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Abstract Embedded real-time systems employ a variety

of operating system platforms. Consequently, for automatic

code generation, considerable redevelopment is needed when

the platform changes. This results in major challenges with

respect to the automatic code generation process of the archi-

tecture analysis and design language (AADL). In this paper,

we propose a method of template-based automatic code gen-

eration to address this issue. Templates are used as carriers

of automatic code generation rules from AADL to the object

platform. These templates can be easily modified for differ-

ent platforms. Automatic code generation for different plat-

forms can be accomplished by formulating the correspond-

ing generation rules and transformation templates. We design

a set of code generation templates from AADL to the object

platform and develop an automatic code generation tool. Fi-

nally, we take a typical data processing unit (DPU) system as

a case study to test the tool. It is demonstrated that the auto-

generated codes can be compiled and executed successfully

on the object platform.

Keywords real-time system, template, formal methods,

AADL, automatic code generation

1 Introduction

In the field of avionics, aerospace, and automotive con-

trol, embedded real-time systems [1] are widely used. These
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systems are resource-constrained, real-time responsive, fault-

tolerant, and have dedicated hardware. They are highly in

demand owing to their properties of real-time responsive-

ness and reliability. Moreover, they are becoming increas-

ingly complex. Thus, how to reduce the development cost

and time is an important consideration in the development

of these systems. To simplify the development process, the

model driven development (MDD) [2] method was proposed.

Then, the architecture analysis and design language (AADL)

[3–6], which is based on MDD, was invented.

AADL provides a standard and precise way of describing

the software/hardware architecture, run-time environment,

and functional and non-functional properties of embedded

real-time systems. An AADL specification defines various

types of software and hardware components (such as system,

process, thread, subprogram, data, processor, and bus), their

real-time properties (such as period, deadline, and worst-case

execution time), and how they interact with each other using

ports, subprogram calls, and other interaction mechanisms.

Furthermore, mode change, partition, scheduling strategy,

and other features of real-time systems are also provided. Be-

sides, AADL is an extensible language. For example, AADL

standard defines a behavior annex [7,8] to refine the behav-

ior of threads. Currently, the automatic code generation of

an AADL model to executable code is a research hotspot in

AADL.

The automatic code generation of AADL [9], can con-

tribute to improving the development automation level, short-

ening development time, and reducing the possibility of error

in the coding process. The research of automatic code gener-
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ation of AADL primarily includes transformation rules from

model to code, transformation methods, and tools.

The main contributions of this paper are as follows:

1) We design a set of code generation templates from

AADL to object platform VxWorks.

2) We first introduce template-based automatic code gen-

eration technology as a carrier of generation rules from

AADL to object code, and then develop a related tool.

3) For the AADL model of the DPU, objects can be gen-

erated by our tool, which can be compiled and executed

correctly.

This paper is structured as follows. Section 2 reviews some

related works. Section 3 presents AADL transformation rules

of some AADL components. Section 4 shows the architecture

of the template-based tool and template-based automatic code

generation. Section 5 presents a case study. It takes the exam-

ple of the data processing unit (DPU) to test the automatic

code generation tool. Section 6 concludes this paper.

2 Related work

AADL can model a real-time system as a hierarchy of soft-

ware components bound to an execution platform. Predefined

software component types, such as thread, thread group, pro-

cess, data, and subprogram are used to model the software

architecture of the system. The behavior annex is defined for

the refinement of thread behaviors. Processor, memory, de-

vice, and bus components are the execution platform com-

ponents for modeling the hardware part of the system. Ports

and port connections are provided to model the exchange

of data among components. Functional and non-functional

properties like scheduling, protocol, and execution time of

the thread can be specified in components and their interac-

tions. AADL also provides a way to describe multi-mode sys-

tems, in which a mode is an explicitly defined configuration

of contained components, connections, and property values.

System components are used to represent composite sets of

software and execution platform components.

Based on the AADL model, there are several languages

which can be generated, such as C, SystemC, and Lustre. This

section provides a brief introduction to these works.

2.1 Code generation from AADL to C

PolyORB-HI-C is an AADL runtime used by the C code

generator. It is developed by Ocarina for distributed high-

integrity applications based on the Ada Ravenscar [10] pro-

file. Two object languages are supported, namely, Ada2005

and C. It is used for system primitives and resource manage-

ment. This piece of software is a link between the Ocarina

generated code and the underlying runtime system.

The work [11] presents an experiment: code generation

from a sub-part of AADL model to C code (compliant with

a specific standard (OSEK/VDX)) using MDA tools. In the

experiment, the authors focus on the AADL thread compo-

nent. Two transformations generate either C language code

(compliant with OSEK/VDX) and corresponding OIL con-

figuration code.

The generated code can be executed on both POSIX

or RTEMS platforms. With the PolyORB-HI-C tool, the

Simulink blocks can be used as AADL subprograms. In that

case, the generated code from AADL automatically calls the

generated code from Simulink.

Ellidiss Software developed a real-time system analysis

tool called STOOD [12]. It carries an AADL model on ad-

justable analysis by using simulation methods. It supports

uniprocessor, multiprocessor, sharing resources, automatic

code generation from AADL to C, C++, and Ada, and doc-

umentations like HTML, RTF, and MIF. It also supports re-

verse engineering from Ada or C code to AADL. The Univer-

sity of Electronic Science and Technology of China (UESTC)

developed an automatic code generation tool from AADL to

C based on the embedded real-time platform DeltaOS: UCaG

[13].

2.2 Code generation from AADL to SystemC

SystemC is a set of C++ classes and macros which provide an

event-driven simulation kernel in C++. SystemC is applied

to system-level modeling, architectural exploration, perfor-

mance modeling, software development, functional verifica-

tion, and high-level synthesis.

For the purpose of simulation, AADS [14] is developed

as an AADL SystemC simulation tool. It supports the per-

formance analysis of AADL specifications throughout the re-

finement process from the initial system architecture till the

complete application and execution platform are developed.

It parses the AADL model, so the functionality is translated

to an equivalent POSIX model and the architecture is repre-

sented in XML.

The generation of the SystemC model from the AADL

specification is not straight-forward. Nevertheless, the Sys-

temC model generated by AADS is able to capture the funda-

mental dynamic properties of the initial system specification.
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An AADL SystemC simulation tool is developed. However,

the behavior specifications have not been taken into consid-

eration.

2.3 Code generation from AADL to Lustre

AADL2SYNC is an AADL to synchronous programs trans-

lator, which is extended in the framework of the European

project ASSERT, resulting in a system-level tool box that

translates AADL to Lustre.

The main object is to perform simulation and validation

that take into account both the system architecture and the

functional aspects. Jahier et al. [15] study the transforma-

tion from AADL to synchronous language Lustre. In the syn-

chronous model, all internal components step forward in a

“simultaneous” way. Consequently, the model is determinis-

tic. In contrast, AADL is a modeling language for a realistic

platform, so the AADL model is asynchronous. The paper

first presents methods to describe the asynchronous model in

Lustre. Then the translation of processor, scheduling, thread

dispatch and execution, port connection, and resource shar-

ing are given. The generated Lustre model will be verified

using Lesar. However, the methodology does not support the

transformation of mode change or the behavior annex.

2.4 Code generation from AADL to TASM

The timed abstract state machine (TASM) [16] is based on

the theory of abstract state machine (ASM) [17]. It extends

ASM to enable expression of timing, resource, communi-

cation, composition, and parallelism. Technically, a TASM

specification is made up of machines. A specification must

hold at least one main machine with its set of rules. Beside

main machines, it is also possible to define sub machines and

function machines.

The work [18] proposes a formal semantics for the AADL

behavior annex using TASM. A semantics of AADL execu-

tion model is given, and a prototype of behavior modeling

and verification is proposed. Only the synchronous execution

model is considered in [18]. It gives the relation between the

execution model and the behavior annex.

Hu et al. [6] present a methodology for translating AADL

to TASM. The authors formally define the translation rules

from an adequate subset of AADL (including thread com-

ponent, port communication, behavior annex, and mode

change) into TASM. Based on these rules, a tool called

AADL2TASM is implemented using ATLAS transformation

language (ATL).

The purpose of code generation from AADL to TASM is

to perform formal verification. This verification is achieved

with UPPAAL by mapping each main machine to a timed au-

tomaton. Timing correctness is defined as a reachable state

of the system, being reachable within an acceptably bounded

amount of time. Code generation from AADL to TASM al-

lows presenting timing semantics of the AADL behavior an-

nex using TASM, which is based on abstract state machines

extended with resource consumption annotations. TASM of-

fers more abstract resource consumption mechanisms, but

does not offer much support to some scheduling patterns

[19]. Resource management allows the specification of a fair

preemptive scheduler. However, specifying other scheduling

policies has to be evaluated [20].

2.5 Conclusion

Compared with current studies, the methodology proposed in

this paper has the following features:

1) A proper subset of AADL has been chosen as the trans-

formation object including thread components (dispatching,

offline scheduling, and execution), port communication, be-

havior annex, and mode change, which is usually used in

safety-critical systems.

2) Template-based automatic code generation is first pro-

posed. For different platforms, we can perform code genera-

tion by changing the templates.

3) We have developed an automatic code generation tool

based on our method. This tool worked well for our clients.

3 Transformation rules

In this section, we will present transformation rules from

AADL to C. We take VxWorks as an object platform and

provide a group of transformation rules of AADL elements

based on VxWorks. These subsets can basically satisfy the

AADL modelling demand. The transformation rules will be

described in texts, formal descriptions, and codes.

The AADL standard gives a rich syntactic and seman-

tic,which can enhance expression ability. However, it also in-

creases the complexity of code generation. We will illustrate

how to frame the transformation rules using some AADL

components as follows.

3.1 The transformation rules of process

An AADL process component can be described as follows:

Definition 1 Process = 〈Pc, S c,C,R〉, where

• Pc denotes ports.
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• S c denotes subcomponents, and a subcomponent of a

process can be a thread or subprogram.

• C denotes connections of P × P, and a connection is

used to check whether the port is used. If the port is not

connected, the port may not be processed.

• R denotes the set of process features. It mainly contains

scheduling and interrupt features.

The process abstraction represents a protected address

space, a space partitioning that prevents other components

from accessing anything inside the process. The address

space contains:

• executable binary images (executable code and data) di-

rectly associated with the process;

• executable binary images associated with subcompo-

nents of the process; and

• server subprograms (executable code) and data that are

referred to by external components.

A process does not have an implicit thread. Therefore, to

represent an actively executing component, a process must

contain a thread.

The transformation rule of a process component is as fol-

lows: each process component is transformed into two files,

processTypeID.h and processTypeID.c, in the systemTypeID

folder. The content of processTypeID.h and processTypeID.c

is presented in Table 1. Figure 1 shows the AADL descrip-

tion of process component, and Fig. 2 shows the C code in

systemTypeID.c.

Table 1 Content of corresponding file

Filename Content

processTypeID.h
Statements of functions and data shared by threads

of process, references of systemTypeID.h

processTypeID.c Implementation of data and function declarations

Fig. 1 AADL description of process component

3.2 The transformation rule of port connection

Ports are the logical connection points between components.

AADL defines three types of component ports: data, event,

and event data ports. Event and event data ports support queu-

ing buffers, but data ports only keep the latest data. To transfer

the data and events among components, port connections are

provided. The definition is provided as below.

Fig. 2 C code in systemTypeID.c

Definition 2 PortConnection = 〈Sp,Dp, FT 〉.

• Sp is the source port of the connection.

• Dp is the object port of the connection.

• FT is the feature type of port connection. It contains

the type of port (data port, event port or event data port)

and features of port (such as data access and subpro-

gram access).

In the following content, pc denotes the port connection;

BA denotes the behavior annex; t() denotes the transfor-

mation rule; Γ() denotes valid identifier; c() denotes creat-

ing; s() denotes sending; and r() denotes receiving. Trans-

formation methods of different port connections are listed in

Table 2.

We take the event port as an example, and give the formal

description of the transformation rules for the event port as

follows.

The transformation rule of event port:

1) Initialization:

• Γ(pc):=FALSE.

2) Send:

• !∃(BA)→ s(c(Sig)) ∧ Γ(pc):=TRUE.

• ∃BA(Γ(BA) = FALSE→ Γ(pc):=FALSE).

• ∃BA(Γ(BA) = TRUE→ s(c(Sig)) ∧ Γ(pc):=TRUE).

3) Receive:

• r(Sig) ∧ Γ(pc):= FALSE.

The valid identifier of a signal is declared in a correspond-

ing header file and defaults to FALSE. When the signal is

sent, it should be created.

Simultaneously, the valid identifier is set to be TRUE.

However, if there is a behavior annex, then the valid iden-

tifier of the newly generated signal remains FALSE, and

it will not be sent immediately. Only when the state transfer

condition of the behavior annex is TRUE, then the newly gen-

erated signal will be sent and its valid identifier will become
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Table 2 Transformation methods of different port connections

Type of port Transformation resource Transformation object Transformation method

Event port Event port Signal t(Pc) = Sig

Out event port Create and send a new signal t(Pc.out) = s(c(Sig))

In event port Receive the signal t(Pc.in) = r(Sig)

Even data port Even data port Message queuing t(Pc) = Mesq

Out event data port Create and send a new message queuing t(Pc.out) = s(c(Mesq))

In event data port Receive the message queuing t(Pc.in) = r(Mesq)

Data port Data port Message t(Pc) = Mes

Out data port Create and send a new message t(Pc.out) = s(c(Mes))

In data port Receive the message t(Pc.in) = r(Mes)

TRUE. When a signal is received, its valid identifier becomes

FALSE.

Figure 3 shows the AADL description of event port, and

Fig. 4 shows the C code of the event port after code transfor-

mation.

Fig. 3 AADL description of event port

Fig. 4 C code of event port

In the C code of event port in Fig. 4, TaskEntry-

Point_threadTypeID() is the entry point of tasks. ReceiveSig-

nal() and SendSignal() receive signal and send signal, respec-

tively. sigID_iep and sigID_oep correspond to the signal ID

of the input and output event ports, respectively. ContentID

is the signal value. hasSigID_iep and hasSigID_oep identify

if the input and output signals are valid.

3.3 The transformation rules of thread

The thread component, which is the abstract of a concurrent

task or an active object, is the main execution and scheduling

unit in AADL. Input and output ports can be specified in the

thread for dataor event exchange. The behavior annex is the

refinement of the thread execution. The definition is shown as

below.

Definition 3 Thread = 〈IPort,OPort, T Prop, BA,Mode,

Scheduling〉, where,

• IPort = 〈IDP, IEP, IEDP〉. IDP is the set of input data

ports; IEP is the set of input event ports; and IEDP is

the set of input event data ports.

• OPort = 〈ODP,OEP,OEDP〉. ODP is the set of out-

put data ports; OEP is the set of output event ports; and

OEDP is the set of output event data ports.

• T Prop = 〈Dispatch_type, Period,Compute_execution

_time,Deadline〉. Dispatch_type is the dispatch pro-

tocol of the thread, including the periodic and ape-

riodic protocols. The period is the time interval

between two dispatches of the periodic threads.

Compute_execution_time specifies the computation

time of a thread. The deadline specifies the longest

time interval between the start and end of an execution.

• BA ∈ behavior annex, and it is the precise description

of the thread’s behavior.

• Mode specifies the mode property of the thread. A

thread can only be dispatched, scheduled, and put into

execution if it belongs to the current mode. In the sys-

tem and process component of AADL, mode change

automata is defined by specifying threads that are capa-

ble of execution.

• Scheduling specifies how the thread will be sched-

uled on the CPU to which it is bound. The Al-

lowed_Processor_Binding_Class property specifies the

CPUs to which a thread can be bound when being exe-

cuted.
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Trigger conditions of different types of threads are listed in

Table 3. We take the periodic thread as an example, and give

the formal description of transformation rules for the periodic

thread as follows.

Table 3 Trigger conditions

Thread types Trigger causes

If there are

requirements

to arrival time

of trigger causes

Periodic thread Triggered periodically by dispatcher \
Aperiodic thread

Triggered by the arrival of event

or event data, subroutine calls
No

Sporadic thread
Triggered by the arrival of event

or event data, subroutine calls
Yes

The transformation rules of periodic thread are as follows.

Each thread component of the process component is trans-

formed into two files threadTypeID.h and threadTypeID.c.

The content of threadTypeID.h and threadTypeID.c are listed

in Table 4.

Table 4 Content of corresponding file of thread component

Filename Content

threadTypeID.h
Statements of functions and data in threads,

references of processTypeID.c

threadTypeID.c Implement of data and function declarations

We transform a thread component to a Task =

〈Name, ThreadTask, Status〉, then the formal description of

transformation rules for the periodic thread is shown as fol-

lows:

• !∃(Mode)→ Task.Status := ready.

• ∃Mode(Mode = InitialMode → Task.Status :=

ready).

• ∃Mode(¬(Mode = InitialMode) → Task.Status :=

blocked).

Status is the status of a Task, and its default status is ready.

If there is Mode in the process component, then only in initial

mode, can task status be set to ready, otherwise it is blocked.

Figure 5 shows the AADL description of the periodic

thread. Figure 6 shows the C code in processTypeID.c that

corresponds to the periodic thread.

In the C code in processTypeID.c in Fig. 6,

Fun_processTypeID()is the entry point of the process

task. CreatePeriodicTask() refers to creating a peri-

odic task. TaskName is the name of the task. TaskEn-

tryPoint_threadTypeID() is the entry function of a task.

Fun_threadTypeID() is the entry function of a thread task

inside the process task. It means when the initialization of a

process task is done, the thread task will be executed.

Fig. 5 AADL description of periodic thread

Fig. 6 C code in processTypeID.c

3.4 The transformation rule of behavior annex

Behavior annex, taking the form of a state machine, is de-

fined in the thread for the purpose of describing thread be-

havior such as port communication, computation, and delay.

The definition is shown as below.

Definition 4 Behavior annex= 〈S , S 0,V,Guard, Action, T 〉,
where,

• S is the set of states. Types of the state include initial,

return, complete, and composite.

• S0 ∈ S is the initial state.

• V is the set of local variables.

• Guard is the set of guards of state transitions, taking the

form 〈BExpr〉|[on〈BExpr〉−〉]〈event〉[when〈BExpr〉],
in which BExpr is the predicate on state variables;

event is the data or event reading operation (P?; P?(x));

when the predicate on the data is received from the

event or the event data ports.

• Action is the set of actions executed during the tran-

sition. Types of action allowed include assignment

(P := x), data or event sending (P!(x), P!), computation

(Computation(min,max)), and delay (Delay(min,max)).
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• T = S × {G, A} × S is the set state transitions.

The execution rule of a transition in the behavior annex is

as follows:

(Guard = TRUE)→ {(S0→ St) ∧ (Excute(Action))}.
When the guard of behavior annex is TRUE, the transition

takes place. At this time, the original state will jump to the

destination state, while the action of the behavior annex will

be executed.

Now, we will describe the transformation rules of the be-

havior annex from three separate aspects: variables in behav-

ior annex, guards of transition, and actions of transition.

1) The transformation rule of variables in behavior annex

Variables in behavior annex are transformed into local vari-

ables in a task. For example, the corresponding C code of

variable x is shown below:

int x;

Implementation of the transformation rule of variables in

the behavior annex: Declarations and definitions of local vari-

ables are in the function of a task.The built-in data types (such

as Integer) in the behavior annex correspond to the standard

data types (e.g., int) in C. Assignments and calculations of

variables are specified in the action of transition in the behav-

ior annex.

2) The transformation rule of transition guards

According to whether Delay is defined in the action of

state transition, there are two translation rules shown as be-

low. Note that tr.Guard is the guard condition of the BA state

transition and ss is the source state of the transition.

• (thState = waiting_executing ∧ thBAstate = ss ∧
tr.Guard)|(thState = execution ∧ thBAstate = ss) →
G(execution_tr).

If Delay is defined, the thread blocks itself by default. Thus

there is no need to waste CPU resources and the condition is

• (thState = waiting_execution ∧ thBAstate = ss ∧
tr.Guard).

Otherwise, the condition is

• (thState = execution ∧ thBAstate = ss).

Whether the thread can get a CPU and be transitioned into

the execution state is judged in the scheduler.Thus the guard

condition tr.Guard will be used in the scheduler.

As defined before, tr.Guard takes the form:

• 〈BExpr〉|[on〈BExpr〉−〉]〈event〉[when〈BExpr〉].

It can be a simple boolean expression (〈BExpr〉), and the

arrival of an event port (〈event〉) or a complicated composi-

tion of them containing the check on the input data or event

([when〈BExpr〉]). BExpr can be translated directly to the

logic expression of C. Event is used to represent that the

transition is enabled by the arrival of an event. Therefore,

the translation rule is defined as pr(Γ(event.p)) in which pr

is the port reading operation. When is used to represent the

judgment on the data that newly arrived on the port, a trans-

lation rule taking the form when.BExpr(event.p) in which

BExpr(event : p) means the logic judgment on the data.

3) The transformation rule of transition actions

There are three actions that need to be performed in a state

transition: (a) execute actions defined in the AADL state tran-

sition; (b) perform the state transition; (c) release the CPU re-

source. As introduced above, for each execution machine,an

environment variable thGetcpu is defined. To release the CPU

resource, thGetcpu is set to false. Here are the translation

rules for (a) and (b).

a) Actions in BA include assignments and port writing. As-

signment operations defined in BA are directly translated into

corresponding assignment statements in C. Port writing op-

erations like p! or p!(x) is translated by the rule defined in

Section 3.2.

b) If destination state ds is typed complete in AADL, it

means the thread execution is completed so that the state of

the thread is transitioned to state writing and the state of BA

needs to be transitioned to the initial state. Otherwise, the

thread needs to be transitioned to the state waiting_execution

and the object state is assigned as the destination state ds.

Translation rules are presented in Table 5.

Table 5 Transition actions

State type Transition actions

Complete thBAstate := S 0 ⊗ thState = writing

Otherwise thBAstate := ds ⊗ thS tate = waiting_execution

Figure 7 shows the AADL description of the behavior an-

nex. Figure 8 shows the C code of the transition guard after

code transformation. Figure 9 shows the C code of the transi-

tion action after code transformation.

3.5 The transformation rules of mode change

In AADL, a mode represents an operational state which can

be viewed as a configuration of contained sub components,
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connections, and mode-specific property values. When mul-

tiple modes are declared for a component, a mode state ma-

chine identifies events, data, and event data arrivals which

cause a mode transition and new mode creation. The defini-

tion of mode change is shown as below.

Fig. 7 AADL description of behavior annex

Fig. 8 C code of transition guard

Fig. 9 C code of transition action

Definition 5 Mode Change = 〈M,m0, Event, Transition〉,
where,

• M is the set of System Operation Mode (SOM). SOM

is a vector of modes, where each element is associated

to a component (for example a thread component). If

a component is active, then the associated element is

valued with the current mode of the component. If a

component is inactive, the associated element is tagged

inactive.

• m0 ∈ M is the initial mode.

• Event is the set of events which trigger the mode

change.

• Transition = M×Event×M is the set of mode changes.

A mode change state machine is translated into a state

machine which is a three tuple 〈SomMV, SomCV, SomMM〉.
SomMV and SomCV are respectively the monitored and con-

trolled variables and SomMM is the set of state transitions.

The definition of SomMV and SomCV are shown below.

• SomMV = {currentMState, nextHyperperiod, event}.
• SomCV = {currentMState, nextHyperperiod, event,

∪th∈T H hyperperiod,∪th∈T HthActive,

∪th∈T H numPeriod,∪th∈T H syncDis}.

Variable currentMState, typed as user-defined type, is

used to represent the current state of mode. Variable

nextHyperperiod, typed Boolean, is used to control if the

mode change automata can accept the request of a mode

change. Variable event is used to trigger mode change. For

every thread th ∈ T H (T H is the set of threads defined in

the process component), there are corresponding variables

hyperPeriod, numPeriod, thActive, and syncDis to be gen-

erated. Variable hyperPeriod is the value of hyper period of

current mode (product of period value of all threads in this

mode) divided by the period of thread th. Variable numPeriod

is the value representing the number that thread th has been

dispatched in the current mode. Every time the thread enters

a new hyper period, numPeriod is assigned to 0 and every

time the thread is dispatched, numPeriod increases by one.

Variable syncDis is used to synchronize between the main

machine of mode change and the main machine of dispatcher

of th. When a hyper period completes, main machine of mode

change needs to notify the dispatcher whether the thread can

enter into the next hyper period. Variable thActive is used to

represent whether th is activated in the current mode.

SomMV is the set of state transitions generated. For every

mode change transition mtr = 〈sms, event, dms〉, four state

transitions are generated, shown as below.

1) State transition Hyperperiod is used to represent
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the hyper period of source mode sms, execution time is

hin(sms, dms), the hyper period of the synchronized threads.

• hin(sms, dms)→ T (Hyperperiod).

• currentMState = sms ∧ nextHyperperiod = true →
G(Hyperperiod).

• nextHyperperiod := f alse → A(Hyperperiod).

2) State transition Has_mcr is executed if the mode change

event arrives at the synchronization point of the hyper pe-

riod, shown as below. Variables thActive of threads which

are not in the new mode are set to false while ones in the

new mode are set to true. Variables Hyperperoid are also

needed to be recalculated and variable currentMState is set

to sms_improgress to represent the progress of mode change.

OT H is the set of threads in the old mode and NT H is the set

of threads in the new mode.

• 0→ T (Has_mcr).

• currentMState = sms ∧ nextHyperiod = f alse ∧
event = true→ G(Has_mcr).

• (event := f alse ⊗ nextHyperperiod :=

true ⊗ currentMS tate := smsinprogress ⊗
(⊗th∈OT HthActive(th) := f alse)⊗(⊗th∈NT HthActive(th) :=

true) ⊗ (⊗th∈OT H.∧th∈NT Hhyperperiod(th) :=

hout(sms, dms)/th.period)→ A(Has_mcr).

3) Transition Hasnot_mcr is executed if no mode change

event arrives at the synchronization point of hyper period,

shown as below. Variables nextHyperperiod are set to true to

notify the dispatcher to enter the next cycle of hyper period.

• 0→ T (Hasnot_mcr).

• currentMS tate = sms ∧ nextHyperperiod = f alse ∧
event = f alse→ G(Hasnot_mcr).

• nextHyperperiod := true ⊗ (⊗th∈OT H syncDis :=

true)→ A(Hasnot_mcr).

4) State transition Inprogress is used to represent the

progress of mode change. Execution time of the transition

is the hyper period of threads in a new mode. Actions of the

transition are the assignment of curretMState to new mode

dms and notifying the dispatcher of threads in new mode as

to enter the next cycle of the hyper period.

• hout(sms, dms)→ T (Inprogress).

• currentMS tate = sms_inprogress→ G(Inprogress).

• currentMS tate := dms ⊗ (⊗th∈NT H syncDis(th) :=

true))→ A(Inprogress).

3.6 A discussion about transformation rules

How to prove that the transformation itself preserves the in-

tended semantics of AADL model in the first place or, at

least, some of the specific properties or requirements it needs

to satisfy is another important research project.

At present, in the AADL research field, the semantic

preservation of AADL model transformation is mainly im-

plemented by manual validation, or the semantics is assumed

to be preserved. Therefore, semantic preservation is still an

open research problem.

IRIT lab [21] in France characterizes the AADL meta-

model by using the B-language and Higher-Order Logic

(HOL) to support the semantic preservation of AADL model

transformation in the future. In [22], Event B is used to de-

scribe the semantics of an AADL subset (periodic thread,

data port). Moreover, a simple proof of the semantic preser-

vation is given.

In the industrial sector, TOPCASED [23] of Airbus explic-

itly proposes to demonstrate correctness of the AADL model

transformation; ASSERT of EU proposes Proof-Based Sys-

tem Engineering; SPaCIFY also proposes to prove the se-

mantic preservation of AADL model transformation.

In our previous paper [24], we have studied a method

of verifying transformation rules. We present a machine

checked semantics-preserving transformation of a subset of

AADL into timed abstract state machines (TASM). We have

considered a formal proof of semantics preservation of the

transformation. The theorem prover Coq is used to prove the

methodology, i.e., the correctness of the transformation rules.

By using the same methodology, we can enable the proof

of semantics preservation of the transformation rules from

AADL to C in three steps: (1) the informal execution se-

mantics formalized directly using Timed Transition Sys-

tem (TTS), is considered as a reference semantics, because

we cannot directly prove that the translational semantics is

equivalent to the informal one which is provided by the

AADL standard; (2) combining the translational semantics

(expressed by C code) with the semantics of C, we can ob-

tain another way to execute the AADL model, and it is con-

structed as another TTS; (3) the reference semantics is sup-

posed to be correct, and if there is a simulation equivalence

relation between the two TTSs, we say the translation pre-

serves the AADL semantics.

However, the main focus of this paper is on the transforma-

tion rules. This method of proving the correctness of trans-
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formation rules creates a huge workload. We will not repeat

them here.

4 Template-based automatic code generation
tool

Our AADL automatic code generation tool uses the template-

based automatic code generation technology.

The overall implementation of code generation process is

shown in Fig. 10. The metamodel of AADL defines the spec-

ification that describes an AADL model, which can be ele-

ments that make up the model and the relationships between

these elements. First, the model information will be extracted

and packaged by analyzing AADL model. Then we will de-

sign the template according to the transformation rules of the

object platform. Finally, we will integrate the model infor-

mation and templates by using a template engine to com-

plete code generation. In conclusion, this tool should contain

a template design block, a model analysis block, and a tem-

plate engine block. After the generation of an object, by using

the project transform block, the object can be transformed to

an object project. It is convenient for compiling and debug-

ging.

Fig. 10 Code generation framework

4.1 Template design

A template is composed of static text and a placeholder. Static

text is the direct output text. Placeholder is the replacement

of model information. Template is actually the realization

of transformation rules. Automatic code generation template

uses Xtend language. Xtend language is a JVM script lan-

guage, supporting static template expression. Xtend is com-

piled to Java language and then run on a Java virtual machine.

Xtend templates allow a readable string connection. Tem-

plate content is surrounded by three single quotes (′′′ ′′′).
Inside the template we use French quotes (��) to handle

the insert expression. Template expression supports the judg-

ment statement of �IF . . . �. . .�ENDIF�, the loop state-

ment of �FOR . . . �. . .�ENDFOR�andswitch statement.

Meanwhile, it also supports extension methods, and changes

the variable without changing the method of a variable. The

switch-case statement sample of the template expression is

shown in Fig. 11. The IF and FOR statement sample of the

template expression is shown in Fig. 12.

Fig. 11 Switch-case template expression

Fig. 12 IF and FOR template expression

Meanwhile, in order to make template operation more flex-

ible, we encapsulate some common file operations and char-

acter processing methods which can be used in template ex-

pression, whereas character processing methods are provided

as extension methods. Figure 13 is an example of a process

template.

The Xtend-based AADL automatic code generation tool

contains system template, sub-component template, process

template, thread template, thread group template, subpro-

gram template, subprogram group template, data template,

feature template, connection and flow template, and property
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Fig. 13 Example of a process template

processing template. Next, we will give a detailed description

of the design and implementation of the process template.

Template design of a process component is the core con-

tent of design and implementation of a template in the whole

project. Process component is the second layer in the AADL

model, which means that the process component is the di-

rect subcomponent of the system component. It is a protected

address space. According to code transformation rules, as a

collection of all tasks in a system or subsystem, a process

component corresponds to a function in C language. In order

to block the generated code and take into account its reusabil-

ity, each process component will generate two C files, Com-

ponentName.h and ComponentName.c.

Xtend language supports the downcast of AADL model.

Therefore, it is necessary to call the classifier of the process

component template for the judgment, and the handling ac-

cording to the classifier category.

Process classifier will classify the process into process type

and process implementation. Process type is used to define

some of the features that are visible outside the component,

which are defined in the external characteristics of compo-

nents, such as interface, and data. By using subcomponent,

connection, and other aspects, process implementation imple-

ments the internal structure of a process, such as the definition

of thread components to realize task creation, management,

and the correspondence between the process and thread ports

through the ports’ connection.

When an AADL process component is judged as a process

type by the template engine, the generated ProcessName.h

file will mainly include the following aspects:

1) The definition of system header files, including the

header files associated with operation, such as a clock timer

or a task management. System header files definition pro-

cesses still need to be used in other components (such as

thread component and subprogram component). Thus, for

convenience of code reuse, we will write a template file called

“Template” to add header files.

2) Definition of related initialization function, includ-

ing ProcessName_init(), which is used to initialize process

schedule, and ProcessName_init_task(), which is used to im-

plement the function schedule() and to initialize task manage-

ment function.

Methods that are invoked in the file generated by a process

component include the following aspects:

1) Process initialization function ProcessName_init(). In

this function, process schedule parameters are initialized. All

thread components of the process component are defined as

tasks. Their definitions are added to the system header file

SystemName.h. And their schedule parameters are initial-

ized.

2) Task management initialization function Process-

Name_init_task(). This function is mainly used to create tasks

for thread components inside the process component, and

schedule them according to the schedule function.

3) Scheduling function schedule(). This function will gen-

erate scheduling code according to the scheduling algorithms
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inside the processor. While the scheduling algorithms inside

the processor are determined by task scheduling mode pro-

vided by the operating platform. The actual operation of task

scheduling requires users to call upon the interfaces of an op-

erating system. The main schedule methods: Round-Robin

Schedule, makes all ready tasks with same priority equally

share the CPU; Priority-based preemptive scheduling, which

sorts according to the priority of each task, and it will ensure

that the tasks with high priority complete earlier.

4) The behavior annex. Firstly, by traversing we will get

the maximum number of thread state. Secondly, state transi-

tion can be parallel.

For example,

s0 -[guard1]-> s1{action1;};

s0 -[guard2]-> s1{action2;};

s1-[guard3]->s2{action3;};

s1 -[guard4]->s2{action4;}.

The transition from s0 to s1 and the transition from s1 to

s2 both have two possibilities. The transition from s1 to s2

should be generated under the transition from s0 to s1. When

all transitions from s1 to s2 are done, we will move to the

next transition from s0 to s1. In addition, we also have to

consider the case for empty guard or action.

4.2 Model analysis

The AADL standard provides AADL text, XML, and graph-

ical representation. Our automatic code generation tool does

the model analysis based on XML representation of AADL

(.aaxl file).

The AADL meta-model defines the structure of AADL

models. This meta-model is represented as a set of class di-

agrams with additional EMF-specific properties, that sup-

port the automatic generation of methods for manipulation

of AADL object models. AADL defines seven EMF Ecore

meta-model packages: core, component, feature, connection,

flow, instance, and property.

EMF (Eclipse Modeling Framework) is a modeling frame-

work and code generation facility for building tools and other

applications based on a structured data model. From a model

specification described in XMI, EMF provides tools and run-

time support to produce a set of Java classes for the model,

along with a set of adapter classes that enable viewing and

command-based editing of the model, and a basic editor.

We will use Ecore meta-model language to describe AADL

model. According to Ecore meta-model of AADL, Java ob-

jects of AADL elements will be generated. Meanwhile, the

package of API will be provided to get access to AADL ele-

ments. At the same time, we use Ecore meta-model language

to describe the AADL instance, and generate Java objects

corresponding to the AADL instance. aadl.ecore is the basis

of instance.ecore. Ecore meta-model description of AADL is

shown in Fig. 14.

The construction of Ecore meta-model is the foundation of

the AADL development environment. Through the construc-

tion of Ecore meta-model, the automatic serialization inter-

face is generated. The Ecore model is essentially a subset of

UML, which includes:

• EClass: domain class. It has a name, one or more at-

tributes, and one or more references.

• EAttribute: attribute of domain class. It has a name and

a type.

• EReference: relationship between domain classes. It

has a name, a Boolean value indicating if it is included,

and a reference to object class.

• EDataType: attribute types, such as int or object types.

Through the model analysis, we get a tree storage structure

of the AADL model, whose root node is System Implemen-

tation. Through achieving the root node, we can traverse all

elements of the model.

4.3 Template engine and project transformation

Template engine puts templates and model information as in-

puts to generate the object. It can be extended and replaced

by different template files to generate objects of different lan-

guages or different platforms.

We implement the project transformation in order,so that

the generated code can be directly compiled and debugged.

Thus, we can improve the degree of automation of the auto-

matic code generation tool. The project transformation needs

to integrate the compiler environment of object platform. Af-

ter the generation of an object, an object platform project will

be created, and the object will also be set under the object

project.

The project transformation must use org.eclipse.ui.menus,

commands and handlers to be extended. The use of these

extension points must obey the development standard of

Eclipse. At the same time, we have to implement project

transformation interface. Interface description is presented in

Table 6.

5 Case study

We conducted the experiment with a classic AADL model of
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Fig. 14 Ecore meta-model description of AADL

the DPU (data processing unit) to test correctness of our au-

tomatic code generation tool. The function of the DPU is to

collect the data from two mechanical gyros and three fiber-

optic gyros and then send it to the main computer. We have

built an AADL model of the DPU. This model of the DPU

will be transformed into C code by our tool. Finally, we will

run and analyze the code on VxWorks.

Table 6 Project transformation interface

Name Description

preCprjCreate() The operation before creating a project

postCprjCreate(IProjectcPrj)
The operation after creating a project,

such as income project entity parameters

5.1 AADL model of DPU

The DPU model includes eight sub-tasks: main task, syn-

chronous interrupt handing task, serial port interrupt handing

task, two mechanical gyro sampling tasks, and three fiber-

optic gyro sampling tasks. Main task is used for initialization

of the DPU. There are two kinds of interrupt in DPU: syn-

chronous interrupt and serial port interrupt. They are used for

the DPU clock synchronization and the processing of the se-

rial port instruction. Synchronous interrupt handing task will

be called when a synchronous interrupt signal arrives. Simi-

larly, serial port interrupt handing task will be called when se-

rial port interrupt signal arrives. There are three input/output

interfaces in the DPU: the synchronous interrupt handing task

interface, the serial port interrupt handing task interface, and

the output data interface.

The AADL model of the DPU is shown in Fig. 15. Task

unit of DPU is represented by a process component of

AADL: pDpu, which includes five data components (N1, N2,

N3, N4, N5), and eight thread components (main, sync, se-

rial, gyro1, gyro2, fog1, fog2, fog3). Sync sends signal to

gyro1 and gyro2 when it receives a synchronous signal; then

gyro1 and gyro2 start collecting data; the collected data are

stored in data components N1 and N2. Serial sends signals to

fog1, fog2, and fog3 when it receives serial port signal; then

fog1, fog2, and fog3 start collecting data; collected data is

stored in data components N3, N4 and N5. After collecting

the gyro data, serial will send signal to main, so that main

will output the collected data.

Inside pDpu, we also declare a mode change between sync
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and serial. Synchronous interrupt handing task interface and

serial port interrupt handing task interface are represented by

an event port. Output data interface is represented by output

data port. We use mode change of the AADL to represent

interrupt: the two modes are the synchronous mode and the

serial port mode. When a synchronous signal arrives, the syn-

chronous mode is activated as the initial mode. When a serial

port signal arrives, mode change occurs. The Synchronous

mode transforms to the serial port mode. The whole DPU is

represented by a system component. Five device components

represent two mechanical gyros and three fiber-optic gyros.

One processor component represents the Intel processor. One

memory component represents the memory. One system bus

component connects the processor component with the mem-

ory component. One LAN bus component mounted on a sys-

tem bus component connects the five gyros.

Fig. 15 AADL model of DPU

5.2 Automatic code generation from the AADL model of

the DPU to C

First of all, we instantiate the model, package it into a tree

structure, then choose the instantiation file of model to gen-

erate the object by choosing automatic code generation. Now

we can obtain a project. At the same time, we can find the

configuration files and object code files in the project direc-

tory (shown in Fig. 16).

In the corresponding folder of the system component, each

component corresponds to a set of files (.h files and .c files).

.h file contains the declaration of variables and functions, .c

file includes the initialization of variables and implementa-

tion of functions. System component sDpu generates a folder

sDpu containing files sDpu.h and sDpu.c. Process compo-

nents generate two files pDpu.h and pDpu.c. The eight thread

components generate corresponding .c and .h files. Mean-

while, the generated code will be transformed to a project in

the object platform. 0.S, ldsConfig.xml, and linkscript.lds are

project configuration management files. The relation between

AADL model of DPU and generated code files is presented in

Table 7.

Fig. 16 Generated code files

Table 7 Relationship between AADL model of DPU and generated code
files

AADL component of DPU Generated files

System component sDpu Folder sDpu, sDpu.h, sDpu.c

Process component pDpu pDpu.h, pDpu.c

Thread component sync sync.h, sync.c

Thread component gyro1 gyro1.h, gyro1.c

Thread component gyro2 gyro2.h, gyro2.c

Thread component serial serial.h, serial.c

Thread component fog1 fog1.h, fog1.c

Thread component fog2 fog2.h, fog2.c

Thread component fog3 fog3.h, fog3.c

Thread component main main.h, main.c

5.3 Execution of generated code

To ensure the platform-independence of generated code, our

automatic code generation tool generates intermediate code.

We take VxWorks as test platform. The generated code is im-

plemented in VxWorks (included in targetVxworks.h and tar-

getVxworks.c). targetVxworks.h contains the preprocessing

declarations. targetVxworks.c contains the implementation of

intermediate code. Some of the code in targetVxworks.c is

shown in Fig. 17.

We compile the generated intermediate code with tar-
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getVxworks.h and targetVxworks.c in a tornado environment

and execute in a tornado emulator.

Result is shown in Fig. 18. Fun_pDpu is entry function of

the process. The eight tasks which correspond to the eight

thread components of DPU are generated. When we run the

i command to see the status of tasks, all threads are in pend

state because these threads did not receive any activation sig-

nal. sync, gyro1 and gyro1 are activated by p_sync; serial,

fog1, fog2, fog3 and main are activated by p_serial.

In Shell, we input a command to simulate the sending of

a synchronous signal: semGive(sem_p_sync). The execution

result is shown in Fig. 19. Semaphore sem_p_sync corre-

spond to p_sync in the DPU model. semGive(sem_p_sync)

means that p_sync is issued. sync is activated when it receives

p_sync. Then gyro1 and gyro2 start collecting data. Collected

data of gyro1 is stored in N1. After execution of gyro1, value

of N1 changes from 0 to 1. Collected data of gyro2 is stored in

N2. After execution of gyro2, value of N2 changes from 0 to

2. When we run the command i, we can see that sync, gyro1,

and gyro2 are complete. The other five tasks are waiting for

p_serial.

Fig. 17 Part of the code in targetVxworks.c

In Shell, we input a command to simulate sending a se-

rial signal: semGive(sem_p_serial). The execution result is

shown in Fig. 20. Semaphore sem_p_serial correspond to

p_serial in the DPU model. semGive(sem_p_serial) means

that p_serial is issued. serial is activated when it receives

Fig. 18 Execution result of generated code in VxWorks

Fig. 19 Execution result after sending synchronous signal
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Fig. 20 Execution result after sending serial signal

p_serial. Then fog1, fog2 and fog3 start collecting data. Col-

lected data of fog1 is stored in N3. After execution of fog1,

value of N3 changes from 0 to 3. Collected data of fog2 is

stored in N4. After execution of fog2, value of N4 changes

from 0 to 4. Collected data of fog3 is stored in N5. After ex-

ecution of fog3, value of N5 changes from 0 to 5. When we

run the command i, we can see that serial, fog1, fog2, fog3,

and main havecompleted.

6 Conclusion

Currently, automatic code generation is a critical applica-

tion in industry. However, it would be more helpful if cross-

platform generation technologies are developed. In this paper,

we propose a template-based AADL automatic code genera-

tion method. It can make multi-platform automatic code gen-

eration easier by modifying templates. Templates are imple-

mentations of transformation rules. For different platforms,

we formulate different transformation rules and templates.

Furthermore, we also develop a tool and test it using DPU.

Our tests show that generated codes can be compiled and ex-

ecuted successfully.

However, for different objects, writing new templates will

still create a large workload. Therefore, for the next step,

we will integrate the template-based automatic code genera-

tion with the middle ware-based automatic code generation

and perform the classification for the same kind of object

platform. By generating middleware code, we can realize

code transformation from the middleware code to the object

platform in order to better support the multi-platform code

generation.
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