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Abstract A main focus of machine learning research has

been improving the generalization accuracy and efficiency

of prediction models. However, what emerges as missing in

many applications is actionability, i.e., the ability to turn pre-

diction results into actions. Existing effort in deriving such

actionable knowledge is few and limited to simple action

models while in many real applications those models are of-

ten more complex and harder to extract an optimal solution.

In this paper, we propose a novel approach that achieves

actionability by combining learning with planning, two core

areas of AI. In particular, we propose a framework to extract

actionable knowledge from random forest, one of the most

widely used and best off-the-shelf classifiers. We formulate

the actionability problem to a sub-optimal action planning

(SOAP) problem, which is to find a plan to alter certain fea-

tures of a given input so that the random forest would yield a

desirable output, while minimizing the total costs of actions.

Technically, the SOAP problem is formulated in the SAS+

planning formalism, and solved using a Max-SAT based ap-

proach. Our experimental results demonstrate the effective-

ness and efficiency of the proposed approach on a personal

credit dataset and other benchmarks. Our work represents a

new application of automated planning on an emerging and

challenging machine learning paradigm.

Received June 15, 2016; accepted December 29, 2016

E-mail: lvqiang@yzu.edu.cn, shenhh@ucas.ac.cn

Keywords actionable knowledge extraction, machine

learning, planning, random forest

1 Introduction

Research on machine learning has achieved great success on

enhancing the models’ accuracy and efficiency. Successful

models such as support vector machines (SVMs), random

forests, and deep neural nets have been applied to vast indus-

trial applications [1]. However, in many applications, users

need not only a prediction model, but also suggestions on

courses of actions to achieve desirable goals. For practition-

ers, a complex model such as a random forest is often not

very useful even if its accuracy is high because of its lack

of actionability. Given a learning model, extraction of action-

able knowledge entails finding a set of actions to change the

input features of a given instance so that it achieves a desired

output from the learning model. We elaborate this problem

using one example.

Example 1 In a credit card company, a key task is to decide

on promotion strategies to maximize the long-term profit. The

customer relationship management (CRM) department col-

lects data about customers, such as customer education, age,

card type, the channel of initiating the card, the number and

effect of different kinds of promotions, the number and time

of phone contacts, etc.
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For data scientists, they need to build models to predict the

profit brought by customers. In a real case, a company builds

a random forest involving 35 customer features. The model

predicts the profit (with probability) for each customer. In ad-

dition, a more important task is to extract actionable knowl-

edge to revert “negative profit” customers and retain “positive

profit” customers. In general, it is much cheaper to maintain

existing “positive profit” customers than to revert “negative

profit” ones. It is especially valuable to retain high profit,

large, enterprise-level customers.

There are certain actions that the company can take, such

as making phone contacts and sending promotional coupons.

Each action can change the value of one or multiple at-

tributes of a customer. Obviously, such actions incur costs

for the company. For instance, there are seven different

kinds of promotions and each promotion associates with

two features, the number and the accumulation effect of

sending this kind of promotion. When performing an ac-

tion of “sending promotion_amt_N”, it will change features

“nbr_promotion_amt_N” and “s_amt_N”, the number and

the accumulation effect of sending the sales promotion, re-

spectively. For a customer with “negative profit”, the goal is

to extract a sequence of actions that change the customer pro-

file so that the model gives a “positive profit” prediction while

minimizing the total action costs. For a customer with “posi-

tive profit”, the goal is to find actions so that the customer has

a “positive profit” prediction with a higher prediction proba-

bility.

Besides the example above, ample needs for learning ac-

tionability have been reported, such as suggesting medi-

cal interventions to avert imminent patient deterioration [2]

and changing high-school students’ behavior for educational

goals [3].

Research on extracting actionability from machine learn-

ing models is still limited in machine learning comunity [4–7]

and marketing science [8–14]. Most of the approaches are not

suitable for the problems studied in this paper due to two ma-

jor drawbacks. First, they cannot provide customized action-

able knowledge for each individual since the rules or rank-

ings are derived from the entire population of training data.

Second, they did not consider the action costs while building

the rules or rankings. For example, a low income housewife

may be more sensitive to sales promotion driven by consump-

tion target, while a social housewife may be more interested

in promotions related to social networks. Thus, these rule-

based and ranking algorithms cannot tackle these problems

very well since they are not personalized for each customer.

Another related work is extracting actionable knowledge

from decision tree and additive tree models by bounded tree

search and integer linear programming [15–17]. A limitation

of these works is that the actions are assumed to change only

one attribute each time. As we discussed above, actions like

“sending promotion_amt_N” may change multiple features,

such as “nbr_promotion_amt_N” and “s_amt_N”. Moreover,

Yang’s greedy method is fast but cannot give optimal solu-

tion [15], and Cui’s optimization method is optimal but very

slow [17].

In order to address these challenges, we propose a novel

approach to extract actionable knowledge from random

forests, one of the most popular learning models. Our ap-

proach leverages planning, one of the core and extensively re-

searched areas of AI. We first rigorously formulate the knowl-

edge extracting problem to a sub-optimal actionable planning

(SOAP) problem which is defined as finding a sequence of

actions transferring a given input to a desirable goal while

minimizing the total action costs. Then, our approach con-

sists of two phases. In the offline preprocessing phase, we

use an anytime state-space search on an action graph to find

a preferred goal for each instance in the training dataset and

store the results in a database. In the online phase, for any

given input, we translate the SOAP problem into a SAS+

(multi-valued State vAriableS representation) planning prob-

lem. The SAS+ planning problem is solved by an efficient

MaxSAT-based (Max SATisfiability) approach capable of op-

timizing plan metrics.

We perform empirical studies to evaluate our approach.

We use a real-world credit card company dataset obtained

through an industrial research collaboration. We also evalu-

ate some other standard benchmark datasets. We compare the

quality and efficiency of our method to several other state-

of-the-art methods. The experimental results show that our

method achieves a near-optimal quality and real-time online

search as compared to other existing methods.

2 Preliminaries

2.1 Random forest

Random forest is a popular model for classification, one

of the main tasks of learning. The reasons why we choose

random forest are: 1) In addition to superior classifica-

tion/regression performance, random forest enjoys many ap-

pealing properties many other models lack [18], including the

support for multi-class classification and natural handling of

missing values and data of mixed types. 2) Often referred to

as one of the best off-the-shelf classifier [18], random forest
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has been widely deployed in many industrial products such

as Kinect [19] and face detection in camera [20], and is the

popular method for some competitions such as Web search

ranking [21].

Note that random forest is a special case of the Additive

Tree Models (ATMs). Our approach can be easily expanded

to other additive tree models [22], such as adaboost [23], gra-

dient boosting trees [24]. Thus, the proposed action extrac-

tion algorithm has very wide applications.

Consider a dataset {X, Y}, where X = {x1, x2, . . . , xN } is the

set of training samples and Y = {y1, y2, . . . , yN } is the set of

classification labels. Each vector xi = (xi
1, x

i
2, . . . , x

i
M) con-

sists of M attributes, where each attribute x j can be either

categorical or numerical and has a finite or infinite domain

Dom(x j). Note that we use x = (x1, x2, . . . , xM) to represent

xi = (xi
1, x

i
2, . . . , x

i
M) when there is no confusion. All labels yi

have the same finite categorical domain Dom(Y).

A random forest contains D decision trees where each de-

cision tree d takes an input x and outputs a label y ∈ Dom(Y),

denoted as od(x) = y. For any label c ∈ Dom(Y), the proba-

bility of output c is

p
(
y = c | x

)
=

∑D
d=1 wdI(od(x) = c)
∑D

d=1 wd

, (1)

where wd ∈ R are weights of decision trees, I(od(x) = c) is

an indicator function which evaluates to 1 if od(x) = c and 0

otherwise. The overall output predicted label is

H(x) = argmax
c∈Dom(Y)

p(y = c|x). (2)

A random forest is generated as follows [25]. For d =

1, 2, . . . ,D,

1) Sample nk (0 < nk < N) instances from the dataset with

replacement.

2) Train an un-pruned decision tree on the nk sampled in-

stances. At each node, choose the split point from a

number of randomly selected features rather than all

features.

2.2 SAS+ formalism

In classical planning, there are two popular formalisms,

STRIPS (STanford Research Institute Problem Solver) and

PDDL (Planning Domain Definition Language) [26]. In re-

cent years, another indirect formalism, SAS+, has attracted

increasing uses due to its many favorable features, such

as compact encoding with multi-valued variables, natural

support for invariants, associated domain transition graphs

(DTGs) and causal graphs (CGs) which capture vital struc-

tural information [27–29].

In SAS+ formalism, a planning problem is defined over a

set of multi-valued state variablesX = {x1, x2, . . . , x|X|}. Each

variable x ∈ X has a finite domain Dom(x). A state s is a full

assignment of all the variables. If a variable x is assigned to

f ∈ Dom(x) at a state s, we denote it as s(x) = f . We use S
to represent the set of all states.

Definition 1 (Transition) Given a multi-valued state vari-

able x ∈ X with a domain Dom(x), a transition is defined

as a tuple T = (x, f , g), where f , g ∈ Dom(x), written as

δx
f→g. A transition δx

f→g is applicable to a state s if and only

if s(x) = f . We use ⊕ to represent applying a transition to a

state. Let s′ = s ⊕ δx
f→g be the state after applying the tran-

sition to s, we have s′(x) = g. We also simplify the notation

δx
f→g as δx or δ when there is no confusion.

A transition δx
f→g is a regular transition if f � g or a pre-

vailing transition if f = g. In addition, δx
∗→g denotes a me-

chanical transition, which can be applied to any state s and

changes the value of x to g.

For a variable x, we denote the set of all transitions that

affect x as T (x), i.e., T (x) = {δx
f→g} ∪ {δ

x
∗→g} for all f , g ∈

Dom(x). We also denote the set of all transitions as T , i.e.,

T =
⋃

x∈X T (x).

Definition 2 (Transition mutex) For two different transi-

tions δx
f→g and δx

f ′→g′ , if at least one of them is a mechanical

transition and g = g′, they are compatible; otherwise, they

are mutually exclusive (mutex).

Definition 3 (Action) An action a is a set of transi-

tions {δ1, δ2, . . . , δ|a|}, where there do not exist two transitions

δi, δ j ∈ a that are mutually exclusive. An action a is applica-

ble to a state s if and only if all transitions in a are applicable

to s. Each action has a cost π(a) > 0.

Definition 4 (SAS+ planning) A SAS+ planning problem

is a tuple Πsas = (X,O, sI , S G) defined as follows

• X = {x1, x2, . . . , x|X|} is a set of state variables.

• O is a set of actions.

• sI ∈ S is the initial state.

• S G is a set of goal conditions, where each goal condi-

tion sG ∈ S G is a partial assignment of some state vari-

ables. A state s is a goal state if there exists sG ∈ S G

such that s agrees with every variable assignment in sG.

Note that we made a slight generalization of original SAS+
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planning, in which S G includes only one goal condition. For

a state s with an applicable action a, we use s′ = s ⊕ a to

denote the resulting state after applying all the transitions in

a to s (in an arbitrary order since they are mutex free).

Definition 5 (Action mutex) Two different actions a1 and

a2 are mutually exclusive if and only if at least one of the

following conditions is satisfied:

• There exists a non-prevailing transition δ such that δ ∈
a1 and δ ∈ a2.

• There exist two transitions δ1 ∈ a1 and δ2 ∈ a2 such that

δ1 and δ2 are mutually exclusive.

A set of actions P is applicable to s if each action a ∈ P

is applicable to s and no two actions in P are mutex. We de-

note the resulting state after applying a set of actions P to s

as s′ = s ⊕ P.

Definition 6 (Solution plan) For a SAS+ problem

Πsas = (X,O, sI , S G), a solution plan is a sequence P =
(P1, P2, . . . , PL), where each Pt, t = 1, 2, . . . , L is a set of

actions, and there exists sG ∈ S G, sG ⊆ sI ⊕ P1 ⊕ P2 ⊕ · · ·PL.

Note that in a solution plan, multiple non-mutex actions

can be applied at the same time step. s ⊕ Pt means applying

all actions in Pt in any order to state s. In this work, we want

to find a solution plan that minimizes a quality metric, the

total action cost
∑

Pt∈P
∑

a∈Pt
π(a).

3 Sub-optimal actionable plan (SOAP) prob-
lem

We first give an intuitive description of the SOAP problem.

Given a random forest and an input x, the SOAP problem is to

find a sequence of actions that, when applied to x, changes it

to a new instance which has a desirable output label from the

random forest. Since each action incurs a cost, it also needs

to minimize the total action costs. In general, the actions and

their costs are determined by domain experts. For example,

analysts in a credit card company can decide which actions

they can perform and how much each action costs.

There are two kinds of features, soft attributes which can

be changed with reasonable costs and hard attributes which

cannot be changed with a reasonable cost, such as gender

[15]. We only consider actions that change soft attributes.

Definition 7 (SOAP problem) A SOAP problem is a tu-

ple Πsoap = (H, xI , c,O), where H is a random forest, xI

is a given input, c ∈ Dom(Y) is a class label, and O is

a set of actions. The goal is to find a sequence of actions

A = (a1, a2, . . . , an), ai ∈ O, to solve:

min
A⊆O

F(A) =
∑

ai∈A
π(ai), (3)

subject to: p(y = c|x̃) � z, (4)

where π(a) > 0 is the cost of action a, 0 < z � 1 is a con-

stant, p(y = c|x̃) is the output of H as defined in Eq. (1), and

x̃ = xI ⊕ a1 ⊕ a2 ⊕ · · · ⊕ an is the new instance after applying

the actions in A to xI .

Example 2 A random forest H with two trees and three fea-

tures is shown in Fig. 1. x1 is a hard attribute, x2 and x3 are

soft attributes. Given H and an input x = (male, 2, 500), the

output from H is 0. The goal is to change x to a new instance

that has an output of 1 from H. For example, two actions

changing x2 from 2 to 5 and x3 from 500 to 1500 is a plan

and the new instance is (male, 5, 1500). �

Fig. 1 An illustration of a random forest

4 A planning approach to SOAP

The SOAP problem is proven to be an NP-hard problem, even

when an action can change only one feature [17]. Therefore,

we cannot expect any efficient algorithm for optimally solv-

ing it. We propose a planning-based approach to solve the

SOAP problem. Our approach consists of an offline prepro-

cessing phase that only needs to be run once for a given ran-

dom forest, and an online SAS+ planning phase that is used

to solve each SOAP problem instance.

4.1 Offline preprocessing phase

Since there are typically prohibitively high number of pos-

sible instances in the feature space, it is too expensive and

unnecessary to explore the entire space. We reason that the

training dataset for building the random forest gives a repre-
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sentative distribution of the instances. Therefore, in the of-

fline preprocessing, we form an action graph and identify a

preferred goal state for each training sample.

Definition 8 (Feature partitions) Given a random forest H,

we split the domain of each feature xi (i = 1, 2, . . . ,M) into a

number of partitions according to the following rules.

1) xi is split into n partitions if xi is categorical and has n

categories.

2) xi is split into n+1 partitions if xi is numerical and has n

branching nodes in all the decision trees in H. Suppose

the branching nodes are (b1, b2, . . . , bn), the partitions

are {(−∞, b1), [b1, b2), . . . , [bn,+∞)}.

In Example 2, x1 is splited into {male, female}, x2

and x3 are splited into {(−∞, 5), [5,+∞)} and {(−∞, 1000),

[1000, 1500), [1500,+∞)}, respectively.

Definition 9 (State transformation) For a given instance

x = (x1, x2, . . . , xM), let ni be the number of partitions and

pi the partition index for feature xi, we transform it to a

SAS+ state s(x) = (z1, z2, . . . , zM), where |Dom(zi)| = ni and

s(zi) = pi, i = 1, 2, . . . ,M.

For simplicity, we use s to represent s(x) when there is no

confusion. Note that if two instances x1 and x2 transform to

the same state s, then they have the same output from the

random forest since they fall within the same partition for ev-

ery feature. In that case, we can use p(y = c|s) in place of

p(y = c|x1) and p(y = c|x2).

Given the states, we can define SAS+ transitions and

actions according to Definitions 1 and 3. For Example 2,

x = (x1, x2, x3) can be transformed to state s = (x1, x2, x3),

Dom(x1) = {0, 1},Dom(x2) = {0, 1},Dom(x3) = {0, 1, 2}.
For an input x = (male, 2, 500), the corresponding state is

s = (0, 0, 0). The action a changing x2 from 2 to 5 can be

represented as δx2
0→1. Thus, the resulting state of applying a is

s ⊕ a = (0, 1, 0).

Definition 10 (Action graph) Given a SOAP problem

Πsoap = (H, xI , c,O), the action graph is a graph G =

(F , E) where F is the set of transformed states and an edge

(si−1, si) ∈ E if and only if there is an action a ∈ O such that

si−1 ⊕ a = si. The weight for this edge is w(si−1, si) = π(a).

The SOAP problem in Definition 7 is equivalent to find-

ing the shortest path on the state space graph G = (F , E)

from a given state sI to a goal state. A node s is a goal state

if p(y = c|s) � z. Given the training data {X, Y}, we use a

heuristic search to find a preferred goal state for each x ∈ X

that p(y = c|x) < z. For each of such x, we find a path in the

action graph from s(x) to a state s∗ such that p(y = c|s∗) � z

while minimizing the cost of the path.

The heuristic search algorithm shows as follows. The

search uses a standard evaluation function f (s) = g(s)+ h(s).

g(s) is the cost of the path leading up to s. Let the path be

s0 = sI , s1, s2, . . ., sm = s, and si−1⊕ai = si for i = 1, 2, . . . ,m,

we have g(s) =
∑m

i=1 π(ai). We define the heuristic function

as h(s) = α(z − p(y = c|s)) if p(y = c|s) < z, otherwise

h(s) = 0 .

Algorithm Heuristic search (Input: G = (F , E), sI )

1: Nes ← 0, s∗ ← NULL, g∗ ← ∞
2: MinHeap.push(< sI , f (sI ) >), ClosedList← {}
3: while MinHeap is not empty do

4: < s, f (s) >←MinHeap.pop()

5: if p(y = c|s) � z and g(s) < g∗ then

6: Nes ← |ClosedList|, s∗ ← s, g∗ ← g(s)

7: end if

8: if |ClosedList| − Nes > Δ then return s∗

9: if s � ClosedList and p(y = c|s) < z then

10: ClosedList=ClosedList ∪{s}
11: for each (s, s′) ∈ E do

12: MinHeap.push(< s′, f (s′) >)

13: end for

14: end if

15: end while

16: end return s∗

For any state s = sI ⊕ a1 ⊕ a2 ⊕ · · · ⊕ am satisfying p(y =

c|s) < z, f (s) = g(s) + h(s) =
∑m

i=1 π(ai) + α(z − p(y = c|s)).

Since the goal is to achieve p(y = c|s) � z, h(s) measures

how far s is from the goal. α is a controlling parameter. In

our experiments, α is set to the mean of all the action costs.

The heuristic search algorithm maintains two data struc-

tures, a min heap and a closed list, and performs the following

main steps:

1) Initialize Nes, s∗, and g∗ where Nes represents the num-

ber of expanded states, s∗ is the best goal state ever

found, and g∗ records the cost of the path leading up

to s∗. Add the initial state sI to the min heap (lines 1

and 2).

2) Pop the state s from the heap with the smallest f (s) (line

4).

3) If p(y = c|s) � z and g(s) < g∗, update g∗, Nes, and the

best goal state s∗ (lines 5 and 6).

4) If the termination condition (|ClosedList| − Nes > Δ) is

met, stop the search and return s∗ (line 8).
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5) Add s to the closed list and for each edge (s, s′)∈E, add

s′ to the min heap if s is not in the closed list and not a

goal state (lines 10–12).

6) Repeat from Step 2.

The closed list is implemented as a set with highly effi-

cient hashing-based duplicate detection. The search termi-

nates when the search has not found a better plan for a long

time (|ClosedList| − Nes > Δ). We set a large value (Δ = 107)

in our experiments. Note that the heuristic search algorithm

does not have to search all states since it will stop the search

once a state s satisfies the termination condition (line 8).

By the end of the offline phase, for each x ∈ X and the cor-

responding state s(x), we find a preferred goal state s∗(x).

For an input x = (male, 2, 500) in Example 2, the corre-

sponding initial state is s = (0, 0, 0). An optimal solution is

P = (a1, a2, a3) where a1 = δ
x2
0→1, a2 = δ

x3

0→1, a3 = δ
x3

1→2, and

the preferred goal state is s = (0, 1, 2).

4.2 Online SAS+ planning phase

Once the offline phase is done, the results can be used to re-

peatedly solve SOAP instances. In the online phase, for any

given input, we translate the SOAP problem into a SAS+

planning problem based on the preferred goal states found

in the offline phase and then solve it by an efficient MaxSAT-

based approach capable of minimizing total action costs.

We now describe how to handle a new instance xI and find

the actionable plan. In online SAS+ planning, we will find a

number of closest states of s(xI) and use the combination of

their goals to construct the goal s∗(xI). This is inspired by the

idea of similarity-based learning methods such as k-nearest-

neighbor (kNN). We first define the similarity between two

states.

Definition 11 (Feature similarity) Given two states

s(x1, x2, . . . , xM) and s′(x′1, x
′
2, . . . , x

′
M), the similarity of the

ith feature variable is defined as:

• If the ith feature is categorical, ξi(s, s′) = 1 if xi = x′i ,

otherwise ξi(s, s′) = 0.

• If the ith feature is numerical, ξi(s, s′) = 1 −
|pi − p′i |/(ni − 1),where pi and p′i are the partition index

of features xi and x′i , and ni is the number of partitions

of the ith feature.

Note that ξi(s, s′) ∈ [0, 1]. ξi(s, s′) = 1 means they are in

the same partition, while ξi(s, s′) = 0 means they are totally

different.

Definition 12 (State similarity) The similarity between

two states s(x1, x2, . . . , xM) and s′(x′1, x
′
2, . . . , x

′
M) is 0 if there

exists i ∈ [1,M], xi is a hard attribute and xi and x′i are not in

the same partition. Otherwise, the similarity is

sim(s, s′) =

∑M
i=1 φiξi(s, s′)
∑M

i=1 φi
, (5)

where φi is the feature weight in the random forest.

Note that sim(s, s′) ∈ [0, 1]. A larger sim(s, s′) means

higher similarity. Given two vectors x = (male, 2, 500) and

x′ = (male, 6, 800) in Example 2, the corresponding states

are s = (0, 0, 0) and s′ = (0, 1, 0). Their feature similarities

are ξ0(s, s′) = 1, ξ1(s, s′) = 0, and ξ2(s, s′) = 1. Suppose

φi = 1/3, then sim(s, s′) = 2/3.

Given two vectors x = (male, 2, 500) and x′ =

(female, 2, 500), the corresponding states are s = (0, 0, 0) and

s′ = (1, 0, 0). Since x1 is a hard attribute and x1, x′1 are not in

the same parition, sim(s, s′) = 0.

SAS+ formulation Given a SOAP problem Πsoap =

(H, xI , c,O), we define a SAS+ problemΠsas = (X,O, sI , S G)

as follows:

• X = {x1, x2, . . . , xM} is a set of state variables. Each

variable xi has a finite domain Dom(xi) = ni where ni is

the number of partitions of the i-th feature of x.

• O is a set of SAS+ actions directly mapped from O in

Πsoap.

• sI is transformed from xI according to Definition 9.

• Let (s1, s2, . . . , sK) be the K nearest neighbors of sI

ranked by sim(s, s j), and their corresponding preferred

goal states be (s∗1, s
∗
2, . . . , s

∗
K), the goal in SAS+ is S G =

{s∗1, s
∗
2, . . . , s

∗
K }. K > 0 is a user-defined integer.

In Example 2, if we preprocessed three initial states s1 =

(0, 0, 0), s2 = (0, 1, 0), s3 = (0, 1, 1), then three preferred

goal states s∗1 = (0, 1, 2), s∗2 = (0, 1, 2), and s∗3 = (0, 1, 2)

will be found in the offline phase. In the online phase, given

a new input xI = (male, 2, 1200), the corresponding state is

sI = (0, 0, 1). Suppose φi = 1/3, then sim(sI , s1) = 5/6,

sim(sI , s2) = 1/2, and sim(sI , s3) = 2/3. If K = 2, the 2 near-

est neighbors of sI are s1 and s3, and the goal of the SAS+

problem is S G = {s∗1, s
∗
3}.

In the online phase, for a given xI , we solve a SAS+ in-

stance defined above. In addition to classical SAS+ planning,

we also want to minimize the total action costs. Since some

existing classical planners do not perform well in optimizing

the plan quality, we employ a SAT-based method.
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Our method follows the bounded SAT solving strategy,

originally proposed in SATPlan [30] and Graphplan [31]. It

starts from a lower bound of makespan (L=1), encodes the

SAS+ problem as a weighted partial Max-SAT (WPMax-

SAT) instance [32], and either proves it unsatisfiable or finds

a plan while trying to minimize total action costs at the same

time.

For a SAS+ problem Πsas = (X,O, sI , S G), given a

makespan L, we define a WPMax-SAT problem Ψ with the

following variable set U and clause set C. The variable set

includes three types of variables:

• Transition variables: Uδ,t, ∀δ ∈ T and t ∈ [1, L].

• Action variables: Ua,t, ∀a ∈ O and t ∈ [1, L].

• Goal variables: Us∗ , ∀s∗ ∈ S G.

Each variable in U represents the assignment of a transi-

tion or an action at time t, or a goal condition s∗.

The clause set C has two types of clauses: soft clauses

and hard clauses. The soft clause set Cs is constructed as:

Cs = {¬Ua,t|∀a ∈ O and t ∈ [1, L]}. For each clause

c = ¬Ua,t ∈ Cs, its weight is defined as w(c) = π(a). For

each clause in the hard clause set Ch, its weight is
∑

c∈Cs w(c)

so that it must be true. Ch has the following hard clauses:

• Initial state: ∀x, sI(x) = f ,
∨
∀δx

f→g∈T (x) Uδx
f→g,1
.

• Goal state:
∨
∀s∗∈S G

Us∗ . It means at leat one goal con-

dition s∗ must be true.

• Goal condition: ∀s∗ ∈ S G, ∀x, s∗(x) = g, Us∗ →∨
∀δx

f→g∈T (x) Uδx
f→g,L

. If Us∗ is true, then for each assign-

ment s∗(x) = g, at least one transition changing variable

x to value g must be true at time L.

• Progression: ∀δx
f→g ∈ T (x) and t ∈ [1, L−1], Uδx

f→g,t
→∨

∀δx
g→h∈T (x) Uδx

g→h,t+1.

• Regression: ∀δx
f→g ∈ T (x) and t ∈ [2, L], Uδx

f→g,t
→∨

∀δx
h→ f ∈T (x) Uδx

h→ f ,t+1.

• Mutually exclusive transitions: for each mutually ex-

clusive transitions pair (δ1, δ2), t ∈ [1, L], Uδ1,t
∨

Uδ2,t.

• Mutually exclusive actions: for each mutually exclusive

actions pair (a1, a2), t ∈ [1, L], Ua1,t
∨

Ua2,t.

• Composition of actions: ∀a ∈ O and t ∈ [1, L − 1],

Ua,t →
∧
∀δ∈M(a) Uδ,t.

• Action existence: for each non-prevailing transition

δ ∈ T , Uδ,t →
∨
∀a,δ∈M(a) Ua,t.

There are three main differences between our approach and

a related work, SASE (SAS+ based Encoding) [33,34]. First,

our encoding transforms the SAS+ problem to a WPMax-

SAT problem aiming at finding a plan with minimal total ac-

tion costs while SASE transforms it to a SAT problem which

only tries to find a satisfiable plan. Second, besides transition

and action variables, our encoding has extra goal variables

since the goal definition of our SAS+ problem is a combi-

nation of several goal states while in SASE it is a partial as-

signment of some variables. Third, the goal clauses of our

encoding contain two kinds of clauses while SASE has only

one since the goal definition of ours is more complicated than

SASE.

We can solve the above encoding using any of the MaxSAT

solvers, which are extensively studied. Using soft clauses to

optimize the plan in our WPMax-SAT encoding is similar to

Balyo’s work [35] which uses a MAXSAT based approach

for plan optimization (removing redundant actions).

5 Related work

Knowledge extraction has been studied in marketing science.

Most of them are focused on extracting certain rules [8, 9],

models [10], or ranking informations [11, 13, 14]. Research

on actionable knowledge discovery is still very limited in the

machine learning community. Early work includes using sim-

ilarity analysis to prune and summarize the learnt rules [4,5],

domain-driven mining [6, 7], and combining meta-synthetic

ubiquitous intelligence and several types of other frameworks

into the mining process [7].

Some other related works are post-analysis techniques pro-
posed to extract actionable knowledge on decision tree and
additive tree models [15–17]. Yang et al. focus on finding op-
timal strategies by using a greedy strategy to search on one or
multiple decision trees [15, 16]. Cui et al. use an integer lin-
ear programming (ILP) method to find actions changing sam-
ple membership on an ensemble of trees [17]. However, both
only consider actions changing one attribute each time. Our
SAS+ formulation is more general as it can naturally model

actions changing multiple attributes using SAS+ actions. An-
other work supporting action changing multipel attributes is
a sub-optimal state space search method which is very close
to our offline preprocessing algorithm [22]. The main differ-
ence is that we use a much larger termination parameter Δu.
By combining offline state space search and online fast SAS+

planning, our algorithm achieves a much higher search effi-

ciency than [22] while mainting a better plan qualities.

6 Experimental results

To test the proposed approach (denoted as “Planning”), in the
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offline preprocess, Δ in the heuristic search algorithm is set

to 107. In the online search, we set neighborhood size K = 3

and use WPM-2014-in to solve the encoded WPMax-SAT in-

stances. For comparison, we also implement three solvers: 1)

An iterative greedy algorithm, denoted as “Greedy” which

chooses one action in each iteration that increases p(y = c|s)

while minimizes the total action costs. It keeps iterating un-

til there is no more variables to change. 2) A sub-optimal

state space method denoted as “NS” [22]. 3) An integer lin-

ear programming (ILP) method [17], one of the state-of-the-

art algorithms for solving the SOAP problem. ILP gives exact

optimal solutions.

We test these algorithms on a real-world credit card com-

pany dataset (“Credit”) and other nine benchmark datasets

from the UCI repository and the LibSVM website used in

ILP’s original experiments [17]. Information of the datasets

is listed in Table 1. N, D, and C are the number of instances,

features, and classes, respectively. A random forest is built on

the training set using the Random Trees library in OpenCV

2.4.9. GNU C++ 4.8.4 and Python 2.7 run-time systems are

used.

Table 1 Datasets information and offline preprocess results

Dataset N D C T/s #S
∑

T/d

Credit 17714 14 2 1.22 3.40E+09 4.81E+01

A1a 32561 123 2 365.25 1.68E+07 7.09E+01

Australian 690 14 2 0.06 1.14E+08 7.34E-02

Breast 683 10 2 2.43 7.07E+07 1.99E+00

Dna scale 2000 180 3 161.89 3.36E+07 6.29E+01

Heart 270 13 2 0.35 2.07E+08 8.37E-01

Ionosphere scale 351 34 2 64.06 8.39E+06 6.22E+00

Liver disorders 345 6 2 0.05 2.33E+05 1.40E-04

Mushrooms 8124 112 2 0.01 2.05E+03 1.80E-07

Vowel 990 10 11 0.15 5.96E+08 1.06E+00

In the offline preprocess, we generate all possible initial

states and use the heuristic search algorithm to find a pre-

ferred goal state for each initial state. For each dataset, we

generate problems with the same parameter settings as in ILP

experiments. Specifically, we use a weighted Euclidean dis-

tance as the action cost function. For action a which changes

state s = (x1, x2, . . . , xM) to s′ = (x′1, x
′
2, . . . , x

′
M), the cost is

π(a) =
M∑

j=1

β j(x j − x′j)
2, (6)

where β j is the cost weight on variable j, randomly generated

in [1, 100]. Since the offline preprocess works are totally in-

dependent, we can parallelly solve them in a large number of

workstation nodes. We run the offline preprocess parallelly on

a workstation with 125 computational nodes. Each node has a

2.50GHz processor with 8 cores and 64GB memory. For each

instance, the time limit is set to 1800 seconds. If the prepro-

cess search does not finish in 1800 seconds, we record the

best solution found in terms of net profit and the total search

time (1800 seconds).

We show the average preprocessing time (T) on each

dataset in seconds and the total number of possible initial

states (#S) in Table 1.
∑

T shows how many days it costs

to finish all preprocess works by parallelly solving in 1000

cores. We can see that even though the total number of pre-

processed states are very large, the total preprocess time can

be extensively reduced to an acceptable range by parallelly

solving.

In the offline preprocess, the percentage of actual prepro-

cessed states out of all possible initial states in the trans-

formed state space is a key feature of determing the on-

line search quality. For each preprocessing percentage r ∈
(0, 100], we randomly sample r ∗ #S instances from all pos-

sible initial states and use the heuristic search algorithm to

find preferred goals. Then, in the online search, we randomly

sample 100 instances from the test set and generate 100 prob-

lems based on these preferred goals. We report the online

search time in seconds and total action costs of the solutions,

averaged over 100 runs. From Figs. 2(a) and 2(c), we can

see that the total offline preprocessing time linearly increases

with the percentage and the average total action costs almost

linearly decrease with the percentage. Actually, considering

the almost unlimited offline preprocessing time, we can al-

ways increase the preprocessing percentage and eventually

reach 100%.

Table 2 shows a comprehensive comparison in terms of

the average search time, the solution quality measured by

the total action costs, the action number of solutions, and

the memory usage under the preprocessing percentage 100%.

We report the search time (T) in seconds, total action costs of

the solutions (Cost), action number of solutions (L), and the

memory usage (GB), averaged over 100 runs.

From Table 2 and Fig. 2(b), we can see that even though

our method spends quite a lot of time on offline processing, its

online search is very fast. Since our method finds near opti-

mal plans for all training samples, its solution quality is much

better than Greedy while spending almost the same search

time. Comparing against NP, our method is much faster in on-

line search and maintains better solution qualities in a1a and

ionosphere scale and equal solution qualities in other eight

datasets. Comparing against ILP, our method is much faster

in online search with the cost of losing optimality. Typically a

trained random forest model will be used for long time. Since
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Table 2 Comparison of four SOAP algorithms on ten datasets. ILP is optimal and others are suboptimal

Greedy NS Planning ILP
Dataset

T /s Cost L M /GB T /s Cost L M /GB T /s Cost L M /GB T /s Cost L M /GB

Credit 1.06 525.61 12.07 0.01 1.65 33.20 3.37 0.05 0.08 33.20 3.17 15.21 6.59 33.20 3.37 1.13

A1a 1.24 462.07 8.47 0.01 6.56 68.07 3.10 0.11 0.05 62.17 3.40 3.85 7.56 60.60 3.33 1.10

Australian 0.04 215.10 9.30 0.01 0.06 6.03 1.37 0.01 0.03 6.03 1.37 2.98 108.89 6.03 1.37 2.12

Breast 0.02 375.70 16.77 0.01 0.65 74.97 11.70 0.01 0.11 74.97 11.70 1.20 30.58 74.97 11.70 1.45

Dna scale 0.11 775.26 16.68 0.01 4.59 75.30 3.00 0.08 0.05 75.30 3.00 11.26 34.54 75.30 3.00 1.31

Heart 0.02 569.07 9.13 0.01 0.05 83.37 2.03 0.01 0.04 83.37 2.03 5.03 5.54 83.37 2.03 1.07

Ionosphere scale 0.04 1219.12 25.62 0.01 62.33 460.33 12.23 0.52 0.10 445.40 12.17 0.54 47.97 444.90 12.17 1.80

Liver disorders 0.04 212.67 4.90 0.01 0.07 83.17 2.50 0.01 0.04 83.17 2.50 0.01 30.47 83.17 2.50 1.52

Mushrooms 0.00 58.71 1.00 0.01 0.01 30.27 1.13 0.01 0.03 30.27 1.13 0.01 3.74 30.27 1.13 1.07

Vowel 0.02 425.29 9.83 0.01 0.49 61.63 4.20 0.01 0.06 61.63 4.20 11.11 66.92 61.63 4.20 1.82

Fig. 2 Experimental results of offline preprocess for different preprocessing
percentages. (a) Total offline preprocess time; (b) average online searching
time; (c) average total action costs

our offline preprocessing only needs to be run once, its cost

is well amortized over large number of repeated uses of the

online search. In short, our planning approach gives a good

quality-efficiency tradeoff: it achieves a near-optimal quality

using search time close to greedy search. Note that since we

need to store all preprocessed states and their preferred goal

states in the online phase, the memory usage of our method

is much larger than greedy and NS approaches.

7 Conclusions

We have studied the problem of extracting actionable knowl-

edge from random forest, one of the most widely used and

best off-the-shelf classifiers. We have formulated the sub-

optimal actionable plan (SOAP) problem, which aims to find

an action sequence that can change an input instance’s pre-

diction label to a desired one with the minimum total action

costs. We have then proposed a SAS+ planning approach to

solve the SOAP problem. In an offline phase, we construct an

action graph and identify a preferred goal for each input in-

stance in the training dataset. In the online planning phase, for

each given input, we formulate the SOAP problem as a SAS+

planning instance based on a nearest neighborhood search on

the preferred goals, encode the SAS+ problem to a WPMax-

SAT instance, and solve it by calling a WPMax-SAT solver.

Our approach is heuristic and suboptimal, but we have

leveraged SAS+ planning and carefully engineered the sys-

tem so that it gives good performance. Empirical results on

a credit card company dateset and other nine benchmarks

have shown that our algorithm achieves a near-optimal solu-

tion quality and is ultra-efficient, representing a much better

quality-efficiency tradeoff than some other methods.

With the great advancements in data science, an ultimate

goal of extracting patterns from data is to facilitate decision

making. We envision that machine learning models will be



948 Front. Comput. Sci., 2018, 12(5): 939–949

part of larger AI systems that make rational decisions. The

support for actionability by these models will be crucial.

Our work represents a novel and deep integration of machine

learning and planning, two core areas of AI. We believe that

such integration will have broad impacts in the future.
In our SOAP formulation, we only consider actions having

deterministic effects. However, in many realistic applica-

tions, we may have to tackle some nondeterministic actions.

For instance, pushing a promotional coupon may only have a

certain probability to increase the accumulation effect since

people do not always accept the coupon. We will consider to

add nondeterministic actions to our model in the near future.
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