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Abstract Because of users’ growing utilization of unclear

and imprecise keywords when characterizing their informa-

tion need, it has become necessary to expand their original

search queries with additional words that best capture their

actual intent. The selection of the terms that are suitable for

use as additional words is in general dependent on the degree

of relatedness between each candidate expansion term and

the query keywords. In this paper, we propose two criteria

for evaluating the degree of relatedness between a candidate

expansion word and the query keywords: (1) co-occurrence

frequency, where more importance is attributed to terms oc-

curring in the largest possible number of documents where

the query keywords appear; (2) proximity, where more im-

portance is assigned to terms having a short distance from the

query terms within documents. We also employ the strength

Pareto fitness assignment in order to satisfy both criteria si-

multaneously. The results of our numerical experiments on

MEDLINE, the online medical information database, show

that the proposed approach significantly enhances the re-

trieval performance as compared to the baseline.

Keywords information retrieval, query expansion, pseudo-

relevance feedback, proximity, multi-objective optimization,

Pareto dominance, MEDLINE

1 Introduction

Both the amount of data available on the World Wide Web
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(WWW) and the number of newly created Web pages are
continuously increasing. Ranganathan [1] showed in his re-
search that the volume of online data indexed by Google in-
creased from 5 EB in 2002 to 280 EB in 2009. According
to Zhu et al. [2], this volume is expected to double every 18
months. Ntoulas et al. [3] interpreted these findings in terms
of the number of new Web pages created and estimated that
their number is growing by 8% a week. In their study, Bharat

and Broder [4] went further and demonstrated that the num-
ber of Web pages is increasing at the rate of 7.5 every second.
The unprecedented explosion of information available on the
WWW has led to the following results.

• New keywords are continuously being invented and

introduced into the WWW. Williams and Zobel [5]

showed that one of every two hundred keywords used is

new. Studies by [5–7] indicated that this massive influx

is largely due to the first occurrences of rare personal

names and place names, neologisms, acronyms, abbre-

viations, emoticons, typographical errors, and URLs.

• WWW users are constantly exploiting these new key-

words in their search queries. In their study, Chen et

al. [8] indicated that more than 17% of query terms are

not dictionary words, i.e., out of vocabulary, 45% of

them are E-speak expressions, 18% are products and

companies, 16% are proper names, and 15% are mis-

spellings and foreign words [9, 10].

The difficulty of disambiguating the sense of these new un-

clear and imprecise keywords has caused search engines sys-

tems to fail to find the desired information. One of the most
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powerful and effective methods to overcome this shortcoming

is query expansion (QE). This method aims to augment the

original search queries with the additional keywords that best

characterize the users’ needs [11]. Various QE approaches ad-

dressing the proximity and interdependence of words have

been developed and tested. They predominantly focused on

examining and assessing the degree of relatedness between

an additional keyword candidate and the user search query

in order to select the most appropriate keywords that can be

added to the initial search query. Despite its high effective-

ness as compared to previous methods, the performance of

QE has still not reached a sufficiently effective level to allow

its use as a standard component.

Accordingly, in order to improve the performance of QE,

we propose in this paper a new approach for expanding an

original user query with additional terms that best express

the actual user intent. We introduce two criteria to assess the

degree of relatedness between a candidate expansion term

and the search query keywords: (1) co-occurrence, where the

good Turing discounting (GTD) method is used to attribute

more importance to words that occur in the largest possible

number of documents where the search query keywords ap-

pear; (2) proximity, where the Kernel functions is used to

assign more importance to words at a short distance from the

query terms within the documents. Furthermore, we adopt

the strength Pareto fitness assignment to satisfy both criteria

simultaneously.

We extensively evaluate the proposed approach using the

MEDLINE database, the world’s largest medical library. In

addition, we use the two well-known pseudo-relevance feed-

back (PRF) techniques, Rocchio’s method and the Robert-

son and Sparck Jones (RSJ) term-ranking function combined

with Okapi BM25, as the baseline for comparison. We also

compare the proposed approach with the Robertson Selection

Value (RSV), Kullback-Leibler Distance (KLD), and Ideal-

ized Relevance Feedback (IRF) methods.

The main contributions of this paper are as follows.

• The adoption of an external correlation measure based

on GTD to evaluate the co-occurrence of terms with re-

spect to the search query keywords.

• The determination of an internal correlation measure

based on kernel functions to assess the proximity of

words with respect to the search query keywords.

• The use of strength Pareto fitness assignment to satisfy

both correlation measures simultaneously.

The remainder of this paper is organized as follows. In the

following section, we shortly review the state-of-the-art QE

methods and present some concepts and definitions, covering

PRF and Okapi BM25. In Section 3, we present the proposed

Pareto dominance based on GTD and kernel functions to se-

lect the best expansion keywords. Experimental and numeri-

cal results are given in Section 4 and we conclude the paper

in Section 5.

2 Related work

The massive influx of new terms on the WWW, such as first

occurrences of proper names, abbreviations, and misspelled

words, as well as the use of these unclear and ambiguous

terms to describe the user’s information need, have caused the

failure of search engines to retrieve the relevant information.

In addition, the term mismatch problem and the vocabulary

problem still remain the most serious issues currently con-

fronting the retrieval effectiveness of search engines. To han-

dle these serious problems, various methods have been pro-

posed, including interactive query refinement (Google sug-

gest), word sense disambiguation [12], search result cluster-

ing [13], Boolean term decomposition [14], spreading acti-

vation networks [15], concept lattice-based information re-

trieval [16], random indexing [17], and contextual document

ranking modeled as basis vectors [18]. Nevertheless, the ex-

pansion of the user’s search query with additional terms is

one of the most powerful and effective methods to improve

the retrieval effectiveness of document ranking [11]. Cur-

rently, QE is widely used in numerous applications, such as

question answering [19, 20], cross-language information re-

trieval [21], multimedia information retrieval [22, 23], infor-

mation filtering [24], text categorization [25], search of hid-

den Web content that is not indexed by standard search en-

gines [26], query completion on mobile devices [27], train-

ing corpora acquisition [28], e-commerce [29], mobile search

[30], expert finding [31], slot-based document retrieval [32],

federated search [33], and paid search advertising [34].

The process of selecting the most relevant and related

terms to be used as expansion keywords is the key step in

QE. Several concepts, such as proximity, co-occurrence, as-

sociation, closeness, relatedness, and relationship, have been

introduced and discussed in order to describe the strength

of the correlation between an expansion term candidate and

the search query keywords. The extraction of semantic re-

lationships between terms has been extensively adopted in

QE through the use of dictionaries and thesauruses, such as

WordNet. The work of Voorhees [35] was among the first
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in which WordNet was used as a tool for QE and exploited

to enrich the queries using a combination of synonyms, hy-

pernyms, and hyponyms. Collins-Thompson and Callan [36]

employed WordNet to combine multiple sources of knowl-

edge on term associations through a Markov chain frame-

work. The authors used the stationary distribution of the

model to obtain probability estimates that a candidate expan-

sion term reflects aspects of the original query. In the same di-

rection, Liu et al. [37] adopted WordNet as a background the-

saurus and source of expansion candidates. They performed

phrase recognition and sophisticated word sense disambigua-

tion on queries, and then selected highly-correlated terms

having the same sense as the query terms. Song et al. [38]

proposed a semantic QE technique that combines association

rules with WordNet and natural language processing tech-

niques, utilizes the explicit semantics, as well as other lin-

guistic properties of unstructured text corpus, and utilizes the

contextual properties of important terms discovered by asso-

ciation rules to select the appropriate expansion keywords.

The detection of similarities between keywords has also

been explored by examining the contents of a database in or-

der to capture relationships between terms and build an asso-

ciation thesaurus by utilizing context vectors [39], mutual in-

formation [40], latent semantic indexing [41], and interlinked

Wikipedia articles [42].

Another class of techniques involves extracting the most

favorable keywords from the top ranked documents retrieved

by the original search query for use as expansion terms. For

instance, Rocchio [43] and Robertson et al. [44] took the

terms that are initially returned for the search query and used

information about whether or not the terms are relevant to

reformulate the original query. Similarly, Wong et al. [45]

attempted to automatically formulate effective queries using

full or partial relevance information in the context of rele-

vance feedback.

In recent papers, the creation of statistical language models

by determining a probability distribution over terms was pro-

posed. Zhai and Lafferty [46] proposed a QE method based

on statistical language models, namely, the divergence min-

imization model. It used an idea similar to the Rocchio al-

gorithm [43] and selected the words with the highest prob-

abilities for expansion. An additional related work is that of

Lavrenko and Croft [47]. They explored the relation between

classical probabilistic models of information retrieval and the

emerging language modeling approaches to generate the best

expansion keywords.

With the aim of expanding the original search query with

related terms, we propose in the present paper an effective

approach that uses both co-occurrence and proximity criteria

to assess the strength of the relationship between a candidate

expansion term and the search query keywords. The novelty

of our approach as compared to previous methods lies in the

adoption of the strength Pareto fitness assignment to fulfill si-

multaneously the above two criteria. A preliminary version of

the proposed approach was highlighted in our earlier paper,

which was presented at the 3rd World Conference on Infor-

mation Systems and Technologies in 2015 [48].

2.1 Strength Pareto fitness assignment for generating ex-

pansion keywords

As mentioned above, the current work was briefly described

in our previous paper [48]. In that study, we sought to show

that measuring the strength of the relationship between poten-

tial candidate terms and the query terms on the basis of their

positions within the documents and their distribution in the

top ranked documents can facilitate the selection of the best

expansion terms. Furthermore, to measure the degree of relat-

edness between terms, we attempted to adopt both the GTD

method and kernel functions. We also attempted to demon-

strate that adjusting the balance between GTD and kernel

functions using Pareto dominance may achieve better results.

The major difference between the previous and present

contributions is that the earlier one provided preliminary

ideas and suggestions that were insufficiently detailed and

had not been tested. In contrast, the current paper describes

the proposed approach in detail, as well as its validation by

extensive experiments. Furthermore, the present study inves-

tigated for the first time how to effectively adopt and combine

the co-occurrence, the proximity, and the Pareto dominance

with a PRF technique. Moreover, unlike the previous one, this

paper discusses prior work and reviews some preliminaries

and concepts, covering PRF, Pareto dominance, GTD, and

kernel functions.

2.2 Pseudo-relevance feedback for query expansion

The expansion of the original search query with additional

terms that best capture the actual user intent is one of the

most natural and successful techniques to improve the re-

trieval effectiveness of document ranking. Many approaches

have been introduced to generate and extract these additional

terms. PRF, also called Retrieval Feedback, is one of the pro-

posed approaches. It extracts the most appropriate terms to be

used as expansion keywords from the pseudo-relevant docu-

ments, i.e., the first documents returned in response to the

original search query.
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In its simplest version, PRF first runs an initial search on

the original search query using the best instantiation of the

probabilistic relevance framework, Okapi BM25 (see Section

2.2.1). Then, it extracts the expansion keyword candidates

from the pseudo-relevant documents and ranks them using

a term-scoring function (see Section 2.2.2). Finally, it aug-

ments the initial search query with the best expansion key-

words and retrieves the documents relevant to the expanded

query.

2.2.1 Probabilistic relevance framework, Okapi BM25

The probabilistic relevance framework is a framework for

document retrieval that led to the development of one of the

most powerful text retrieval algorithms, Okapi BM25. The

classic version of the Okapi BM25 term-weighting function,

in which the weight wBM25
i is attributed to a given term ti in a

document d, is given by

wBM25
i =

t f

k1

(
(1 − b) + b

dl
avdl

)
+ t f

wRS J
i , (1)

where t f is the frequency of the term ti in document d, k1

and b are constants, dl is the document length, and avdl is

the average document length. wRS J
i is the well-known RSJ

weight [44] and is calculated as

wRS J
i = log

(ri + 0.5)(N − R − ni + ri + 0.5)
(ni − ri + 0.5)(R − ri + 0.5)

, (2)

where N is the number of documents in the whole collection,

ni is the number of documents in the whole collection that

contain ti, R is the number of documents judged to be rele-

vant, and ri is the number of documents that are judged to be

relevant and contain ti.

The RSJ weight can be used with or without relevance

information. In the absence of relevance information, this

weight is reduced to a form of classical IDF:

wIDF
i = log

N − ni + 0.5
ni + 0.5

. (3)

The final Okapi BM25 term-weighting function is then given

by

wBM25
i =

t f

k1

(
(1 − b) + b

dl
avdl

)
+ t f

log
N − ni + 0.5

ni + 0.5
. (4)

A large number of experiments were conducted to determine

the parameters k1 and b. The results of these experiments

showed that values such as 1.2 < k1 < 2.0 and 0.5 < b < 0.8

are reasonably good in many cases. In the same context,

Robertson and Zaragoza [49] demonstrated in their study that

recent versions of Okapi BM25 are based on specific values

assigned to k1 and b: k1 = 2.0, b = 0.5.

As part of the indexing process, an inverted index is gen-

erated including the weight wBM25
i of each term ti in each

document d. The similarity score between the document d

and a given query q is then calculated using the Okapi BM25

document-scoring function:

ScoreBM25(d, q) =
∑
ti∈q

wBM25
i . (5)

During the search process, the relevant documents are re-

trieved and ranked using the similarity score mentioned

above.

2.2.2 Term-scoring functions for pseudo-relevance feed-

back

As reported earlier, the PRF method first runs a preliminary

search on the initial query using Okapi BM25 term-weighting

and previous document scoring functions (Eqs. (4) and (5),

respectively), supposing the top ranked documents to be rel-

evant, attributing a score to each term in the top ranked docu-

ments using a term-scoring function and then sorting them on

the basis of their scores. One well-known term-scoring func-

tion is RSJ, defined by Eq. (2). Other term-scoring functions

are as follows.

Rocchio’s weight [43]:

wRocchio
i =

∑
d∈R

wBM25
i ; (6)

RSV [50]:

wRS V
i =

∑
d∈R

wBM25
i × (ri + 0.5); (7)

KLD [51]:

wKLD
i = (ri + 0.5) log

(
ri + 0.5

R − ri + 0.5

)
; (8)

IRF [45]:

wIRF
i = α

∑
d∈R

wRS J
i − γ

∑
d�R

wRS J
i , (9)

where R is the set of pseudo-relevant documents and α and γ

are constants. In their study, Wong et al. [45] set α and γ to

0.9 and 0.4, respectively.

The original search query is finally augmented by adding

the top ranked terms and re-interrogated using the Okapi

BM25 document-scoring function to obtain more relevant re-

sults.



Ilyes KHENNAK et al. Strength Pareto fitness assignment for pseudo-relevance feedback: application to MEDLINE 167

In this study, the Rocchio weight, as well as the RSJ, RSV,

KLD, and IRF term-scoring functions, were used as the base-

line for comparison.

3 Pareto dominance for selecting expansion
keywords

The main goal of the proposed approach is to improve the

retrieval effectiveness and return only the documents that are

relevant to the search query. For this purpose, in this study,

we used the concepts of co-occurrence and proximity to ex-

tract the best expansion keywords to be added to the origi-

nal search query. These concepts are based first on finding

for each query term qi the locations and positions where it

appears and then selecting from the locations the candidate

terms that frequently neighbor and co-occur with that query

term. In other words, we recover for each query term qi the

documents where it appears, and then assess the relevance

of the candidate terms contained in these documents with re-

spect to the query term qi on the basis of:

• The co-occurrence, which gives a value to candidate

words that appear in the largest possible number of

those documents.

• The proximity, which gives a value to candidate words

in which the distance separating them and the query

term qi within a given document, in terms of the number

of words, is small.

These candidate words are then sorted on the basis of their

relevance to the whole query and the top ranked ones are

added to that query to repeat the search process and obtain

more relevant results.

Before proceeding to describe the concepts of co-

occurrence and proximity, we first need to represent each can-

didate term ti ∈ VR by a vector Ti of |R| elements, as follows:

Ti = 〈pos1, pos2, . . . , pos|R|〉, (10)

where R is the set of pseudo-relevant documents returned by

Eq. (5), VR is the vocabulary of R, and posk is the position(s)

of ti in the pseudo-relevant document dk. In the case where

ti � dk, the value of posk is 0; otherwise, its value is a vector

containing all possible positions of ti in dk.

As indicated earlier, as a first step we find the candidate

words that frequently appear together with the query key-

words. These candidate words are found by attributing more

value to terms that occur in the largest possible number of

documents where each of the query keywords appears. We

interpret this value through the measurement of the external

correlation ext of each term ti ∈ VR to each term t j(q) of the

query q. This correlation, which does not take into consider-

ation the content of documents, computes the rate of appear-

ance of ti with t j(q) in the set of documents R. The external

correlation of ti to t j(q) is significant when ti appears in the

largest number of documents in which t j(q) occurs, and vice

versa. Based on this interpretation, the external correlation of

ti to t j(q) is calculated using the GTD method as

ext
(
ti, t j(q)

)
=

1
C(t j(q))

[(
C(ti, t j(q)) + 1

) NC+1

NC

]
, (11)

where C(t j(q)) is the number of times that T j(q)[k] � 0,

where k = 1, 2, . . . , |R| (i.e., the number of documents where

t j(q) occurs in R). C(ti, t j(q)) is the number of times that

(T j(q)[k], Ti[k]) � 0, where k = 1, 2, . . . , |R| (i.e., the num-

ber of documents where ti and t j(q) co-occur in R). NC+1 is

the number of pairs of terms that include t j(q) and occur C + 1

times in R, and NC is the number of pairs of terms that include

t j(q) and occur C times in R.

The GTD method has been widely used for computing the

probability of a complete string of words or providing a prob-

abilistic prediction of the next word in a sentence. In practice,

GTD has been utilized to assign a non-zero probability to se-

quences of N words (N-grams) with zero or low counts by

examining the number of N-grams with higher counts [52].

Our dependence on GTD is the result of our need to solve the

issue that we faced in our previous studies. In those studies,

we attempted to adopt the classical conditional probability to

compute the rate of appearance of a given term relative to

another one. The main problem related to using the condi-

tional probability was that words originally having a low oc-

currence frequency were neglected. Thus, their overall rates

of appearance were automatically decreased. If words with a

low occurrence frequency are ignored, this implies the words

that were indicated earlier (i.e., first occurrences of rare per-

sonal names and place names, abbreviations, acronyms, etc.)

are omitted. Accordingly, to avoid dropping the candidate

words with low frequency, we use GTD to re-estimate their

low probabilities and improve their low appearance rates.

After we have computed the rate of appearance of ti with

each query term t j(q), the overall external correlation between

ti and the whole query q is represented by an array containing

all possible ext between ti and each query term t j(q):

ext(ti, q) = 〈ext(ti, t1(q)), ext(ti, t2(q)), . . . , ext(ti, t|q|(q))〉. (12)

The cosine similarity measure is then used to evaluate the

quality of each vector ext(ti, q) with respect to the best vector

ext(t∗i , q), where each of its elements ext(t∗i , t j(q)) represents
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the highest external correlation between the term ti and t j(q).

The following function, fext(ti), indicates the cosine similar-

ity score between ext(t∗i , q) and ext(ti, q):

fext(ti) =

∑|q|
j=1 ext(ti, t j(q)) × ext(t∗i , t j(q))√∑|q|

j=1

[
ext(ti, t j(q))

]2 ×
√∑|q|

j=1

[
ext(t∗i , t j(q))

]2
.

(13)

In the second step, we attempt to find the candidate words

that are frequently neighbors of the query keywords. There-

fore, we assign more value to words in close proximity to

the query keywords. We interpret this importance through the

measurement of the internal correlation between each term ti
of VR and each term t j(q) of the query q. This correlation com-

putes the correlation between ti and t j(q) within a given doc-

ument dk in terms of the number of words separating them.

The closer ti is to t j(q) within dk, the greater is its internal cor-

relation. We use the well-known kernel functions to measure

the internal correlation:

Gaussian kernel:

K(i, j) = exp

[−(i − j)2

2σ2

]
; (14)

Triangle kernel:

K(i, j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − i − j

σ
, if |i − j| <= σ;

0, otherwise;
(15)

Cosine kernel:

K(i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2

[
1 + cos

( |i − j|π
σ

)]
, if |i − j| <= σ;

0, otherwise,
(16)

where σ is a parameter to be tuned.

Using the kernel functions, the internal correlation int be-

tween ti and t j(q) within a given document dk is then calcu-

lated by

int(ti, t j(q))dk = K
(
Ti[k], T j(q)[k]

)
. (17)

Next, the average internal correlation between ti and t j(q) in

the whole R is determined as

int(ti, t j(q)) =
1

C(t j(q))

∑
dk∈R

int(ti, t j(q))dk . (18)

The overall internal correlation between ti and the whole

query q is described by a vector containing all possible int

between ti and each query term t j(q):

int(ti, q) = 〈int(ti, t1(q)), int(ti, t2(q)), . . . , int(ti, t|q|(q))〉. (19)

The cosine similarity measure is then used to assess the qual-

ity of each array int(ti, q) with respect to the best vector

int(t∗i , q), where each of its elements int(t∗i , t j(q)) represents the

highest internal correlation between a given term ti and t j(q).

The following function, fint(ti), indicates the cosine similarity

score between int(t∗i , q) and int(ti, q):

fint(ti) =

∑|q|
j=1 int(ti, t j(q)) × int(t∗i , t j(q))√∑|q|

j=1

[
int(ti, t j(q))

]2 ×
√∑|q|

j=1

[
int(t∗i , t j(q))

]2
.

(20)

Finally, in order to extract the terms that are suitable for use

as expansion keywords, we adopt the well-known concept of

Pareto dominance. Thus, instead of using the conventional

methods when determining the overall correlation, such as

summing the internal and external correlations or adjusting

the balance between them, we consider both the internal and

the external correlations as multiple conflict criteria to be ful-

filled simultaneously. The concept of Pareto dominance was

proposed in order to solve the multi-objective optimization

problem, also called multi-criteria optimization. The multi-

objective optimization problem can be defined as the prob-

lem of finding a solution that satisfies an objective vector,

the elements of which represent the objective functions. The

solution to this problem can be described in terms of a deci-

sion vector (x1, x2, . . . , xn) in the decision space X. A func-

tion f : X → Y evaluates the quality of a given solution

by assigning to it an objective vector (y1, y2, . . . , yk) in the

objective space Y. We say that a decision vector x1 is bet-

ter than another decision vector x2(x1 > x2) if the objective

vector y1 dominates the objective vector y2(y1 > y2), where

y1 = f (x1), y2 = f (x2), and k > 1. The vector y1 is said to

dominate the vector y2 if no component of y1 is smaller than

the corresponding component of y2, and at least one compo-

nent of y1 is greater than the corresponding component of y2.

The set of optimal solutions, i.e., solutions not dominated by

any other solutions, in the decision space X is denoted as the

Pareto set X∗ ⊆ X and its image in objective space is denoted

as the Pareto front Y∗ = f (X∗) ⊆ Y. Many enhanced func-

tions have been proposed and extended to describe the Pareto

dominance concept. One of the most improved dominance

functions is the strength Pareto fitness assignment (SPEA2).

It assigns to each solution xi a strength value S (xi) represent-

ing the number of solutions it dominates:

S (xi) = |x j|x j ∈ X ∧ xi > x j|, (21)

where |.| is the cardinality of set, > is the Pareto dominance

relation, and xi > x j, if the objective vector yi assigned to xi

dominates the objective vector y j assigned to x j.
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On the basis of the S values, the raw fitness R(xi) of solu-

tion xi is calculated by

R(xi) =
∑

x j∈X,x j>xi

S (x j). (22)

It is important to note that the raw fitness R is to be mini-

mized here; i.e., R(xi) = 0 corresponds to a non-dominated

individual.

By analogy, for the proposed approach, a candidate ex-

pansion term ti ∈ VR is represented by a decision vector

Ti = 〈pos1, pos2, . . . , pos|R|〉. The quality of a given candi-

date term ti is evaluated by assigning it an objective vector

f (ti) = 〈 fext(ti), fint(ti)〉. We say that a candidate term ti is bet-

ter than another candidate term t j (ti > t j) if the objective

vector f (ti) dominates the objective vector f (t j). The vector

f (ti) is said to dominate the vector f (t j) if its components,

fext(ti) and fint(ti), are not smaller than their corresponding

components in f (t j), and at least one component of f (ti) is

greater than its corresponding component in f (t j). Based on

the concept of dominance, each candidate term ti is assigned

a strength value S (ti) representing the number of expansion

keyword candidates it dominates:

S (ti) = |t j|t j ∈ VR ∧ ti > t j|. (23)

The raw fitness R(ti) of each candidate term ti ∈ VR is then

calculated by

R(ti) =
∑

t j∈VR ,t j>ti

S (t j). (24)

Next, the candidate terms are sorted on the basis of their raw

fitness values. The best candidate terms are those with the

lowest raw fitness values and the top ranked ones are added

to the original search query q.

Based on the Okapi BM25 document-scoring function,

presented in Section 2, the relevant documents are retrieved

using

ScoreBM25(d, q̀) =
∑
ti∈q

wBM25
i +

1
2

∑
ti∈q̀−q

wBM25
i ×[ fext(ti)+ fint(ti)

]
,

(25)

where q̀ is the expanded query.

4 Experiments

In order to assess the quality of the proposed approach, we

conducted a set of experiments. First, we describe the dataset,

the software, and the effectiveness measures used. Then, we

present the experimental results.

4.1 Dataset

The experiments were performed on the MEDLINE database,

the world’s largest medical library. This database includes

348, 566 references consisting of titles and/or abstracts from

270 medical journals over a five-year period (1987–1991).

The available fields are title, abstract, MeSH indexing terms,

author, source, and publication type. In addition, the collec-

tion contains a set of queries and relevance judgments (a list

of which documents are relevant to each query).

In order to obtain convincing and credible results, we di-

vided the MEDLINE dataset into six sub-collections. Each

sub-collection is defined by a set of documents, queries, and

a list of relevance documents. Table 1 highlights the char-

acteristics of each sub-collection in terms of the number of

documents it contains (docs), the size of the sub-collection,

and the number of words in the vocabulary.

The MEDLINE collection includes 106 queries. Each

query is accompanied by a set of relevance judgments se-

lected from the entire collection of documents. The division

of the collection of documents into sub-collections leads in-

evitably to a decrease in the number of relevant documents

for each query. In other words, if we have n documents rele-

vant to a given query q with respect to the entire collection,

then we will certainly have m documents relevant to the same

query with respect to one of the sub-collections, where the

value of n is greater or equal to the value of m. Furthermore,

the probability of the non-existence of any document relevant

to a given query is possible. In this case, each query that does

not include any relevant document in a given sub-collection is

removed. Table 2 presents, for each sub-collection, the num-

ber of queries (Nb Queries), the average query length in terms

of number of words (Avr Query Len), and the average num-

ber of relevant documents (Avr Rel Doc).

All non-informative words, such as prepositions, conjunc-

tions, pronouns, and very common verbs, are disregarded

during the indexing phase. Moreover, the most common mor-

phological and inflectional suffixes are removed using a stan-

dard stemming algorithm. In addition, the weights of the

words are calculated using the well-known Okapi BM25 term

weighting function, presented in Section 2.

Table 1 Summary of sub-collections used in our experiments

Size of the No. of docs 50,000 100,000 150,000 200,000 250,000 300,000

collection Mb 26.39 52.36 80.72 107.58 135.05 164.31

Size of dictionary 81, 937 120, 825 156, 009 184, 514 211, 504 237, 889
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Table 2 Statistics on the MEDLINE sub-collections queries

No. of docs 50,000 100,000 150,000 200,000 250,000 300,000

Nb Queries 82 91 95 97 99 101

Avr Rel Doc 4.23 7 10.94 13.78 15.5 19.24

Avr Query Len 6.79 6.12 5.68 5.74 5.62 5.51

4.2 Software

The proposed approach was implemented in Python. All

the experiments were conducted on a Sony-Vaio worksta-

tion having an Intel i3-2330M/2.20 GHz processor and 4 GB

RAM and running Ubuntu GNU/Linux 12.04.

4.3 Evaluation metrics

The precision (P) and the mean average precision (MAP)

measures were used to evaluate the performance of the pro-

posed approach. The precision is the ratio of relevant docu-

ments retrieved over the total number of documents retrieved.

It is given by

P =
Number of relevant documents retrieved

Number of documents retrieved
. (26)

The MAP is the mean of the average precision scores over all

queries. It is computed as

MAP =
1

Nbq

Nbq∑
i=1

1
mi

mi∑
j=1

P(Ri j), (27)

where Nbq is the number of queries, mi is the number of rel-

evant documents for the ith query, and Ri j is the set of ranked

retrieval results from the top result until the document d j is

achieved.

4.4 Results

Before proceeding to evaluate the performance of the pro-
posed approach, we first fixed the parameter σ of the kernel
functions used to compute the internal correlation. For that
purpose, as a preliminary experiment, we considered the in-
ternal correlation as the overall correlation and systematically
tested a set of fixed σ values from 1 to 40 in increments of 5.

Table 3 shows the precision values after retrieving five docu-

ments (P@5) and the MAP achieved using the sub-collection

of 50, 000 documents. The number of pseudo-relevant doc-

uments R is tuned at 10, 20, and 50, and the number of ex-

pansion keywords is set to 10, which is the typical choice

according to Carpineto and Romano [11]. Carpineto and Ro-

mano also demonstrated that this number can be increased to

30 keywords. Therefore, in the case where we have candi-

date keywords that have the same score, we do not attempt

to distinguish them and simply add all to the original search

query.

As can be seen in Table 3, the suitable values for σ that

yield the highest performance are 5 (10 out of 18), 10 (9 out

of 18), 30 (7 out of 18), and 25 (5 out of 18). In terms of

MAP, the best results are achieved for σ = 30 in four cases,

σ = 10 in three cases, σ = 5 in one case, and σ = 25 in one

case.

Table 3 Best performance of the proposed approach for different σ

Kernel R σ 1 5 10 15 20 25 30 35 40

P@5 0.1560 0.1682 0.1682 0.1658 0.1658 0.1658 0.1658 0.1658 0.1658
10

MAP 0.2207 0.2253 0.2265 0.2231 0.2230 0.2230 0.2230 0.2230 0.2230

P@5 0.1609 0.1682 0.1682 0.1682 0.1682 0.1682 0.1682 0.1682 0.1682
Gaussian 20

MAP 0.2208 0.2252 0.2255 0.2245 0.2245 0.2245 0.2245 0.2245 0.2245

P@5 0.1609 0.1682 0.1658 0.1658 0.1682 0.1682 0.1682 0.1682 0.1682
50

MAP 0.2193 0.2241 0.2231 0.2228 0.2235 0.2233 0.2233 0.2233 0.2233

P@5 0.1609 0.1707 0.1682 0.1634 0.1682 0.1682 0.1682 0.1682 0.1682
10

MAP 0.2110 0.2245 0.2234 0.2250 0.2257 0.2258 0.2273 0.2271 0.2252

P@5 0.1609 0.1731 0.1682 0.1658 0.1682 0.1682 0.1682 0.1658 0.1658
Triangle 20

MAP 0.2110 0.2235 0.2211 0.2234 0.2249 0.2265 0.2274 0.2271 0.2252

P@5 0.1609 0.1682 0.1682 0.1658 0.1682 0.1682 0.1658 0.1634 0.1634
50

MAP 0.2110 0.2200 0.2200 0.2235 0.2248 0.2252 0.2259 0.2255 0.2235

P@5 0.1609 0.1682 0.1682 0.1658 0.1682 0.1682 0.1682 0.1682 0.1658
10

MAP 0.2110 0.2248 0.2255 0.2249 0.2264 0.2261 0.2278 0.2255 0.2232

P@5 0.1609 0.1707 0.1707 0.1682 0.1658 0.1658 0.1658 0.1682 0.1682
Cosine 20

MAP 0.2110 0.2239 0.2229 0.2251 0.2255 0.2267 0.2251 0.2255 0.2247

P@5 0.1609 0.1682 0.1682 0.1658 0.1658 0.1658 0.1658 0.1658 0.1658
50

MAP 0.2110 0.2253 0.2265 0.2231 0.2230 0.2230 0.2230 0.2230 0.2230
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Table 4_a Comparison of the performance of the EXT/INT, EXT, and INT methods in terms of precision: precision after retrieving 5 documents (P@5)

EXT/INT INT
#docs Performance

Gaussian Triangle Cosine
EXT

Gaussian Triangle Cosine

P@5 0.1979 0.1845 0.1846 0.1626 0.1758 0.1736 0.1692

Gaussian +21.65% +12.51% +13.94% +16.90%
100,000

Rate Triangle +13.47% +4.95% +6.28% +9.04%

Cosine +13.53% +5.01% +6.34% +9.10%

P@5 0.2432 0.2453 0.2432 0.2164 0.2164 0.2226 0.2247

Gaussian +12.38% +12.38% +9.25% +8.23%
200,000

Rate Triangle +13.35% +13.35% +10.20% +9.17%

Cosine +12.38% +12.38% +9.25% +8.23%

P@5 0.2435 0.2475 0.2475 0.2297 0.2415 0.2376 0.2376

Gaussian +6.01% +0.83% +2.48% +2.48%
300,000

Rate Triangle +7.75% +2.48% +4.17% +4.17%

Cosine +7.75% +2.48% +4.17% +4.17%

Table 4_b Comparison of the performance of the EXT/INT, EXT, and INT methods in terms of precision: precision after retrieving 10 documents (P@10)

EXT/INT INT
#docs Performance

Gaussian Triangle Cosine
EXT

Gaussian Triangle Cosine

P@10 0.1417 0.1406 0.1406 0.1296 0.1351 0.1351 0.1351

Gaussian +9.34% +4.89% +4.89% +4.89%
100,000

Rate Triangle +8.49% +4.07% +4.07% +4.07%

Cosine +8.49% +4.07% +4.07% +4.07%

P@10 0.1979 0.1979 0.1979 0.1835 0.1824 0.1824 0.1835

Gaussian +7.85% +8.50% +7.41% +7.85%
200,000

Rate Triangle +7.85% +8.50% +8.50% +7.85%

Cosine +7.85% +8.50% +8.50% +7.85%

P@10 0.2099 0.2089 0.2079 0.1970 0.2009 0.2059 0.2069

Gaussian +6.55% +4.48% +1.94% +1.45%
300,000

Rate Triangle +6.04% +3.98% +1.46% +0.97%

Cosine +5.53% +3.38% +0.97% +0.48%

In the first phase of comparison, we evaluated the effec-

tiveness of our proposed method through the use of only the

external correlation, only the internal correlation, and both

the external and internal correlations. In this experiment, the

parameter σ was fixed to 5 and both the pseudo-relevant doc-

uments and the expansion keywords were set to 10. Tables

4_a and 4_b present, for each sub-collection, the precision

values obtained by the external correlation (EXT), the inter-

nal correlation (INT), and both the external and internal cor-

relations (EXT/INT) after retrieving five and ten documents.

In Table 4, the designation Rate indicates the percentage of

precision improvement of EXT/INT over EXT and INT.

In Table 4_a, it can clearly be seen that EXT/INT produces

the highest P@5 values for all sub-collections and achieves

a highly significant improvement over EXT and INT (Gaus-

sian, Triangle, Cosine); e.g., on the 200, 000 sub-collection,

there is an improvement (by EXT/INT (Triangle)) of 13.35%

over EXT, 13.35% over INT (Gaussian), 10.20% over INT

(Triangle), and 9.17% over INT (Cosine). Similarly, the rel-

evance precision at ten retrieved documents improves from

0.1835 (+7.85%), 0.1824 (+8.50%), 0.1824 (+8.50%), and

0.1835 (+7.85%) to 0.1979 over EXT, INT (Gaussian), INT

(Triangle) and INT (Cosine), respectively. In terms of MAP,

we notice that the proposed approach, EXT/INT, shows the

best results in all the sub-collections (see Table 5); e.g., on

the 300, 000 sub-collection, EXT/INT using Gaussian func-

tion outperforms EXT, INT (Gaussian), INT (Triangle), and

INT (Cosine), by approximately 3%, 4%, 5%, and 5%, re-

spectively.

In the second set of experiments, we evaluated and com-

pared the results of the proposed approach (EXT/INT), which

uses both the external and internal correlations, with those

obtained by RSJ, Rocchio, RSV, KLD, and IRF, where we

compute the precision values after retrieving five and ten doc-

uments. In this experiment, the parametersσ, R, and the num-

ber of expansion keywords were set to 5, 10, and 10, respec-

tively. Figure 1 shows the precision values for the EXT/INT,

RSJ, Rocchio, RSV, KLD, and IRF techniques.
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Table 5 Comparison of the effectiveness of the EXT/INT, EXT, and INT methods in terms of mean average precision

EXT/INT INT
#docs Performance

Gaussian Triangle Cosine
EXT

Gaussian Triangle Cosine

MAP 0.1823 0.1781 0.1791 0.1658 0.1686 0.1719 0.1713

Gaussian +9.95% +8.13% +6.05% +6.42%
100,000

Rate Triangle +7.42% +5.63% +3.61% +3.97%

Cosine +8.02% +6.23% +4.19% +4.55%

MAP 0.1663 0.1684 0.1686 0.1549 0.1531 0.1535 0.1537

Gaussian +7.36% +8.62% +8.34% +8.20%
200,000

Rate Triangle +8.72% +9.99% +3.90% +9.56%

Cosine +8.84% +10.12% +9.84% +9.69%

MAP 0.1617 0.1607 0.1607 0.1556 0.1554 0.1526 0.1527

Gaussian +3.92% +4.05% +5.96% +5.89%
300,000

Rate Triangle +3.28% +3.41% +5.31% +5.24%

Cosine +3.28% +3.41% +5.31% +5.24%

Fig. 1 Effectiveness comparison of the EXT/INT approach and the RSJ,
Rocchio, RSV, KLD, and IRF methods in terms of precision. (a) Precision
after retrieving five documents (P@5); (b) precision after retrieving ten doc-
uments (P@10)

In Fig. 1(a), we can see a clear superiority of the proposed

approach, EXT/INT, over Rocchio and RSV, and this superi-

ority is more significant in comparison with the RSJ, KLD,

and IRF techniques. It is clearly seen in Fig. 1(a) that the

proposed approach succeeds in improving the search results,

after retrieving five documents, in all the sub-collections;

e.g., on the 300, 000 sub-collection, EXT/INT using Cosine

shows a great improvement of +42.08% over RSJ, +22.59%

over Rocchio, +11.69% over RSV, +62.83% over KLD, and

+50.45% over IRF. Despite the superiority shown in Fig.

1(b), the results are not similar to those observed in Fig.

1(a). Nevertheless, the precision values of the proposed ap-

proach after retrieving ten documents are the best in all the

sub-collections.

From the values in Table 4 and Fig. 1, we can conclude

that the proposed method, EXT/INT, succeeds in improving

the ranking of the relevant documents and puts them in the

first place. The precision values of the proposed system, after

retrieving five documents, show a clear and significant supe-

riority of our method to the EXT, INT, RSJ, Rocchio, RSV,

KLD, and IRF techniques. This confirms the effectiveness of

the EXT/INT approach.

In the next phase of testing, we computed the MAP to eval-

uate the retrieval effectiveness of the EXT/INT and the PRF

methods (Table 6). The parameters σ, R, and the number of

expansion keywords were set to 5, 10, and 10, respectively.

Furthermore, we used the two-tailed t-test to measure the sta-

tistical significance of the differences between the MAP val-

ues.

Table 6 shows a clear advantage of the EXT/INT ap-

proach as compared to the RSJ, Rocchio, RSV, and KLD ap-

proaches. The improvements over RSJ, Rocchio, RSV, KLD,

and IRF are statistically significant in 64 out of 75 cases

(p < 0.05), and 75 out of 75 improvements are positive;
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e.g., on the 300000 sub-collection, EXT/INT (Gaussian) out-

performs RSJ by +20.31%, Rocchio by +21.31%, RSV by

+28.12%, KLD by +94.11%, and IRF by +54.76%, while

EXT/INT (Triangle) and EXT/INT (Cosine) outperform RSJ

by +19.57%, Rocchio by +20.56%, RSV by +27.33%, KLD

by +92.91%, and IRF by +53.78%, respectively. The val-

ues in bold represent the best improvement achieved by the

proposed approach.

In the final set of experiments, we compared the perfor-

mance of EXT/INT with that of the RSJ, Rocchio, RSV,

KLD, and IRF techniques while varying the values of σ and

R and the number of expansion keywords. As a first step, we

changed the value of σ from 5 to 30 and maintained the pa-

rameter R and the number of expansion keywords constant at

10 (Table 7). In the second step, we set σ and the number of

expansion keywords to 5 and 10, and varied the value of R

between 20 and 50 (Tables 8_a and 8_b). In the final step, we

compared EXT/INT with RSJ, Rocchio, RSV, KLD, and IRF

while varying the number of expansion terms between 10 and

5 and tuned the parameters σ and R to 5 and 10, respectively

(Table 9).

Once again, the proposed approach EXT/INT achieved

a better performance than the other methods, although the

number of pseudo-relevant documents R, the parameter σ,

and the number of expansion terms were varied. In terms

of precision, the EXT/INT results are the best in all the

sub-collections, and in terms of MAP, EXT/INT performed

statistically significantly better than RSJ, Rocchio, RSV,

Table 6 Mean Average Precision (MAP) results of EXT/INT, RSJ, Rocchio, RSV, KLD, and IRF methods

EXT/INT
#docs Performance

Gaussian Triangle Cosine
RSJ Rocchio RSV KLD IRF

MAP 0.1823 0.1781 0.1791 0.1253 0.1524 0.1653 0.1236 0.1226

Gaussian +45.49%∗ +19.62%∗ +10.28% +47.49%∗ +48.69%∗
100,000

Rate Triangle +42.14%∗ +16.86% +07.18% +44.09%∗ +45.27%∗
Cosine +42.94%∗ +17.52% +08.34% +44.90%∗ +46.08%∗

MAP 0.1763 0.1784 0.1781 0.1285 0.1540 0.1460 0.0990 0.1130

Gaussian +37.20%∗ +14.48% +20.75%∗ +78.08%∗ +56.01%∗
150,000

Rate Triangle +38.83%∗ +15.84% +22.19%∗ +80.20%∗ +57.88%∗
Cosine +38.60%∗ +15.65% +21.98%∗ +79.89%∗ +57.61%∗

MAP 0.1663 0.1684 0.1686 0.1174 0.1346 0.1326 0.0924 0.1200

Gaussian +41.65%∗ +23.55%∗ +25.41%∗ +79.97%∗ +38.58%∗
200,000

Rate Triangle +43.44%∗ +25.11%∗ +26.99%∗ +82.24%∗ +40.34%∗
Cosine +43.61%∗ +25.26%∗ +27.14%∗ +82.46%∗ +40.50%∗

MAP 0.1599 0.1585 0.1585 0.1204 0.1302 0.1378 0.0796 0.0886

Gaussian +32.81%∗ +22.81%∗ +16.03% +100.87%* +80.47%∗
250,000

Rate Triangle +31.64%∗ +21.74%∗ +15.02% +99.21%∗ +78.89%∗
Cosine +31.64%∗ +21.74%∗ +15.02% +99.21%∗ +78.89%∗

MAP 0.1617 0.1607 0.1607 0.1344 0.1333 0.1262 0.0833 0.1045

Gaussian +20.31%∗ +21.31%∗ +28.12%* +94.11%∗ +54.76%∗
300,000

Rate Triangle +19.57%∗ +20.56%∗ +27.33%∗ +92.91%∗ +53.78%∗
Cosine +19.57%∗ +20.56%∗ +27.33%∗ +92.91%∗ +53.78%∗

Note: ∗ indicates the difference is statistically significant, p-value < 0.05 with two-tailed t-test

Table 7 Comparison of the performance of EXT/INT, RSJ, Rocchio, RSV, KLD, and IRF methods (σ = 30)

EXT/INT
#docs Performance

Gaussian Triangle Cosine
RSJ Rocchio RSV KLD IRF

P@5 0.1978 0.1956 0.1956 0.1142 0.1472 0.1880 0.1520 0.1413

100,000 P@10 0.1428 0.1428 0.1428 0.1076 0.1241 0.1293 0.1226 0.1146

MAP 0.1817 0.1809 0.1817 0.1253∗ 0.1524 0.1653 0.1236∗ 0.1226*

P@5 0.2453 0.2432 0.2453 0.1381 0.1876 0.2209 0.1477 0.1772

200,000 P@10 0.1979 0.1979 0.1979 0.1515 0.1608 0.1731 0.1409 0.1659

MAP 0.1654 0.1662 0.1658 0.1174∗ 0.1346∗ 0.1326∗ 0.0924∗ 0.1200*

P@5 0.2415 0.2435 0.2455 0.1742 0.2019 0.2216 0.1520 0.1645

300,000 P@10 0.2069 0.2079 0.2069 0.1574 0.1712 0.1579 0.1333 0.1354

MAP 0.1617 0.1609 0.1614 0.1344∗ 0.1333∗ 0.1262∗ 0.0833∗ 0.1045*

Note: ∗ indicates the difference is statistically significant, p-value < 0.05 with two-tailed t-test
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Table 8_a Precision and mean average precision results of EXT/INT, RSJ, Rocchio, RSV, KLD, and IRF approaches: effectiveness comparison of EXT/INT
with the baseline, R = 20

EXT/INT
#docs Performance

Gaussian Triangle Cosine
RSJ Rocchio RSV KLD IRF

P@5 0.1978 0.1846 0.1846 0.1230 0.1582 0.1826 0.1200 0.1573
100,000

MAP 0.1813 0.1785 0.1790 0.1358∗ 0.1512 0.1620 0.1160∗ 0.1379*

P@5 0.2453 0.2412 0.2412 0.1546 0.2000 0.2163 0.1409 0.1613
200,000

MAP 0.1641 0.1662 0.1680 0.1405 0.1339∗ 0.1308∗ 0.0870∗ 0.1108*

P@5 0.2415 0.2455 0.2455 0.1742 0.2198 0.2216 0.1375 0.1520
300,000

MAP 0.1633 0.1655 0.1645 0.1496 0.1291∗ 0.1261∗ 0.0859∗ 0.0845*

Note: ∗ indicates the difference is statistically significant, p-value < 0.05 with two-tailed t-test

Table 8_b Precision and mean average precision results of EXT/INT, RSJ, Rocchio, RSV, KLD, and IRF approaches: effectiveness comparison of EXT/INT
with the baseline, R = 50

EXT/INT
#docs Performance

Gaussian Triangle Cosine
RSJ Rocchio RSV KLD IRF

P@5 0.1890 0.1824 0.1824 0.1406 0.1274 0.1746 0.1200 0.1333
100,000

MAP 0.1786 0.1742 0.1747 0.1427∗ 0.1394∗ 0.1612 0.1119∗ 0.1099*

P@5 0.2329 0.2309 0.2288 0.1711 0.1649 0.2186 0.1340 0.1340
200,000

MAP 0.1597 0.1633 0.1628 0.1383∗ 0.1169∗ 0.1312∗ 0.0869∗ 0.0907*

P@5 0.2396 0.2435 0.2435 0.1762 0.1920 0.2133 0.1291 0.1458
300,000

MAP 0.1608 0.1618 0.1619 0.1447 0.1121∗ 0.1232∗ 0.0831∗ 0.0853*

Note: ∗ indicates the difference is statistically significant, p-value < 0.05 with two-tailed t-test

Table 9 Comparison of the performance of the EXT/INT, RSJ, Rocchio, RSV, KLD, and IRF methods

EXT/INT
#docs Performance

Gaussian Triangle Cosine
RSJ Rocchio RSV KLD IRF

P@5 0.1736 0.1692 0.1670 0.0857 0.1670 0.1880 0.1653 0.1413

100000 P@10 0.1384 0.1362 0.1362 0.1087 0.1252 0.1320 0.1280 0.1293

MAP 0.1717 0.1726 0.1727 0.1150∗ 0.1626 0.1674 0.1444 0.1401*

P@5 0.2185 0.2247 0.2247 0.1195 0.2000 0.2231 0.1750 0.2022

200000 P@10 0.1845 0.1835 0.1835 0.1525 0.1639 0.1754 0.1613 0.1659

MAP 0.1543 0.1529 0.1517 0.0993∗ 0.1465 0.1349 0.1078∗ 0.1353

P@5 0.2435 0.2376 0.2356 0.1306 0.2099 0.2237 0.1770 0.1937

300000 P@10 0.2029 0.2079 0.2079 0.1623 0.1772 0.1831 0.1593 0.1614

MAP 0.1540 0.1559 0.1559 0.1036∗ 0.1338∗ 0.1488 0.1036∗ 0.1181*

Note: ∗ indicates the difference is statistically significant, p-value < 0.05 with two-tailed t-test

KLD, and IRF in a considerable number of cases.

5 Conclusion

In this paper, we proposed two criteria to assess the degree

of relatedness between a candidate expansion term and the

query keywords: the co-occurrence and the proximity. We

adopted the strength Pareto fitness assignment to satisfy both

criteria simultaneously. We also introduced the concept of the

external/internal correlation of terms. This concept, which in-

volves the GTD probability and the well-known kernel func-

tions, is based on finding for each query term the locations

where it occurs and then selecting from these locations the

words that frequently neighbor and co-occur with that query

term. The original query is then expanded by adding the top

selected terms and re-interrogated using the Okapi BM25

document-scoring function.

We tested our approach in depth using the MEDLINE

dataset. The experimental results show that the proposed ap-

proach, EXT/INT, succeeds in improving the ranking of the

relevant documents and yields a substantial enhancement in

terms of precision and MAP as compared to the baseline.

Future work in this area will include exploiting the seman-

tic aspect of keywords in order to further enhance the retrieval

effectiveness. It will also be interesting to test the proposed

approach on other existing medical datasets, such as TREC

CDS and CLEF eHealth. Another possible research direction

is to extend our work to additional areas of search applica-
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tions, such as Twitter search.
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