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Abstract 3D printing has become a promising technique

for industry production. This paper presents a research on

the manufacturability optimization of discrete products un-

der the influence of 3D printing technology. For this, we first

model the problem using a tree structure, and then formulate

it as a linear integer programming, where the total production

time is to be minimized with the production cost constraint.

To solve the problem, a differential evolution (DE) algorithm

is developed, which automatically determines whether tra-

ditional manufacturing methods or 3D printing technology

should be used for each part of the production. The algorithm

is further quantitatively evaluated on a synthetic dataset, com-

pared with the exhaustive search and alternating optimization

solutions. Simulation results show that the proposed algo-

rithm can well combine the traditional manufacturing meth-

ods and 3D printing technology in production, which is help-

ful to attain optimized product design and process planning

concerning manufacture time. Therefore, it is beneficial to

provide reference of the widely application and further in-

dustrialization of the 3D printing technology.

Keywords 3D printing, manufacturability, optimization,

discrete products, differential evolution algorithm

1 Introduction

According to the definition published by US 3D Printing
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technology committee, 3D printing is a process of join-

ing materials to make objects from 3D model data, usually

layer upon layer, as opposed to subtractive manufacturing

methodologies1). It gains the objection by directly manufac-

turing the 3D physical entity which is entirely the same as

the correspondent model, and covers all processes includ-

ing the shaping, manufacturing and assembling of products.

Charles Hull developed 3D entity printing using digital data

from stereo-lithography technology in 1984, which leads to

an improvement of 3D printing technology for over 30 years.

Nowadays, 3D printing has become more sophisticated and

entered an era of laser printing, while materials employed are

varied as ceramic and metals instead of resin only. The broad

prospect of 3D printing has been admitted so that it has been

listed in “Made in China 2025”2) and “Industrie 4.0”3) and

considered as a key technology in the new industrial revolu-

tion.

In practical production environment, 3D printing and tradi-

tional manufacturing methods have their own strengths. Tra-

ditional ways are out of reach with those individualized and

complicated products which could be directly attained by 3D

printing [1]. Those products which cost much in primary

stage (such as mold cost) and have long manufacturing cy-

cles in traditional methods will also lead to a 3D printing de-

cision [2]. Other than that, 3D printing may have no priories

compared with traditional methods that are able to attain scale

economies effects4) . Therefore, it is still imperative to com-

bine 3D printing with traditional methods in a long period to

decrease total cost and production cycle practically, even if

1) ASTM(2013).ASTM F2792-12a Standard terminology for additive manufacturing technologies. Retrieved from http://www.ASTM.org/Standards/
F2792.htm

2) China’s State Council. Made in China 2025, 2015
3) The Industrie 4.0 working group. Industrie 4.0, 2013
4) Separating Facts from Fiction About 3D Printing: Knowledge at Wharton (http://knowledge.wharton.upenn.edu/article.cfm?articleid=3322)
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the former has broken all technical barriers. Thus, it can be

seen that the optimized decision under the combination of the
two is of significant importance.

At present, researches on 3D printing mainly focus on
technical fields such as manufacturing craftwork, processing
materials and quality control, as well as aspects of the ap-
plication review and development prospects. Among them,
foreign scholars including Atzeni and Salmi [3], Dolphin [4],
Cesaretti et al. [5] studied 3D printing technical elements, de-
velopment tendency and application fields. Domestic schol-

ars as Yan and Qi [6], Lu and Li [7], Wang [8] launched re-
search on its domain, the present and future development as
well as technical principles. When talking about the influence
on production management, Tuck et al. [9], Holmstrom et al.
[10], Nyman and Sarlin [11], Rayna and Striukova [12] have

papers or monographs on the concept, form and manage-
ment strategy of supply chain importing 3D printing. How-
ever, none of them addressed the principles of the optimized
decision under the combination of 3D printing and traditional
manufacturing ways.

This paper focuses on manufacturability optimization of
discrete products targeting production time based on 3D
printing, which involves the determination of how to prod-
uct each component of the object, under the constraint of
the cost budget. To our best knowledge, this is the first work
that studies the manufacturability optimization in 3D printing
with the cost constraint. The research addresses the problem
by formulating it as a linear integer programming based on

the graph representation and transforms the selection of the
manufacture way into the constraints on the feasible solution.
The DE algorithm is adopted to optimize the problem effi-
ciently.

Since it is infeasible to directly solve the above constrained
linear integer programming problem, which is NP-hard in
fact, heuristic algorithms serve as a promising solution, and
there are a number of speeding up techniques [13,14] that can
help achieve fast computation. During the past two decades,
a lot of swarm intelligence algorithms, which are inspired by
swarm intelligence of objects such as birds, ants, bees, etc.,
have been proposed and studied, among which are particle
swarm optimization (PSO), ant colony optimization (ACO),
and the artificial bee colony (ABC) algorithm. Evolution-
ary algorithms (EAs) [15], defined as a set of generic meta-
heuristic optimization algorithms that are inspired by the bi-
ological evolution of animal species, have been successfully
applied to complex numerical optimization problems in di-
verse fields. Unlike classic optimization methods that rely
on the gradient of the problem being optimized, EAs do

not make any assumption about the underlying fitness land-
scape and perform well approximating solutions to all types

of problems through searching very large spaces of candi-
date solutions [16]. As a typical representative of EAs, the
differential evolution (DE) [17, 18] algorithm was firstly pro-
posed by Storn and Price [19] and has been proven to be a
simple but efficient global optimizer in the continuous search
domain. As a promising optimization algorithm, DE has been
successfully applied to engineering problems including eco-
nomic dispatch, power distribution, neural network training,
and manufacturing process optimization. In this paper, we
follow the idea and design a DE algorithm for the manufac-
turability optimization. Specifically, the DE algorithm solves
the optimization problem through maintaining a population
of candidate solutions and creating new individuals using

mechanisms such as reproduction, mutation, and recombina-
tion, where the solutions with better fitness are kept to the
next iteration.

The optimized manufacturability of products manufac-
tured under the combination of 3D printing and traditional
ways is researched in-depth quantitatively. The proposed
scheme clearly figures the way to increase the design and pro-
duction efficiency as well as reduce waste of raw materials,
the optimization from design along with production process
is therefore accomplished. For the convenience of reading,
all the variables mentioned in Sections 2 and 3 are listed in
Table 1.

Table 1 Variable notation list

Variable Meaning

S Production node set

S i Production node

N Number of production nodes

M Number of leaf nodes on the bottom layer

E Directed-edge set

Ei j The directed-edge directed from S i to S j

G The product structure

cp
i The 3D printing cost of S i

cp The 3D printing cost of S

c Assembly cost

tp The production time

p The chosen craftwork

pi = 0 Traditional manufacturing method

pi = 1 3D printing

te Equivalent assembly time

ce Equivalent assembly cost

C The upper limit of total production cost

n The quantity of leaf nodes included in each node

2 Background description

2.1 Definition

Process planning decides the way of manufacturing products,
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which is essential during preparation and acts as the basis

of all production processes. The craftwork optimization on

account of cost factors is drawing attention in modern manu-

facture management [20]. Yet, the whole problem is changed

when bringing in 3D printing technology. When manufactur-

ing discrete product using traditional methods, components

that stay at the end nodes in the product structure tree are

firstly considered so that the final product could be assembled

by them in order. Therefore, the only thing that changed after

introducing a new technology is the manufacturing method

of a certain component. The optimization of product cost

and manufacture cycle in the production stage still largely

relies on process planning in traditional manufacturing meth-

ods [21]. What is greatly different for 3D printing methods

from traditional ones is that any component on any nodes or

layers in the structure tree could be produced directly. Con-

sequently, the production and assembling processes of com-

ponents below the improved one are simplified. It means that

the product structure is changed simultaneously when choos-

ing 3D printing technology. The product is re-designed in this

way, rather than merely considering process planning. Hence,

the craftwork design of the whole manufacture system should

be re-defined and re-considered after 3D printing technology

are imported.

Manufacturability is about the optimization of given manu-

facturing resources that meets the requirement of customers,

concerning cost, time, fabrication property, assembly prop-

erty and others. Manufacturability assessment plays a key

role in concurrent engineering (CE) project [22]. Since 3D

printing technology is brought into the manufacturing sys-

tem, product design and process planning turn into a process

of parallel interaction that significantly illustrates and imple-

ments the fabrication-targeted concept in CE project. Manu-

facturability is therefore employed to research the craft opti-

mization considering costs under the influence of 3D printing.

This paper adopts graph and matrix theory to describe the

problem and a DE based approach is proposed to achieve

the optimization. The optimization problem is built target-

ing minimum production time so that the manufacturability

optimization based on 3D printing meeting certain cost con-

straints could be solved.

Meanwhile, this paper has three hypotheses in order to

simplify the question and gives prominence to the theme:

• Components can be manufactured by either traditional

methods or 3D printing, and make no difference in the

prospect of technical characteristic.

• The 3D printing and traditional methods are generally

discussed ignoring specific manufacturing craftwork.

• Production cost and the time are the only factors being

considered when discussing the manufacturability opti-

mization using two different methods.

2.2 Graph representation

In order to precisely describe the product structure and its

changes after using 3D printing technology, a graphic struc-

ture model is employed [23–26] which has been proved very

powerful in the selection problem. The product structure is

defined and abstracted as a digraph constituted by several

nodes and directed edges.

Assuming there are N nodes on the product structure tree

of a certain product. A node set S = {S i} is used, where

S i denotes a production node i. For each node, both tradi-

tional manufacturing method and 3D printing could be ap-

plied. When conducting traditional ways, the component on

a typical node is assembled by components on its child nodes

and components on leaf nodes could be directly obtained.

When 3D printing is adopted, components could be printed

directly without concerning child nodes. Leaf nodes on the

bottom layer correspond to dissembled components, whose

quantity is accounted as M.

In the graphic structure, the directed-edge is defined as E,

in which Ei j is the directed-edge directed from S i to S j in the

node set S meaning the manufacturing order (S j to S i). The

node-set and the directed-edge set could be combined to form

the graphic structure as G = {S , E}. A typical product struc-

ture graph is shown in Fig. 1, among which nodes S 3, S 4 and

S 5 represent components at the bottom layer, S 1 stands for

the final product, and other nodes are intermediate assembled

components.

Fig. 1 Typical product structure graph

In the above product structure graph, there are two kinds

of nodes: leaf nodes and intermediate nodes. The layer of

leaf nodes represents the components that cannot be assem-

bled and could be manufactured by 3D printing or traditional
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methods. The intermediate layer corresponds to the interme-

diate components or the final product, which could be assem-

bled by components in the layer of child nodes, or directly

3D printed.

The model of graphic structure helps to abstract the whole

product structure and clarify the logical relationship among

all components. Yet it cannot be directly used to process the

optimization problem, which is just the reason for introduc-

ing the matrix as an algebra method to describe the relations

among all nodes in the digraph.

Supposing that 3D printing is available for all nodes, the

3D printing cost is defined as cp
i for a certain node S i and

expressed in terms of vectors as cp. However, the leaf nodes

may cover costs generated from both 3D printing and tradi-

tional manufacturing processes. Virtual nodes are therefore

employed to distinguish two different fabrication methods.

Each leaf node has directed connection to a correspondent

virtual node. In the earlier graph, virtual nodes S 6, S 7, S 8

have been introduced and directed-connected to S 4, S 5, S 3,

respectively. The production cost in the virtual nodes is the

cost from traditional ways so that other nodes cover merely

production cost generated by 3D printing. The production

structure graph containing virtual nodes is shown in Fig. 2.

Fig. 2 Production structure graph containing virtual nodes

Apart from the production cost, assembly cost should be

raised during traditional manufacture processes for interme-

diate nodes, which is represented by vector c.

As for the production time, assuming that of each compo-

nent S i is tp
i and could be expressed in terms of vectors as tp.

Virtual nodes, similarly, cover production time of their cor-

respondent leaf nodes using traditional ways, while only the

time of 3D printing is concluded in other nodes. Assembly

time is further considered as well and assumed as vector t for

each node.

3 Manufacturability optimization modeling

3.1 Time-targeted formulation

This paper aims at optimizing the total production time in-

volving production and assembling processes. The time is

attempted to be deduced as short as possible while meeting

the production cost constraints. The most difficult part of the

manufacturing optimization is how to formally describe it

and formulate as a mathematical model. Therefore, in this

section, we mainly introduce how to formulate the manufac-

turing optimization problem as a constrained linear integer

programming problem, which can be solved using some op-

timization techniques.

Production time: take pi to represent the craft chosen for

node S i. pi = 0 means that traditional manufacturing method

is employed while pi = 1 stands for 3D printing. As the vec-

tor p is applied as the chosen craftwork, the total production

time is pTtp consequently.

Assembly time: the assembly time referred for the compo-

nents is actually the time required above the nodes choosing

3D printing method (or leaf nodes). As shown in the follow-

ing graph, when S 2 and S 8 are mandatory components, the

assembly time of S 1 is then the time consumed to assemble

the component S 1 from S 2 and S 8. The total assembly time

could be calculated by taking account of equivalent assem-

bly time te of each node in advance (deep tree traversal is

normally adopted). Specifically, the assembly time of child

nodes should be the total time needed from father nodes con-

nected along with the path till root nodes. Without loss of

generality, the assembly time of father nodes is equally dis-

tributed to correspondent child nodes to achieve better illus-

tration. As shown in Fig. 3, each node has new accumulated

assembly time te so that the total assembly time is pTte.

Fig. 3 Equivalent assembly time calculation including virtual nodes
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Hence, the total production time is the sum of production

time and assembly time, which is:

pT(tp + te). (1)

3.2 Cost constraints

From the above analysis, it is obvious that the final produc-

tion cost is consisted of both production and assembly cost.

Production cost: the sum of the chosen component manu-

facturing time by either 3D printing or traditional ways,

pTcp. (2)

Assembly cost: the assembly cost referred for the compo-

nents is actually the cost required above the nodes from 3D

printing (or leaf nodes). As shown in the following graph,

when S 2 and S 8 are mandatory components, the assembly

cost of S 1 is then the cost consumed to assemble the com-

ponent S 1 from S 2 and S 8. The assembly cost is denoted by

c, the total assembly cost is therefore calculated by taking ac-

count of equivalent assembly cost ce of each node in advance.

Specifically, the assembly cost of child nodes should be the

total cost needed from father nodes connected along with the

path till root nodes. Without loss of generality, the assembly

cost of father nodes is equally distributed to correspondent

child nodes to achieve better illustration. As in Fig. 4, each

node has new accumulated assembly cost ce. Consequently,

the assembly cost is:

pTce. (3)

Fig. 4 Equivalent assembly cost calculation including virtual nodes

The total cost is the sum of production cost and assembly

cost,

pT(cp + ce). (4)

In the present research, the total production cost is con-

strained by the upper limit C,

pT(cp + ce) < C. (5)

3.3 Feasible solution constraints

The feasible solution vector p chosen in previous problems

should meet the following requirements:

• These nodes are able to form a complete product, which

means that the node chosen should equivalently include

all leaf nodes. As illustrated in Fig. 5, S 1 could be com-

pleted by producing S 2 using 3D printed and S 3 using

traditional method. Meanwhile, components S 4 and S 5

make up S 2. S 1 is actually constituted by components

S 3, S 4, S 5 as a result, in which way, all leaf nodes are

covered. Taking the above constraints into considera-

tion, the quantity of leaf nodes (components) included

in each node could be calculated by traversing upward

from the bottom layer (leaf nodes), expressing as vector

n. The constraint is then indicated as

pTn = M. (6)

• The child nodes and the father nodes of a chosen node

cannot be simultaneously considered. It means that a

chosen node produced from 3D printing could not be

influenced by its child nodes, meanwhile, the father

nodes of which will be assembled by the mentioned

3D-printed component rather than manufactured by 3D

printing. In Fig. 5, other nodes except for S 2 and S 8 will

not be involved in the 3D printing process.

Fig. 5 Process planning diagram

A reachable matrix is introduced to describe the constraint.

Since the graphic structure model could only illustrate the
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quantity of nodes and the directed relation between every

two nodes, the information staying in the graph could be re-

recorded through a reachable matrix. An element Ri j in the

reachable matrix R is defined by

Ri j =

⎧
⎪⎪⎨
⎪⎪⎩

1, if S i and S j are directed-reachable;

0, if S i and S j are not directed-reachable.
(7)

The subscripts i and j traverse all nodes. The calculation

of the reachable matrix of the whole typical product structure

in Fig. 1 could be:

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 1 0 0 0

1 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

In this way, adjacent matrix and reachable matrix could

give all information about the relations among all nodes in

the graphic structure model.

Based on the reachable matrix, the mathematical descrip-

tion of the second requirement of choosing vector p is as fol-

lows: for any two nodes S i and S j, if there exists an assem-

bly relationship between (reachable, Ri j = 1 or R ji = 1), they

cannot be manufactured through 3D printing simultaneously;

i.e., if a node is employed with 3D printing method, those

nodes connected should not be chosen.

Hence,

pi(Ri j + R ji)p j = 0, (9)

and its matrix form is:

pT(R + RT)p = 0. (10)

3.4 Model optimization

The final optimized model on account of all previous re-

search:
min

p
pT(tp + te)

s.t. pT(cp + ce) � C,

pTn = M,

pT(R + RT)p = 0,

p ∈ {0, 1}N+M .

(11)

Thus, the manufacturability optimization problem pro-

posed in this paper is formulated in a linear integer program-

ming with a quadratic constraint on the feasible solution.

There is no close-form solution to the above problem. Be-

sides, it is quite hard to find the optimal solution using the

traditional programming techniques. Next, we will propose

an optimization solution via differential evolution.

4 Optimization via differential evolution

To solve the optimization problem in Eq. (11), the DE al-

gorithm evolves a population of N individuals towards the

global optimum of the problem at hand, in which each

individual is denoted by a D-dimensional vector Xi,t =

x1
i , x

2
i , . . . , x

j
i , . . . , x

D
i , in which i = 1, 2, . . . ,N corresponds

to each individual in the population, j = 1, 2, . . . ,D cor-

responds to each element in the solution, and t is the gen-

eration index. For the purpose of better covering the whole

search space, the population is randomly initialized within

the lower bound Xlow = x1
low, x

2
low, . . . , x

D
low and the upper

bound Xup = x1
up, x

2
up, . . . , x

D
up respectively as

x j
i,0 = x j

low + rand(0, 1)(x j
up − x j

low), j = 1, 2, . . . ,D, (12)

where x j
i,0 is the jth element of individual i and rand(0, 1) is

a random number drawn from a uniformly distributed space

within [0, 1]. Typically, the DE algorithm is consisted of the

following three operators, namely mutation, crossover, and

selection, which are detailed as follows.

4.1 Mutation

Following the initialization stage, the mutation operation

aims to create a mutate vector Mi,t with respect to each target

individual Xi,t in the current population. According to differ-

ent mechanisms, there exist many different mutation strate-

gies and the most widely used one “DE/rand/1” is given as

follows:

Mi,t = Xri
1,t
+ F(t)(Xri

2,t
− Xri

3,t
), (13)

where r1, r2, r3 are three random integers within [1,N] that

are mutually exclusive from each other and for the mutation

operator of each individual, the random numbers are gener-

ated once. The scaling coefficient F(t) > 0 is a free parame-

ter used to control the mutation process. In this paper, a time

variant F is employed, where Ft = Fmax−t(Fmax−Fmin)/Tmax,

with Fmax(Fmin) being the maximum (minimum) scaling fac-

tor and Tmax being the maximum iteration number respec-

tively.

4.2 Crossover

Following the phase of mutation operation, the crosser oper-

ator is implemented to produce a trial vector Ti,t from each

pair of target vector Xi,t and Mi,t. By taking advantage of a
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random number rand j
i,t within the range of [0, 1], the basic

crossover operator applies a binomial function defined as

t j
i,t =

⎧
⎪⎪⎨
⎪⎪⎩

m j
i,t, if rand j

i,t < CR or j = jrand;

x j
i,t, otherwise,

(14)

where m j
i,t, t j

i,t, and x j
i,t are respectively the jth element cor-

responding to the ith mutate vector Mi,t, trial vector Ti,t, and

target vector Xi,t in the tth generation, CR ∈ [0, 1] is a pre-

defined constant used to control the fraction of values that

are copied from the mutate vectors, and jrand ∈ [0, 1] is a ran-

domly selected number. In this way, the crossover operator

generates a trial vector Ti,t, the jth element of which is equal

to that of Mi,t if the random number rand j
i,t is less than the

crossover probability CR or j = jrand . Otherwise, the element

is copied from the same position of the target vector Xi,t.

4.3 Selection

After the crossover operation, the selection operator is ap-

plied to keep better solutions to the next generation by eval-

uating and comparing each pair of Xi,t and Ti,t. Firstly, each

Ti,t is checked whether it is within the feasible space between

Xlow and Xup. If the feasibility is violated, the vector will be

re-initialized within the feasible space. After this, each vector

Xi,t is evaluated using the fitness function Fit as follows:

Fit (Xi,t) = ft(p) + fc(p) + fs(p),

p ∈ {0, 1}D, p j =

⎧
⎪⎪⎨
⎪⎪⎩

0, if x j
i,t < 0.5;

1, if x j
i,t � 0.5,

ft(p) = pT(tp + te), (15)

fc(p) =

⎧
⎪⎪⎨
⎪⎪⎩

0, if pT(cp + ce) � C;

L, else,

fs(p) =

⎧
⎪⎪⎨
⎪⎪⎩

0, if pTn = m and pT(R + RT);

L, else,

where L is a large enough integer predefined to punish can-

didate solutions that do not satisfy the constraints of cost re-

quirement as well as feasible production selection. Based on

the fitness value obtained above, the selection operator is im-

plemented by comparing Fit(Xi,t) and Fit(Ti,t), of which the

better is copied to the next generation. Specifically, the selec-

tion operator is described by

Xi,t+1 =

⎧
⎪⎪⎨
⎪⎪⎩

Xi,t, if Fit(Xi,t) � Fit(Ti,t);

Ti,t, otherwise,
(16)

which means that a target vector remains in the next genera-

tion only when it is better than the corresponding trial vector.

Otherwise, it will be replaced by the trial vector.

In the DE algorithm, the three operators defined above are

repeated until the pre-defined termination criteria are satis-

fied. The specific steps for the problem in Eq. (11) based on

DE are given as follows:

Step 1 Initialize the population according to Eq. (12) and set

t = 0;

Step 2 For each individual in the population

Step 2.1 Generate a mutate vector Mi,t according to

Eq. (13);

Step 2.2 Produce a trial vector Ti,t from each pair of

target vector Xi,t and Mi,t according to Eq. (14);

Step 2.3 Select the better vector to the next generation

according to Eq. (15);

Step 3 t = t + 1;

Step 4 If the termination criterion is satisfied, end and output

the best solution, else go to Step 2.

5 Simulation results and analysis

In this section, the DE algorithm based solver for the 3D

manufacturing problem is examined and compared with tra-

ditional search approaches, including particle swarm opti-

mization (PSO) and brute-force search (BFS). Equality and

inequality constraints are derived in Section 3 to describe the

fitness of all the possible solutions. Both constraints of cost

requirements and selection are treated as penalty factors in

the optimization problem. To demonstrate the feasibility and

effectiveness of the proposed approach for problems with dif-

ferent sizes, numerical simulations are carried out by using

small-scale and large-scale test cases respectively, whose ob-

jectives are to find the best manufacturing strategies with least

cost. In the first case, the population sizes of different algo-

rithms are set to be 50 and the maximum iteration number is

150. For the second case, the population size and the maxi-

mum iteration number are both set to be 1 000. All individ-

uals are randomly initialized in the feasible solution space

according to Eq. (12). The specific parameter setting is given

in Table 2.

Table 2 Parameter setting for DE

Parameter Value Meaning

N 50 Population size

Tmax 150 Maximum iteration number

Fmax/Fmin 0.8/0.4 Maximum (Minimum) scaling factor

CR 0.9 Crossover probability

C 14 Cost threshold

L 100 000 Penalty
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5.1 Small case

In this testing case, an element tree with 15 nodes is used

(Fig. 6), in which the number of original nodes n = 10 and

that of virtual nodes is m = 5. To verify the effectiveness of

the proposed algorithm, the problem setting is given as fol-

lows:

te =[1.791, 0, 0.005, 0, 0.5621, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

ce =[2.445, 0, 0.498, 0, 0.6200, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

tp =[20.00, 0.866, 0.862, 0.497, 0.714, 0.467, 0.634, 0.232,

0.84, 0.677, 0.2485, 0.2335, 0.317, 0.42, 0.3385],

cp =[8.737, 0.675, 0.94, 0.146, 0.323, 0.978, 0.216, 0.0633,

0.907, 0.522, 0.073, 0.489, 0.108, 0.4535, 0.2610].

Fig. 6 Element tree (small scale)

In this case, the best manufacturing scheme is to produce

nodes 4, 6, and 7 using conventional methods, 3D print node

2, and assemble all those parts to finally obtain the produc-

tion of node 1. The result is demonstrated also in the element

trees shown in Fig. 6 where the nodes are changed to gray

color to correspond to 1 and the rest represent 0. The result

comparison with BFS and PSO is presented in Table 3 and the

evolution curves of DE and PSO are shown in Fig. 7. From

these comparison results, we come to the following conclu-

sions. Firstly, for small-scale cases with 15 element nodes,

the BFS method is capable of finding the best solution in an

acceptable computation time of around 6s. Secondly, the DE

algorithm and PSO effective achieve the same optimal so-

lution but with a computation time far less than BFS. Such

an advantage should be attributed to the global search ability

of those population based meta-heuristic algorithms. Thirdly,

compared with PSO, DE has a better performance in terms of

convergence speed.

Table 3 Result comparison for D=15

Index BFS PSO DE

Fitness 3.737 5 3.737 5 3.737 5

CPU time/s 5.551 0.512 0.516

Solution [0,1,0,0,0,0,0,0,0,0,0,0,1,1,1]

Fig. 7 Evolution curves of different algorithms for D=15

Thus, the structure of the product in the small case is

changed to a new form as shown in Fig. 8, and the result

represents the planning process under the optimal manufac-

turability.

Fig. 8 New product structure of the small case

5.2 Large case

In this case, we test the effectiveness of the proposed algo-

rithm using the element tree shown in Fig. 9, whose node

number is extended to D = 35, with n = 20 and m = 15.

Specifically, the problem setting is given as follows:

tp = [20.0000, 0.0393, 0.8927, 0.5117, 0.9655, 0.0337,

0.4788, 0.8883, 0.6108, 0.7066, 0.4445, 0.6172,

0.4525, 0.0940, 0.2991, 0.0462, 0.0998, 0.6195,

0.8810, 0.0226, 0.2559, 0.0169, 0.2394, 0.3054,

0.3533, 0.2223, 0.3086, 0.2263, 0.0470, 0.1495,
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Fig. 9 Element tree (large scale)

.0231, 0.0499, 0.3098, 0.4405, 0.0113],

te = [5.4, 0.7873, 0.9080, 0, 0.0119, 0, 0, 0.5595, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0],

cp = [10.0000, 0.7254, 0.0126, 0.2149, 0.6584, 0.9539,

0.9320, 0.3155, 0.5374, 0.4546, 0.6245, 0.6070,

0.6898, 0.0647, 0.8118, 0.9197, 0.4555, 0.6091,

0.3833, 0.3037, 0.1074, 0.4770, 0.4660, 0.2687,

0.2273, 0.3122, 0.3035, 0.3449, 0.0324, 0.4059,

0.4599, 0.2277, 0.3046, 0.1917, 0.1518],

ce = [4.8000, 0.5346, 0.0162, 0, 0.7082, 0, 0, 0.6768, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0].

The comparison result and evolution curves are given in

Table 4 and Fig. 9 respectively, and in Fig. 9 the nodes in

red color correspond to 1 and the rest represent 0. With the

growth of the dimension D from 15 to 35, the method of

BFS suffers from exponential explosion, i.e., it takes about

3.4e+10 seconds (112 days) to traverse all the combinations.

As a result, BFS is no longer able to provide a desirable solu-

tion in an acceptable period of time. On the contrary, the DE

based solver can still search a near optimal solution in 197s,

which is to manufacture nodes 21 and 26–29 in conventional

ways, produce nodes 2 and 3 using 3D printing, and assemble

all those elements to get the target production. The result is

demonstrated in the element trees in Fig. 10. Compared with

DE, the basic PSO does not converge to an acceptable solu-

tion in the current parameter setting. The advantage of the

proposed approach is attributed to the global search ability

in the whole feasible space as well as the usage of heuristic

information taken from the evolution behavior of species in

nature. As a consequence, the solver based on DE is capable

of obtaining optimal or suboptimal solutions in a reasonable

time, which leads to a better performance than the state-of-

the-arts.

Table 4 Result comparison for D = 35

Index BFS DE

Fitness – 9.08

CPU time/s 3.4e+10 197

Solution [0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,1,0,0,0,0,1,1,1,1,0,0,0,0,0,0]

Fig. 10 Evolution curves of different algorithms for D = 35

Thus, the structure of the product in the large case is

changed to a new form as shown in Fig. 11, and the result

also represents the planning process under the optimal man-

ufacturability.

Fig. 11 New product structure of the large case
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6 Conclusion

This paper addresses the manufacturability optimization of

discrete products using 3D printing technology and tradi-

tional methods simultaneously and presents a novel approach

based on DE. After modeling the problem using a tree struc-

ture, we formulate it as an optimization problem with both

equality and inequality constraints. A DE based solver is pro-

posed, whose effectiveness is compared with that of brute-

force search and other optimization methods. Simulation re-

sults show that the proposed algorithm well combines tradi-

tional and 3D printing technology in production, which helps

to improve production efficiency in terms of time and money.

Therefore, it is beneficial to provide reference of the widely

application and further industrialization of the 3D printing

technology.

The status quo is that research is mostly focusing on the

advantages of 3D printing qualitatively. A quantitative il-

lustration of the irrelevance between the complexity of target

component and the production time/cost in 3D printing is pro-

vided in this paper, which could further describe the solution

of decreasing production cost while increasing efficiency in

varying levels when manufacturing complicated products. At

the same time, the model and algorithm proposed could solve

the manufacturability optimization problem with a combina-

tion of both 3D printing and traditional ways in manufactur-

ing processes to acquire specific product design and process

planning scheme. The problem of developing the wide ap-

plication and its further industrialized implementation of 3D

printing has been primarily worked out, but now this research

is still in its infancy. Also, the model which is built in this

paper is relatively simple. In the next step, some new factors

are planed to be involved in order to obtain more accurate

optimization model that provides more precise guidance for

the actual production.
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