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Abstract Source code management systems (such as git)

record changes to code repositories of Open-Source Soft-

ware (OSS) projects. The metadata about a change includes a

change message to record the intention of the change. Classi-

fication of changes,based on change messages, into different

change types has been explored in the past to understand

the evolution of software systems from the perspective of

change size and change density only. However, software

evolution analysis based on change classification with a fo-

cus on change evolution patterns is still an open research

problem. This study examines change messages of 106 OSS

projects, as recorded in the git repository, to explore their

evolutionary patterns with respect to the types of changes

performed over time. An automated keyword-based classifier

technique is applied to the change messages to categorize

the changes into various types (corrective, adaptive, perfec-

tive, preventive, and enhancement). Cluster analysis helps to

uncover distinct change patterns that each change type fol-

lows. We identify three categories of 106 projects for each

change type: high activity, moderate activity, and low activ-

ity. Evolutionary behavior is different for projects of different

categories. The projects with high and moderate activity re-

ceive maximum changes during 76–81 months of the project

lifetime. The project attributes such as the number of com-

mitters, number of files changed, and total number of com-

mits seem to contribute the most to the change activity of the

projects. The statistical findings show that the change activity

of a project is related to the number of contributors, amount
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of work done, and total commits of the projects irrespective

of the change type. Further, we explored languages and do-

mains of projects to correlate change types with domains and

languages of the projects. The statistical analysis indicates

that there is no significant and strong relation of change types

with domains and languages of the 106 projects.

Keywords software evolution, open-source software

(OSS), cluster analysis, change classification

1 Introduction

Software systems undergo several types of changes to remain

meaningful to their users [1]. These changes pertain to fixing

bugs, adding new features, adding support to manage changes

in a software system’s hardware, software, and business en-

vironment, or cleaning/optimizing code. A source code man-

agement (SCM) system records metadata about every change

(also known as a commit) that is made to the source code of

a software project. An SCM system records a commit along

with its attributes such as date, time, contributor id, and a

textual description. This textual description identifies the in-

tention of the change, such as fixing a bug or addition of a

new functionality. Some studies in the past used this com-

mit description to automatically classify changes into change

types, such as corrective, adaptive, perfective, and preven-

tive [2–4]. Several previous studies have examined change

logs of software systems to understand their change char-

acteristics, but most of them investigate only the distribu-

tions of changes types, change size, and change frequency

[5–7]. There is no work, to the best of the authors’ knowl-
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edge that explores change evolution keeping in mind the dif-

ferent change types such as corrective, adaptive, perfective,

etc. The most recent work in this direction by Kemerer and

Slaughter [8] dates back to 1999. They point out that there are

several patterns that characterize the maintenance (evolution

[9]) of a software system. Kemerer and Slaughter used source

code metrics unlike the SCM repository metrics used in this

study. Gupta et al. [10]studied the change profiles of reusable

software components versus software systems reusing them.

However, the dataset of their experiment was limited to pro-

prietary systems only. Although Smith et al. [11] targeted

open-source software (OSS) projects, the systems that are

also the subject of this study, to understand their long-term

evolutionary behavior, they analyzed the transitions in size

and complexity metrics, and not the SCM repository metrics

used in this study.

OSS system development involves volunteers who work

from different time zones. All the stakeholders want to know

the driving forces behind the evolution of such systems.

There is a need to study the OSS evolution from different

points of view to better understand the evolutionary behav-

ior of such systems. The present study explores the long-term

evolutionary behavior of OSS systems as per different types

of changes such as corrective, adaptive, perfective, enhance-

ment, and preventive. The results of this study can provide

insights into the evolution of OSS projects from their change

profile point of view. The study of change types and its evolu-

tion can help project managers and developers in understand-

ing the behavior and pattern of these change types in soft-

ware projects, i.e., how changes are occurring, which type of

change is the most prominent, how changes evolve during the

life cycle of a project, and whether there is any correlation be-

tween different change types with domains and languages of

OSS projects. All stake holders including project managers,

developers, and end users can use information related to the

change evolution pattern to understand the post implemen-

tation activities of the project (such as enhancements to be

performed to old features of the project, the addition of new

features, or improvements in its performance). When an end

user selects a software project for use, they should be able

to see the history of change of the software project. How are

the changes handled in the past? The kind of changes a soft-

ware system encounters can indicate the health of the soft-

ware project (though this is outside the scope of this paper,

but we believe that our work creates a base for further discus-

sion in this direction).

This information is also of interest to the researchers and

academics as the OSS development paradigm offers an op-

portunity to understand the software evolution process with

the help of the large datasets available in the public domain.

What change patterns does an OSS system follow? Can

these change patterns be generalized across the problem do-

mains or the development paradigms? These are still open

questions.The cluster analysis results provide the insights re-

garding the change, evolution pattern along the lifetime of

OSS projects. Such as corrective, adaptive, and enhance-

ment changes start decreasing after that period, but perfective

and preventive changes keep on increasing. As the evolution

starts, high and moderate-activity projects are subjected to

more enhancement related changes.

A source code contribution (as recorded by an SCM such

as git) is also defined as a commit [5]. Thus, in the remain-

der of the paper, we use the terms commit and change inter-

changeably. Previously, some researchers (such as Gonzalez-

Barahona et al. [12], Koch [13], and Lin et al. [6]) have used

the number of commits per month as a metric to analyze the

evolution of OSS. Gonzalez-Barahona et al. [12] used it on a

large OSS project to validate Lehman’s laws. Koch [13] per-

formed a coarse-grained analysis of 8,621 projects to identify

their evolutionary behavior with respect to their growth rate.

In this work, we have used the same metric to measure levels

of activity in the OSS projects and to identify their evolution

patterns, but from a different point of view. We measure the

number of commits per month for a particular change type

to find the level of activity for that change type. For exam-

ple, the number of corrective commits per month indicates

the level of activity for the corrective change type only.

Thus, the purpose of this study is to examine the evolution

of OSS projects with respect to different change types. We

explore answers to the following research questions.

RQ1 What types of changes are made to a software sys-

tem immediately after it is put to use?

RQ2 How do corrective changes evolve?

RQ3 After how long do the adaptive/perfective changes

start?

RQ4 When do the preventive changes start taking place?

RQ5 How do enhancement changes evolve?

RQ6 Do all types of changes diminish over time?

RQ7 How are the OSS projects’ attributes, such as num-

ber of committers, related to the type of changes performed?

RQ8 Do change types correlate with domains and lan-

guages of the OSS projects?

In the light of the above-stated hypotheses, we anticipate

that corrective changes to a software system start soon af-

ter users begin using the software. Other types of changes

may begin a little later. Corrective changes may decrease af-
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ter some time. Towards the end of this paper, we examine the

contribution of other factors in the evolutionary behavior of

software systems. We expect that high activity in a change

type happens due to a large number of contributors. At the

same time, a large number of contributors should make large

amounts of contributions.

Project activity is defined for a particular change type

based on the number of commits per month [6] for that

change type. The results indicate that the change behavior of

OSS projects is different for different types of changes. Some

change types start with a high level of activity, and then re-

duce by half in successive months. Some start with very low

activity in the beginning, and then increase. Some maintain

a relatively high level of activity throughout and some have

very low activity with very small variation.Cluster analysis

helps to uncover the distinct patterns for each change type.

We identify three categories of change activity, based on the

number of commits per month for each change type: high ac-

tivity, moderate activity, and low activity. OSS projects with

high and moderate activity for different change types receive

maximum changes during 76–81 months of the project life-

time. Corrective, adaptive, and enhancement types of changes

start decreasing after that period, but perfective and pre-

ventive changes keep increasing. However, many projects

have almost consistent low activity in certain change types

throughout the observation period. Project attributes such as

the number of committers are found to be related with their

change activity.

The remainder of the paper is organized as follows. Sec-

tion 2 gives details of the change classification. Section 3

presents the related work. Section 4 explains the analysis

methodology. Section 5 presents the results of the study and

discusses and justifies the interpretations. Threats to validity

are presented in Section 6. Conclusions of the paper are pre-

sented in Section 7.

2 Change classification

Change is essential for a software system to survive in re-

sponse to changes in the environment. In a software system,

changes are made with different purposes such as correcting

defects, adding features, and cleaning up the code. Changes

to the software may be categorized into different types based

on the intention when making them, namely corrective, adap-

tive, perfective, and preventive. Corrective changes are re-

lated to fixing bugs, adaptive changes refer to adding support

for managing changes in the environment, perfective changes

attempt to improve a system’s performance, and preventive

changes are made to improve the future maintainability of a

software system.

However, most research studies do not agree on a uni-

form categorization of change types.Mockus and Votta [3]de-

scribed corrective, adaptive, and perfective as the primary

change types. They added another change type, inspection,

to include the changes that require formal code inspections.

Schach et al. [14] mentioned only corrective, adaptive, and

perfective changes. They placed all other types of changes

into the ‘others” category. Another study gave totally differ-

ent names to change types such as user support, repair, and

enhancement [15]. Even definitions of change types are dif-

ferent across different studies [10].

We consulted the studies of Swanson [16], IEEE [17],

ISO/IEC 14764 [18], and the change logs of several OSS

systems for deciding the types of changes. We identified cor-

rective, adaptive, perfective, enhancement, and preventive as

the change types (Table 1). The corrective changes relate to

bug fixes. The adaptive category consists of all those modifi-

cations that are performed due to the changing environment

such as adjusting of code and features. All the rearrangement

activities, such as code embellishment, are classified as per-

fective changes. The preventive type of changes consists of

all those activities that are performed to make future mainte-

nance easier. The enhancement change type was added to de-

tect the new functionality additions and separate them from

changes made to improve the existing software. The moti-

vation for this is the change in the development process fol-

lowed nowadays (agile software development) from the times

when the change classification was proposed (traditional pro-

cess models). Even the concept of software evolution has be-

come more prevalent over time in comparison with the age-

old concept of software maintenance [9].

This study considers the definitions for the change types as

given in Table 1.

Table 1 Change types and their descriptions

Change type Description

Corrective Fixing bugs in a software system

Adaptive Adapting to changes in hardware, software, and business
environment

Perfective Changing a software system for optimization

Preventive Restructuring and reengineering a system to make mod-
ifications easier in future

Enhancement Addition of new features to a software system

3 Related work

Analysis of change histories of software systems started with
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the work published by Lientz et al. [19] in 1978. However,

their main goal was to analyze the effort distribution in dif-

ferent types of changes. The study stated that 17.4% of main-

tenance effort was corrective in nature, 18.2% as adaptive,

60.3% as perfective, and 4.1% was categorized as “other.”

Nosek and Palvia [20] repeated the same experiment and ob-

tained similar results. Schach et al. [14] conducted an empir-

ical study in 2003 and found a significant difference in the

results from the previous survey-based studies.

Lee and Jefferson [21] found the distribution of mainte-

nance effort of a web-based Java application similar to that

reported by Basili et al. [22] for software developed using

a different programming paradigm (FORTRAN and Ada).

Sousa and Moreira [23] studied 37 large organizations sit-

uated in Portugal using a survey-based approach. They con-

cluded that, on average, organizations spend 48.6% of the

maintenance effort on adaptive maintenance, 36.2% on cor-

rective, only 1.7% on preventive, and 13.5% on perfective

maintenance. Yip and Lam [24] conducted a survey of the

state of software maintenance in Hong Kong. The results

of the study indicate that enhancement-related work is the

largest among all the maintenance categories (39.7%) fol-

lowed by corrective (15.7%).

In the1990s, a few studies explored the trends in effort dis-

tribution over time in comparison with the earlier work that

only took a snapshot view of the effort distribution.

Abran and Nguyenkim [25] performed a trend analysis of

maintenance workload distribution for two years in a Cana-

dian financial institute. The trend analysis showed cyclic

fluctuations in almost all types of changes with perfective

changes decreasing sharply towards the later phases. Gefen

and Schneberger [26] examined a state-of-the-art information

system for 29 months. They could identify three distinct pe-

riods. An initial phase shows an upsurge in corrective modifi-

cations (stabilizing phase), followed by the accession of new

functions to the existing applications (improvement phase),

and then by the accession of new applications (expansion

phase).

Another study investigated changes in maintenance re-

quests during the lifetime of a large software application ex-

amined over a 67-month period [10]. They identified four dis-

tinct stages. User support types of maintenance requests dom-

inate the first stage, corrective changes dominate the second

stage and enhancement type of changes dominates the third

stage. In the last stage, all these types of change requests di-

minish and the organization starts looking for a replacement

of the software.

Kemerer and Slaughter [8] explored the evolution of com-

mercial systems based on detailed change events. They used

sequence analysis, a social science approach, for a longitudi-

nal study of 23 systems with 25,000 change events spanning

20 years. The study showed that systems pass through several

evolutionary phases. However, all systems do not follow the

same evolutionary path.

All these studies date back to a time when commercial sys-

tems were the only subjects of study. OSS systems were in-

troduced later.

There are few studies that have explored the change evo-

lution in OSS projects from this point of view. Meqdadi et

al. [27] studied trends only in the adaptive changes in three

OSS projects. As per their analysis, adaptive changes de-

crease over time. Most of the change analysis studies in OSS

projects investigate only the distributions of changes types,

change size, and change frequency [5–7].

In this paper, the evolution of a large set of OSS projects is

analyzed to explore trends in different types of changes over

time. This work analyzes the evolution of 106 OSS projects

to identify trends in different change categories.The trend

analysis explicitly indicates the pattern in which a particular

change type evolves.

In the context of this work, software change classifica-

tion may also be of interest to the readers. Swanson [16]

gave the first and the most commonly used classification.

Mockus and Votta [3] suggested an automated method of

classifying software changes based on their textual descrip-

tions. They provided a classification of changes based on

specified keywords in the textual abstracts of changes into

three primary categories (adaptive, corrective, and enhanced)

and introduced another category (inspection maintenance).

Hassan [4] extended the work of Mockus and Votta [3] to

classify change messages. They presented an automated clas-

sification of change messages in OSS projects, and classi-

fied the change messages into mainly three types as bug fix,

feature introduction, or general maintenance changes. In the

present study, we have extended the work of Mockus and

Votta [3] by introducing more relevant change types by con-

sulting the studies of Swanson [16], IEEE [17], and ISO/IEC

14764 [18], introducing a greater number of keywords (listed

in Table 2). The concept of term frequency–inverse document

frequency (tf-idf) [28] was used to eliminate irrelevant words.

Kim et al. [29] used a machine learning classifier to de-

termine the type of change and classify it as either buggy

or clean change. Lehnert and Riebisch [30] discussed the

change classifications, but restricted their study to fine-

grained changes only. Chaplin et al. [31] discussed the types

of software evolution and software maintenance. They dis-



Munish SAINI et al. Change profile analysis of open-source software systems to understand their evolutionary behavior 1109

Table 2 List of keywords for different change types

Change type Keywords

Corrective bandaid, bug, bug fix, bump, check, clean, cleanout, cleanup, clear, correct, detect, fix, fixup, flush, patch

Adaptive abort, accept, adjust, allocate, allow, alteration, bind, alter, block, commit, compare, compatible, compress, compression, conversion, convert,
change, deactivate, deactivation, deallocate, deallocation, decompress, decompression, deconstruct, decouple, decrypt, define, degrade,
deimplemented, disable, disallow, discard, disconnect, downgrade, drop, dumped, eliminate, elimination, enable, exclude, exclusion, freed,
frees, freeze, get rid, ignore, implement, implementation, initialization, initialize, install, maintaining, reload, relocatable, relocate, reverse,
revert, rescan, reset, resolve, restore, restrict, set, silence, stop, suppress, sync, synchronize, terminate, termination, tolerate, trim, truncate,
unify, wrapped

Perfective arrange, aggregate, beautify, back out, beautification, create, delete, code beautification, deletions, destroy, decrease, decrement, encrypt,
enforce, extend, extension, extract, generate, group, insert, insertion, integrate, introduce, invent, invoke, modification, modify, move,
optimization, optimize, ordering, organize, prevent, pull, quiet, reinclude, readjust, reallocate, reallocation, reanalysis, rearrange, reassign,
recheck, reconnect, recover, redefine, redesign, redo, reduce, refactor, refine, reformat, reject, remove, rename, reorder, repair, replace,
reproduce, restructure, retrieve, remake, revoke, rework, rewrite, rollback, simplification, simplify, transform, translate, improve, increase,
increment

Preventive avoid, comment, include, proposal, proposed, protect, rebuild, rebuilt, recreate, regenerate, reimplement, reinsert, reinstall, reintroduce,
reinvent, retain, rethink, reuse, review, revise, revision, revote, vote

Enhancement add, addin, addition, enhance, enhancement, update, upgrade, expend, readd, readdition

cussed the classification of software maintenance activities

for practitioners, managers, and researchers. They used a

clustering method to combine various activities into clusters.

4 Analysis methodology

This section describes the approach, methods, and tools we

used in this study. A stepwise description of the whole pro-

cess (Fig. 1) is as follows.

1) Data collection: identify the SCM repository of the

OSS projects and retrieve the commit history of each

project.

2) Change classification: analyze commit records of the

OSS projects using an automated keyword-based cate-

gorization technique to categorize the commits into var-

ious types such as: adaptive, corrective, perfective, en-

hancement, and preventive.

3) Data smoothing: remove noise from the dataset to iden-

tify patterns.

4) Cluster analysis: classify the projects to indicate the

evolution pattern with respect to the level of activity in

a particular change type.

Fig. 1 Data analysis methodology
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4.1 Data collection

git is a distributed version control system used for software

development. It was developed by Linus Torvalds for Linux

Kernel with the priorities of speed,data integrity,and support

for distributed, non-linear workflows. It is gaining popular-

ity nowadays due to its various features such as cheap lo-

cal branching, convenient staging areas, and multiple work-

flows. Unlike other distributed version control systems, git

provides a complete repository on the client machine with

entire history and version-tracking capabilities, independent

of network access or a central server.

We selected 106 OSS projects for analysis purpose using

the following selection criteria:

• The project must have a long history (over eight years);

• The project must have a valid git repository;

• The projects should represent different domains and use

different programming languages.

We first cloned official git repositories of the OSS projects

and used gitbash to fetch the change history of each software

project. Further, a Javascript was developed to extract commit

messages of each of the software projects.

The change history information, extracted here, contains

commits that are unstructured and are not inconsistent for-

mat.An unstructured and inconsistent commit message is one

that does not follow the committing standards. In the change

logs, some of the commit messages were blank. In some

cases, contributors entered unusual text as shown in the fol-

lowing example:

1. Okay...*Last* commit, now to create a release..

2. At this rate, maybe next year sometime I’ll get

3. This done...

4. Slow work...

5. ...Sam”,

6. It’s coming

7. I’m getting there, slowly :)

Therefore, the collected data required cleaning to remove

all those commits entries that contained blank or unusual text.

The cleaning process is semi-automatic. The cleaning pro-

cess starts with executing the Java code on the change his-

tory of 106 OSS projects to remove commit messages that

are blank or specified empty in the change log such as

“***** empty log message*****”

In the second step, the change history of the OSS projects

was manually analyzed by both authors individually to iden-

tify and remove unusual commit messages. Finally, the in-

dividually manipulated change history was cross-checked by

both authors to find any discrepancy in the removal of un-

usual commits from the change history. This double manual

evaluation approach eliminates the chances of missing any

unusual change message.

Complete project related details of the 106 OSS projects

such as project name, project start date, total commits (before

cleaning), percentage of commits discarded (blank or unusual

text commits), total commits classified by automated classi-

fier, number of lines inserted, the number of lines deleted,

and total number of files changed is presented in Table 2A of

Appendix. In this study, we have classified the projects ac-

cording to their domain (by consulting the taxonomy in [32])

and the development languages.

4.2 Automated change classifier

The change history of all the OSS projects was manually an-

alyzed by both authors individually to prepare alist of sig-

nificant keywords (in accordance with the definitions of the

change types). For example, fixes and similar terms such as

fixed and fixing indicate corrective action. Similarly, key-

words such as adjust and allocates indicate that adaptive ac-

tion is performed. Finally, the individual keyword lists were

cross-checked by both authors to find any discrepancy in cat-

egorization of particular keywords in the specified change

type or any keywords missed by one but identified by the

other. This approach reduced the chances of missing or mis-

classifying keywords. Further, to generalize the list of key-

words, we used the WordNet to group keywords (such as

fix, fixed, fixing, fixes into one keyword fix). This reduced

the number of keywords in the list. Finally, the concept of

tf-idf [28] was used to eliminate all those keywords that are

irrelevant in the context of change classification. tf-idf is a

numerical factor that reflects how important a word is to a

document. It assigns a weight to a keyword based on its im-

portance in the document. The complete list of keywords is

given in Table 2.

The change messages were then analyzed and categorized

into change types by using an automated classifier devel-

oped in this research study. This automated classifier is im-

plemented in Java. The complete process of classifying the

change types is explained in our previous work [33].

The specific criteria for assigning the change type to a

commit message are as follows.
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• Look for all the specified keywords in a commit record

and measure the frequency of each keyword.

• Look for the change type in which these keywords lie.

• The keyword with the highest frequency will decide the

change type. For example, if in a commit message, the

keyword adjusted is the most frequent, then it means

this commit belongs to the adaptive change type.

• In case two keywords from different change types have

the same occurrence frequency, then the keyword that

occurs first in the commit message is considered as de-

cisive.

• A commit record that does not contain the specified

keywords is skipped.

The automated classifier classifies the changes into various

change types (as adaptive, corrective, perfective, enhance-

ment, and preventive) forthe OSS projects.

For validation of the automated classifier, we used the ap-

proach as mentioned in [3,34]. We consulted four experts:two

software developers, one professor, and one PhD researcher,

working in the field of OSS development. We asked them to

manually classify commit records of OSS projects into partic-

ular change types by using the same categorization criteria as

used for the automated classification. Then Cohen’s Kappa

test [35] was used to evaluate agreement between the man-

ual and the automated change classification. This test mea-

sures the degree of agreement between two raters. In Tables

3–6 the manual (by different experts) and the automated clas-

sification of commits of the first version of GNUCashv1.3

is shown. The rows and columns of these tables specify the

manual and automated categorization data, respectively. Fi-

nally, the Kappa coefficient is calculated by using the manual

and automated classification data.

Table 3 Comparison of Expert 1 classification with automated classifica-
tion of GNUCash version 1.3

Expert 1 Automated classification

classification Adaptive Corrective Perfective Enhancement Preventive

Adaptive 70 0 30 0 0

Corrective 20 576 13 161 8

Perfective 0 0 100 0 0

Enhancement 0 0 0 300 0

Preventive 0 0 10 0 6

The calculated Kappa coefficients for all the projects lie

between 0.5 and 0.8. This indicates the presence of substan-

tial agreement between the automated and the manual change

classification. This high value of the Kappa coefficient vali-

dates the fact that automated classification is valid and ef-

fectively categorizes the commits into different change cate-

gories. For more details on the validation process, refer to our

previous work [33].

Table 4 Comparison of Expert 2 classification with automated classifica-
tion of GNUCash version 1.3

Expert 2 Automated classification

classification Adaptive Corrective Perfective Enhancement Preventive

Adaptive 70 0 21 0 0

Corrective 20 576 33 161 0

Perfective 0 0 87 0 0

Enhancement 0 0 12 300 4

Preventive 0 0 0 10

Table 5 Comparison of Expert 3 classification with automated classifica-
tion of GNUCash version 1.3

Expert 3 Automated classification

classification Adaptive Corrective Perfective Enhancement Preventive

Adaptive 70 0 21 0 0

Corrective 18 573 33 160 1

Perfective 2 2 86 0 4

Enhancement 0 1 12 300 3

Preventive 0 0 1 1 6

Table 6 Comparison of Expert 4 classification with automated classifica-
tion of GNUCash version 1.3

Expert 4 Automated classification

classification Adaptive Corrective Perfective Enhancement Preventive

Adaptive 70 0 21 0 0

Corrective 18 573 33 160 1

Perfective 2 2 87 0 0

Enhancement 0 1 12 301 3

Preventive 0 0 0 0 10

For measuring the classification accuracy of the automated

classifier, we used the k-nearest neighbor (KNN) method

[34]. The change classified into a particular change type

(by the automated classifier) is used as a categorical depen-

dent variable along with the change message as the categor-

ical predictor variable. For the KNN algorithm, we use ran-

dom sampling 70% (training set) and 30% (testing set), Eu-

clidean distance measure, v-fold cross-validation (assumed

v = 10). For details on how to choose the value of k and

v, we have consulted the literature [34,36]. The computed

cross-validation accuracy along with the Kappa coefficient

(for predicted and observed values of change types) for the

OSS projects is shown in Table 7.

4.3 Data transformation

After classification, the change type data is converted into

numerical form by measuring the number of commits per

month for each change type. We used the metric number of
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commits per month (for every change type) to represent this

measurement [11]. However when plotted, metric values are

found to have frequent fluctuations (Fig. 2 shows corrective

changes data for the PostgreSQL OSS project). It is not useful

to use this data as such to ascertain any evolutionary patterns.

We used the Robust Lowess smoothing [37] to smoothen the

number of commits (of a particular change type) per month

of each project.This converts the dataset (number of commits

for the month of a change type) into a functional form.The

smoothed curve along with actual data curves for one of the

projects (PostgreSQL) for corrective change type is shown

in Fig. 2. The dotted curve represents the actual number of

commits data for the OSS project, whereas bold curve indi-

cates the smoothed curve.It can be easily seen that finding

evolution patterns without a smoothing curve is not possible

as the original curve shows frequent spikes with large varia-

tion, whereas the bold line indicates the clear pattern.

Table 7 Classification accuracy of the automated classifier

OSS project Cross-validationaccuracy/% Kappa coefficient

PostgreSQL 91 0.93

WordPress 84 0.87

GNUCash 86 0.89

php-src 92 0.94

MySQL 89 0.91

4.4 Clustering

Clustering is the process of grouping a set of entities in such

a way that entities in a group (cluster) are more similar (re-

lated) to each other than entities not in the group.In this study,

cluster analysis has been applied to find patterns in the evo-

lution of OSS projects. Clustering employs a variety of ap-

proaches that differ by the notion of what constitutes a clus-

ter and how to find a valid set of clusters efficiently. Some of

the most popular notions include finding groups with small-

est distances among the cluster members, dense areas of the

data space, intervals or particular statistical distributions [38].

In this study, we use a distance-based clustering approach to

perform the cluster analysis. K-means and K-medoid [39]

are the two most prominent distance-based clustering ap-

proaches. K-means defines the mean of the data points where

as K-medoid starts with the most representative point. We use

the K-medoid algorithm since it provides a more robust esti-

mate of a representative point than the mean as used in the

K-means algorithm.Moreover, the K-medoid algorithm han-

dles extreme values (outliers) better than the K-means [40].

K-medoid is formally described in the following algorithm.

Software projects may follow different evolutionary paths

based on their commit activity. As all the projects cannot be

presumed to follow a single pattern, we expect to find similar

evolution patterns only for projects in the same cluster.

5 Results and analysis

This study explored the evolution patterns of 106 OSS

projects to understand their change behavior with respect to

different types of changes. The change types are identified

as corrective, adaptive, perfective, preventive, and enhance-

ment. Functional forms for every project are created using a

number of commits per month metric for each change type

[35].

Fig. 2 Smoothed data for corrective change type of an OSS project
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We proceed by analyzing the curves to explore the under-

lying evolution pattern. We begin with a mean curve analysis

(in Section 5.1) of each change type. (It provides an overall

average evolution trend of each change type). There is a lot of

heterogeneity involved in the dataset. The change evolution is

quite heterogeneous across different projects. Therefore, we

apply the cluster analysis to assort the projects according to

the commit activity for each change type (in Section 5.2).

5.1 Mean curve analysis

Figure 3 shows the mean curve (in bold) along with plots

of functional forms for all the change categories of all OSS

projects considered in this analysis. The mean curve esti-

mates the average number of commits for each month for 106

OSS projects. We choose first 106 months from the life of

each OSS project to analyze the evolution of change types

in all the OSS projects. The reason for choosing first 106

months is that we want to understand the evolutionary path of

each change type: how changes of different type evolve from

the start of a project, i.e., which changes are more promi-

nent at the start of a project and how they evolve over time.

Mean curves in all the five change categories show an in-

creasing trend (cf. Table 8). They all stabilize after a period

of time. We can observe that corrective changes (Fig. 3(a))

stabilize earliest, after approximately 60 months. We use the

moving average analysis to find the threshold after which a

change type starts to stabilize. Adaptive changes stabilize af-

ter nearly 80 months. Perfective changes stabilize even later,

after nearly 85 months. Preventive changes show a steady

and slow increase. The last increment happens around the

100th month. Enhancement changes stabilize around the 80th

month. This shows that different change types follow differ-

ent patterns.

Table 8 Trend analysis of change types for the observation period

Change type Regression equation Trend

Corrective y = 12.77 + 0.178x Increasing

Adaptive y = 4.75 + 0.099x Increasing

Perfective y = 4.389 + 0.11x Increasing

Preventive y = 0.76 + 0.021x Increasing

Enhancement y = 12.26 + 0.088x Increasing

The curve plots also show that there is variation in the

change evolution of various projects. Observe the pattern of

corrective changes in Fig. 3(a). Some projects start with high

levels of commit activity, say 100 commits per month, and

then reduce by half in successive months. Some start with

a very low activity in the beginning, e.g., less than 20 com-

mits/month, and then increase to more than 200 commits in

a month. Some projects maintain a relatively high commit

activity throughout and some have very low commit activ-

ity with very small variation. Other change types, as shown

in Fig. 3, also reveal similar patterns. The mean curve does

not represent the true picture as it seems to cancel the change

dynamics of different projects.

This heterogeneity in the commit activity may not lead to

any common understanding of the change patterns. To over-

come this, cluster analysis is performed that will group the

projects according to the level of activity in different change

types. The projects in a group may follow the same evolu-

tionary paths and help in better understanding of the change

evolution.

5.2 Curve clustering

There is a lot of variation in the evolution of the change types

of OSS projects. Some projects receive a large number of

commits in the initial months and the number decreases dras-

tically after that. While others see a reverse trend: a few com-

mits in the initial months and an exponential rise after a few

months.

Some projects maintain a high commit activity throughout,

while others receive only a few commits in the whole obser-

vation period. This heterogeneity for each change type is han-

dled by using the cluster analysis approach. Cluster analysis

group projects in such a way that the projects in the same

cluster are more related to each other with respect to their

level of activity for each change type in comparison with

projects in other clusters [41].

We use the K-medoid algorithm [42] to perform the cluster

analysis. The K-medoid algorithm outperforms K-means in

handling the extreme values. It partitions n observations into

k set of clusters, where each observation belongs to a cluster

with minimum within-cluster dissimilarity. We use the Man-

hattan distance as the distance measure. The Manhattan dis-

tance is based on absolute value distance between two points:

Manhattan distance =
k∑

i=1

|xi − yi|. (1)

The exact value of k is evaluated by using the silhouette

coefficient [42]. The silhouette coefficient of a data point rep-

resents how closely it matches the data within its cluster [42].

The average silhouette coefficient of a cluster is the average

of silhouette coefficients of all the data points in a cluster.

The average silhouette coefficient helps in deciding the ap-

propriate number of clusters (i.e., k). An average silhouette

coefficient closer to 1 implies that the data points are in the
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Fig. 3 (a) Corrective, (b) adaptive, (c) perfective, (d) preventive, and (e) enhancement change type smoothed data of 106 OSS projects along
with their mean curves (in bold)
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appropriate cluster, whereas if the coefficient is close to –1,

this signifies that the data points are in the wrong clusters. For

more details on how to find the exact number of k (number of

clusters), please refer to [42,43].

We start the clustering process by considering only two

clusters, then we keep on incrementing the number of clus-

ters by one until we obtain the exact value of k (identified by

an average silhouette coefficient that is closer to 1). Table 9

specifies the corrective change along with the average silhou-

ette measure for the respective number of clusters. It points

out that, in the corrective change type, the average silhouette

coefficient is maximum when we have the number of clus-

ters as 3 (k = 3). Similarly, the process is repeated for each

change type to find the exact number of clusters.

Table 9 Average silhouette of the OSS projects for corrective change type

Change type Clusters
Average silhouette

coefficient

Corrective 2 0.0514

Corrective 3 0.704

Corrective 4 0.651

Corrective 5 0.463

Table 10 shows the number of clusters and the number

of projects put in different clusters for all five categories of

change types. All change types, except preventive, have com-

mit patterns falling into three clusters. Commits related to

preventive changes fall into only two clusters.

Table 10 Cluster analysis of the OSS projects

Change type Clusters
Number of projects

in each cluster

1 20

Corrective 3 2 39

3 47

1 14

Adaptive 3 2 36

3 56

1 19

Perfective 3 2 33

3 54

1 22

Preventive 2 2 84

1 17

Enhancement 3 2 54

3 35

Table 10 also indicates that the numbers of projects in clus-

ters (high, moderate, or low) of different change types are

not the same. A project having one change type (for exam-

ple, corrective change) identified to be in a high-activity clus-

ter (cluster consisting of projects with high activity identified

by applying cluster analysis) may or may not have all other

change types falling in the same cluster of activity. They may

be in high, moderate, or low activity depending on the partic-

ular change type activity performed in that project. However,

a detailed analysis of the projects activity has shown that 52%

of the projects in the dataset have all the change types falling

in the same cluster (may be high, moderate, or low depending

on the change activity). For 12% of the projects, there is no

pattern (few change types fall into high activity, while others

may be in low or moderate activity and there is as such no pat-

tern in their occurrence for each change type). For the remain-

ing 36% of projects, there exist patterns in the occurrence of

all change types into a particular change activity cluster. In

the future, we aim to explore this 36% of projects for finding

the reason why these projects have resemblance in terms of

change activity pattern.

Figure 4 shows the cluster solutions for different change

types. We compared the evolution of the projects in different

clusters for each change type.

The bold curve in Fig. 4 indicates the overall mean,

whereas dotted curves represent the cluster means for high-,

moderate-, or low-activity projects. In the case of corrective

changes (Fig. 4(a)), a comparison of cluster mean curves in-

dicates that projects in cluster 1 start with a high number

of commits per month in comparison with projects in the

other two clusters. Cluster 3 curves show that monthly cor-

rective commits in this cluster follow almost a flat straight

line. Projects in cluster 2 see a gentle increase in the number

of corrective commits per month before they stabilize after 81

months. Cluster 1 projects observe maximum increase from

22 corrective commits to 92 corrective commits per month.

There is a slight decrease after 76 months in number of cor-

rective commits per month for the projects in this cluster.

In the case of adaptive changes (Fig. 4(b)), projects in clus-

ter 1 observe a sharp increase from 20 adaptive commits in

the beginning to 56 commits in the 81st month. After this

there is a slight decrease. Projects in cluster 2 show a sub-

linear increase with maximum number of adaptive commits

per month in the 80th month. There is a gentle decrease after

that. There is only a small variation in projects in cluster 3 of

adaptive commits.

Perfective changes (Fig. 4(c)) in cluster 1 follow a sharp

increase in the first 81 months and stabilize after that. Clus-

ter 1 represents projects with a prominent increase in perfec-

tive changes for the first 60 months and then again after 81

months, being nearly flat between months 60 and 81. How-

ever, projects in cluster 2 see a gentle increase in perfective

changes throughout. In this change type as well, there is one
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group (cluster 3) of projects that do not see any significant

variation in perfective changes.

Fig. 4 Cluster mean curves for (a) corrective, (b) adaptive, (c) perfective,
(d) preventive, and (e) enhancement change types

Preventive changes (Fig. 4(d)) have only two clusters (eval-

uated by measuring the average silhouette of the clusters).

Cluster 1 represents projects having 2–11 preventive commits

per month and keep on increasing throughout the observa-

tion period. However, projects in cluster 2 follow almost a

flat straight line with very low commit rate (1–2 commits per

month).

Enhancement changes (Fig. 4(e)) also have cluster 1 with

projects having 27–62 enhancement related commits per

month in the initial 80 months and a sharp decline after that.

Cluster 2 has projects with the number of enhancement com-

mits per month going up to 18 per month in the first 80

months and stabilizing after that. In this change type as well,

there is a cluster (cluster 3) of projects with little variation in

the number of enhancement commits per month in the obser-

vation period.

In light of the research questions discussed in the intro-

duction, this analysis indicates that there is an activity for all

the change types from the beginning of the OSS projects. We

may leave aside clusters with low activity in change types,

as their activity remains almost constant in the observation

period. In the case of high-activity clusters of the change

types, the enhancement-related changes are the most dom-

inant to begin with, and not the corrective changes as as-

sumed in the introduction. However, corrective changes in-

crease at a higher rate and achieve their maximum value well

before other change types. Adaptive and perfective changes

both start at the same level and achieve their maximum val-

ues around the same time. Preventive changes are the least

frequent, but they keep on increasing throughout the obser-

vation period, unlike the other change types. This shows that,

in the beginning, there is less pressure to adapt or make a

system perfective. Adding more features demands attention

in the beginning. Corrective actions also keep on increasing

and stabilize before all other change types. At a certain time,

adaptation pressure decreases (86 months in this case) but

pressure to make the system perfect does not. In fact, three

kinds of changes start decreasing at the same time (80–86

months): corrective, adaptive, and enhancement. Perfective

and preventive changes do not stop and continue to show an

increasing trend.

In moderate-activity clusters, enhancement changes are

more than all other types of changes. Corrective changes

cross the ten commits per month mark after six months.

Adaptive changes cross the same mark after 45 months, and

perfective changes even later, after 56 months. Preventive

changes cross the same mark very late, after 96 months. In

this case, changes in all the categories maintain a stabilized

level long into the observation period.

5.3 Understanding the contribution of other factors

This section addresses the research question 7 as mentioned
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in the introduction. It explores the relationship between the

change activity of a project and other project attributes such

as the number of committers, total number of commits, and

amount of work (in terms of number of files changed).

5.3.1 OSS projects attributes and metrics

In addition to commits, SCM tracks many other attributes of

an OSS such as the number of committers, number of files

changed, and number of total commits. In this section, we

examine the contribution of these attributes in the commit ac-

tivity of projects in different clusters. In this section, we com-

pare the clusters for each change type based on these three

attributes of the OSS projects. We use three metrics to mea-

sure these attributes: Committers_Count, Files_Changed,

and Total_Commits. These metrics are collected monthly.

The Committers_Count metric is the number of commit-

ters per month who contributed to the code repository of a

project as recorded by the SCM system. It approximates the

person effort in months. To understand the amount of work

done, we measure the number of files changed per month us-

ing Files_Changed metric. Finally, the Total_Commits met-

ric gives the overall picture of the contributions made to a

project in a month. In this section, we examine the relation-

ship between commit activity levels of the OSS projects for

the change types and other project-related attributes. For ev-

ery change type, we compare the clusters of projects with

different levels of activity on the basis of these project-related

attributes.

5.3.2 Comparison of clusters within a change type

Table 11 gives summary statistics for clusters of each change

type for different attributes of the projects.

A comparison of Committer_Count (the number of com-

mitters per month), across the clusters for each change type

shows that number of committers per month is comparatively

large for projects with high activity for the corresponding

change types, and least for low-activity projects. The result

is similar for the other two metrics:Files_Changed (number

of files changed per month) and Total_Commits (total com-

mits per month).

This shows that the change activity of a project is related

to number of contributors, amount of work performed, and

total commits of the projects irrespective of the change type.

Large numbers of contributors not only make a large number

of commits, but also handle a large number of files. There-

fore, the volume of work in these projects is also high. It is not

that large numbers of contributors are making small contribu-

tions. Whereas in clusters with low activity in change types, it

is not only that there are fewer contributors,but the volume of

the work that they contribute is also small. Therefore, activ-

ity may be less due to a small number of contributors, fewer

contributions, and less work performed in a contribution.

Table 11 OSS project attributes and related statistics

Category Cluster Statistics
Committers

count

Files

changed

Total

commits

Mean 18.04 1244.30 69.27
1

SE 0.76 45.06 2.21

Mean 6.17 544.32 20.38
Corrective 2

SE 0.24 22.04 0.45

Mean 2.83 252.19 3.97
3

SE 0.06 8.74 0.04

Mean 21.43 1377.73 36.11
1

SE 0.90 66.25 1.57

Mean 7.33 676.71 11.83
Adaptive 2

SE 0.30 17.69 0.29

Mean 3.05 253.99 2.42
3

SE 0.07 11.88 0.03

Mean 19.42 1258.56 31.55
1

SE 0.79 52.08 1.26

Mean 6.43 670.89 10.72
Perfective 2

SE 0.27 26.40 0.37

Mean 2.84 215.29 2.33
3

SE 0.06 7.92 0.03

Mean 16.28 1120.64 6.29
1

SE 0.62 45.25 0.27
Preventive

Mean 4.48 404.89 0.74
2

SE 0.16 10.73 0.01

Mean 19.40 1363.54 49.98
1

SE 0.73 55.96 0.97

Mean 5.75 475.43 15.45
Enhancement 2

SE 0.21 12.19 0.25

Mean 2.69 268.67 3.35
3

SE 0.099 17.51 0.061

5.3.3 Comparison of clusters across change types

However, when we compare clusters across the change types

(as listed in Table 11), e.g., clusters with high activity for all

the change types, the clusters differ with respect to project

attributes. We do not see a homogenous trend as discussed

in the previous section. For every first cluster, projects with

high activity in adaptive changes have a maximum number

of contributors followed by perfective, enhancement, correc-

tive, and preventive change types in that order. As far as

the amount of work performed is considered (measured by

Files_Changed metric), projects with high activity in adaptive

changes are followed by enhancement, perfective, corrective,

and preventive types in that order. Projects with high activ-
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ity in enhancement change type have fewer contributors than

the projects with high activity in perfective change type, but

have more work done (the number of files changed is greater).

Projects with high activity for corrective change type lead in

the total number of commits they receive. This shows that

high activity of corrective changes is easy to manage. Adap-

tation in such projects requires more resources (i.e., person

months).

In clusters with moderate activity, Commiter_Count and

Files_Changed are more for adaptive and perfective change

types in comparison with corrective and enhancement types

of changes.

There is an interesting observation in clusters with low ac-

tivity across different change types. In the preventive change

type, the cluster has the maximum number of contributors as

well as the highest number of files changed per month. In the

enhancement change type, the cluster has the fewest contribu-

tors in comparison with the corresponding clusters of correc-

tive, adaptive, and preventive change types, whereas the num-

ber of files changed in this cluster of the enhancement change

type is the maximum (as in moderate-activity projects that

require greater expertise). This shows that a small group of

contributors is making large contributions in the enhancement

change type. In the case of the corrective change type, there

is a reverse situation. The number of contributors is greater,

the number of contributions is greater (total commits), but

the number of files changed is lower. This shows that a large

number of contributors are making small-sized contributions.

It seems that a core group is making enhancement changes,

and peripheral contributors are making corrective changes.

5.4 Correlation of change types with domains and lan-

guages of OSS projects

This section focuses on the relationship (if any) between

change types and the domains of the OSS projects. The OSS

projects in this study belong to several different domains. We

also explore the association between change types and lan-

guages of the OSS projects.

5.4.1 Change types and domains

The OSS projects are manually classified into different do-

mains (as listed in Table 1A of Appendix) by consulting the

taxonomy of software types to facilitate search and evidence-

based engineering by Forward and Lethbridge [32]. Table 12

shows the domains and number of OSS projects belonging

to that domain. To find the correlation between change types

with domains of the OSS projects we use the chi-squared test

[44]. The strength of the relation is measured by calculat-

ing Cramer’s V statistic hat is based on Pearson’s chi-squared

statistic. The strength measures are only used in cases where

chi-squared or likelihood ratio significance values (p-value)

are lower than 0.05 (i.e., level of significance).

Table 12 OSS project domains

Domain
Number of

projects

Accessibility 2

Administrator software and tools 1

Artistic creativity/Eentertainment and education 2

CAD/CAE tools 1

Communication and information 2

Compilers 1

Database 3

Development 7

Development environment 19

Device/Peripheral drivers 1

Diagnostic/Process viewer/Activity monitor 3

Entertainment and education 11

Graphics packages/Rendering engines 7

IM servers 2

Information management and decision support systems 3

Information resources 5

Interoperability infrastructures 1

Kernels/Distributions 4

Load balancers 1

Modeling/Case tools 1

Networking/Communications 4

Personal management 2

Productivity and creativity 3

Reporting 1

Security 2

Server 1

Simulation software 1

Software testing tools 1

Storage 1

Strategic and operations analysis 2

UI support software 1

Web applications/services 7

Web/FTP/Content servers 3

For performing the evaluation, we assume the null hypoth-

esis that there exists no relation between the change types

and domain of 106 OSS projects. In other words, we assume

that each change type activity (classified as high, moderate,

or low activity by using cluster analysis) has no relation with

the domain of a OSS project. We start the analysis by consult-

ing all the assumptions (simple random sample, sample size,

expected cell count, etc.) of the chi-squared test [44]. All the

assumptions are found to hold on our dataset except the “ex-

pected cell count” assumption (cell count should not be less
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than 5) that was violated as we have domains whose actual

count is less than 5. Therefore, to overcome this we referred

to the literature [44] that indicates that the Yates correction

(applied on the dataset) or other statistic measures (such as

the likelihood ratio) should be considered to evaluate the re-

lationship.

We start the statistical analysis by considering all the OSS

projects that have domain count less than 5. The estimated

significant values (p-valued) obtained after applying the chi-

squared test on the change types and all domains are listed in

Table 13. The “expected cell count” assumption is violated

here as some domains have a count less than 5. Therefore,

in this case, we look for a likelihood ratio significance value

(p-value) for each change type. In the corrective change type,

the likelihood ratio (p = 0.048) is less than the level of signif-

icance (0.05). This causes the rejection of the null hypothesis

and suggests the existence of a relation between corrective

changes of an OSS project and its domain. The strength of the

relation is measured with Cramer’s V statistics by referring

to the level of relationships interpretation chart. This indi-

cates the presence of a weak relationship between corrective

changes and domains of the OSS projects. In all other change

types,the likelihood ratio p-value is greater than the level of

significance. It specifies that no other change types have any

significant relation with the domain of the OSS projects.

We refined the dataset to consider only those domains in

which the number of projects is greater than 5. Table 14

demonstrates that the Pearson chi-squared value and likeli-

hood ratio value for each change type is greater than the level

of significance (0.05). This shows the acceptance of the null

hypothesis (i.e., there is no relationship between change types

and domains).

To find the significant relation of change types with do-

mains of the OSS projects, we select he projects having the

domain“Development environment” and “Entertainment and

education” from our dataset as they have a higher count for

the number of projects with this domain (Table 12).

Table 15 lists the estimation of the chi-squaredtests.It spec-

ifies that the Pearson chi-squared value and likelihood ra-

tio values are greater than the level of significance (0.05). It

causes the acceptance of the null hypothesis (i.e., there is no

relationship between change types and domains).

The statistical evaluation for finding the relation between

domains and change types of the 106 OSS projects suggested

that there exists no strong relation between the change types

with the domains of the OSS projects.

5.4.2 Change types and project languages

The collected data of 106 OSS projects have diversity in

terms of languages used for the development of projects. Ta-

ble 16 shows the languages and the number of projects that

are developed using these languages. Most of the projects

are developed using C, C++, PHP, and Python. To evaluate

the correlation of change types with the languages of OSS

projects, we assume the null hypothesis that there exists no

relation between the change types and languages of the OSS

projects. In other words, we assume that each change type

activity (classified as high, moderate, or low activity by using

cluster analysis) has no relation with the languages used for

the development of the OSS projects.

Table 13 Correlate change type with domain

Corrective Adaptive Perfective Preventive Enhancement

Chi-squared test Pearson chi-squared 0.164 0.14 0.316 0.288 0.188

Likelihood ratio 0.048 0.051 0.076 0.192 0.096

Symmetric measures Cramer’s V 0.164 0.14 0.316 0.288 0.188

Table 14 Correlate change type with domain (count is not less than 5)

Corrective Adaptive Perfective Preventive Enhancement

Chi-squared Pearson chi-squared 0.468 0.218 0.452 0.883 0.555

test Likelihood ratio 0.355 0.103 0.357 0.752 0.435

Symmetric measures Cramer’s V 0.468 0.218 0.452 0.883 0.555

Table 15 Correlate change type with domain (“Development environment” and “Entertainment and education”)

Corrective Adaptive Perfective Preventive Enhancement

Chi-square Pearson chi-squared 0.552 0.216 0.269 0.85 0.6

test Likelihood ratio 0.555 0.21 0.259 0.85 0.603

Symmetric measures Cramer’s V 0.552 0.216 0.269 0.85 0.6
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Table 16 Development languages of the OSS projects

Language Number of OSS projects

C 42

C++ 26

Haxe 1

Java 6

Perl 6

PHP 10

Python 10

Ruby 2

Scheme 1

ShellScript 1

SQL 1

First, we consider the whole dataset that includes lan-

guages whose frequency count is less than 5. The calcula-

tion of correlation using the chi-squared test is given in Ta-

ble 17. The perfective change type likelihood ratio p-value is

less than 0.05. This means that the null hypothesis is rejected

in the case of the perfective change type. There exists a re-

lation between perfective change type and languages of the

OSS projects. The Cramer’s V value indicates the presence

of a very weak relation between them. All other changes have

higher p-value than the level of significance (0.05). There-

fore, we conclude that in all other change types, there exists

no relationship between change type and language of the OSS

projects.

Next, we prune the dataset and consider only four lan-

guages (C, C++, PHP, and Python) projects for evaluating

the correlation. Table 18 indicates that all change types (ex-

cept preventive) show no correlation with languages used for

the development of the projects as Pearson chi-squared and

likelihood ratio p-values are larger than the level of signifi-

cance value(0.05). The statistical analysis of languages with

change types of OSS projects do not show any strong relation.

5.5 Analysis summary

This study provides key information about the evolutionary

processes that the OSS projects follow. One thing is clear that

there is no uniform evolutionary pattern. However, projects

with the same activity level (measured using the number of

commits per month) could be grouped and studied together.

Observations of the analysis in the previous sections are sum-

marized as follows.

RQ1 What types of changes are made to a software system

immediately after it is put to use?

The OSS projects undergo all types of changes after

they are put to use.

RQ2 How do corrective changes evolve?

Corrective changes increase at a high rate for projects

with high activity in this category, at a moderate rate in

projects with medium activity, and are atmost constant

for the projects with low activity.After 81 months, cor-

rective changes start decreasing for projects with high

activity in this category, but remain stable after that for

projects with moderate activity.

RQ3 After how long do the adaptive/perfective changes

start?

Adaptive and perfective change also starts around the

same time as corrective changes, but the commit rate

(23 commits/month) for corrective changes is signif-

icantly higher than that of adaptive and perfective

changes (10 commits/month).

RQ4 When do the preventive changes start taking place?

Preventive commits are very insignificant in the begin-

ning (2 commits/month). They increase at a sub-linear

rate throughout the observation period. For projects

with low activity in this category, a change in commits

is almost negligible.

Table 17 Correlate change type with the languages of the OSS projects

Corrective Adaptive Perfective Preventive Enhancement

Chi-squared Pearson chi-squared 0.725 0.301 0.142 0.419 0.336

test Likelihood ratio 0.579 0.082 0.032 0.176 0.158

Symmetric Phi 0.725 0.301 0.142 0.419 0.336

measures Cramer’s V 0.725 0.301 0.142 0.419 0.336

Table 18 Correlate change type with the languages (C/C++/Python/PHP) of the OSS projects

Corrective Adaptive Perfective Preventive Enhancement

Chi-squared Pearson chi-squared 0.737 0.456 0.197 0.121 0.153

test Likelihood ratio 0.773 0.208 0.089 0.048 0.086

Symmetric Phi 0.737 0.456 0.197 0.121 0.153

measures Cramer’s V 0.737 0.456 0.197 0.121 0.153
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RQ5 How do enhancement changes evolve?

Enhancement changes dominate in the initial period,

even more than the corrective changes. They also be-

come stable, for projects with high activity in this cat-

egory, around the same time as corrective changes (81

months), and start decreasing after that. For moderate-

activity projects, enhancement changes become stable

after that time.

RQ6 Do all types of changes diminish over time?

Only corrective, adaptive, and enhancement-related

changes decrease after a period of time (81 months)

for high-activity projects in these categories. Perfective

changes become stable towards the end. However, pre-

ventive changes keep on increasing.

In moderate activity projects, all change types follow a

sub-linear increase. Corrective, adaptive, and enhance-

ment changes stabilize, but perfective and preventive

activities continue.

In projects with low activity in these change types, there

is hardly any change.

RQ7 How are the OSS projects’ attributes, such as number of

committers, related to the type of changes performed?

Change activity of a project is directly related to the

number of contributors, amount of work done, and total

commits of the projects irrespective of the change type.

Large numbers of contributors not only make a large

number of commits, but also handle a large number of

files. Therefore, the volume of work in projects with a

large number of contributors is also high.

However, when we compare clusters across the change

types (listed in Table 11), e.g., clusters with high activ-

ity for all the change types, the clusters differ with re-

spect to project attributes. Projects with high activity in

adaptive changes have a maximum number of contrib-

utors, whereas projects with high activity in corrective

changes have a maximum number of monthly commits.

RQ8 Do change types correlate with domains and languages

of the OSS projects?

The results indicate a weak relationship between cor-

rective change type and domains of the projects for do-

mains in which the number of projects (of the sample)

are less than 5. However, other change types are not

related to any specific domains. When domains, with

more than five projects are considered, change types ac-

tivity and domains donot correlate. Similarly, no corre-

lation exists between change types and the languages of

the OSS projects.

5.6 Cluster validation using pairwise comparison of clus-

ters

Cluster validation is important to identify that the clustering

algorithm should not have created natural clusters, as every

clustering algorithm finds clusters in a dataset. We use pair-

wise comparisons between the cluster averages to validate

the clustering. Table 19 lists p-values for the pairwise com-

parisons between the cluster averages. We use the pairwise

comparison method [45] to find any significant difference be-

tween different clusters for all the OSS projects. p-values are

found to be significant at 10%. A high p-value is chosen as it

is an exploratory study. As the p-values in all cases are less

than 0.010, this shows that there are significant differences

between different clusters for commit activity of all the OSS

projects.

Table 19 Pairwise comparison of projects in different clusters (p-values
significant at 10%)

Change type Cluster Committers count Files changed Total commits

1 vs. 2 0.00 0.00 0.00

Corrective 2 vs. 3 0.00 0.00 0.00

1 vs. 3 0.00 0.00 0.00

1 vs. 2 0.00 0.00 0.00

Adaptive 2 vs. 3 0.00 0.00 0.00

1 vs. 3 0.00 0.00 0.00

1 vs. 2 0.00 0.00 0.00

Perfective 2 vs. 3 0.00 0.00 0.00

1 vs. 3 0.00 0.00 0.00

1 vs. 2 0.00 0.00 0.00

Enhancement 2 vs. 3 0.00 0.00 0.00

1 vs. 3 0.00 0.00 0.00

6 Threats to validity

This section discusses the threats to validity of the study.

Construct validity threats concern the relationship between

theory and observation. These threats can be mainly because

we assumed that all the commits were posted in the revi-

sion control tool git. Any changes performed in the source

code but not logged through the tool may not have become

part of the study. The number of keywords used to categorize

the change activity into a particular change type may not be

enough to classify all the changes.

Internal validity concerns the selection of subject systems

and the analysis methods. This study uses a month as the unit

of measure for tracking the types of change activities. In the

future, we would like to use more natural and insightful par-

tition based on major/minor versions of the OSS project for

analyzing the change activity of OSS projects. Subject sys-
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tems were selected from public repositories, but the selection

is biased towards projects with valid git repositories.

External validity concerns the generalization of the find-

ings. The OSS projects are chosen from different domains,

languages, and with different levels of commit activity, so

the study addresses this challenge as far as OSS projects are

concerned. Results also need to be validated for proprietary

projects.

Reliability validity concerns the possibility of replication

of the study. The subject systems are available in the public

domain. We have attempted to put all the necessary details of

the experiment process into this paper.

7 Conclusions

Change evolution analysis helps in understanding the soft-

ware evolution process. This study aimed to explore the

change behavior, from the point of view of different change

types, of 106 OSS projects for a long period of time (approx-

imately nine years) to understand common patterns, if any,

of their evolution. Change messages are used to categorize

changes into various change types such as corrective, adap-

tive, perfective, preventive, and enhancement. Change activ-

ity is measured using the number of commits per month for

a particular change type. Cluster analysis of all the change

types gives broadly three categories of change activity: high

activity, moderate activity, and low activity. Changes in dif-

ferent categories evolve differently. In high-activity clusters,

pressure to add more features dominates at the beginning fol-

lowed by corrective actions. Corrective changes stabilize be-

fore all other change types. Adaptive and perfective changes

stabilizes lowly. It may be that developer teams focus on

(problem-specific) features of projects first, and the adaptive

and perfective changes are implemented later to gain a com-

petitive edge. Preventive work is also present and follows an

upward trend throughout. In moderate-activity projects, en-

hancement changes are again dominant in the beginning and

stabilize later (after 81 months). Corrective changes increase

at a moderate rate and surpass the enhancement changes to-

wards the end of the observation period. Interestingly, adap-

tive and perfective changes both start at the same level. Thus,

the pressure to adapt and make the systems perfective also

mounts at a later stage. The study explores the contribution

of other project attributes in the change activity. Results indi-

cate that the projects with higher change activity have large

volumes of change work contributed by a large number of

contributors in comparison with moderate or low activity. A

comparison of project attributes across different change types

shows that adaptive changes engage the highest number of

committers with the maximum number of files changed in

the process. Perfective changes consume the least resources.

The study also explores the correlation of change type activ-

ity with domains and languages of the OSS projects. The sta-

tistical results obtained from the analysis show that for 106

OSS projects we do not find the existence of any strong or

relevant relationship among them.

This study considers only average values for the metrics

measuring the project attributes. In future, the aim is to track

changes in project attributes as a project evolves. We are

working on collecting project attributes monthly and then

analyzing their evolution along with the change types to un-

derstand the similarity of trends between the project attributes

and the changes. Furthermore, change evolution can be stud-

ied along with the quality (bugs/defects) of projects.
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Appendix

Table 1A provides the description (project name, domain,

language, and license) of the OSS projects. Table 2A provides

the project related details of the 106 OSS projects such as

project name, project start date, total commits (before clean-

ing), percentage of commits discarded (blank or unusual text

commits), total commits classified by automated classifier,

number of lines inserted, the number of lines deleted, and to-

tal number of files changed. Interested readers please refer to

the summplementary file on the journal’s website for more

information.
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