and independent measurement is given, the

allocation iteration of IGA approach can be directly deter-

mined. In the process of user-task pair comparison, it con-

sumes much running time.

5.3.5 Task completion ratio

Task completion are also investigated by verifying whether

the allocated tasks has been performed by their chosen users.

In experiments, we randomly choose independent one day to

test it. If user actually passes through his allocated task’s lo-

cation (in WTD dataset he connect AP that the task is in), we

say that he can accomplish this task. For each user, we define

the completion ratio is the ratio of the number of completed

tasks to all the tasks allocated to him. While the average

task completion ratio is the mean of all selected users’s task

completion ratio. For different scales of released tasks, we

conducted ten times of experiments (i.e., random selected

ten days) to get the average value. The corresponding results

are listed in Table 3. As shown in Table 3, in addition to the
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Fig. 8 The running efficiency comparison. (a) Real-world data set; (b) syn-
thesized data set

six aforementioned methods, we also conduct the nearest-

based allocation approach (i.e., NA approach) in which the

tasks are assigned based on the distance between user’s lo-

cation and sensing task’ position [32]. Basically, the perfor-

mance of MDP approach is best, followed by IU1, IGA, IU2,

MLP, BGA and NA algorithm. The reason is that the mo-

bility prediction accuracy directly impact the performance of

task completion. IGA and BGA approach characterize all the

mobility information hidden in training dataset by Bayesian

probability with the form of isolated locations, without con-

sidering the moving sequence. While pattern matching-based

allocation, MDP, IU1, IU2 and MLP methods exploit mobil-

ity transfer probability in a moving sequence form (i.e., mov-

ing route), thus their prediction accuracy will be better. For

nearest-based NA approach, it is insufficient to predict user’s

future location only based on close distance.

Table 3 Task completion ratio comparison

Algorithm 20–44 30–65 65–150 65–200

MLP 0.7404 0.776 0.7194 0.7321

MDP 0.80267 0.81267 0.7645 0.796

IU1 0.78375 0.79655 0.7392 0.745

IU2 0.7408 0.7785 0.7235 0.747

IGA 0.779 0.7843 0.7109 0.743

BGA 0.7327 0.765 0.7177 0.7433

NA 0.37634 0.3619 0.2984 0.347

6 Conclusion

In this paper, we investigate the mobile crowdsensing task

optimal allocation problem in multi-task situation. To be

specific, towards the goal of minimizing cost budget and

maximizing sensing quality, we propose to characterize par-

ticipant users’ mobility regularity and make the MCS task

allocation process follow users’ repetitive mobility pattern.

A unique characteristic of our framework is that it trans-

forms the problem of MCS task allocation into the form of

mobility pattern matching, which can be regarded as a mov-

ing route prediction problem. These two optimization goals

are transformed into pattern matching length and matching

support degree metrics. With respect to these two competing

objectives, we devise greedy-based assignment approach to

optimally match task sequence with mobility patterns dis-

covered in advance. Extensive experiments conducted on a

real-world data and a synthetic data set clearly validate the

effectiveness of our proposed approaches. As for our future

work, we plan to consider other factors that may affect the

task allocation process, such as user interactive, social rela-

tionship and so on. Also, new approximation optimization

strategies and theoretical foundations will be studied.
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