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Abstract Point cloud registration is an essential step in the

process of 3D reconstruction. In this paper, a fast registra-

tion algorithm of rock mass point cloud is proposed based

on the improved iterative closest point (ICP) algorithm. In

our proposed algorithm, the point cloud data of single station

scanner is transformed into digital images by spherical po-

lar coordinates, then image features are extracted and edge

points are removed, the features used in this algorithm is

scale-invariant feature transform (SIFT). By analyzing the

corresponding relationship between digital images and 3D

points, the 3D feature points are extracted, from which we

can search for the two-way correspondence as candidates.

After the false matches are eliminated by the exhaustive

search method based on random sampling, the transformation

is computed via the Levenberg-Marquardt-Iterative Closest

Point (LM-ICP) algorithm. Experiments on real data of rock

mass show that the proposed algorithm has the similar accu-

racy and better registration efficiency compared with the ICP

algorithm and other algorithms.

Keywords rock point cloud, registration, LM-ICP, spheri-

cal projection, feature extraction

1 Introduction

In recent years, the rock mass engineering plays a more and

more important role in all kinds of infrastructure construction

with the development and utilization of natural resources. For

the huge scale of jointed rock mass engineering, it is difficult
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and dangerous to implement, and hard to be recovered once

the operational errors occur, so it is difficult to carry out mas-

sive repetitive experiments. Recently, the rapid development

of 3D laser scanning technology, which can obtain a wide

range of spatial 3D data directly by using a non-contact ac-

tive measurement in a short time [1], makes 3D modeling

more convenient and accurate. Meanwhile, 3D laser scanning

technology can scan a wide range of objects, and it has the

ability to overcome the restriction of traditional measuring

method, which is easily affected by natural light. The scan-

ning measurement has many advantages, such as fast speed,

real-time performance, high accuracy, strong initiative, high

degree of digitalization, and high measuring efficiency. Nu-

merical experiment method, using the surface information of

the object obtained by the 3D laser scanner, shows its supe-

riority with the development of computer-aided design tech-

nology. The method of computer numerical simulates model

for rock mass through the usage of detailed data, and sim-

ulates the different conditions, such as geological structures

and the surrounding environment by setting complex parame-

ters. Meanwhile, by combining the simulation with computer

visualization and 3D animation display, the dynamic scene of

the construction field is simulated vividly. From the simula-

tion above, the adequate comparisons are provided on differ-

ent schemes, and it provides guidance and macro-control to

the project.

In 3D laser-scanning device, laser is the basement of

the measurement, and the propagation characteristic of light

makes that the laser scanning can only collect the informa-

tion in one direction in a perspective. While there may be

occlusion of the view when we capture the surface informa-
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tion of the specific object, and the object may be very huge,

the geometry of the object or the surrounding environment

can be complex. In order to get the complete point cloud data

of the object surface, the object should be scanned from a

number of different perspectives, and a suitable coordinate

system should be given. Because each view has its own co-

ordinate system, the data measured in different views should

be transformed into a unified coordinate system. The process

above is called registration.

Depending on whether the initial information is required,

the registration methods can be divided into two steps: coarse

registration and fine registration [2]. Coarse registration gen-

erally provides only the approximation of the transforma-

tion between two clouds, thus narrowing the gap between the

two clouds to improve the efficiency of registration. The fine

registration minimizes the gap between the overlapping re-

gions using an iterative method based on an initial estimation,

which further improves the accuracy of registration.

The most widely used approach of fine registration is the

ICP algorithm proposed by Besl & McKay [3] and Chen &

Medioni [4], which optimizes the transformation by an iter-

ation algorithm. For every point in the source cloud, the al-

gorithm searches for the closest point in the target cloud in

every iteration, and then calculate the corresponding trans-

formation from their correspondence. Its computational effi-

ciency is low because every point needs to be traversed in the

process, especially for large objects such as rock, which has a

huge amount of points. Therefore, the speed of convergence

in actual operation is of great importance.

It is much earlier and more developed for the research

of image registration than point cloud registration in various

fields. Comparatively the method of point cloud registration

is immature and relatively small. For the environment of rock

mass is complex and changeable, which has few features as

obvious as artificial architecture, a few mature point cloud

registration algorithm can be applied to rock environment.

The iteration process of ICP does not require any features,

since it can be calculated from the point data directly, so it

is of high applicability. Therefore, an improved ICP algo-

rithm will be used in this paper. It is extraordinarily time-

consuming since the calculation process of ICP requires iter-

ating through all of the points. To solve this time-consuming

problem, we combine the ideas of image registration with

ICP. Firstly, we obtain the data similar to the 2D data by pro-

jecting all of the 3D points onto the spherical coordinates,

and extract feature points from the projected data. The time

of extracting feature points will be shortened by reducing data

dimensions in this step. Secondly, we choose the good corre-

sponding point-pairs through a series of optimization algo-

rithms. Finally, we carry out the subsequent iterative calcula-

tions with the point-pairs obtained in the last step. Since the

number of points we used is far less than the original data,

the time used in every iteration is greatly reduced, and the

number of iterations is reduced too, because the point pairs

are almost matching.

2 Related work

2.1 Coarse registration

The registration based on the measurement device is the easi-

est method of coarse registration. General data collection de-

vices can record the scanning position and angle, so we can

read the conversion information from the scanning devices

directly, and use it as the initial estimation. The method re-

lies on the accuracy of the scanning device, but the higher

the precision of the device is, the more expensive the price

will be. Besides, devices need to be adjusted in practice and

the more sophisticated the instruments are, the more complex

the adjustment process will be. The adjustment process of the

device has a great influence on the measurement results.

The method of setting fixed targets in the scene is the most

direct method of coarse registration [5]. The targets are gen-

erally divided into two types: 2D planar target and 3D target.

The 3D target is generally spherical, so once found, it is easy

to calculate its central location. Because of its consistency of

projections in all directions, 3D target is widely used. The pa-

per [6] points out the method of setting fixed targets is also

called semiautomatic registration method. A traversing data

registration method was proposed and compared with com-

mon point data registration method and the orientation data

registration method [7].

Most commercial scanners like to use 3D targets to match

different scenes. This method requires the presence of at least

three non-collinear targets in public areas of the scene to be

registered, and determines the coordinates of the center of

each target within its own coordinate system after the point

cloud information of these scenes was captured, from which

we can calculate the transformation. However, this method

has many limitations. For example, the rock environment

searched in this paper is complex, therefore there may be not

appropriate locations to lay the targets.

The method of interactively selecting corresponding points

is similar to the method of setting fixed targets. In this

method, we compute the transformation from the manually

selected matching points. If the obtained data is good and



172 Front. Comput. Sci., 2019, 13(1): 170–182

shown in a high recognizable degree, we can get a good reg-

istration result even under such conditions that overlapping

areas are small or initial positions are bad. However, if the

data have such a low resolution that the objects are not rec-

ognizable, it will be very difficult to extract the matching po-

sitions, thus affects the registration accuracy.

Most of the aforementioned methods of coarse registration

are based on certain geometric features of the objects. Such

as the classic Point Signature-based [8] method and Spin

Image-based [9] method, the disadvantage of these methods

is heavy calculation burden, so they are not suitable for cases

in which data are massive. Later, methods based on linear

segments [10, 11] are proposed. These methods can produce

good results in objects with obvious linear features such as

buildings, but not for complex objects with curves and sur-

faces. There are also some other methods of coarse regis-

tration, such as the method based on the joint of principal

directions [12] and the method of Euclid invariant features

based on integration [13–15], both of which have high robust-

ness for noise. Besides, there are some methods based on the

high-level features such as the similar invariance of point or

line [16]. More details about coarse registration can be seen

in [17].

2.2 Fine registration

ICP is the most widely used method of fine registration. The

corresponding points between two clouds are found in this

method, from which the transformation will be estimated.

The matrix will be applied to the source to form a new source,

and set the new source to be the source in the next iteration.

Through the iterations, we can gradually reduce the gap be-

tween the source and the target, until it reaches a predeter-

mined threshold value. Finally, we obtain the overall trans-

formation matrix. Since the algorithm must traverse all of

the points, the calculation is slow for huge amount of data.

What’s more, the algorithm requires the clouds to be in good

initial positions, so generally it is only used as the fine regis-

tration. In addition, if there is no sufficient overlap between

the inputs, the registration cannot be completed successfully.

There are many improved algorithms proposed for the

problems of ICP. Most of the proposed algorithms are from

several aspects, such as changing the search strategy, elim-

inating noise effects, and removing the bad corresponding

points. For example, the Hong-Tan based ICP (HT-ICP) [18]

algorithm uses a distance between a point in the source and

the projection in the target rather than the closest point to

eliminate the mismatched points effectively. A method re-

moving noise by using the Euclidean distance is proposed

by Zhong and Zhang [19]. The method improved the ICP by

setting a threshold of the angle between the direction vec-

tors of the source and the target. There are also a number

of other algorithms improve ICP from these aspects [20, 21].

The LM-ICP [22] algorithm uses a nonlinear minimization

optimization to eliminate mismatching, which can minimize

the energy function directly. The method improves the ro-

bustness and convergence speed of ICP significantly without

increasing time-consuming.

In addition, the Normal Distribution Transform (NDT)

[23] algorithm is proposed as a method of fine registration

based on statistical information. The original method was ap-

plied to 2D space. The spatial scanning position is subdivided

into unit squares, and then the method calculates the prob-

ability distribution of each square using the distribution of

the points in the squares. The 3D form of the method [24] is

based on the cell cubes, and optimizes the results by using

standard optimization techniques. NDT method calculates

through the statistical information rather than every point,

and it improves the efficiency of registration greatly com-

pared with the ICP algorithm.

2.3 The registration based on image

The research of image registration is much earlier and more

developed than that of point cloud registration. Many schol-

ars combine image registration with the registration of point

cloud. Nowadays many 3D scanners are equipped with high-

precision cameras, thus an image of the object can be

achieved while the 3D point cloud is obtained. Then we can

register the points with the assistance of the corresponding

2D images. For example, Yang et al. [25] match the cam-

era image with the image generated from scanner by a scale

invariant transformation characteristics, thus to register the

3D data by registering the images. Moreover, in some papers

such as [26, 27], they register by using the scanner data and

the camera assembled on the scanner. In addition, there are

some other methods register the point cloud data combined

with range images [28].

2.4 Feature extraction

During the development of computer vision, the process of

extracting the key pixels of the image, describing the image

with neighborhood information of the key pixels, analyzing

the pixels and determining the characteristics attributable in

order for the computer to recognize the image is called fea-

ture extraction.
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There should be some differences such as translation, ro-

tation, scaling and even illumination, occlusion among the

images taken at different angles of views for the same ob-

ject. To study the characteristics is to study the invariances

that exist under these changes, to reflect the basic attributes

of the images, to distinguish the color or texture information

from different images. Good characteristics should not only

have the invariance to these changes, but also have reliability

and independence. There are varieties of characteristics ap-

plied in the field of computer vision currently, and it is hard

to say which one is better, for their applications are different

depending on the conditions.

The features mostly used include point feature, line fea-

ture, and some high-dimensional features, etc. One of the

most typical features is SIFT [29] algorithm, which has cer-

tain invariance of light, geometrical transformation, rota-

tion and so on. Then someone proposed some point features

such as the acceleration characteristic named Speed-up Ro-

bust Features (SURF) [30] and Oriented Fast and Rotated

Brief (Oriented Brief, ORB) [31, 32] algorithm aiming at the

problem of computationally intensive of the SIFT algorithm.

There are also some new local features can be used for reg-

istration, such as the local feature statistics histogram(LFSH)

[33] and so on. Most of the high-dimensional features, which

are explored and researched based on the original simple fea-

tures narrow the applicable scope because of their complex-

ity, and are more time-consuming.

3 Proposed method

3.1 Basic framework

The process of the fast registration algorithm based on spher-

ical coordinate projection is shown in Fig. 1. Firstly, we need

data preprocessing before registration so that the data can

be applied to the Point Cloud Library (PCL) easily for con-

venient reading and writing, and supports user-defined data

structure. Therefore, the format should be converted into the

PCD file before loading it. The point cloud that is orga-

nized or unorganized will be treated differently in this paper

when converted to a 2D image. The disadvantages brought by

the different resolutions and different angles of views when

searching for the correspondence between the camera image

and the point cloud is avoided with respect to the method that

registers the point clouds through registration of the image

captured by precision camera assembled on the scanner. Then

we extract features in the 2D image, select features that can

be well matched, and remove the mismatching points. After

that, the sub-clouds can be obtained by sampling the original

data according to the remaining pixels. Finally, the transfor-

mation is obtained by the LM-ICP algorithm, which will be

applied to the source. The source and the target will be unified

into the same coordinate system through an iterative process,

then the Euclidean fitness score of the registration result will

be calculated.

Fig. 1 Algorithm progress

3.2 Image projection transformation

The acquired point cloud data can be divided into organized

point cloud dataset and unorganized point cloud dataset, and

the data in different forms should be treated differently in

this paper. There are two parameters named WIDTH and

HEIGHT in the PCD files, which tells us whether the data

is organized by indicating the width and height of the point

cloud dataset. The parameters HEIGHT and WIDTH repre-

sent the number of rows and the number of points in each
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line in the file respectively in the organized point cloud, but

the HEIGHT will be set to be one and the WIDTH can show

the number of points in the cloud in the unorganized point

cloud. Therefore, we can know whether it is organized by the

parameter HEIGHT after loading the data.

The organized data used in this paper are obtained from the

Kinect. The data are split into rows and columns resembling

a matrix or an image. Thus, we can know the relationship

between adjacent points by the indices of the points and the

adjacent-domain operation will be much convenient and effi-

cient, and the computing speed will be accelerated. An image

can be generated directly by the correspondence between the

indices of the points and the position of the pixel, then form a

match of point-to-point between the point cloud and the im-

age, causing neither the loss of information in the point cloud,

nor the missing of pixels in the image.

However, there are no such relationships for the unorga-

nized point cloud, so there must be some calculating opera-

tions before they can be converted into images. We will in-

troduce the conversion methods in next part.

3.2.1 Transformation principle

The working principle of the ground pulse 3D laser scanner

is shown in Fig. 2. The scanner emits pulse laser to the ob-

ject surface, each scan line intersects with the spherical cen-

tered at the scanner at a unique point, and the intersections

do not coincidence with each other. The method of obtain-

ing the data of the scanner is divided into horizontal scan and

vertical scan, the points in the horizontal scan lines have the

same vertical angleψ and the vertical ones have the same hor-

izontal angle θ. Since the intersections of each line with the

spherical are unique and do not coincide, the original data can

be mapped to the spherical polar coordinate system uniquely

from the 3D cartesian coordinate system using the relation-

ship between the spherical coordinate system and cartesian

coordinate system. Then convert the points to a standard 2D

image according to the horizontal angle and the vertical an-

gle.

The spherical coordinate system is shown in Fig. 3. As-

sume that the point P(x, y, z) is a point in the space, then the

point can also be presented by three ordered numbers (r, θ, ψ)

in the spherical coordinate system, wherein r presents the

distance between the origin O and the point P, ψ is the an-

gle between the directed line segment OP and the positive

Z-axis. The point M is the projection of the point P projected

to the plane XOY, θ is the counterclockwise rotation angle

from the X-axis to OM view from the positive Z-axis. Such

a set of numbers r, θ, ψ is called the spherical coordinate of

the point P, the variation ranges of parameters r, θ and ψ are

r ∈ [0,+∞), θ ∈ [0, 2π) and ψ ∈ [0,π) respectively.

Fig. 2 The working schematic diagram of single station scanner

Fig. 3 The spherical coordinate frame

The conversion relationship between cartesian coordinate

system and spherical coordinate system is:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

r =
√

x2 + y2 + z2,

ψ = arccos
z
r
,

θ = arctan
y
x
.

(1)

3.2.2 Transformation steps

The method of converting a set of unorganized point cloud to

an image is as follows:

1) Traverse all of the points and calculate the angle of each

point in the spherical coordinate;

2) Calculate the minimum and the maximum of the hor-

izontal angle, determine the angular resolution according to

the angle range, then do the same to the vertical angle;

3) Calculate the row and column value of each point ac-

cording to the angular resolution, which can determine the

corresponding pixel location in the image of the point;

4) Define an image according to the ranks, of which the
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height is the maximum number of the row and the width is

the maximum number of the column. Then calculate the dis-

tance between the pixel location of one point and the center

of the corresponding pixel, then sort the points in a cloud

according to the principle of row column, and the principle

becomes the distance between pixel center and the projection

from near to far while there are points of equal row and equal

column.

We can set the exact resolution of the conversion in the

case that we knew the scanner resolution beforehand to avoid

overlap or empty, while the cloud data used in this paper are

not acquired with a scanner by us, so we do not know the

exact resolution of the scanner and we must try to define it.

Even though it may not be correct and cause some overlaps or

blanks, the data are not exactly scanner data but photogram-

metric, so the resolution should not be too high otherwise

there may produce many blanks. The transformation result

can be seen in Fig. 4.

Fig. 4 Transformation result. (a) Information of organized point cloud; (b)
image of organized point cloud; (c) information of unorganized point cloud;
(d) image of unorganized point cloud

3.3 Feature selection

3.3.1 Extract feature

Local feature structural characteristic describes the invari-

ance of light and geometric transformation using the local in-

formation of the local structure in the image. Since the local

feature does not depend on the results of image segmentation,

thus has a good robustness for occlusion, overlapping and so

on [34]. Point feature is one of the most common local char-

acteristics, and also the simplest feature. Although there are

also line features, region features and higher dimensional fea-

tures, there is no such a feature that is unique and ubiquitous

in rock mass due to the complexity of the rock mass environ-

ment, so the complex features are not applicable in all rock

mass, and the more complex the features are, the higher the

computation cost is. Therefore, this paper chooses the sim-

plest features. After comparing a few common and typical

point features from the principle and experiments, we choose

a feature that costs shorter time and has the best result in the

comparison, SIFT, which can handle the translation, rotation

and affine transformation between images well.

Since the coordinates of the extracted points are mostly not

integers, they cannot correspond to the row and column value

directly in the progress of corresponding the feature pixels

to the original point cloud. We correspond the four nearest

points to that point for subsequent calculation.

For organized point cloud, we find the 3D corresponding

point by the relationship between the coordinates of feature

points and the indices of the original cloud. Nevertheless, for

unorganized point cloud, we should sort the extracted feature

pixels according to the row column, the same for the corre-

sponding original data, then we can find the corresponding

points in one traversal only, through which we can greatly

reduce the time required to find the points.

3.3.2 Remove the boundary point

First of all, we introduce a Gaussian template to blur the im-

age in the process of feature extraction, which results in a

lack of edge of the image, therefore the features detected at

the boundary of the image may not be accurate, and we re-

move the ones at the boundary first to avoid the impact of the

bad features.

Secondly, since the improper selection of the resolution or

the precision of the scanner settings, it may lead to blanks in

the image generated from the unorganized point cloud. We

set the image background to be white therefore, in order to

determine whether the extracted feature points is a boundary

point within the image, the white points that are not the back-

ground in the image are replaced by the color very close to

white, so that we can remove the inner edge points by testing

the white points.

3.4 Selection of matching

The features extracted by the SIFT algorithm may have many

false matches for some partially overlapping data, thus we

need to detect the matching relationship of the features to re-

duce the impact on the result of the false match. The match

selection will be done after the pixels converted back to the

point cloud in order to reduce the influence to the data accu-

racy during the conversion process.

The corresponding estimation is produced by the function
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“determineReciprocalCorrespondences” in PCL, in which

only the overlapping portions of the clouds are used to search

the corresponding point of each point in the source in the

target, and vice versa. The point pair will be set as the corre-

sponding points only if they can form a two-way correspond-

ing.

The un-corresponding removal is produced through the

RANSAC-based data-aligned rigidity-constrained exhaustive

search (RANSAC-based DARCES) [35] method based on the

corresponding relationship calculated in the previous step to

solve the set that makes most of the point pairs meet a good

match through an iterative sampling process. Select three

points in the source randomly firstly, sign them to be the main

point p, the second point q and the auxiliary point t respec-

tively, the distances between every two points are dpq, dpt

and dqt. The corresponding points in the target of these three

points are p′, q′ and t′ respectively, and the distances are d′pq,

d′pt and d′qt. We believe these three sets of corresponding re-

lationship are established if the distances match respectively

within certain thresholds, through which we can determine

the candidate initial transformation. After several iterations,

we select the candidate transformations that make most of

the corresponding points coincide to be the initial transfor-

mation. The algorithm used in this paper is the basic method

of random sampling, and there are also many upgrade meth-

ods, such as the method proposed in [36].

3.5 Transform

Coarse registration is produced based on the corresponding

relationship determined in the prior step firstly. The method

of coarse registration used in this paper is the method based

on Singular Value Decomposition (SVD), this method con-

structs adjacent matrix by taking advantage of the informa-

tion of the distance between the feature points and conduct

the SVD of it to obtain the corresponding relationship. Then

the fine registration will be done by the LM-ICP algorithm to

calculate the transformation matrix using the sub-point cloud

obtained by feature extraction.

The ICP algorithm is to register two point sets and min-

imize the predefined error function by an iteration process.

The coordinate transformation is represented by the unit

quaternion [37]. Assuming that target point set is P and the

reference point set is X, meanwhile the rotation matrix is

R(−→q R) and the translation vector is −→q T = [q4q5q6]T, wherein

the rotation transformation vector is the unit quaternion−→q R =

[q0q1q2q3]T, q0 � 0, q2
0 + q2

1 + q2
2 + q2

3 = 1 and the letters with

“→” on them respect vectors, then the coordinate transforma-

tion vector can be expressed completely as −→q = [−→q R|−→q T ]T.

Then the problem of calculating the best coordinate transfor-

mation vector of the corresponding sets can be converted into

the sake of −→q to minimize the objective function described in

the Eq. (2).

f (−→q ) =
1

Np

Np∑

i=1

‖−→x i − R(−→q R)−→p i − −→q T ‖2. (2)

We suppose that the two point sets have already been reg-

istered by the coarse registration. Then we should search for

the corresponding points in the reference point set for each

point in the target point set to construct the corresponding

point pairs (−→p i,
−→x i), from which we will perform the follow-

ing calculations.

Then we find the centers of gravity of the two sets, and use

them to construct the covariance matrix shown in the Eq. (3),

from which we can construct a 4×4 symmetric matrix shown

in the Eq. (4).

∑

PX
=

1
N

N∑

i=1

[−→p i
−→x T

i ] − −→μ P
−→μ T

X , (3)

Q
(∑

PX

)

=

⎡
⎢⎢⎢⎢⎢⎣

tr (
∑

PX) ΔT

Δ
∑

PX +
∑T

PX −tr (
∑

PX) I3

⎤
⎥⎥⎥⎥⎥⎦ , (4)

where N is the number of the corresponding points, −→μ P and
−→μ X are the centers of gravity of the two sets of point re-

spectively, tr (
∑

PX) is the trace of
∑

PX , Δ = [A23A31A12]T,

Ai j =
(∑

PX −∑T
PX

)

i j
is an anti-symmetric matrix, I3 is the

identity matrix.

Calculating the eigenvalues and eigenvectors of the sym-

metric matrix Q, then the eigenvector corresponding to the

maximum eigenvalue will be selected as the optimal rotation

vector −→q R =
[
q0q1q2q3

]T and the optimal translation vector

can be calculated by the formula −→q T =
−→μ X − R

(−→
QR

)−→μ P eas-

ily.

The transformation matrix calculated in the previous step

then be brought to the reference point set, compute and verify

whether the minimum mean square error (MMSE) meets the

convergence condition, if not, set the transformed reference

point set to be the new reference point set in the next iteration.

Repeat the above steps until convergence, the final transfor-

mation will be the product of the transformations calculated

in each iteration.

Each iteration in the ICP algorithm can be summarized in

two steps, named the compute correspondence and the update

transformation. LM-ICP algorithm optimizes the squared



Yaru XIAN et al. A fast registration algorithm of rock point cloud based on spherical projection and feature extraction 177

residuals of the ICP algorithm by applying the Levenberg-

Marquardt (LM) method, which makes the result more robust

and the calculation more quickly.

4 Experimental results and analysis

4.1 Experimental data and evaluation standard

The unorganized point cloud data used in this paper are in

granite condition of road cut where the latitude and lon-

gitude are 44◦24’04.41”N and 76◦18’90”W respectively in

Kingston, Canada. The data we use is acquired by a Leica

HDS6000 whose scan type is phase based from three scan

locations in 2007, the point spacing of it is less than 1cm.

They come from Rockbench repository [38] which is a web-

based common repository for assessing rock mass character-

istics using LiDAR and photogrammetry established by Lato

contain a number of key items of rock mass. All experiments

were carried out by using C++ software combined with PCL

that runs on Microsoft Windows 10 Processing, time given

below is all counted on a PC, which configuration is Intel (R)

Core (TM) i3-2100 3.10 GHz CPU, 6 GB RAM.

The comparative indicators used in the experiments are the

following two:

• The time spent by registration The time is computed by

the computer automatically and displayed on the screen after

the completion of registration.

• The Euclidean fitness score The Euclidean fitness score

is the sum of the squared distance of source and the target

clouds provided in the PCL. The parameter is a relative pa-

rameter that there is no comparability for the feedback results

of different sets of data. The quality of the results returned

from different methods of the same set of data that have con-

siderable overlap can be judged according to the relative size

of the score, the smaller the score, the better the result. How-

ever, there is poor applicability of this parameter for the sets

with small overlapping regions.

4.2 The influence of resolution

The feasibility of registration using panorama has been

proved, so the data of this paper are mainly non-scanning

point cloud data. There is a certain uncertainty in the set-

ting of the angle resolution, thus we must try to select it. Be-

sides, the data are not the scanner data, so if the resolution is

too high, there will be many blanks in the generated image.

Therefore, the resolution should not be too high, though there

will be coverage points if the resolution is too low.

Then we explore the registration results of a specific source

and a specific target under different resolutions. The informa-

tion of the two clouds is shown in Table 1, in which the “min”

represents the minimum value, the “max” represents the max-

imum value, the “range” represents the variation range of the

angle, the unit of which is degree (“◦”), and the data shown

in the table are all counted and displayed by computer.

The experimental results are shown in Table 2, in which

the “h” in the first column represents “horizontal” and “v”

in the second column represents “vertical”. By comparing

the registration results of different resolutions we can know

that the higher the resolution is, the fewer the points are cov-

ered, the more feature points are extracted, and the slower

the rate of registration is. There may be some mistakes dur-

ing extracting feature points at a lower resolution since there

are more points covered, resulting in a decreased accuracy

of registration. When the resolution comes to an appropriate

value, a higher resolution only increases the time the registra-

tion cost but decreases the effect, since a high resolution may

lead to more blanks in the generated image, which will affect

the accuracy of the extracted features. Multi-resolution com-

parative results are shown in Fig. 5, which shows that there

will be a little deviation of registration result when the reso-

lution is relatively low. When the resolution reaches a certain

value more appropriate, the changes within a certain range of

the resolution will have little effect on the registration results,

nevertheless a too high resolution will increase the registra-

tion error on the contrary. Therefore, when the exact param-

eters of laboratory equipment are unknown, we can select a

comparatively small value as the appropriate one instead of a

higher one.

4.3 Comparison of experimental results

The comparison method used in this paper is the LM-ICP

algorithm, the 3D-NDT algorithm and the Sparse Iterative

Closest Point(SICP) [39] algorithm.

Table 1 Information of the experimental data

Horizontal angle Vertical angle
Point cloud Data size

min/◦ max/◦ range/◦ min/◦ max/◦ range/◦

Source 1,600,825 0 360 360 164.515 180 15.4846

Target 1,128,117 0 359.972 359.972 65.2 180 11.5011
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Table 2 Experimental results of different angular resolutions

Angle resolution/◦ Cloud size Image size Number of features

h v Source Target Source Target Source Target
Time/ms Fitness score

0.1 0.1 160,587 169,718 3,603×155 3,600×116 1,596 1,846 2,345 0.231524

0.08 0.08 225,136 240,432 4,504×194 4,500×144 3,290 3,244 2,837 0.226842

0.05 0.05 411,414 453,378 7,204×310 7,200×231 10,258 10,037 5,575 0.22822

0.04 0.04 515,164 580,134 9,004×388 9,000×288 16,236 16,216 6,944 0.255535

0.1 0.01 609,896 710,858 3,604×1,549 3,600×1,151 26,915 27,285 9,371 0.297254

Fig. 5 Multi-resolution registration results. (a) Point cloud before registration which red points are source and green points are target; (b)–(k)
the generated images and registration results of different resolutions in which green points are target and blue points are the registered source
(the horizontal resolution × the vertical resolution of the Figs. (b)–(f) are 0.1×0.1, 0.08×0.08, 0.05×0.05, 0.04×0.04 and 0.1×0.01 respectively)

• LM-ICP ICP is the most widely used point cloud regis-

tration algorithm, and many algorithms after that are variants

of it. Among the variants, LM-ICP minimizes the registration

error directly by using a kind of nonlinear optimization, that

is, Levenberg-Marquardt algorithm, thus to acquire a compa-

rable speed and more robust result when being compared to

ICP.

• NDT NDT uses iterative subdivision to build surface

description of models, and avoids the computationally chal-

lenging nearest-neighbor search, so NDT is faster and slightly

more reliable than ICP in most cases.

• SICP The SICP algorithm implicitly models outliers

using sparsity and replaces the Euclidean distance using lp

norm, so that the impact of outliers and incomplete data

can be reduced. The use of Lagrange method makes the al-

gorithm more reliable than the heuristic model registration.
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Since there is no correlation function of this algorithm in the

PCL, the experiments associated with this algorithm in this

paper are all based on the code in GitHub and Computer

Graphics and Geometry Laboratory, from a certain extent,

this will make the run time longer than the PCL functions.

In this paper, LM-ICP is mainly used to be the contrast

of registration accuracy, and NDT is mainly the contrast of

computational efficiency, the SICP algorithm is used to be a

contrast method as a representative of new variation of ICP

proposed in resent years. In order to speed up the search pro-

cess, all of the original point data is used in the proposed al-

gorithm and LM-ICP algorithm, while the filtered data with a

voxel filter of the same parameters is used in 3D-NDT, SICP

and LM-ICP, and the experiments with the filtered data are

all named with “filtered”.

The results of registration of organized point clouds are

shown in Table 3, the source and target point clouds used in

the experiment both contain 307,200 points, and the num-

bers of the data in the filtered LM-ICP are 1,846 and 1,741

respectively. We can see that the time cost of our proposed

method in this paper can achieve about 1/4,600 of the origi-

nal method, less than 1/460 of the filtered LM-ICP and almost

1/8 of NDT algorithm. In the case of registration precision,

the result is better than the filtered LM-ICP, and the dispar-

ities from the LM-ICP and NDT are all smaller than 1mm,

which is within the precision error of the data. Registration

results are shown in Fig. 6, in which green points are points

in target cloud, red points are points in source cloud and blue

points are points in the transformed source point cloud. It can

be seen in the figure that there is almost no difference of the

registration results in visualization.

Table 3 Experimental results of organized point cloud

Method Time/ms Euclidean fitness score

Proposed method 933 0.00117877

LM-ICP 101,163 0.000994068

Filtered LM-ICP 92,149 0.00117864

Filtered 3D-NDT 2,172 0.001193895

Filtered SICP 693,501 0.0968459

The results of registration of unorganized point clouds are

shown in Table 4, the source and target point clouds used

in the experiment both contain 1,839,127 points, and the

numbers of the data in the filtered LM-ICP are 358,366 and

354,247 respectively. The horizontal angle and vertical an-

gle selected in this experiment are both 0.05◦. We can see

that the time cost of our proposed method in this paper can

achieve about 1/1,500 of the original method, less than 1/200

of the filtered LM-ICP and almost 1/8 of NDT algorithm. In

the case of registration precision, the result is better than the

filtered LM-ICP, the fieltered 3D-NDT, the filtered SICP, and

even the original LM-ICP. The disparities between our meth-

ods and the other methods that achieve good results are all

smaller than 1mm, which is within the precision error be-

cause the experimental data are obtained from rock environ-

ment, which is enormous, and so small gap as 1mm can be

neglected. Registration results are shown in Fig. 7, in which

green points are points in target cloud, red points are points

in source cloud and blue points are points in the transformed

source point cloud. It can be seen in the figure that there is al-

most no difference of the registration results in visualization.

Fig. 6 Experimental results of organized point cloud. (a) Point cloud before registration which red points are source and green points are target.
(b)–(f) the registration results of the proposed method, LM-ICP, filtered LM-ICP, filtered 3D-NDT and filtered SICP methods respectively, in
which green points are target and blue points are the registered source
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Fig. 7 Experimental results of unorganized point cloud. (a) Point cloud before registration in which red points are source and green points
are target. (b)–(f) the registration results of the proposed method, LM-ICP, filtered LM-ICP, filtered 3D-NDT and filtered SICP methods
respectively, in which green points are target and blue points are the registered source

Table 4 Experimental results of unorganized point cloud

Method Time/ms Euclidean fitness score

Proposed method 4,344 0.000966643

LM-ICP 6,570,480 0.00156585

Filtered LM-ICP 950,552 0.00210197

Filtered 3D-NDT 346,366 0.00214198

Filtered SICP 103,746,000 0.412627

In the experiments of this paper, the result of SICP is not

good in both time and precision. It must be point out that

the codes used in these experiments are downloaded from the

website mentioned above, so there may be certain difference

with the functions in PCL, and the results above are the best

ones after several attempts, but may be not the best result

of SICP. However, according to the experimental standard in

this paper, an absolute best result will be a time-consuming

process.

Figures 8 and 9 show the registration results of two clouds

before and after registration. The images are the original data

and the data output by computer after registration displayed

by the software CloudCompare. We can see that our method

can produce a good registration result for the data of consid-

erable overlap.

5 Summary and future work

This paper presents a fast registration algorithm of rock mass

point cloud based on spherical projection and feature extrac-

tion. The algorithm establishes one to one correspondence

between point cloud data and pixels on the image through

a spherical projection, and thus reduces the data dimension

and effectively shortens the time for subsequent data pro-

cess. At the same time, it utilizes the registration theory of

image that is more mature developed synthetically to extract

feature points in the image generated from the 2D spherical

projection and search for the corresponding 3D points in the

original data. Besides, we search for matching points in the

Fig. 8 Registration result of the first set of cloud. (a) Source point cloud; (b) target point cloud; (c) combination of the target and the registered
source
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Fig. 9 Registration result of the second set of cloud. (a) Source point cloud; (b) target point cloud; (c) combination of the target and the
registered source

two clouds and remove the false ones, then use SVD and

LM-ICP to get the transformation matrix. This method re-

duces the amount of data used in the iteration process greatly,

which not only shortens the time required for each iteration,

but also reduces the number of iterations, thus significantly

improves the efficiency of registration. Experimental results

show that the algorithm can be applied to rock data well, and

have good effects on both the organized data and the unorga-

nized ones. In addition, it can be applied to not only the scan-

ner data, but the non-scanner data can also get good results.

The algorithm greatly improves the efficiency of registration,

and has a significant advantage in dealing with massive point

clouds. At present, the algorithm can achieve good result in

pair-wise registration, and if a group of point clouds are im-

ported continuously, and each of the consecutive two clouds

has good initial position, then the algorithm can register them

gradually and unify them to the coordinate system of the first

cloud.

In the next work, we will firstly improve the steps of coarse

registration and the corresponding selection, so that the cor-

respondence between the extracted points is more accurate

and more robust to non-overlapping regions, therefore to be

able to get better registration result of the data that are in

bad initial positions. Then we will extract public portions

between source point cloud and target point cloud effectively,

through which we can further reduce the computing time

and get better results for data of small overlapping regions.

What’s more, this method can only register two sets of point

clouds gradually, which may lead to an accumulation of error

during the global registration. Therefore, we need to study

global registration issues to get a better result of registering

multi-view point cloud at the same time, while avoiding the

influence of the other data in the transformation relationship

of every pair of point cloud.
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