
Front. Comput. Sci., 2017, 11(1): 88–104

DOI 10.1007/s11704-016-6041-1

An efficient and highly available framework of data recency
enhancement for eventually consistent data stores

Yu TANG, Hailong SUN, Xu WANG , Xudong LIU

School of Computer Science and Engineering, Beihang University, Beijing 100191, China

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Abstract Data items are usually replicated in modern dis-

tributed data stores to obtain high performance and avail-

ability. However, the availability-consistency and latency-

consistency trade-offs exist in data replication, thus system

designers intend to choose weak consistency models, such as

eventual consistency, which may result in stale reads. Since

stale data items may lead to serious application semantic

problems, we consider how to increase the probability of data

recency which provides a uniform view on recent versions of

data items for all clients. In this work, we propose HARP, a

framework that can enhance data recency of eventually con-

sistent distributed data stores in an efficient and highly avail-

able way. Through detecting possible stale reads under fail-

ures or not, HARP can perform reread operations to elim-

inate stale results only when needed based on our analysis

on write/read processes. We also present solutions on how to

deal with some practical anomalies in HARP, including de-

layed, reordered and dropped messages and clock drift, and

show how to extend HARP to multiple datacenters. Finally

we implement HARP based on Cassandra, and the experi-

ments show that HARP can effectively eliminate stale reads,

with a low overhead (less than 6.9%) compared with original

eventually consistent Cassandra.
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1 Introduction

Modern distributed data stores often use data replication to

chase high performance and high availability to serve large

scale of users and provide continuous service. High avail-

ability is of importance for many applications. For example,

the e-commerce service Amazon.com ensures that customers

should always be able to view and add items to their shopping

cars even under failures [1], because any unavailable period

of time may make customers lose confidence on the company

and turn to other competitive companies. Moreover, low la-

tency is also critical for a lot of online applications. As statis-

tic data1,2) demonstrated, an 100 milliseconds higher latency

at Amazon resulted in an 1% drop in sales; a 500 millisec-

onds increase of latency at Google search leaded to a 20%

decrease in traffic, and 2 seconds slowdown at Bing can re-

duce revenue/user by 4.3%. Therefore, providing high avail-

ability and low latency is vital for modern distributed data

stores.

However, the trade-offs of availability-consistency and

latency-consistency are inevitable for data replication [2, 3]

and often have a significant influence on system design. In or-

der to obtain high availability under failures and provide low

operation latency as well, distributed data stores often give

up strong consistency models which can eliminate stale reads

and instead adopt eventual consistency [1, 3–5]. An eventu-

ally consistent data store guarantees that eventually all reads

will observe the last updated states when new writes are ab-

sent [5]. However, it gives no time bound on when all reads

1) https://sites.google.com/site/glinden/Home/StanfordDataMining.2006-11-29.ppt
2) http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
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can observe the latest updated state, and before that, it makes

no guarantees on the behaviors of read operations, which can

lead to possible stale read results.

In eventually consistent data stores, they typically write a
data item by sending the write request to a set of replicas and
read from a possibly different set of replicas. These eventu-
ally consistent data stores often employ optimistic replica-
tion mechanisms [6] to achieve higher availability and perfor-

mance. For write requests, optimistic replication algorithms

do not wait for all of the replicas to be synchronized during

writing, and only need to contact a small subset of replicas

before responding to clients. Besides, optimistic replication

mechanisms do not block other updates on the same items

to improve concurrency which also result in divergent replica

states. For read requests, they also only need to read from a

small subset of replicas. Therefore, if the replica subset of

each write and those of each read are not guaranteed to over-

lap, read requests may return stale results.

There are two main reasons why stale reads exist in an

eventually consistent data store. Firstly, updates of one same

data item are usually performed in a continuous and concur-

rent way as the system runs. Though the PBS model [7, 8]

has indicated that eventually consistent configured quorum

systems, which are widely deployed as an implementation of

eventual consistency, are “often consistent after tens of mil-

liseconds” when failures are absent, continuous updates on

items (especially hot items) still can make replicas inconsis-

tent, resulting in possible stale reads. Secondly, when failures

occur during updating, such as node failures and network par-

titions, the PBS model is not applicable. To make matters

worse, some failures can make stale items exist for a long

time, even without new updates coming.

To reduce the possibility of stale reads, many eventually

consistent data stores have used build-in repair technologies,

like read repair, hinted handoff3) or Merkle trees based anti-

entropy mechanism [1, 9]. However, these approaches have

their own limitations: read repair works after a read response

has been returned, while hinted handoff and Merkle trees

based anti-entropy often work periodically and thus cannot

eliminate stale data in time.

In this work, we propose HARP, an efficient and highly

available framework that can enhance data recency for on-

going reads of eventually consistent data stores. HARP in-

creases the probability of data recency by detecting whether

the returned data from an eventually consistent data store is

stale and attempting to obtain the most recent version via

rereading, with negligible performance overhead. In order to

achieve the goal, HARP takes advantage of a memory-based

data store (or WT store for short) to record each item’s write

timestamp (physical time or logical time), which is used to

detect stale data. As the accessing speed of modern mem-

ory is much faster than that of hard disks, the introduced WT

store has little performance effect on a disk-based eventually

consistent data store (or DD store for short). For write and

read operations, we analyze all possible cases by consider-

ing failures, exceptions and different comparison results of

two timestamps observed from the DD store and WT store.

Based on the analysis results, we find that HARP should is-

sue a reread operation to eliminate possible stale reads just in

some cases, and in other cases HARP does not need to reread,

which avoids unnecessary reread operations and thus reduces

the performance overheads of HARP. HARP also needs to en-

sure that the availability of eventually consistent data stores

should not be affected. To achieve this goal, HARP adopts an

optimistic solution: HARP does not need to wait for the re-

sponses from the WT store if it fails. That means, if the DD

store is available but the WT store is not, HARP still can re-

turn the responses to clients. Thus the availability of HARP

is actually the same with the DD store which is often highly

available [1,4]. Moreover, we present some solutions on how

to deal with some practical anomalies in HARP, including de-

layed, reordered and dropped messages and clock drift, and

show how to extend HARP to multiple datacenters.

Based on a widely-used eventually consistent data store

Cassandra and an in-memory data store Redis, we implement

the prototype system. In our experiments, HARP is able to

handle all the stale reads caused by failures in the DD store

and a majority of stale reads caused by continuous updates,

with the overheads of less than 6.9% compared with the Cas-

sandra’s typically eventually consistent quorum configuration

(N = 3, W = R = 1 in this paper).

In this paper, we make the following contributions:

• We propose a framework HARP, which can increase

the probability of data recency on top of an eventually

consistent data store in an efficient and highly available

way.

• We present the design and implementation of HARP. In

HARP, through analyzing all possible cases of HARP

caused by failures, exceptions and comparison results

of observed timestamps, we find that reread operations

can be performed to eliminate possible stale reads only

when needed so as to reduce the overhead. We also dis-

cuss how to keep the high availability of HARP, and

3) http://docs.datastax.com/en/cassandra/1.2/cassandra/dml/dml_about_hh_c.html
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demonstrate how to deal with some practical anomalies

including delayed, reordered and dropped messages and

clock drift in HARP, as well as how to extend HARP to

multiple datacenters.

• Based on the widely deployed eventually consistent

data store Cassandra and the in-memory data store

Redis, we implement HARP and evaluate it with the

benchmark YCSB [10]. The experiments show that,

HARP can eliminate all the stale reads caused by fail-

ures in Cassandra and a majority of stale reads when

there are no failures in Cassandra, with the cost of less

than 6.9% overhead.

The rest of the paper is organized as follows. Section 2

introduces the background of recency guarantees and even-

tual consistency. In Section 3, we describe the design and the

implementation of HARP. In Section 4, we provide the ex-

perimental results. Section 5 discusses some limitations of

HARP. Section 6 introduces the related work. Finally, we

come to the conclusion in Section 7.

2 Background

In this section, we provide backgrounds on data recency guar-

antee which is one kind of application safety property, and

eventual consistency, one of the most widely deployed weak

consistency model.

2.1 Recency guarantees

Data recency guarantees are a kind of safety property, and

different consistency models may provide different recency

guarantees. Data recency ensures that reads to data items

must return values that should obey some rules about wall-

clock time or logical clock. For example, linearizability [11],

one of the most famous consistency model in distributed sys-

tems, ensures that reads must return the last completed up-

dated value of a data item, and there are also several weaker

variants, like safe semantics, regular register semantics [12].

In practice, data recency is of great importance in real-

world applications. We give some real scenarios in social net-

work applications like Twitter and Facebook. If stale reads

cannot be eliminated, the following scenarios may happen.

1) Tommy makes a friend with Lucy on a bus and follows

her on Twitter. However, when he gets home, he can-

not find her in his following list. Tommy is very disap-

pointed because he may never meet Lucy again.

2) At the Oscars, the host Ellen tweets a selfie4) , but Lily

cannot find the picture as a follower of Ellen, while her

friends could. Since then, Lily has lost confidence in the

social networking website.

3) Davy’s new girl friend Cindy is reading his tweets. Un-

fortunately, she finds group pictures of Davy and his

ex-girlfriend, but Davy has removed those pictures last

week. Moreover, Cindy is a jealous girl, and Davy has

to go through a terrible experience.

From the examples above, we can see that data recency

guarantees are important for online services. Unfortunately,

recency guarantees cannot be theoretically achievable for

highly available distributed data stores [13]. When an indefi-

nitely long partition occurs, a distributed data store may have

to choose to return clients with probably stale values or stop

online services. However, it does not mean that we cannot en-

hance the probability of data recency. After all, that kind of

extreme failures is rare and most stale reads can be effectively

avoided.

2.2 Eventual consistency

Many modern distributed data stores prefer to employ weak

consistency, providing few safety guarantees to pursue avail-

ability and performance, and eventual consistency is a most

notable and widely used one5,6) [1]. Eventual consistency

mainly provides a property called convergence [14], which is

more a liveness property [15] than a safety property: it only

ensures that all replicas will eventually agree on the same

value on condition that no updates come, but it cannot guar-

antee that reads could witness the same value, let alone the

latest updated value, at any given time.

Despite its weak safety property, there are a variety of real-

world distributed storage systems offering a configuration to

eventual consistency, such as quorum-based Dynamo-style

replication model [1] (e.g., Apache Cassandra [4], Project

Voldemort7), Basho Riak KV8)), as a result of preference to

availability and performance.

In practice, eventually consistent data stores do not provide

data recency guarantees, but their built-in mechanisms [1],

4) http://popwatch.ew.com/2014/03/02/oscars-2014-ellen-selfie-retweeted-record-obama/
5) https://github.com/apache/cassandra/blob/cassandra-1.2/interface/cassandra.thrift
6) http://ria101.wordpress.com/2010/02/24/hbase-vs-cassandra-why-we-moved
7) http://www.project-voldemort.com/voldemort/
8) http://basho.com/products/riak-kv
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including read repair, hinted handoff and anti-entropy, may

alleviate staleness.

• Read repair is aiming at repairing replicas that have

stale versions of the reading item, and takes place af-

ter read responses have been returned to clients. During

a process of read repair, a coordinator collects read re-

sponses from all available replicas and chooses the lat-

est version. Afterwards, the coordinator updates those

replicas that do not hold the latest version to make all

replicas consistent.

• Hinted handoff can be used to make the store recover

from temporary failures. When a node A becomes un-

available and some update requests come, other avail-

able nodes will store corresponding hints including

which node was the intended recipient of the updates,

and the updates that should be sent to the unavailable

node. After detecting that the unavailable node has be-

come available, nodes storing the hints will deliver the

corresponding updates to A. Thus, hinted handoff at-

tempts to make the recovered node consistent with oth-

ers.

• Merkle trees based anti-entropy is applied to handle re-

covery from permanent failures. Eventually consistent

data stores use Merkle trees to detect the inconsisten-

cies among available replicas. If there are inconsisten-

cies, data stores will perform synchronization actions to

eliminate staleness.

However, these mechanisms have their own limitations in

enhancing data recency. In summarize, read repair works af-

ter read responses have been returned, while hinted handoff

and Merkle trees based anti-entropy approaches often work

periodically and cannot eliminate stale reads in time.

3 HARP

In this work, we take eventually consistent key-value stores

into account. In the key-value model, data is represented as a

collection of key-value pairs, and each key is unique in the

collection. According to whether a read operation can ob-

serve the results of the latest successful write, we classify

read operations to recency reads and stale reads: if a read

observes the result that reflects the latest successful write, it

is called a recency read; otherwise, we name the read oper-

ation as a stale read. The classification derives from the lin-

earizability [13] model, which ensures that a read must return

the last completed write to a data item. Therefore, a read that

obeys the restriction required by linearizability is a recency

read. However, we do not intend to provide a strong guaran-

tee like linearizability.

HARP settles between an eventually consistent data store

and the application layer (as shown in Fig. 1). To store each

update’s timestamp efficiently, HARP leverages a memory-

based WT store, which is also placed under the HARP. HARP

mainly consists of many agents. Each agent manages the

write and read operations issued by clients, and attempts to

detect and deal with stale reads.

Fig. 1 The logic model of the system

HARP mainly includes three functional modules. The first

module handles the write and read processes in HARP (Sec-

tion 3.1). The second module is designed to detect and han-

dle stale reads (Section 3.2). The third module manages mes-

sages and timestamps, and also deals with practical anoma-

lies like delayed, reordered and dropped messages and clock

drift (Section 3.3). We also present how to extend HARP to

suit for a multiple datacenter environment. In the end of this

section, we present an implementation of HARP.

3.1 Handling writes and reads

For write operations, except for storing the item value into

the underlying DD store, HARP also needs to store the cor-

responding write timestamps, obtained from physical clocks

or logical clocks, in both DD store and WT store. Compared

with that in an eventually consistent data store, a write pro-

cess managed by HARP requires an extra parameter and an

additional write request: the write timestamp and the write

request sent to WT store. Denote a write operation handled

by the DD store as wd(k), where k is the corresponding key

of the write. Similarly, a write operation handled by the WT

store is denoted as wt(k). Thus, a write operation w(k) han-

dled by a HARP agent will issue wd(k) and wt(k), as shown

in Fig. 2. To reduce the overall operation latency, wd(k) and

wt(k) are performed simultaneously. However, the paired op-

erations wd(k) and wt(k) may lead to different execution re-

sults. Consider the following situations:
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W1: Both wd(k) and wt(k) are failed.

W2: wd(k) is successful while wt(k) is failed.

W3: wt(k) is successful while wd(k) is failed.

W4: Both wd(k) and wt(k) are successful.

Fig. 2 The architecture to implement HARP (Each agent handles read and
write operations issued by clients, and distributes corresponding requests to
the underlying stores)

Denote the set {W1, W2, W3, W4} as W . Successful wd(k)

(or wt(k)) means data (or time) is successfully written into

the DD store (or WT store) and the corresponding response

is received by the agent within a timeout bound; otherwise,

wd(k) (or wt(k)) is considered failed. For W1 and W4, w(k) will

return f ailure and success, respectively, as wd(k) and wt(k)

are all failed and successful, respectively. For W2, wd(k) is

successful, but wt(k) is not. To maintain high availability as

the native DD store, the agent will return the client a success

message. While for W3, the agent will return a f ailure mes-

sage. Therefore, for write operations, to achieve high avail-

ability as the native DD store, the agent will return a success

message to the client if wd(k) is successful; otherwise the

agent will return a f ailure message. Among the four situa-

tions, W4 is the most common case because failures are ab-

sent most of the time, but other cases also exist in practical

data stores. The inconsistency brought in by W2 and W3 will

be taken into consideration during handling read operations.

Denote a read operation handled by an agent as r(k), where

k is the operating key. Similar to a write operation, a read op-

eration r(k) handled by an agent will also issue two paired

reads: one that is sent to the DD store is denoted as rd(k),

and the other that is sent to the WT store is denoted as rt(k).

rd(k) returns the item value and the timestamp that value was

updated, which is denoted as timed, while rt(k) returns the

item’s latest updated timestamp, which is denoted as timet.

There are also several situations for an agent to execute r(k):

R1: Both rd(k) and rt(k) are failed.

R2: rd(k) is successful while rt(k) is failed.

R3: rt(k) is successful while rd(k) is failed.

R4: Both rd(k) and rt(k) are successful, and:

R4a: timed < timet,

R4b: timet < timed,

R4c: timet = timed.

Denote the set {R1, R2, R3, R4a, R4b, R4c} as R. Successful

rd(k) means the read handled by the DD store returns the item

value (not null) and the corresponding updated timestamp

within a timeout bound; otherwise, rd(k) is failed. Success-

ful rt(k) means the read handled by the WT store returns the

timestamp (not null) within a timeout bound; otherwise, rt(k)

is failed. Specially, for R4, both rd(k) and rt(k) observe data in

the underlying stores, but either may observe stale data. How-

ever, we can compare the timestamps obtained from DD store

and WT store to predict whether data is stale. According to

the comparison result, we classify them into three categories:

R4a, R4b and R4c. We use “<” to symbolize that the times-

tamp on the left side of the operator is smaller than that on

the right side (such as R4a and R4b), while “=” stands for that

the timestamps on both sides of the operator are equal (such

as R4c).

3.2 Handling possible staleness

In this subsection, we firstly present how the execution re-

sults of finished writes can influence that of following reads.

Then we analyze which cases in R need second-round reads

to eliminate possible stale read, while other cases do not need

to.

To begin with, we denote the “result in” relationship be-

tween w(k) and the corresponding execution situation Wx as

“→”: w(k) → Wx, where Wx ∈ W . Denote the “result in” re-

lationship between w(k) and an execution situation of a read

as “ �→”: if r(k) follows w(k) and there is no subsequent writes

to the same key happens between w(k) and r(k), and the re-

sult of r(k) is a situation Rx, where Rx ∈ R, then w(k) �→ Rx.

Moreover, we denote the “result in” relationship between Wx

and Ry as Wx ⇒ Ry: if w(k) → Wx and w(k) �→ Ry, then

Wx ⇒ Ry. Extensively, w(k) �→ {Rx} represents ∀R ∈ {Rx}
such that w(k) �→ R. Besides, if w(k)→ Wx and w(k) �→ {Ry},
then Wx ⇒ {Ry}. Table 1 concludes the usage of the above

three “result in” symbols. We divide write operations into two

kinds: insert operations and update operations. An insert op-

eration means the DD store has not stored the writing item

before, while an update operation means the DD store has

already stored the item.
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Table 1 The supplement of “result in” symbols

Symbol Object on the left side Object on the right side

→ A write operation The execution result of the write

�→ A write operation A (or a set of) possible execution result(s) of the following read(s) to the same data item

⇒ An execution result of a write operation A (or a set of) possible execution result(s) of the following read(s) to the same data item

Understanding how the execution results of finished writes

can influence that of following reads can help HARP to know

how to efficiently handle every case in R. Therefore, we

should analyze the detail “result in” relationships between a

write’s execution result and a following read’s execution re-

sult. For simplicity, we assume the WT store always returns

the most recent data it has stored, but we will loose the as-

sumption in the end of the analysis.

W1 ⇒R. Firstly, we present that although wd(k) and wt(k)

are failed, following reads can still observe the item and

its corresponding timestamp. If w(k) is an update operation,

though wd(k) and wt(k) are failed, previous writes may have

already inserted the item and corresponding timestamp into

the DD store and WT store. Therefore, following reads can

observe an older item and its corresponding timestamp. Be-

sides, though wd(k) and wt(k) are failed, it does not mean

rd(k) cannot observe the value wd(k) attempts to write, be-

cause there is a possibility that can cause wd(k) to fail: data

has been written into the DD store, but the agent cannot re-

ceive the success acknowledgement because of network or

node failures. Similar situation can happen between wt(k) and

rt(k). We call the situation like that a false negative. If a false

negative only happens to wd(k), then the following read can

get new data from the DD store but older time from the WT

store, resulting in R4a; similarly, if a false negative only hap-

pens to wt(k), then the following read can get older data from

the DD store but new time from the WT store, resulting in

R4b; moreover, if false negatives happen to both wd(k) and

wt(k), then the following read can get fresh data and fresh

time, resulting in R4c. Further, due to various failures, rd(k)

and rt(k) can be failed during handling read operations. If

both rd(k) and rt(k) are failed, W1 ⇒ R1; if either rd(k) or

rt(k) is failed, W1 ⇒ {R2, R3}. Above all, W1 ⇒R.

W2 ⇒ R. Similar to W1, W2 ⇒ {R1, R2, R3} holds as

rd(k) or rt(k) may be failed. If a false negative does not hap-

pen to wt(k) and the DD store returns the most recent data,

then W2 ⇒ R4b. If a false negative happens to wt(k), there are

two cases: if the DD store returns the most recent data, then

W2 ⇒ R4c; otherwise, as an eventually consistent data store,

the DD store returns stale data, then W2 ⇒ R4a. Above all,

W2 ⇒R.

Similar to W2, we can get W3, W4⇒ {R1, R2, R3, R4a, R4c}.

But W3, W4� R4b because the WT store is assumed to return

the most recent data it has stored. However, if we loose the

assumption that the WT store always returns the most recent

data, we can get W1, W2, W3, W4 ⇒R.

For six kinds of execution results a read may be confronted

with, we demonstrate how HARP detects and handles possi-

ble stale data during handling read operations. The principle

of HARP is increasing the possibility of recency reads in an

efficient and highly available way. We assume that failures

are rare but may occur, and the WT store always returns the

most recent timestamp it has stored.

The PUT procedure in Algorithm 1 concludes the write

process. The procedure works in the HARP module and will

write an item with the input key k and value v into the DD

store DS . Besides, the procedure also needs to get the local

timestamp and insert it to the WT store TS . The output of the

PUT procedure is whether wd(k) is successfully executed.

The GET procedure in Algorithm 1 concludes the read pro-

cess. The procedure works in the HARP module and will

fetch an item (including its value v and timestamp timed) cor-

responding to the specified input key k from the DD store

DS . Besides, the procedure also needs to get the correspond-

ing timestamp timet from the WT store TS to detect possible

stale reads. The output of the GET procedure is the item value

corresponding to the input key k. Moreover, the GET proce-

dure may invoke the RESOLVE procedure to handle a possi-

ble stale read if it is detected. The RESOLVE procedure will

then try to get an item value corresponding to a larger times-

tamp from the DD store DS via reread operations, which are

determined by the users’ configuration. The RESOLVE pro-

cedure also needs the timestamps timet and timed respectively

obtained from the WT store and the DD store as the input pa-

rameters to handle the possible stale read. There is no output

for the RESOLVE procedure, as it will update the input item

value v if the RESOLVE observes a more recent version and

the GET procedure will observe the update.

There are several cases that can lead to R1: both rd(k) and

rt(k) catch an exception (e.g., timeout, connection refused),

or both receive null value, or one catches an exception mes-

sage, the other receives null value. The reasons causing those

to happen can be node failures or network partitions, some-

times it is because data or time has been deleted or, actually,
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Algorithm 1 Detecting and handling possible stale reads

1: procedure (key k, val v, DD store DS , WT store TS )
2: // get local incremental timestamp
3: time ← getCurrentTime()
4: // wd(k) and wt(k) are run concurrently
5: TS .put(k, time) ‖ result ← DS .put(k, v, time)
6: // whether a put is successful is up to wd(k)
7: return result
8: end procedure

9: procedure (key k, DD store DS , WT store TS )
10: // try to catch exceptions for rt(k), if they exist
11: {v, timed } ← DS .get(k) ‖ {timet , ex} ← TS .get(k)
12: if v == null then // situation R1 or R3

13: if ex � null or timet == null then // situation R1

14: return null
15: end if
16: resolve(DS , TS , k, timet , 0, v) // situation R3

17: return v
18: end if
19: if timet == null then // situation R2

20: if ex == null then
21: // time in the WT store is null, so update it
22: TS .put(k, timed )
23: end if
24: return v
25: end if
26: if timed < timet then // situation R4a

27: resolve(DS , TS , k, timet , timed , v)
28: else if timet < timed then
29: // situation R4b. Update the time in the WT store
30: TS .put(k, timed )
31: end if
32: return v
33: end procedure

34: procedure Resolve(DD store DS , WT store TS , key k, time timet ,
time timed , value v)

35: {timesreread , levelreread }← userDefineConfig()
36: loop timesreread times
37: {vreread , timereread } ← DS .get(k, levelreread )
38: if timet < timereread then
39: // update the stale time in the WT store
40: TS .put(k, timereread )
41: v = vreread

42: return
43: else if timet == timereread then
44: v = vreread

45: return
46: end if
47: if timed < timereread then
48: v = vreread

49: end if
50: end loop
51: return
51: end procedure

they have not been stored successfully as a result of W1–W3.

In these cases, the agent will return null, either to maintain

high availability without waiting for the successful message,

or just return the obtained null value from DD store. Lines

13–15 in the Algorithm 1 show the process.

For R2, rd(k) obtains data from the DD store while rt(k)

does not. The reasons why rt(k) does not get time from WT

store are the same as those for situation R1. As rt(k) is failed,

there is no evidence to suggest whether the observed data is

stale. Therefore, the agent could return null to decrease the

number of stale reads. However, this solution is unacceptable,

because when the WT store becomes unavailable while the

DD store works well, the agent will also return null: failures

in WT store may result in clients’ reading nothing—that is

not what HARP desires. Actually, returning the obtained data

from the DD store will not increase the possibility of stale

reads compared to original reads on the DD store, because

the data is just obtained from the DD store. Therefore, as an

optimistic solution, returning the possible stale data is accept-

able. Besides, if rt(k) returns null value instead of catching

any exceptions, the agent needs to update the timestamp in

the WT store, because the timestamp has not been written

into the WT store in the last write. Lines 19–25 in Algorithm

1 show the process.

For R3, rt(k) obtains a timestamp from the WT store while

rd(k) does not get the corresponding item. The phenomenon

means there was a write operation that has tried to insert the

item, but rd(k) does not observe the item because of access-

ing a stale replica or failures. Therefore, an agent needs to

deal with this situation to exclude possible stale reads. Lines

16–17 in Algorithm 1 show the process.

For R4a, both rd(k) and rt(k) return timestamps from the un-

derlying data stores, and timed < timet. Though W1, W2 and

W3 can result in the situation, considering W4’s high probabil-

ity as we assume failures are rare, there is a high probability

that the obtained data is stale. This is a situation when the

agent needs to deal with the probable staleness. If a R4a is ac-

tually “result in” effect of a W3, which means rd(k) may not

be stale, treating the rd(k) as a stale read and issuing a second-

round read will not cause side effects. Lines 26–27 and 32 in

Algorithm 1 show the process.

For R4b, the timestamp obtained from the DD store is larger

than that obtained from the WT store. The most probable rea-

son is that the timestamp timet of the latest write has not been

written into the WT store yet. Therefore, the agent also needs

to update the timestamp in the WT store to timed . Lines 28–

30 and 32 in Algorithm 1 show the process.

Ideally, R4c means the handling read is a recency read.

However, in the real world where uninvited failures exist, R4c

also cannot guarantee the obtained item is not stale. Though

the obtained time from the DD store and WT store are equal,

the data is also possible to be stale: as a result of W2, writes to
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the DD store are successful, while the corresponding times-

tamps cannot be stored into the WT store; then a follow-

ing read obtains the timestamp from the WT store and stale

timestamp from the DD store, and the two obtained times-

tamps are equal by coincidence. Nonetheless, the possibility

of that situation is low and detecting the possible stale reads

in such a situation is costly. Therefore, in this situation, the

agent can return the obtained data to clients. Line 32 in Algo-

rithm 1 shows the process.

As above, R3 and R4a are the situations where HARP needs

to deal with possible stale reads. The key to resolve stale-

ness is obtaining a data item with the specified time no less

than timet. As the agent and WT store do not persist data, the

agent has to issue a second-round read to get the item from

the DD store. Even though the required item has been stored

successfully, with an eventually consistent configuration, the

DD store may still return stale data again. However, some

DD stores provide a tunable consistency level for client re-

quests. For example, for some quorum-based data stores, the

number of replicas a read attempts to access is tunable during

runtime9,10) , which means clients can tune the consistency

level of reads from basically eventual to some stronger ones,

e.g., “read your writes”, by increasing the number of repli-

cas that need to access. Therefore, a reread operation can try

to access more replicas to increase the possibility of obtain-

ing the most recent item. For data stores whose consistency

levels are not tunable during runtime, the agents may retry

reread operations for more than one time to increase the prob-

ability of obtaining the most recent data, and the retry times

depends on user’s concern about stale reads. Because of the

differences between various DD stores, how to resolve stal-

eness is subject to system implementation. The RESOLVE

procedure in Algorithm 1 shows the process.

We have analyzed how to deal with six possible situations

that reads may encounter when all write operations are fin-

ished. Actually, the algorithm is also applicable when reads

observe ongoing writes, because no matter what the execu-

tion results of the ongoing writes are, the execution results of

the concurrent reads also fall in the six situations.

According to Algorithm 1 described above, network or

node failures in the WT store will not affect the availabil-

ity of HARP. Moreover, if the WT store is available, HARP

can carry on the staleness detecting and handling process. To

reduce introduced overheads, in most cases, HARP will di-

rectly return data obtained from the DD store; while for R3

and R4a, HARP will force a reread operation to attempt to get

newer data. Therefore, HARP will not increase the possibility

of stale reads compared with the native eventually consistent

DD store. On the contrary, HARP can increase the proportion

of recency reads.

3.3 Additional design

3.3.1 Handling practical messages

In practical distributed systems, messages can be delayed, re-

ordered, or dropped. We mainly take update request messages

into account, as data states are more sensitive to abnormality

of update request messages. Firstly, we present how to han-

dle reordered and dropped messages, and then show how to

deal with delayed messages. To simplify presentation, we do

not consider node failures in this part. Reordered, or dropped

update requests may make states in the data store become in-

consistent. Reordered update requests may cause data states

to “draw back”, and Fig. 3 presents two possible situations

that may lead to the anomaly: Figs. 3(a) and 3(b) demonstrate

“draw back” anomalies caused by reordered requests occured

in the DD store and DT store, respectively. A “draw back”

anomaly may make an older value replace the most recent

value, which should be prohibited in HARP. As each update

request attaches the timestamp that represents the moment of

issuing, we can leverage the timestamp to avoid “draw back”

anomalies: when a server receives an update request, it com-

pares the attaching timestamp of the request with the times-

tamp of the local item: if the updating item does not exist in

the local server or the timestamp of the request is larger, the

server performs the update; otherwise, abandon the update

request or make the effect of the update invisible. In this way,

servers can free from “draw back” anomalies. For example,

in Fig. 3(b), as ta < tb, the server abandons the w0 request and

the item value will not be changed from tb to ta. For dropped

messages, their senders will catch a timeout exception and

can resend the messages for several times until receiving the

corresponding acknowledgements.

A delayed update request message may lead to three unde-

sirable consequences: the message is considered to be

(1) reordered: the message is delayed such that it comes

after a later message in the server (as in the Fig. 3);

(2) dropped: the message is delayed such that its sender

cannot receive a response within a timeout bound;

(3) both reordered and dropped: both (1) and (2) may hap-

pen simultaneously as they are not mutual exclusive.

9) http://www.datastax.com/documentation/cassandra/1.2/cassandra/dml/dml_config_consistency_c.html
10) https://github.com/basho/riak-java-client/wiki/Fetching-Data-from-Riak
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Fig. 3 “Draw-back” anomalies caused by reordered message (The horizon-
tal direction represents time; crossbars and the specified local timestamp tx

correspond to the start and end time for each operations, which are demon-
strated between crossbars). (a) DD store; (b) WT store

The solution of reordered messages described ahead in this

subsubsection can deal with the situation (1). However, em-

ploying the solution of dropped messages to deal with the sit-

uation (2) will lead to duplicate messages, because delayed

messages are not really dropped. Nonetheless, as operations

in HARP are all idempotent, duplicate messages will not re-

sult in undesirable consequence. The combination of the so-

lutions of (1) and (2) can deal with the situation.

In summary, our solution guarantees that replicas in both

DD store and WT store will eventually converge to the state

updated by the writes that possess the largest timestamps.

3.3.2 Handling clock drift

Clock drift is inevitable in distributed systems, and it can re-

verse the relation “happened before” of the events in a dis-

tributed system [16]. For example, as shown in Fig. 4, if

te < ta, which is possible considering clock drift, then the

item value will still be v0 after the global time t exceeds t0,

because w1 is ignored according to Section 3.3.1. That means

a causally later update may be ignored by the data store due to

clock drift. The concept “causally later” in this paper means

for any operations a and b the following conditions should be

satisfied:

(1) If a and b are operations issued by the same client, and

a happens before b, then b is a causally later operation

(compared with a).

(2) If a is a write operation and b is a read operation that ob-

serves the execute result of a, then b is a causally later

operation (compared with a).

(3) If c is a causally later operation compared with a, and b

is a causally later operation compared with c, then b is

a causally later operation compared with a.

Fig. 4 An example of an anomaly caused by clock drift (The vertical
dashed lines represents the global time, but clocks in clients differ due to
clock drift. To simplify the presentation, the example only considers the
scene where there is one replica in the system)

To eliminate the anomaly, we employ a strategy similar to

the Lamport clock [16] in HARP. The strategy includes two

main steps:

(1) When a client issues a write, the local timestamp should

be attached to the write request and be stored in the data

store along with the item value;

(2) When a client observes an item from the data store, it

also observes the corresponding timestamp stored dur-

ing writing. The client needs to compare the observed

timestamp with the local timestamp: if the previous

value is larger, the client should update the local times-

tamp to the observed timestamp.

The first step is already contained in the procedures of

HARP, and HARP needs to add the second step when han-

dling write operations. The second step only needs clients

to execute a compare and set operation when handling each

read. Therefore, the strategy will not introduce too much

performance overheads. By employing the strategy, causally

later writes will not be ignored by the data store, because

they possess larger timestamp, unless some newer writes have

been performed earlier. As illustrated in Fig. 4, if the strategy

is applied, the client C0 will attach the local timestamp ta to

the write request. Afterwards, the client C1 observes the item

and the timestamp ta, and then C1 updates the local times-

tamp to ta if ta > td. Therefore, te > ta holds and the item

value will be updated to v1 after w1 is performed. In sum-

mary, the strategy guarantees that a causally later update has

a larger timestamp.

3.3.3 Multiple datacenters

The previous description is based on the assumption where

all servers are deployed in a single datacenter. Nonetheless,

HARP can also be applied to multiple datacenters with some
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changes about recency enhancement.

In the scene of multiple datacenters, data replicas are de-

ployed in different datacenters to provide the disaster toler-

ance property or reduce latency for worldwide users. Clients

usually communicate with the local datacenter first to reduce

user-aware latency. In this situation, if HARP still maintains a

globally single replica for each item in the WT store, then an

agent may wait more time to communicate with the item’s

recency metadata placed in the remote datacenter, causing

considerable performance overheads. However, if HARP em-

ploys one replica for recency metadata in each datacenter,

the consistency model of the WT store deserves attention: if

strong consistency model like linearizability is adopted, the

performance of the whole system will be largely influenced,

considering that the DD store is eventually consistent. There-

fore, the WT store also adopts eventual consistency to keep

pace with the DD store to chase high performance.

Nevertheless, for each datacenter, HARP is often able to

make corresponding clients observe updates issued by the

clients that communicate with the same datacenter. Such

property of observing the latest local updates handled within

each datacenter is termed local data recency in this work.

That means, HARP may not guarantee observing the globally

latest updates among different datacenters especially when

users’ read requests are scheduled to remote datacenters by

some scheduler strategies. However, scheduling requests to

different datacenters will incur considerable overhead due to

wide-area network delay. In practice, most multiple datacen-

ters are deployed across different regions and user requests

from a same region are usually delivered to the same nearest

datacenter. Local data recency is very useful for this situa-

tion when the popularity of each item differs across different

datacenters, e.g., geo-distributed social networkings, where

end users are more interested in knowing fresh events nearby

and user requests are always sent to the nearest datacenter to

improve user experience.

3.4 Implementation

As the design described above, there are three primary mod-

ules: an eventually consistent DD store, an in-memory WT

store and an agent layer. For the DD store, we use Cassandra,

a widely deployed quorum-based Dynamo [1]-style NoSQL

store. We do not modify the source code of Cassandra and

only change some configuration parameters as recommended

by official documentation11). Cassandra provides two kinds

of consistency configurations. One is the strict quorum con-

figuration, which can provide strong consistency guarantee of

reads and writes to replicas by ensuring read and write replica

sets overlap: given N replicas, together with read and write

quorum sizes R and W respectively, R+W > N must be guar-

anteed. Using the strict quorum configuration, stale reads can

be eliminated. The other is the partial (or non-strict) configu-

ration, which provides eventual consistency, for R +W � N.

There are also some works [7,17], which are aiming at quan-

tifying consistency, availability or latency based on quorum

systems, helping users determine the value of N,W,R.

For the WT store, we use Redis12) , an open source key-

value main memory WT store. Redis is able to save data into

disk and supports master-slaver replication, so a node failure

of Redis will not result in a loss of data. As data volume can

be very large and user requests can be frequently, a single Re-

dis node may not be able to handle that situation, so we set up

a Redis cluster. We modify the Redis source code to imple-

ment the strategy described in Section 3.3.1 and deal with the

“draw back” anomaly in the WT store. While we do not mod-

ify the Cassandra source code, because Cassandra can avoid

“draw back” anomalies in a similar way: a Cassandra data

node can maintain multiple versions for each data item and

will return the version that possesses the largest timestamp

during handling reads.

We implement the HARP module in Java. The HARP mod-

ule consists of multiple HARP agents, and the strategies de-

scribed in Sections 3.1, 3.2 and 3.3.2 are implemented in each

HARP agent. HARP agents are placed in every client ma-

chines, and the number of HARP agents will increase as the

number of client machines does. Therefore, HARP will not

introduce much performance overhead with the increasing of

client machines.

By default, an HARP agent sets the consistency level that

is used to access the underlying Cassandra as W = 1 and

R = 113) , and sets W = N − 1 for reread operations and the

maximum retry times for each reread is 3.

4 Evaluation

In this section, we experimentally show that HARP can en-

hance data recency by detecting and resolving stale reads

when there are failures or not. Besides, we compare the per-

formance of HARP with an eventually consistent configu-

ration and a stronger “read your writes” configuration of

11) http://www.datastax.com/documentation/cassandra/1.2/cassandra/initialize/initializeSingleDS.html
12) http://redis.io/
13) https://github.com/apache/cassandra/blob/cassandra-1.2/interface/cassandra.thrift
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Cassandra. Furthermore, we also demonstrate that practical

anomalies can happen in a distributed system and HARP can

deal with them in an efficient way.

4.1 Experimental setup

We evaluate the system with the YCSB (Yahoo! Cloud Serv-

ing Benchmark) [10]. The agent layer is placed between

YCSB and underlying data stores Cassandra and Redis. In

the experiment, Cassandra runs on a cluster of 5 nodes. Each

node has 2.0GHz eight-core Processor, 16 GB memory and

200 GB HDD. Redis runs on a cluster of 2 nodes, and each

node also has 2.0GHz eight-core Processor, 16 GB mem-

ory. All nodes are connected by 1Gbps Ethernet. Each node

uses 64bit Debian Linux 3.2.0. By default, YCSB uses 20-

byte row keys, while the average size of each value is 1

byte, which adversely affects recency metadata overheads in

HARP, and the replica factor N is 3 [1]. For client loads, we

choose uniform distribution or Zipfian distribution to simu-

late user behaviors.

4.2 Data recency

The general reason that data recency cannot be guaranteed

for an eventually consistent data store, is that the latest up-

date on a data item cannot be propagated to all replicas in

time, and thus a following read may only access a replica that

possess a stale item, resulting in a stale read. However, the

detail reasons can be classified into two kinds according to

whether failures are absent or not (as described in Section 1).

Therefore, we check whether HARP really can enhance data

recency by eliminating stale reads in two cases: failures are

1) absent, as well as 2) present. In this experiment, we en-

able the default failure recovery mechanisms in Cassandra,

including read repair and hinted handoff.

When failures are absent, Fig. 5 shows the numbers of

detected stale reads with and without HARP applied, repre-

sented as Cassandra and HARP respectively. In this experi-

ment, the read proportion of the workload is 80%, and each

experimental instance runs continuously for 150 seconds.

Client requests obey a Zipfian distribution and the Zipfian

factor is set to 0.88, which makes 80% of the requests con-

centrate on 20% of ten million data items. If a client thread

observes (or updates) a data item, and after that, a read opera-

tion launched by any client thread in the same client machine

observes the same item but older versions, then the read op-

eration is considered as a stale read. As Fig. 5 demonstrates,

HARP can eliminate stale reads by more than two orders of

magnitude compared with eventually consistent Cassandra.

Fig. 5 Detected stale reads when failures are absent

We also check whether HARP can really decrease the pos-

sibility of stale reads when a node recovers from failures. In

this experiment, we insert ten million items to the data store

at the beginning. Then we terminate the Cassandra thread on

one server, update two million data items on other available

nodes, and restart the terminated thread. After the Cassandra

thread restarts, we wait for a specified period of time, launch

100 clients to issue random reads for 60 seconds, and record

the number of stale reads detected by HARP.

The experimental procedures simulate a single server’s

temporary failure and a following recovery. In this scenario,

we updates two million items during the server failure; after

the failed server recoveries, clients issue randomly reads on

all servers, which may result in observing stale data. HARP

is applied to detect and try to fix stale reads that are not elim-

inated by the failure recovery mechanisms in Cassandra, and

stale reads in the Fig. 6 are all detected by HARP. After an

experimental process is finished, the Cassandra database is

clean up, and the experimental procedures are repeated 30

times for each specified waiting period of time.

During the experiment, no exception or error is catched,

and there is enough time to apply every write in the WT store,

so a situation of R4b means the read is definitely a stale read,

while R4c means the read is not stale. The nodes and error

bars of single failure in Fig. 6 shows the experimental results.

As the waiting time increases, the number of stale reads de-

creases. That is because failure recovery mechanisms in Cas-

sandra works and stale items are gradually updated. However,

failure recovery mechanisms in Cassandra cannot deal with

some stale reads in time (5 minutes in the experimental sce-

nario), while HARP is able to repair all of them.

There are some situations where hinted handoff in Cassan-

dra does not work. Repeat the procedures in previous experi-

ment with one modification: before restarting the terminated

Cassandra process, we terminate a Cassandra process on an-

other server. The experimental procedures simulate a sce-

nario where a new failure happens on another server before

the server that suffers from temporary failure recovers. The
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nodes and error bars of consecutive failures in Fig. 6 show

the experimental results. As the waiting time increases, stale

reads cannot be completely eliminated, because the stored

“hint” [1] becomes unavailable along with the second failed

server. While HARP can deal with the stale reads on this oc-

casion. However, HARP cannot take place of hinted handoff

and read repair, because the latter mechanisms work at the

inner data store and can update stale replicas, while HARP

works outside and does its best to make clients observe fresh

items, instead of updating stale replica states.

Fig. 6 Detected stale reads caused by failure recovery

4.3 Performance

In this subsection, we evaluate the performance of different

systems, including HARP and two different configurations

of Cassandra: eventually consistent Cassandra (or shorted

as Cassandra-Eventual) and strongly consistent Cassandra

(or shorted as Cassandra-Strong). Cassandra-Eventual and

Cassandra-Strong are different in the read and write quo-

rum sizes: both W and R are set to 1 in Cassandra-Eventual,

while both W and R are set to 
N/2�+1 in Cassandra-Strong.

Therefore, for any N � 3, Cassandra-Strong can tolerant one

replica’s failure. To expose the behavior of an originally even-

tually consistent data store, by default, we disable the failure

recovery mechanisms of Cassandra, including read repair and

hinted handoff.

Figure 7 demonstrates how the proportions of reads af-

fect peak throughput. As shown in Fig. 7(a), compared with

the eventually consistent configuration, the overhead brought

by HARP is less than 5.7%. Meanwhile, HARP outperforms

the Cassandra-Strong configuration for all workloads. Es-

pecially for read-most workloads, whose read proportion is

larger than 50%, HARP achieves 69.5%–88.0% higher per-

formance. The throughput gap between Cassandra-Strong

and Cassandra-Eventual (or HARP) is enlarged as read pro-

portion increases. The reason is that the number of requests

that a coordinator needs to issue is different during reading:

for Cassandra-Eventual and a first-round read in HARP, a co-

ordinator only needs to send one (as R = 1) message to repli-

cas; while in Cassandra-Strong, a coordinator has to send two

(as R=
N/2� + 1) messages. Though a second-round read in

HARP also needs to send two (as R = N−1) messages, but the

possibility of incurring a second-round read is small in this

experiment. The main reason why the throughput decreases

as read proportion increases, is that Cassandra nodes append

data in CommitLog and Memtable14) firstly and then flush

data into disk asynchronously, while reads usually have to

access disks15) .

Fig. 7 Peak throughput of different workloads. (a) Uniform distribution;
(b) Zipfian distribution

Under the Zipfian distribution, HARP brings in negligible

overhead (less than 2.7%) compared to Cassandra-Eventual,

and outperforms Cassandra-Strong (37.7%–85.2% for read-

most workloads), as shown in Fig. 7(b). Compared with the

throughput under the uniform distribution, the reason why

throughput is higher under the Zipfian distribution is that

more operations only need to access the Memtable (cache)

of Cassandra, and thus decrease the number of operations on

disks.

We measure the latency for different systems under the

similar throughput. Tables 2 and 3 represent the correspond-

ing latency under the uniform distribution and the Zipfian

distribution. The read latency of Cassandra-Strong is much

higher than that of Cassandra-Eventual and HARP, while read

latency of HARP is slightly higher than that of Cassandra-

Eventual. The write latency of all three systems are close. As

14) https://wiki.apache.org/cassandra/MemtableSSTable
15) http://wiki.apache.org/cassandra/ArchitectureInternals
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Table 2 Latency/ms for different systems under the uniform distribution with approximate throughput

Operation System Average 50% 90% 95% 99% 99.9% Throughput/Kops·s−1

Cassandra-Eventual 1.20 0.95 1.97 2.57 4.61 9.15 29.8

Read-only HARP 1.35 1.00 2.25 3.04 5.97 13.62 29.6

Cassandra-Strong 9.48 7.26 15.43 20.33 44.71 266.13 29.5

Cassandra-Eventual 0.51 0.43 0.72 0.78 0.97 4.43 29.1

Write-only HARP 0.52 0.43 0.72 0.79 1.02 5.58 30.5

Cassandra-Strong 0.80 0.68 0.85 0.92 1.22 6.52 29.8

Table 3 Latency/ms for different systems under the Zipfian distribution with approximate throughput

Operation System Average 50% 90% 95% 99% 99.9% Throughput/Kops·s−1

Cassandra-Eventual 0.79 0.66 1.27 1.62 2.62 5.76 30.2

Read-only HARP 0.84 0.73 1.31 1.68 2.69 6.02 29.8

Cassandra-Strong 3.90 2.97 6.80 8.64 14.02 34.62 29.7

Cassandra-Eventual 0.49 0.41 0.70 0.76 0.92 3.31 30.5

Write-only HARP 0.49 0.42 0.71 0.76 0.91 3.41 30.1

Cassandra-Strong 0.71 0.67 0.82 0.88 1.06 3.90 29.2

the explanation described before, a coordinator in Cassandra-

Strong needs to send more messages to replicas than a coor-

dinator in other two systems when handling a read operation,

while a coordinator in three systems will send the same num-

ber of messages to replicas when handling a write operation.

Figure 8 displays the throughput results for different Zip-

fian factors in the workload whose read proportion is 80%.

When the Zipfian factor is no larger than 0.83, the perfor-

mance of HARP is nearly the same as that of Cassandra-

Eventual, and the introduced overhead is no more than 1.9%.

However, when the Zipfian factor is no less than 0.88, the

overhead is slightly enlarged but still less than 6.9%. The

larger the Zipfian factor is, the more concentrated requests

are. Therefore, hot items are updated more frequently, which

leads to a larger possibility that their replicas are inconsis-

tent, and meanwhile, hot items are also read more frequently.

That makes agents observe more stale states and incurs more

second-round reads, which eventually leads to more over-

heads. Nonetheless, HARP greatly outperforms Cassandra-

Strong and obtains 57.1%–76.5% higher throughput.

Fig. 8 Peak throughput versus different Zipfian factors

Though HARP cannot guarantee eliminating stale reads as

Cassandra-Strong does, it provides much better performance

than Cassandra-Strong. Moreover, our experimental results

demonstrate that HARP can effectively eliminate stale reads

no matter when failures are absent or present.

4.4 Handling practical anomalies

We demonstrate that anomalies can happen in a practical sys-

tem without applying the strategies introduced in Section 3.3,

and show that our strategies can handle practical anomalies

in this subsection. Figure 9 shows the experimental results of

the numbers of the anomalies for different throughputs. The

read proportion of the workload is set to 80%, and each ex-

perimental instance runs continuously for 150 seconds in this

experiment. Client requests obey a Zipfian distribution and

the Zipfian factor is set to 0.88.

Fig. 9 Observed practical anomalies

• Clock drift In this experiment, we manually synchronize

the clocks in the system before each experimantal instance.

Although clocks in the system do not obviously differ, clock

drift can happen in a real system [16] and is also observed in

our experiment. We give the number of observed clock drifts
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which occur in HARP that does not apply the strategy de-

scribed in Section 3.3.2. In this experiment, if the timestamp

of a response is larger than a client’s local timestamp, then the

client is considered to have observed a clock drift anomaly.

The curve “clock drift” in Fig. 9 represents the numbers of

observed clock drifts when HARP does not apply the strat-

egy introduced in Section 3.3.2. As in the curve, the anomaly

number slightly increases with the increasing of throughput.

• Draw-back In this experiment, if the WT store receives a

update request and the request’s timestamp is smaller than the

existing item’s timestamp, then the WT store is considered to

have observed a draw-back anomaly. The curve “Draw-back”

demonstrates the numbers of handled draw-back anomalies

for different throughput after HARP has applied both strate-

gies introduced in Sections 3.3.1 and 3.3.2. As illustrated

in the figure, the number of draw-back anomalies remark-

ably increases with the increasing of throughput. That means

messages are more likely to be reordered or delayed as the

throughput increases. After observed a draw-back anomaly,

the WT store will abandon the corresponding update request

according to the strategy described in Section 3.3.1 to prevent

the item’s state from drawing back.

The performance results of HARP in Section 4.3 are mea-

sured after HARP has already applied both strategies intro-

duced in Sections 3.3.1 and 3.3.2. Moreover, we also eval-

uate the performance overheads caused by those two strate-

gies, and find that they negligibly affect the performance of

HARP: the overhead introduced by either strategy is no more

than 1.6%, and the introduced overhead is less than 2.2% af-

ter applying both strategies.

5 Discussion

In this section, we demonstrate some boundaries of HARP

and discuss how an eventually consistent data store working

with HARP can solve the practical problems.

5.1 Causal consistency

The strategy described in Section 3.3.2 borrows some idea

from causal consistency [18]. Besides, HARP guarantees that

the state updated by a write w1 will not be modified by an-

other write w2, if w1 is a causally later write compared with

w2, and that is a property what convergent causal consis-

tency [19] (stronger than causal consistency) intends to guar-

antee. However, HARP cannot guarantee that a following

read should not observe an item that is older than that ob-

served by a earlier read. Therefore, HARP cannot guarantee

causal consistency, while causal consistency does not try to

make clients observe the newest data items, which is what

HARP attempts to do.

5.2 Handling concurrent writes

In our discussion, for two operations, if an operation starts

before the other operation ends, then the two operations are

called concurrent operations [11]. HARP does not try to pro-

vide guarantees on the behavior of writes as Linearizabil-

ity [11] does, and therefore, concurrent writes on the same

item can happen in HARP. Either of the two concurrent writes

is not causally later than the other, because they cannot ob-

serve the execution result of each other. In general, concur-

rent writes on the same item will not possess the same times-

tamp, and replicas will converge to the state modified by

the write with the largest timestamp. However, if concurrent

writes on the same item hold the same timestamp, the states

of replicas in the DD store may be divergent before a newer

update comes. In this situation, HARP can present the diver-

gent states to the clients, which can decide the final winner

of writes [1, 20]. There is also a method that can avoid the

same timestamp of concurrent writes: each client appends its

globally unique client ID to the lower bits of each timestamp

to make the timestamp globally unique.

5.3 Failure recovery

HARP is able to detect and resolve possible stale reads when

failures occur, but it is not designed to be a failure detector or

failure recovery mechanism. There are many failure recovery

technologies in modern distributed systems. For the widely

deployed quorum systems, read repair, hinted handoff and

Merkle trees based anti-entropy approaches are typical mech-

anisms [1]. However, during those mechanisms’ proceeding

or after recovery is failed, clients may still observe stale data,

most of which can actually be avoided if HARP is applied.

Moreover, HARP also can remarkably reduce the number of

stale reads when failures are absent in an eventually consis-

tent data store.

6 Related work

The consistency property has been long-studied in distributed

systems. The CAP theorem highlights the inability to ob-

tain all three properties: strong consistency, high availability

and partition tolerance [2, 13]. Many distributed data stores

choose weak consistent semantics to maintain available when

partitions happen [21], and usually eventual consistency is
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the choice [5]. However, there is no time bound to the recency

of data returned for eventual consistency. Considering the

problem, Bailis et al. [7] prove that partial quorums, which

is a widely employed practical method to provide eventually

consistent semantics, are often consistent within tens of mil-

liseconds without considering failures. However, failures are

unavoidable in real-world distributed systems [22, 23], and

stronger semantics are often desired by applications [24].

Meanwhile, there are some works aiming at providing

stronger consistent semantics while preserving high availabil-

ity. COPS [20] defines a causal+ consistency model, and pro-

vides an “always-on” property and partition tolerant; Bolt-

on [19] designs and implements a shim layer that upgrades

the consistent semantics of underlying data stores to pro-

vide convergent causal consistency. Other systems [25, 26]

also provide convergent causal consistency, which is stronger

than eventual consistency. Convergent causal consistency is

meaningful as it is achievable with high availability, which

is proved by Ref. [14]. Additionally, HATs [27] proves that

some “weak isolation” models are achievable without sac-

rificing availability. However, causal consistency [18] and

HATs do not provide recency guarantees, nor try to increase

the probability of recency reads.

There are some anti-entropy [1,9] mechanisms designed to

deal with inconsistent replicas in eventually consistent sys-

tems. Read repair works after the read response has been

returned to the caller, only trying to prevent following stale

reads, and cannot prohibit on-going stale reads. Moreover, as

the read repair process needs to communicate with all avail-

able replicas16) , to reduce its influence on the whole perfor-

mance, Cassandra’s default configuration reduces the chance

of read repair17), which makes the mechanism not trustwor-

thy. Hinted handoff is designed to solve temporary node fail-

ures or network partitions18) . While during the recovery pro-

cess, stale reads also can be possible. Worse still, some con-

tinuous failures may make the hinted replicas unavailable,

and therefore, a recovered stale replica cannot observe its

missing updates until the hinted replica becomes available

and finish the hinted handoff process. Merkle trees based anti-

entropy [1] is able to handle inconsistency caused by perma-

nent failures. However, as hinted handoff, stale reads can be

possible before or during the recovery, which often takes a

long time. In summary, those technologies cannot deal with

the on-going stale reads during recovery and sometimes, to

make matters worse, recovery may fail.

Our earlier work entitled “HARP: towards enhancing data

recency for eventually consistent data stores” in ICPADS

2014 [28] presents an approach to enhance data recency for

eventually consistent data stores, but it does not consider the

practical anomalies in system design, including delayed, re-

ordered and dropped messages and clock drift. In this work,

we also show how to extend HARP to multiple datacenters,

and evaluate HARP with more extensive experiments.

7 Conclusion

In this paper, we propose a framework HARP, which can

increase the probability of data recency for eventually con-

sistent data stores while preserving high performance and

availability. Through analyzing all possible cases of HARP

caused by failures, exceptions and comparison results of

observed timestamps, we find that reread operations can

eliminate possible stale reads only when required, which

avoids unnecessary reread operations, thus reducing the per-

formance overhead of HARP. We also discuss how to keep

the high availability of HARP, and demonstrate how to deal

with some practical anomalies including delayed, reordered

and dropped messages and clock drift in HARP, as well as

how to extend HARP to multiple datacenters. Finally, based

on the eventually consistent data store Cassandra and the in-

memory data store Redis, we implement HARP and evaluate

it with the benchmark YCSB [10]. The experimental results

show that, HARP brings in no more than 6.9% overhead

compared with eventual consistency, while repairing all stale

reads caused by failures and most stale reads when failures

are absent.
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