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Abstract Model checking is a formal verification tech-

nique. It takes an exhaustively strategy to check hardware

circuits and network protocols against desired properties.

Having been developed for more than three decades, model

checking is now playing an important role in software engi-

neering for verifying rather complicated software artifacts.

This paper surveys the role of model checking in software

engineering. In particular, we searched for the related liter-

atures published at reputed conferences, symposiums, work-

shops, and journals, and took a survey of (1) various model

checking techniques that can be adapted to software devel-

opment and their implementations, and (2) the use of model

checking at different stages of a software development life

cycle. We observed that model checking is useful for soft-

ware debugging, constraint solving, and malware detection,

and it can help verify different types of software systems,

such as object- and aspect-oriented systems, service-oriented

applications, web-based applications, and GUI applications

including safety- and mission-critical systems.

The survey is expected to help human engineers under-

stand the role of model checking in software engineering,

and as well decide which model checking technique(s) and/or

tool(s) are applicable for developing, analyzing and verifying

a practical software system. For researchers, the survey also

points out how model checking has been adapted to their re-

search topics on software engineering and its challenges.
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1 Introduction

Model checking is a formal verification technique that ex-

haustively checks hardware circuits and network protocols

against desired properties [1]. For instance, if a desired prop-

erty is expressed as a temporal logic p to verify the ma-

chine M with initial state s, model checking decides whether

M, s |= p. As Fig. 1 shows, given an objective system, model

checking checks whether an abstract model of the system

holds some critical properties [2]: if the system definitely

holds the properties, the system passes the verification; if the

system fails, a counterexample needs to be produced; if the

time budget or memory is used up during verification, a state-

explosion problem appears.

Fig. 1 Basic principle of model checking
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Model checking was first proposed in the early of 1980s.

In the past three decades, model checking has been play-

ing an important role in software engineering for verifying

rather complicated software artifacts. As what will be ex-

plained in the following sections, model checking is useful

for software debugging, constraint solving, and malware de-

tection; it can also be employed to verify different types of

software systems, such as object- and aspect-oriented sys-

tems, service-oriented applications, web-based applications,

safety- and mission-critical systems, and GUI applications.

In literature, researchers [3–10] have conducted surveys on

model checking. Garcia-Ferreira et al. [3] briefly introduce

the techniques of model checking. Grumberg et al. [11] in-

troduce the history of model checking. Other researchers fo-

cus on specific techniques (e.g., partial model checking [4],

regular model checking [5], and directed model checking [6])

or specific systems (e.g., state charts [7], parameterized sys-

tems [8], and test derivation [10]). However, to the best of our

knowledge, no previous researchers conduct a comprehen-

sive survey on model checking, especially on its applications

in software engineering tasks. As a result, it is challenging

for practitioners and even researchers to select proper model

checking techniques, since they often do not fully understand

the state of the art.

This paper surveys the role of model checking in software

engineering. In particular, we searched for the related liter-

atures published at reputed conferences, symposiums, work-

shops, journals, and transactions, and took a survey of (1) var-

ious model checking techniques that can be adapted to soft-

ware development and their implementations, and (2) the use

of model checking at different stages of a software develop-

ment life cycle. We thus draw out the role of model checking

in software engineering and also discuss some challenging

problems and solutions. Some observations during the survey

are explained throughout this paper.

This survey makes four contributions:

1) A large scale survey We collected 236 model

checking-associated publications accepted at some re-

puted conferences, symposiums, workshops, journals

and transactions, in which we carefully selected 173

ones to survey the state-of-the-art model checking tech-

niques and tools that are prevalent in software develop-

ment.

2) A novel perspective from software engineering Our

survey analyzes the application of model checking in

software engineering, with an emphasis on its capabil-

ity of verifying real software artifacts.

3) Challenges, difficulties, and solutions We address

some typical challenges and difficulties of employing

model checking in software development. In particular,

the state-explosion problem is addressed and the solu-

tions are surveyed.

4) Integration with other existing techniques We briefly

review some of the other existing code analysis and ver-

ification technique. The methods, comparison and inte-

gration with model checking are also surveyed.

We believe that the survey can help human engineers de-

cide which model checking technique(s) and/or tool(s) are

applicable for their needs. For researchers, the survey also

points out how model checking can be adapted to the research

topics on software engineering.

The rest of the paper is organized as follows. Section 2

explains how we select papers. Section 3 presents the role

of model checking in verifying software products. Section

4 presents how model checking can supplement or be sup-

plemented by other techniques for developing software sys-

tems. Section 5 addresses the state-explosion problem and its

solutions. Section 6 surveys the various model checkers and

their uses in software development. Section 7 studies the in-

tegration of model checking techniques with the other code

analysis and verification techniques. Section 8 concludes this

paper.

2 Paper selection

Clarke and Emerson [12] are the pioneers who propose the

concept of model checking in 1981. Queille and Sifakis pro-

posed a similar idea of verifying finite-state systems in 1982

[13]. Clarke, Emerson, and Sifakis accepted the ACM’s Tur-

ing Awards “for [their roles] in developing model check-

ing into a highly effective verification technology, widely

adopted in the hardware and software industries” [14].

2.1 Publications on model checking

A number of literatures on model checking are available, as

it can be applied in several aspects of computing. We used

the keywords model checking and model checker to search

the literatures from the dblp (see dblp official site) database

(on October 10, 2016); 4,973 and 361 publications were re-

trieved when the two keywords were employed, respectively.

Figure 2 shows the numbers of publications related to model

check+model checking+model checker. Up to 1990, less than

ten papers appeared per year, and consequently 10–50 after
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Fig. 2 Year-wise publications on model checking (The number of publi-
cations are less than 300 in 2016 as many publications have not yet been
recorded by the searching date)

1990, 50+ after 1996, 100+ after 1998, 200+ after 2003,

250+ after 2004, and 300+ after 2007.

Figure 3 shows the conferences including workshops and

symposiums, and journals including transactions that have

20+ publications on model checking. It clearly indicates

that papers on model checking are prevalent in SPIN, CAV,

CHARME, TACAS, NASA FM, ATVA, STTT, and FM in Sys-

tem Design.

By observing the searching results, we draw out the next

observation:

Fig. 3 Journals/conferences with 20+ publications on model checking
(Each data label shows a percentage of publications which are related to
model checking for a particular conference or journal)

Observation 1 Model checking has become a popular re-

search topic since 1998/1999; publications on model check-

ing continuously increase.

2.2 Publications at reputed SE conferences and journals

We select the publications from some reputed conferences

(including symposiums and workshops) and journals (in-

cluding transactions). The conferences and journals mainly

belong to the category “Software engineering/System soft-

ware/Programming languages” of a ranking list directed by

the China Computer Federation (CCF) (see CCF official

ranking site). In the list, the conferences (e.g., ESEC/FSE,

ICSE, and ASE) are recommended on the basis of their ac-

ceptance rates, reputations and citations; the journal (e.g.,

TSE and TOSEM) are recommended on the basis of their SCI

factors and citations.

As a result, 166, 711, and 625 papers are available at the

A, B, and C level conferences, respectively, and 92, 76, and

216 papers are at the A, B, and C level journals, respectively.

Meanwhile, we only focus on some reputed, SE-related con-

ferences and journals shown in the first column of Table 1;

publications at CAV (235 publications) and TACAS (134

publications) are not considered as they are mainly related

to the theoretical aspects of model checking, rather than its

role in software engineering.

Table 1 Papers for further review

Venue NAP NCP References

ASE 54 49 [15–63]

ICSE 35 28 [64–91]

IEEE Transactions on SE (TSE) 34 19 [92–110]

SAS 13 11 [111–121]

FASE 14 10 [122–131]

ESEC/FSE 13 09 [132–140]

TOPLAS 13 07 [141–147]

TOSEM 12 07 [148–154]

ISSTA 10 06 [155–160]

POPL 10 06 [161–166]

IEEE Transaction on Computers (TC) 10 05 [167–171]

OOPSLA 05 05 [172–176]

PLDI 06 04 [177–180]

ISSRE 03 03 [181–183]

ICSM 02 02 [184,185]

RE 02 02 [186,187]

Total 236 173

Only 173 publications are selected for further reviewing.

Table 1 summarizes the publications selected for this survey.

The columns NAP and NCP correspond to the numbers of

available papers on model checking and the numbers of se-
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lected papers for survey, respectively. 63 (i.e., 236–173) pa-

pers are not surveyed because some are irrelative to model

checking (e.g., ICSE 1976: rollback recovery model), while

the others focus on topics beyond the scope of this paper (e.g.,

definitions and proofs w.r.t. model checking).

Figure 4 classifies the topics of the 173 publications: 17%

of the papers discuss how to perform model checking of

software; 29% of the papers explain how to perform model

checking for code analysis or debugging; 26% of the pa-

pers present how to check domain-specific real-world appli-

cations. Besides, model checking of software requirements,

design models, and software product-lines (SPLs) cover 4%,

9%, and 5% of the papers, respectively. Other topics are stud-

ied in 10% of the papers.

Fig. 4 Categorizing the reviewed papers

For example, Table 2 shows more details of 35 sampling

papers; the other 138 papers are not explained for the sake

of space. The columns “Major issue”, “Solution”, “SCL”,

“LOC”, “NS”, and “NT” represent the main problem dis-

cussed in the paper, the solution implemented, the modelling

languages, the size of the largest application in verification,

the maximum number of states visited successfully, and the

maximum number of transitions during the evaluation, re-

spectively. A detailed explanation about the techniques, tools,

and applications will be given in the next sections.

We can understand conferences and journals have their

specific tastes to their papers. The selected papers at “IEEE

TSE” are more relative to the verification languages and spe-

cific theories, definitions, and proofs for model checking.

They are also strongly related to specific model checking

techniques (e.g., symbolic model checking, bounded model

checking, probabilistic model checking) and tools (e.g., Spin,

JPF, BMC [188], SMV [189], and Prism.

Many selected papers published at ICSE before 2009 are

related to verification of software designs (eight publica-

tions) and empirical studies (four publications). After 2009,

six publications are on probabilistic model checking, three

on bounded model checking, and one on model checking of

Java programs, one on abstraction for model checking, one

on model checking using petri net, and another on combina-

tion of symbolic execution and model checking. In addition,

six publications are on model checking of software product-

lines.

Selected papers at the ASE conference are related to nearly

all respects of model checking. Most papers before 2005 are

related to its uses at some early stages of a software life cy-

cle. After 2005, papers are on model checking of different

types of applications and software systems. Papers are also

concerned with the topics of model checking for static analy-

sis, verifying software product-lines, and combining different

model checking tools for optimizing verification process.

Nine out of eleven selected papers at SAS are closely re-

lated to the abstraction-based model checking.

Papers at FASE before 2010 are closely related to verifi-

cation of software system designs (six out of seven publica-

tions); after 2010, they are more relevant to topics such as

bounded model checking, probabilistic model checking, CE-

GAR based model checking.

Papers at RE are more relative to model checking of soft-

ware requirements. Papers at POPL are more relative to

model abstraction. Papers at PLDI are relative to concurrency

bugs and stateless model checking. Papers at TOPLAS are

more related to type checking and property checking. Pa-

pers at TOSEM are more relative to the model checking tech-

niques for software development and their implementations.

Papers at TC, FSE, ISSTA, ISSRE, OOPSLA, and ICSM

are more relative to implementations of model checking tech-

niques for testing and verification. Some selected papers at

FSE also discuss how to conduct model checking of graph-

ical user interface (GUI) applications and how to use model

checking to detect malware from a final software product.

Observation 2 Before 2005, model checking is mainly for

verifying requirements and design models. After 2005, model

checking is more towards verifying real-world applications.

3 Model checking of software

3.1 Background

The main role of model checking in software engineering is
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Table 2 Details of 35 sampling papers

Year Ref. Major issue Solution Tool SCL LOC NS NT

1997 [100] Design errors in software Applying Spin tool Spin Promela - 4,790,030 -

1997 [165] Verifying abstracted models Verifying source code directly Verisoft C 2,500 - -

1998 [104] Large software specification Using symbolic model checking SMV SMV - 1.4 × 1065 -

2000 [26] Abstracting models Using C++/Java as models JPF C++/Java 1K/1.43K 1060+ -

2000 [17] Multithreaded Java program Checking dynamic data structures SAL Java 4 × 100 3,990,883 -

2001 [18] Symmetries (sym.) in codes Reducing sym. of dynamic objects dSpin Promela - 4.62 × 106 5.67 × 106

2001 [27] Reduction of states and deadlocks Static analysis+model checking JPF Java 60 866 1,489

2002 [160] Direct model check Java bytecode Heuristics coverage measurement JPF Java - 1,836,675 -

2003 [24] Verifying web based applications Using Bandera to verify GUI Bandera Java 3,600 - -

2003 [31] Verifying large domain Using domain reduction techniques NuSMV SMV 2,953 - -

2003 [123] NASA robot control software Using loop abstraction Cospan S/R - 6 × 1024 -

2004 [21] User interaction properties of GUI Static analysis of SWING Bandera Java - 84,439 84,493

2004 [126] Communication (com.) processes Optimized com. structure of tool SPIN Python 8,000 - -

2007 [25] Reduction of state space Slicing technique Bandera/JPF Java - 471,124 1,222,986

2007 [102] Model checking for multi-core Using Swarm tool Swarm Promela 6,635 22 × 106 601 × 106

2007 [151] Java Metalocking Java Metalocking Algorithm XMC/Spin Promela - 198,901 987,009

2008 [56] Hidden bugs in device drivers SAT technique for unit testing CBMC C 30K - -

2008 [36] Safety of array accesses Using proof template, supports arrays PTYASM C 2K - -

2009 [45] Accelerating computation time Extended I/O efficient technique - DVE - 2.3 × 1010 -

2009 [28] Race detection Data-race specific heuristic search JRF Java - 1,884 -

2009 [42] Verifying networked applications Cache based technique JPF Java - 13,659,700 -

2009 [51] Model checking embedded system Combining different solvers ESBMC C 1,432 - -

2009 [121] State explosion problem Directed model checking MCTA UPPAAL - 4.56 × 106 -

2010 [16] Inter-procedural analysis Using control flow graph - Php/Java 34,101 296,340 406,304

2010 [97] Finding web script crashes. Dynamic test generatn+model check Apolo PHP 16,993 - -

2011 [52] Hierarchical system Library for any modelling language PAT C# 3,248 - -

2011 [75] Multi-threaded software Checking shared variables and locks ESBMC C 6,366 - -

2012 [106] Embedded C software Combining different solvers ESBMC C 258 - -

2013 [50] Verifying large programs Compositional bounded model check BLITZ C 114.5K - -

2013 [94] UML 2 design MDD of embedded systems JPF Java 799,354 -

2013 [139] UML state machine (SM) Self-contained tool for UML SM USMMC UML - 398,101 2,385,361

2014 [96] Larger class of distribute system Using check-pointing tool JPF Java - 5,507,260 -

2014 [93] Check spurious counterexample Enabling multi-core processors CPA-Checker C - 50,000 18 × 107

2015 [65] Data flow testing Dynamic symbolic executn+CEGAR CAUT C 8,763 - -

2015 [178] Concurrency bugs Maximal causality reduction ASER Java 380K - -

to verify software, i.e., to check whether a software system

meets some desired properties. A typical model checking pro-

cess includes four main steps:

1) Constructing a model for the system under verification

In order to verify a software system, an engineer first takes

a formal modelling language to construct a model that can

represent the system and as well be suitable for formal ver-

ification. Meanwhile, it will be time consuming to learn a

formal language and as well construct an abstract model (see

modex manual at spinroot official site) for a system without

losing much information. Recent advances have thus been

proposed auto-generation of models from programs in high

level languages [55,190–195], which alleviates the cost of

learning formal modelling languages. Researches have also

been conducted on model checking of programs in high level

languages or even binaries, where programs or binaries are

directly taken as models.

2) Defining the properties that the system should satisfy

A model checker checks whether a model satisfies specific

properties (e.g., functional correctness, safety, liveness, and

fairness). Some properties need to be explicitly defined, usu-

ally in formal languages (e.g., LTL, CTL, and their exten-

sions), while the others are not. The languages for defining

the properties can be same as the modelling languages.

3) Performing model checking

Model checkers take specific algorithms to verify mod-

els against properties. A model checking algorithm mainly

searches for the state space until the whole state space has
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been explored or a counterexample is found. Typically, there

are two model checking algorithms, both of which start at the

root node of the model, but take their respective strategies

to explore the nodes and branches [2]: the depth-first search

(DFS) algorithm explores as far as possible along one branch

before backtracking; the breadth-first search (BFS) algorithm

explores the neighbor nodes first, before moving to the next

level neighbors.

4) Generating results

Correspondingly, model checkers generate one of the three

results.

• Satisfied The model meets the desired properties;

• Unsatisfied Some property is violated and thus one or

more counterexamples are produced;

• Unfinished Verification is terminated due to some

state-explosion problem.

In order to facilitate the understanding of a model checking

process, we next show how a model checker, Spin, verifies a

simple Java program. Figure 5(a) shows a Java program of

two threads. The property that the program should satisfy is:

The program never reaches a state (x = N) at runtime.

Figure 5(b) shows an abstract model in PROMELA for the

program in Fig. 5(a). During model checking, Spin checks

whether x equals to N at any transition.

• Let N be 1 Spin can quickly catch a violation to the

assertion at the step 8©, when a counterexample is found

at a depth of 0.

• Let N be 2 Spin catches a violation to the assertion at

a depth of 3 by traversing through 2© → 3© → 4© (see

Fig. 6(a)) or 2© → 3© → 5©→ 6©→ 7©.

• Let N be 3 The assertion can also be violated by fol-

lowing a trace 2© → 5© → 6© → 7© → 3© → 4©.

Meanwhile, even Spin of the latest release (released on

Nov. 01, 2015) may not easily produce such a trace due

to the state-explosion problem (see Fig. 6(b)).

A more detailed survey of model checkers and their appli-

cations will be given in Section 6, and the solutions to the

state-explosion problem will be explained in Section 7.

3.2 Extending scalability of model checking

Model checking of real-world software systems is signifi-

cantly different from model checking of hardware or network

circuits. It is also different from model checking of the toy

program in Fig. 5(a). Comparatively, a real-world software

system is much more complicated, consisting of lots of log-

ics, interactions, and/or software behaviors. The capability of

model checking must be extended such that it can verify real-

world software systems.

Fig. 5 An illustrative example. (a) Sampled Java source code; (b) ab-
stracted promela code of (a)

3.2.1 Abstracting complicated software systems

Abstraction is a technique for easing model checking of com-

plicated systems [114,115]. Several abstraction techniques

(e.g., abstract interpretation, control flow graph abstraction,

use-mod abstraction) have been discussed in 1998 [112].

They are mainly used to extract a controllable model for a

software system on which model checking can be performed.

Domain reduction abstraction [31] and abstracting dynamic

view model [19] have also been proposed to enhance the

scalability of model checking. Some other typical modelling
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and abstraction techniques that may be applicable to model

checking of large-scale software systems are:

• Levi [116] has integrated abstract interpretation with

the μ-calculus model checking technique for verifying

the value-passing concurrent systems.

• Sharygina and Browne [123] have used loop abstraction

to reduce the loops in software models.

• Choi and Heimdahl [31] have designed the domain re-

duction abstraction technique for model checking. This

abstraction analyzes the specifications (of a system)

statically and automatically produces an abstracted

model that can be reused over time for regression veri-

fication.

• Thachuk and Dwyer [134] have adapted (flow- and

context-sensitive) points-to analysis and side-effect

analysis to generate refined abstract models for model

checking.

• He et al. [168] have integrated an evolutionary algo-

rithm and another abstraction refinement method for

generating models for model checking.

• Specifying and modeling data structures, concurrent

and real-time behaviors of some concurrent system re-

lies a strong mechanism. Thus a specification language

of reactive system Action [70] has been proposed.

Fig. 6 Results generated by Spin. (a) Results generated when N = 2; (b)
encountered a state-explosion problem when N = 3

Meanwhile, abstracting complicated software systems for

model checking still faces two challenges. First, it can be

efficient to perform model checking on an abstract model,

while abstraction always leads to a problem of “information

loss”: some features of the original system may be missing

in the abstract model. So far there does not exist a solution

completely addressing this problem, although it is partially

solved by domain abstraction, an abstraction technique based

on data equivalence and trajectory reduction [135], and ab-

stract satisfiability relation which analyzes temporal proper-

ties with different levels of precision [117].

Second, the existence of counterexamples w.r.t. an abstract

model does not indicate that these counterexamples will be

adapted to a concrete model (or the objective system). There-

after, algorithms have been developed to check whether a

counterexample is spurious [66,92,93,119,120,169].

3.2.2 Verifying real-world software applications

Model checking has been applied to verify many real-

world applications such as those for medical equipments,

safety-critical systems [167] and mission critical systems

[89,104,105,159].

• Verifying device drivers Model checking is employed

to detect bugs in device drivers, one main cause of system

crashes. Witkowski et al. [37] have enabled the automated

verification of Linux device drivers and provided an accu-

rate model of the relevant parts. At Verified Software Sum-

mer School in 2012, Patrice Godefroid has shown how model

checking detects the Blue Screen of Death (BSOD) errors in

Windows 7. Similarly, model checking has been employed

to find latent bugs in Samsung’s OneNAND flash memory

[56,103].

• Verifying distributed programs Model checking has

been extensively applied to verify distributed programs. Dur-

ing verification, some issues need to be addressed: the

scheduling and non-deterministic asynchronous communica-

tions may introduce redundancy into model checking; com-

munications among processes also need to be carefully pro-

cessed [41].

For tackling these challenges, process centralization is de-

veloped which converts processes into threads followed by

merging them such that model checking can be performed on

a non-distributed application [40]. A cache-based approach

has been developed to hide redundant communication opera-

tions of networked applications [42]. This special cache man-

ages socket-based TCP/IP communications between model

checkers and applications, allowing one client connection us-

ing blocking input/output per thread. Since most of the recent

servers use non-blocking, selector-based input/output, an im-
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proved cache-based approach is proposed for model checking

[41,43,96].

• Verifying GUI applications A GUI application can be as-

sociated with many events and event-driven behaviors. Model

checking a GUI application needs to check the software be-

haviors under all potential interaction orderings, which can be

cumbersome. Instead, components of GUI applications can

be model checked by leveraging domain specific abstractions

and environment modelling [133].

Many GUI applications heavily rely on libraries such as

AWT/Swing in Java. A static analysis of user-interaction

properties of Swing-based GUI applications has been pre-

sented in [21]. It facilitates model construction and model

checking. Formal notations to specify interaction sequence

(in Java AWT) have also been developed for verifying all po-

tential thread interleavings and input sequences.

• Verifying multi-agent applications A multi-agent sys-

tem is composed of multiple autonomous agents. In order to

support the automatic verification of such system, a program-

ming language has been proposed [196]. Likewise, a proba-

bilistic model checking approach has been applied to verify

multi-agent systems [71].

• Verifying service-oriented applications Model check-

ing of service-oriented applications has also been studied.

A framework for checking functional properties of service-

oriented applications specified using COWS (Calculus for

Orchestration of web services) has been proposed in [128].

It illustrates a bank service scenario specified in COWS.

• Verifying embedded systems Model checking techniques

have been implemented to analyze and verify reactive embed-

ded system [197]. Eisler et al. [198] present the preliminary

result of an automotive case study in the context of the Euro-

pean project EASIS.

• Verifying aspect-oriented programs CTL-based model

checking has been developed to verify aspect-oriented pro-

grams which are abstracted as state machines [149].

• Verifying mobile applications Model checking tech-

niques are useful to generate test case for mobile applications.

Espada et al. [199] have presented the use of model-based

testing to explain the potential human interaction with an-

droid applications. Aceto et al. [200] have proposed a method

to provide run-time decision support for mobile cloud com-

puting application using model checking.

• Verifying web applications Model checking has been

performed to verify the key components of some web appli-

cation supporting XML data manipulation operation [157].

Haydar et al. [44] have verified web applications using model

checking techniques; the stable and unstable states are identi-

fied during verification. Artzi et al. [97] have combined con-

crete and symbolic execution with model checking in order

to generate test inputs for web applications and validate the

conformance of the outputs to the specification in HTML.

Halle et al. [46] have proposed a runtime enforcement to re-

strict the control flow of a web application. Model checking

is employed to reduce server processing time while handling

unexpected requests.

Safety testing of web-application using model checking

has been studied widely. Huang et al. [201] have explained

the benefit of using counterexample traces for safety veri-

fication of web applications. Automatic derivation and gen-

eration of test cases from counterexample obtained through

model checking for testing (security testing) of web-based

applications is available in literature [202,203]. Similarly,

model checking techniques have been implemented to verify

class specification [204], UML design [205], BPEL (Busi-

ness Process Execution Language) [206] and REST (Repre-

sentational state transfer) web applications [207].

• Verifying database applications Model checking tech-

niques have been implemented to verify database applica-

tion recently. Gligoric and Majumdar [208] propose model

checker for database-backed web applications. The model

checker interposes between program code and database layer,

and tracks the effects of queries made to the database pre-

cisely.

• Verifying safety and mission-critical systems Model

checking techniques have been applied successfully in var-

ious safety and mission-critical physical, chemical, and bi-

ological systems as well as transportation (ground, water,

pipeline, cable, and aviation), oceaonography, and astron-

omy. Using model checking techniques, Honeywell has ana-

lyzed the behavior and correctness of (a) automatic synthesis

of real-time controllers, (b) real-time scheduler of the MetaH

executive, (c) fault-tolerant ethernet protocol, (d) time parti-

tioning in integrated modular avionics, and (e) synchroniza-

tion protocol for avionics communication bus [209]. Cimatti

[210] has used model checking techniques to verify safety

layer of communication protocol used in several distributed

safety-critical products and embedded control system. Like-

wise, Hoque et al. [211] have proposed a probabilistic model

checking method to analyze the performability and depend-

ability properties of safety-critical systems such as aerospace

applications, and satellite system [212].

Besides, model checking techniques have been broadly

used for verifying other systems such as verifying spacecraft

controllers and real-time OS systems [26], analyzing aircraft

collision avoidance system [89,104,105,159], human inter-
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face issues in complicated, critical systems [23], security-

critical system [213], crowd protocols [92], UAV mission

plans [137], applications in railway domain [214], railway

signaling system, the hydraulic system in Airbus A320, nu-

clear reactor of the TMI accident [167], and the traffic light

controlling system [170].

• Verifying biological applications Model checking tech-

niques have been implemented to verify biological appli-

cations such as biological models, reaction system [215],

and bio-chemical reaction models [216]. Clarke et al. [217]

present an algorithm for statistical model checking of tempo-

ral properties and automated analysis of T-cell receptor sig-

nalling pathway.

• Verifying binaries Blackham and Heiser [218] have pro-

posed a framework for model checking of binary code. Dur-

ing model checking, it determines the loop counts and infea-

sible paths in binaries.

• Detecting malware Model checking is useful for detect-

ing malicious behaviors from source programs [219]. A bi-

nary can also be modelled as a pushdown automata and model

checking is then performed to detect malicious behaviors of

the system under test [138].

3.3 Verifying other software artefacts

Model checking can be used to verify software requirements
[95,99,136,187].Barber et al. [34] have combined simulation
and model checking to automate the evaluation of software
architecture safety and liveness during the requirements col-
lection and analysis phase. Giannakopoulou and Magee [132]
have introduced the fluent property, an property naturally ex-
pressing the properties w.r.t. state for normal system and ac-
tion for event-based system, for model checking of software
requirements.

The idea of verifying software design models has been dis-
cussed by Visser et al. [26] and was popular during 2000–

2005. Model checking can be performed on verifying de-

sign models specified in xUML (an executable subset of

UML) [32,124]. It can also integrate state space reduction

[125] for verifying communication structure [126]. Similarly,

many approaches have been proposed on model checking of

UML design models [67,69,139,152], consistency checking

of UML design models [33], verifying protocol conformance

of embedded systems based on UML 2 [94], checking consis-

tency between UML class model and its Java implementation

[110], merging design models [186], specifying metamod-

els [150], and checking distributed models [68]. It also bene-

fits to software maintenance (i.e., reducing the future mainte-

nance cost).

The dynamic behaviors of a software system may also be

associated with its environment(s). However, environments

are hard to describe since their behaviors depend on invoca-

tion of system components. Auto-generating environments

for a Java program fragment is presented in [24], where an

environment model is abstracted by assuming environment

behaviors. Environment generation is also integrated with

model slicing and error reduction for proving the absence of

errors in [25].

3.4 Verifying software product-lines

Software product-line (SPL) is a collection of methods, tools,

and techniques for producing similar software-based systems.

Dynamic SPL (DSPL) produces products which can adapt

proactively to environment changes.

Model checking has been used for verifying SPLs and

DSPLs. Lauenroth et al. [54] have performed model checking

of domain artifacts in SPLs, which aims to verify all permis-

sible products (specified with I/O automata) from a product

line fulfill the specified properties (specified in CTL).

However, performing model checking on SPLs and DSPLs

has several challenges. First, it is hard to maintain the consis-

tency of the product line variability models over time. Vier-

hauser et al. [53] have presented how incremental checker can

help to maintain consistency on product-line variability mod-

els. Indeed, the checker can work across different levels of

variability models and can even check consistency between

variability models and source code. Consistency checking in

DSPLs has also been performed on UML profiles [81].

Second, the number of states can grow rapidly when SPLs

behaviors are model checked against temporal properties.

Thus Classen et al. [76] have transformed the problem of

model checking of an SPL to verifying a feature transition

system that describes the combined behaviors of all the soft-

ware systems w.r.t. an SPL. Model checking using symbolic

representations [77] and symbolic checking with SAT-solver

[78] also tackle the same problem.

Furthermore, SPL has limitations on dealing with non-

boolean and some features. A solution is proposed in [80]

which integrates software constructs with SPL behavioural

specifications for model checking.

Observation 3 Model checking has been extended to ver-

ify real-world software applications: it benefits to detecting

bugs and malicious behaviors from software systems and as

well software requirements and designs; it has also been suc-

cessfully applied to verify different types of software appli-

cations.
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4 Model checking for software testing and
program analysis

Model checking can also be integrated with software testing

and program analysis such that software defects can be more

effectively detected.

4.1 Model checking for software testing and debugging

Model checking is sometimes taken as a testing and debug-

ging technique [220], as both model checking and software

testing can be used for verifying a system under checking:

model checking formally verifies the abstract model of pro-

gram code, whereas software testing informally verifies pro-

gram code itself. Model checking differs from testing in that

model checking can approve or disapprove some properties

of the system, while software testing cannot prove the ab-

sence of bugs.

Meanwhile, model checking can still supplement software

testing in the sense of reducing test cases generated. Specifi-

cally, a counterexample generated by model checking can be

used as a test for detecting some defect or locating the possi-

ble causes of some error [221]. For instance, let N be 5 in our

example (see Fig. 5(b)). Spin detects an error when checking

this code (we set the bound for model checking to avoid the

state-explosion problem). The counterexample found during

model checking can be traced as Fig. 7 shows. This can be

used as a test for software testing. Hong et al. [64] have in-

tegrated dataflow analysis with model checking to automate

test generation.

Fig. 7 Tracing counterexample when N is 5

Model checking is also benefited from some techniques

typically used in software testing.

• Krishnamurthi and Fisler [149] have taken incremen-

tal analysis during model checking for verifying some

changed components instead of verifying the entire sys-

tem.

• Yang et al. [185] have also proposed the idea of regres-

sion model checking. Regression model checking incre-

mentally checks a new version of a system, and thus the

performance of regression model checking surpasses

those of the traditional model checking techniques sig-

nificantly.

• Chen et al. [170] have proposed mutation-based model

checking, focusing only on checking the parts affected

by the mutants. It accelerates coverage estimation.

• Gui et al. [156] have proposed a combination of hypoth-

esis testing (to deterministic system components) and

probabilistic model checking (to lift the results through

non-determinism) to provide assurance and quantify the

error bounds.

4.2 Model checking and code analysis

Model checking can be taken as a dataflow analysis [164,222]

since they are both concerned with properties of program

points or states. The connection between model checking and

dataflow analysis can be precisely established through ab-

stract interpretation [112].

Furthermore, model checking and static analysis can be

closely related with each other [26,27]. Static analysis can

help reduce the size of the program to verify. Model check-

ers such as JPF allow model checking and static analysis to

be integrated with each other: static analysis computes par-

tial order information which can be used by model checking

to reduce the state space to explore; the partial order infor-

mation can be refined by some static analyzer, and JPF can

use this refined information for partial order reduction during

verification.

Model checking has been applied to software analysis,

such as analyzing software deviation [30], reducing auto-

generated redundant assertions [122], and solving constraints

for infinite-state systems [113].

Model checking can help discover some of the aforemen-

tioned bugs by statically analyzing the program code. Null

pointer and double free can be detected by model checking.

• Park et al. [17] have explained how model checking can

be used for static analysis of dynamically changed data

structures (e.g., object creation and growing/shrinking

call stacks) in multi-threaded Java programs. Both Java



652 Front. Comput. Sci., 2018, 12(4): 642–668

source code or bytecode can be directly taken as the in-

put of this model checking framework.

• Iosif [18] has presented an object-based model checker

which can statically analyze a program and reduce the

state space to explore by discovering symmetries that

are induced by dynamically-created objects.

• Rungta and Mercer [15] have presented an algorithm of

reconstructing calling context using the runtime stack

with more accurate control flow graph. This algorithm

helps estimate the distance to an error state and also can

detect the errors in the program with function calls.

• Bouajjani et al. [111] have presented how model check-

ing can be used for statically analyzing C code for

manipulating dynamically linked data structures with

pointer selectors and finite domain non-pointer data.

• Darga and Boyapati [175] have proposed analysis tech-

niques to optimize and speed up model checking the

properties of data structures by pruning redundant states

and operation without checking them.

• Ku et al. [58] have developed benchmarks consisting

of 298 code fragments. They have shown that a model

checker (SetAbs) can discover buffer overflows in the

benchmark.

Static analysis faces difficulties created by inter-procedural

function calls. The transformation of model checking of inter-

procedural aspects to an equivalent model checking task has

been studied in 2010 [184]. Graph rewriting rules for produc-

ing a model checking automaton from a control flow graph

are designed. The representation for inter-procedural anal-

ysis, limited to binary lattice inter-procedural analysis, has

been presented in [16]. It uses the regular graph theory for

easing its integration with model checkers.

Model checking has been implemented to precisely detect

data races of Java bytecode by incorporating the knowledge

of the Java Memory Model [28]. It helps verify the program

satisfy the sequential consistency. This framework also im-

plements some data-race-specific heuristic searching algo-

rithms to find short counterexample-indicative paths. The de-

tected data races can also be debugged and eliminated by ana-

lyzing the counterexample traces and histories [29]. Leesata-

pornwongsa and Gunawi [158] have proposed an open source

model checking framework which can be adapted to many

distributed cloud systems to find concurrent bugs raised by

non-deterministic distributed events. Verification of safety

and liveness properties of unbounded integer variables on a

concurrent systems has been proposed by Bultan et al. [145].

Huang [178] has proposed the stateless model checking

method to detect the concurrency bugs of Java programs

with maximal causality reduction. Burckhardt et al. [177]

have presented how concurrent data types on relaxed memory

model can be checked using model checking. Similarly, sym-

bolic model checking has been implemented to verify event-

driven real-time systems [142].

Observation 4 Model checking can supplement or be sup-

plemented by software testing and program analysis.

5 State-explosion problem and solutions

State-explosion problem affects the scalability of model

checking in verifying real-world software systems. This sec-

tion briefly describes the state-explosion problem and some

solutions provided in model checking tools.

5.1 Problem description

A state-explosion problem occurs when memory is exhausted

without completing searching the state space. When verify-

ing software, a model checker usually needs to solve the

state-explosion problem as the number of states grows dur-

ing state exploration. As what we have explained in Section

3, a model checker usually takes some algorithm (DFS or

BFS) to explore the state space. When DFS is taken, the state-

explosion problem can occur if it has potential counterex-

amples at whatever depth of another branches. When BFS

is taken, the problem can occur if the counterexample lies

deeply in one branch.

The state-explosion problem can occur even in a few lines

of code (e.g., the program in Fig. 5(b)). Figure 8 shows a

path explored by Spin. As Fig. 8 illustrates, Spin exhaustively

searches the state-space until the problem is detected.

Fig. 8 Example of state exploration

5.2 Solutions

Solutions have been extensively proposed to address the

state-explosion problem such that model checking can be
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much more competitive and practical for verifying real-world

software [11]. The solutions can be classified into four cate-

gories.

Solution 1: reducing the number of states
Symbolic model checking represents models by sets of

states and transitions instead of individual states and tran-

sitions. Its efficiency can be improved by reducing the size

of Binary Decision Diagram (BDD) using ordered BDD

(OBDD) [223], CTL algorithm using BDD [189] and some

other methods [89,104,105,159].

Partial order reduction reduces the state-space to search

and proves that the reduced space is sufficient for checking

w.r.t. a given property. Various partial order reduction tech-

niques have been proposed [162,224–230]. In addition, since

the state execution order does not affect the result in the in-

dependent concurrent actions, partial order reduction reduces

independent interleavings of concurrent processes to reduced

transitions. However, this technique only reduces equivalent

independent states. If the states are dependent, partial order

reduction is not capable of solving the state-explosion prob-

lem (see the example in Fig. 6(b)).

Bounded model checking is a symbolic model checking

technique using SAT solvers, rather than using BDD [188].

Basically, it unrolls the transition relation upto a fixed k steps

for checking violations; it repeats the above process with

larger k if no counterexample can be found within k steps.

Hence it is an incomplete checking method. Some methods

have been proposed to estimate k such that bounded model

checking can be complete [188,231–234]. Besides, incre-

mental bounded model checking increases k without much

extra cost of restarting [235]. Bounded model checking has

been updated by replacing SAT solvers with SMT solvers,

as SMT solvers have extra advantages in constraint solving

[106,118,236]. Bounded model checking has also been tested

using non-linear program solver [62]. Furthermore, it can

be implemented in order to model check multi-threaded C-

programs [63] and Qt applications [237].

Probabilistic model checking is applied for verifying the

qualitative, quantitative and stochastic behaviors of a proba-

bilistic system [131,238] and regenerative concurrent system

[108]. It takes a property and a model as its input and delivers

yes, no, or some probabilities as its outputs. Statistical model

checking is performed by monitoring several runs of the sys-

tem w.r.t. some property. The output is computed from the

statistics [61,183]. It combines probabilistic simulation with

some statistical method which provides clear error bounds

[239]. Command-based importance sampling can reduce the

cost of verification in statistical model checking [240]. Para-

metric model checking can support the computation of ag-

gregate functions for a wide range of performance metrics to

evaluate reliability of run-rime quality-of-service [90,109].

Besides, symmetry reduction [143,144], state merging,

state caching, and stratified caching [241] are techniques for

reducing the number of states.

Solution 2: partial model checking
Abstraction attempts to simplify model checking by ab-

stracting away irrelevant properties from the concrete state

transition system. A number of methods for obtaining use-

ful abstract models to verify properties of the program are

discussed by Clarke et al. [146,166]. Loop abstraction has

been proposed to reduce the number of states to explore by

minimizing loop executions [123]. Glass box software model

checking has been proposed to prune numbers of redundant

states without explicitly checking them [172]. Instead, in

each steps, it checks a set of states together.

Counterexample guided abstraction refinement (CEGAR)

is an abstraction method where precise and abstract represen-

tation of the system is verified by starting from verifying a

relatively small representation of the system [242]. When a

counterexample is found, the tool analyzes whether the vio-

lation is feasible: If the violation is feasible, it is reported;

Otherwise a proof of the infeasibility is given and analysis is

iteratively performed. CEGAR has also been used for higher

order model checking to verify functional programs [179].

Directed model checking guides exploring first the parts of

the state-space which contains reachable error states based

on specific criteria [121,160]. It can verify huge systems by

only checking the specific parts of the state-spaces. A type-

directed abstraction refinement to address the higher order

model checking is proposed by Ramsay et al. [161].

Beside, slicing [243], dead variable detection [244], dy-

namic delayed duplicate detection [245], nevertrace claim

[246], and local first search [247] are some of the other partial

model checking techniques to reduce the state explosion.

Solution 3: compacting the state consumption
Storing compressed states in memory (e.g., run-length en-

coding, static Huffman compression, or byte masking [248])

is an another solution to the state-explosion problem which

is mainly caused by the heavy consumption of memory on

saving every visited states during state exploration.

Bit state hashing is used for deciding a visited state. Bloom

filters based on such hashing can explore much larger state-

space. The accuracy of coverage estimation can get improved

by leveraging bit-state hashing and the statistics from multi-

ple verification runs [107]. Hash compact stores a single hash

value, facilitating solving tractable problems in verification.
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Incremental hashing in [249] combines both bit state hashing

and hash compaction.

Solution 4: utilizing the other hardware resources
A large system can be verified through distributing its

searching tasks on number of computers [39,250,251]. Parti-

tioning the program texts into sequentially composed subpro-

grams and then examining each sub program separately and

sequentially on one computer [252], or distributively on many

computers [253] help alleviate the state-explosion problem.

Deploying multiple cores for model checking can re-

duce the cost of computing successful/unsuccessful execu-

tions. However, it does not directly solves the state-explosion

problem. Several proposals are available for parallelizing

model checking in order to speed up computing success-

ful/unsuccessful executions on multi-core systems [102,254–

258].

I/O efficient model checking uses external memory to save

visited states during search. Typical algorithms include DAC

[259], MAP [260], IDDFS [261], and IOEMC [262]. Barnat

et al. [45] have extended this technique to search over a net-

work of computers.

Stateless model checking avoids searching and storing un-

reachable states [173,178,263]. The states of the program un-

der checking can be stored in different hardware and ma-

chines over the network in addition to the global memory

[180]. Model checkers based on SAT and SMT solvers also

implement the stateless model checking [263] such that they

can verify large-scale programs. Stateless model checking

has been used to verify event driven applications such as web

pages and mobile applications [174]. It has also been imple-

mented to model check C/C++11 code [147] and detects con-

current bugs under relaxed memory models [91].

Besides, the sweep-line method deletes non-prioritize

states from internal memory during state space exploration

[264]. Compositional model checking is also performed to

solve the state-explosion problem [171]. State explosion

problem is also handled by implementing simulation-based

abstractions [79] and probabilistic model checking tech-

niques [131] when SPLs are verified.

5.3 Discussions on the existing solutions

The solutions to reduce the state-explosion problem are

mainly categorized in four independent major directions.

Since the number of states grows exponentially, reducing the

number of states can slow down the exponential growth to

reach the state-explosion. On the other hand, since the state-

explosion problem is mainly due to the consumption of mem-

ory of the system, compacting the space needed to save a

state or saving the required information of the states to the

other available hardware resources can somehow solve this

state-explosion problem. In similar way, model checking can

partially verify the decomposed partial abstraction of the real

system. Hence, it can verify most of the properties of the ab-

stracted code, but it is not exhaustive in nature. Moreover,

partial model checking with reduced number of compacted

states saved on the other available hardware resources be-

side RAM can be a higher level solution for this historical

state-explosion problem. In order to make it exhaustive, such

model checking tool (with reduced number of compacted

states saved on other available hardware resources) can check

the original or decomposed source code rather than decom-

posed partial abstraction.

Observation 5 Model checking faces a strong challenge in

solving the state-explosion problem. Some solutions are: re-

ducing number of states, compacting state consumption, per-

forming partial model checking, and utilizing other hardware

resources.

6 Model checkers

Many model checkers have been developed. Table 3 lists the

model checkers that are referred in at least two papers out

of the 173 papers. The column “Modeling Languages” lists

the modelling languages taken by these checkers: some take

specific modelling languages, some use high-level language

such as C/C++ and Java, and some directly take binary code

as their input. The column “NP” represents the number of

publications in which the tool is selected.

Spin Spin is an open source model checker. It can efficiently

verify multi-threaded software and also allow embedded C

code to be part of the model to check [100,101].

• Extensions Several extensions to Spin are available:

optimizing the communication structure and using parallel

BFS LTL checking have been presented in [126] and [20], re-

spectively; αSpin is an XML-based extension to Spin that re-

fines the abstract model and properties for verification [117];

dSpin, a dynamic extension to Spin, exploits symmetries in-

duces by dynamically created objects [18]; MPI-Spin, a par-

allel extension to Spin, can verify parallel numerical pro-

grams [148,155]; and Swarm, a parallel version of Spin for

multi-core systems, is discussed in [102].

• Applications Spin has been used to trace logical design

errors [87]. It has also been used to analyze and verify soft



Anil Kumar KARNA et al. The role of model checking in software engineering 655

Table 3 Popular model checkers used in the 173 papers

Tool Modelling language NP Applications reference

Spin Promela 15 [18–20,87,99–102,117,126,148,155,157,171,181]

JPF Java 14 [22,26–29,40–43,94,96,134,160,185]

Bounded model checking tools SMV, C, C++, Java 13 [47,48,50,51,56,58,60,62,63,74,75,103,106]

SMV SMV 10 [23,38,64,89,104,105,133,136,142,159]

NuSMV SMV 6 [30,31,47,79,152,187]

Bandera Java 6 [21,24,25,35,82,134]

PAT CSP 5 [52,71,88,156,182]

Cospan S/R 5 [32,123–125,127]

Prism Prism 2 [92,137]

BLAST C 2 [55,103]

XChek XKripke, SMV 2 [86,154]

SGM VPL (Verification Procedure Language) 2 [167,170]

Verisoft C, C++ 2 [83,165]

ware architect model [19], detect safety violation in software

requirements [99], and verify XML data manipulation op-

erations [157], web application [44], Tempoline OS [181],

and concurrent system models [171]. In addition, Spin has

been widely presented in Spin workshop (see spinroot official

site). Some of applications to verify are: RUBIS μ-Kernel,

message flow graphs and message sequence charts generated

graphs, scenarios based specifications, business process mod-

els, multi-threaded C and systemC programs, C code gener-

ated by domain specific language. Spin also takes behavioural

analysis of the enterprise JavaBeans, checks the atomicity of

codes, and performs runtime verification of energy consump-

tion of smart phone.

JPF Java Pathfinder (JPF) is an open source tool which

combines static analysis and model checking to verify Java

programs [27,265]. JPF was initially designed as a translator

from Java to PROMELA for Spin, while it can now verify

Java bytecode directly: it can store, match, and restore pro-

gram states of Java bytecode for verification.

• Extensions Some extensions to JPF are: Java Race

Finder (JRF) is developed for detecting data races [28]; JRF-

Eliminator (JRF-E) is an extension to JRF, which provides

suggestions to eliminate data races [29]; JPF-AWT is for ver-

ifying GUI-based concurrent applications [22] by verifying

all possible thread interleavings and input sequences.

• Applications JPF was designed for detecting defects

(such as data races and deadlocks) in concurrent programs

[28,29], while it is applicable to many complicated appli-

cations, such as distributed and networked applications [40–

43,96], spacecraft controllers and realtime OS systems [26],

embedded systems [94], and GUI applications [22]. In some

cases, points-to and side-effect analyses help analyze Java en-

vironment [134]. JPF can be used for test case generation by

means of symbolic execution, low level program inspection,

program instrumentation and run-time monitoring. It has also

been applied to regression model checking [185] and directed

model checking based on coverage measurement [160].

Symbolic model checkers SMV is the first model

checker to support symbolic model checking. It has been

used in checking declarative system against static proper-

ties [38], and analyzing aircraft collision avoidance system

[89,104,105,159], event driven real time system [142], facil-

itating dataflow testing [64], generating tests from require-

ments [136], and verifying GUI applications [133].

Model checkers often generate counterexamples which are

not easy to understand and thus it hinders many software en-

gineers from using them. A tool collection around SMV has

been developed for facilitating engineers to verify, e.g., hu-

man interface issues in complicated, critical systems [23].

SMV’s extension NuSMV [266] can verify requirement

specifications [31,187], UML activity diagrams [152], soft-

ware deviations [30], and abstract SPLs [79]. Similarly,

XChek, a multi-valued symbolic model checker, allows to

check models that contain uncertainty, disagreements, or rel-

ative priorities [154]. Likewise, symbolic model checker Eu-

reka is designed to check linear programs with arrays [59].

Bounded model checkers BMC, CBMC, and BLITZ are

model checkers supporting bounded model checking tech-

niques. BMC permits to find a large number of redundant

assertions to speed up the verification process [122]; it has

been applied, together with NuSMV, to verify a flight guid-

ance system [47]. CBMC has been used to verify embedded

software in multi-core systems [74] and verify, along with

BLAST [103], flash driver [56]. It has also been used, com-

bined with CEGAR, to reduce false positives in model check-

ing [47]. ESBMC has integrated different solvers to analyze
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C code and finds number of bugs (buffer overflow, invalid

pointers, etc.) in the benchmarks related to arithmetic and

and pointer arithmetic [51,75,106].ESBMCQtOM is developed

to verify Qt-based applications [237]. BLITZ helps find bugs

in large-scale programs [50], LLBMC finds bugs and runtime

errors in C/C++ programs [60], and Lazy-CSeq model checks

multi-threaded C-programs.

Probabilistic model checkers PAT supports various prob-

abilistic model checking algorithms [182]. PAT implements

model checking techniques for 20+ languages [88]. It inte-

grates partial order reduction, symmetry reduction, and pro-

cess counter abstraction [267], and has been used as sym-

bolic model checker for verifying hierarchical system [52]

and multi-agent systems [71]. Rapid has been used for relia-

bility prediction and distribution [156]. Prism has been used

for verifying algorithms, complex systems [268], crowd pro-

tocols [92], and UAV mission plans [137].

Dynamic model checkers Dynamic model checkers (e.g.,

Verisoft and Bandera) ease the verification by directly taking

programs in high level languages as models. Bandera enables

extraction of safe, compact finite-state models from JAVA

code [82]. It has been used to analyze GUI libraries such as

SWING [21], verify interstage business process management

software [25], generate environments for Java program frag-

ments [24], and perform points-to and side-effect analyses

of Java environment [134]. Bogor [140] provides an Eclipse

extension for verifying object-oriented designs [35]. VeriSoft

systematically explores the state-spaces of systems composed

of concurrent processes written in high level languages such

as C/C++ [83,165]. BLAST has been used, combined with

CBMC [103], to verify SSL and C libraries [55] and flash

driver [56].

Domain-specific model checkers Domain specific model

checkers may be effective in verifying some large-scale soft-

ware systems. Bogor allows to extend and customize its

modelling language and algorithms to create domain-specific

model checking engines [35]. PTYASM uses proof templates

in checking the domain of array bounds [36]. It can verify the

safety of array accesses in majority of test cases which were

not easy to verify by existing tools due to the loop unrolling.

Other model checkers Cospan has been used for analysis

and verification of UML designs [32,124] or designs in other

languages [127]. It has been successfully applied to verify the

designs of online ticket sale system [125] and NASA robot

control software [123]. Rational Rose allows UML models to

be checked [69]. ObjectCheck analyzes xUML models [124].

CASE has been used to analyze UML models of middleware

[67]. MCC allows consistency among UML models to be

checked [33]. USMMC checks UML state machines [139];

it also provides editing and interactive simulation. SGM has

been used to analyze railway signaling system, the hydraulic

system in Airbus A320, nuclear reactor of the TMI accident

[167], and the traffic light controlling system [170].

Other tools appearing in reviewed papers are summarized

in Table 4. Besides, tools such as Magic, Pex, Yogi, Slam,

Chess, SAGE [269], and Blast [270] have been frequently

mentioned in the articles. Many famous model checkers, such

as DIVINE, UPPAAL, Murphi, and CADP, are not included

in this survey, as they are rarely used by the selected papers.

Table 4 Other tools used in selected 173 papers

Tool Uses in selected papers

ABC toolset Verifying software product-lines [78]

Apolo Locating bugs in web-applications [97]

Arcade Evaluating software architectures [34]

ASER
Concurrent programs with maximal causality

reduction [178]

ASTRAL Using SMC technique for theorem proving [84]

CAUT Data-flow testing of programs [65]

CDSChecker Model checking C/C++11 code [147]

CPA-checker Checking spurious counterexamples [93]

CMC Checking service-oriented applications [128]

DDVerify Verifying Linux device drivers [37]

DOPLAR Verifying software product-lines [53]

FDR Analyzing CSP-Z deadlocks [130]

HighSpec Checking realtime systems in OZTA models [72]

JMOCHA Analyzing modular design structures [85]

LTSA Analyzing fluent property of a model [132]

MCTA A directed model checking tool [121]

PIPAL Prune number of redundant spaces [172]

PIPER Model checking message passing programs [163]

Plato Verifying asynchronous designs [169]

Platu Verifying non-trivial concurrent system models [171]

POMMADE Detecting malware and tracking program stack [138]

PREFACE
Abstraction refinement for higher order model

checking [161]

PuMoC Analyzing sequential C/C++/Java programs [57]

R4 Stateless model checking of web applications [174]

SAL Analyzing data structures changes [17]

SAMC Detecting concurrency bugs [158]

SetAbs Detecting buffer overflows [58]

SMC Detecting symmetries [153]

TReMer+ Verifying models of distributed systems [68]

XMC Verifies Java metalocking algorithms [151]

6.1 Compositional model checkers

BLITZ implements compositional and property-sensitive al-

gorithms for finding bugs in large-scale systems [50]. It de-

composes behaviors of a program to a sequence of bounded

model checking instances preserving accuracy of bounded
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model checking. It then uses control- and data-flow analyses

to incrementally generate smaller bounded model checking

instances. It has been used to evaluate vulnerability bench-

marks containing real-world programs.

Platu has been applied to compose several model checking

techniques for verifying concurrent systems [171].

6.2 Combined model checkers

Several verification languages can be combined together such

that verification can be more effective. In such cases, models

are usually written in a single or a mixture of different lan-

guages. The combination of first-order quantifier, relational

operators, and temporal logic operators in a single frame-

work in a BDD-based model checker has been introduced by

Chang and Jackson [73].

Model checking techniques can be combined with each

other for optimizing performance.

• Santone [98] has combined heuristic searches with

model checking in order to overcome the state-

explosion problem.

• Choi and Heimdahl [47] have combined symbolic and

bounded model checking to accelerate the verification

process and to generate much more effective counterex-

amples. Symbolic model checking verifies whether a

system holds a property. If fails, bounded model check-

ing generates counterexamples.

• Post et al. [48] have combined bounded model check-

ing and abstract interpretation to reduce false positives:

spurious errors of C code are emitted by an abstract

interpretation and false error reports are reduced by

bounded model checking.

• Predela et al. [49] have performed bounded satisfiabil-

ity checking of realtime systems. It shows the feasibil-

ity of bounded satisfiability checking and refinement

checking, with modest performance loss with respect

to bounded model checking.

• Beyer and Lowe [129] have combined abstraction, CE-

GAR and interpolation together for explicit value anal-

ysis. It extracts information from infeasible paths where

the resulting interpolants refine the abstract model.

Combining constraint solvers can also enhance model

checkers. CBMC has integrated SAT solvers CVC3, Boolec-

tor, and Z3 to verify relative large problems in reduced time

[51,106], compared with that using a single solver. This in-

tegration provides supports for variables of finite bit width,

bit-vector operations, arrays, structures, unions, and point-

ers. ESBMC extends CBMC by taking benefits from multi-

threaded software and multi-core systems [74], and outper-

forms existing tools [75].

Observation 6 SPIN, JPF, BMC, SMV, NuSMV, Bandera

are popular model checking tools in SE community. Besides,

different model checking and verification techniques can be

combined together to overcome their limitations or increase

their performance.

7 Other analysis and verification techniqes

Model checking is one of the formal verification techniques.

There exists some other code analysis and verification tech-

niques such as type checking (type system), symbolic exe-

cution, and theorem proving. Model checking can be inte-

grated into many other analysis and verification techniques.

This section briefly discusses the other techniques and the in-

tegration of model checking with the other techniques.

Type system Type system is an approach to program veri-

fication. The main purpose of a type system is to reduce the

bugs existing in a computer program by checking the con-

sistent and sound connection between different parts (vari-

ables, expressions, functions, and modules) of the programs.

It can be executed statically at compile time, dynamically at

run time, or both.

Typically, type systems are defined in a syntactic and mod-

ular style, unlike model checking which is performed in a

semantic and whole program style [141]. This is why a type

system can justify the program acceptance and model check-

ing the program rejection [141].

Many researchers have taken advantage of the type sys-

tems to for a better, complete and sound model checking of a

program.

• Chaki et al. [163] have focused on using types as mod-

els for model checkingmessage passsing programs. The

behavioral properties of system such as deadlock free-

dom, race conditions, and message understood proper-

ties are statically checked.

• Naik and Palsberg [141] have proposed a type system

which is equivalent to model checking and verifying

safety properties of imperative programs. It performs

type checks of the programs which are already accepted

by model checker. They also study the relative expres-

siveness between the type systems and model checking.

• Roberso et al. [176] have employed model checking to
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automatically test the soundness of a type system. This

reduces the state space of the software model checker,

hence reduces the impending state-explosion.

Symbolic execution Symbolic execution is widely used in

many code analysis, testing, and verification tools [271]. It

executes a program using symbolic values rather than actual

inputs as its inputs [272,273]. It tries to cover all feasible

paths of a code snippet by exhaustive exploring path.

Both symbolic execution and model checking can be used

for code analysis. However, symbolic execution suffers from

the path-explosion and model checking suffers from the state-

explosion problem. Researchers have tried to integrate the

both techniques for code analysis, testing, and verification.

JPF is an explicit state model checker and also a symbolic

execution tool.

• Khurshid et al. [274] have generalized symbolic execu-

tion for model checking and testing by instrumenting a

source to source translation of a program. They use JPF

to perform symbolic execution of the program to handle

dynamically allocated structures (e.g., lists and trees),

method preconditions (e.g., acyclicity), data (e.g., inte-

gers and strings) and concurrency.

• Siegel et al. [155] have combined model checking and

symbolic execution to verify the correctness of parallel

programs w.r.t. floating-point numbers. The path con-

dition from symbolic execution constrains the search in

parallel [148].

• Su et al. [65] have proposed a hybrid dataflow testing

framework, in which dynamic symbolic execution is

applied for testing and model checking for reachability

analysis.

Theorem proving Theorem proving is an approach to

program verification. In theorem proving, a program under

checking is modelled as a set of mathematical definitions in

some formal mathematical logic [275]. The desired proper-

ties of the system are then proved from these definitions.

Model checking is a state-based automatic approach but

cannot handle complex formalisms, whereas theorem proving

is a proof-based manual approach which can handle complex

formalism [275]. In other words, model checking is an algo-

rithmic verification and theorem proving is a deductive veri-

fication. Model checking can only be applied on a finite-state

system, but theorem proving can be applied on an infinite-

state system [276]. Model checking can generate counterex-

ample, but theorem proving cannot generate it.

Researchers have tried to combine both of the formal veri-

fication techniques to verify parallel processes [277], Haskell

programs [278], and AMBA [279].

• Uribe [276] has presented several earlier work on com-

bining these two techniques. It includes the important

links (abstraction and invariant generation) between

theorem proving and model checking and the combi-

nation method using loosely coupled combinations and

tight combinations.

• Amjad [275] has implemented a model checker for the

modal μ-calculas as a derived rule in a mechanical the-

orem prover. The tool does not cause an unacceptable

performance penalty.

• Seidel [280] has proposed a multi-level combination of

these two methods to verify a functional unit. It basi-

cally uses a theorem prover with the help of a model

checking tool.

Observation 7 Model checking can be integrated with other

code analyzing and verification techniques such as type sys-

tems, symbolic execution, and theorem proving for efficient

analysis, testing, and verification.

8 Conclusion

Model checking is a formal verification technique which has

been widely employed for past 35+ years in the field of com-

puter science and engineering. We reviewed 173 articles on

model checking published at reputed conferences and jour-

nals on software engineering and draw out its role, particu-

larly in software engineering. When applied to software de-

velopment, model checking can improve the reliability of

software systems through verifying software artifacts, detect-

ing software defects and malware, and/or supplementing or

being supplemented by several other techniques (testing, soft-

ware debugging, data-flow analysis, constraint solving, and

deviation analysis). It has been used to verify various types of

software systems such as service-oriented application, Web-

based applications, banking applications, GUI-applications,

multi-agent applications, mobile applications, biological ap-

plications, embedded system, object- and aspect-oriented

system, database systems, safety- and mission-critical sys-

tems including traffic, transport, avionics, and space sys-

tems. It can also be integrated with other formal methods to

optimize and magnify the analysis and verification process

of properties to a rather big real-world program. Although
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model checking has been used widely in different areas of

software engineering, research on model checking parallel

programs, real-world large system and application software,

and mobile and embedded applications still has a long path to

take in order to meet the specific requirements of the formal

verification team.
Model checking is suffering from a severe state-explosion

problem. Even though various methods have been proposed

to tackle this historical problem in different directions, the

state-explosion problem still persists. There still have some

space to reduce this problem by integrating different solutions

together for an optimized verification process.
We believe that the survey is comprehensive; it can help

guide engineers and researchers to choose and apply model

checking techniques and tools when developing their soft-

ware systems, and also improve the capabilities of many

software development and verification techniques.
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