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Abstract Because of its wide application, the subgraph

matching problem has been studied extensively during the

past decade. However, most existing solutions assume that

a data graph is a vertex/edge-labeled graph (i.e., each ver-

tex/edge has a simple label). These solutions build structural

indices by considering the vertex labels. However, some real

graphs contain rich-content vertices such as user profiles in

social networks and HTML pages on the World Wide Web.

In this study, we consider the problem of subgraph matching

using a more general scenario. We build a structural index

that does not depend on any vertex content. Based on the in-

dex, we design a holistic subgraph matching algorithm that

considers the query graph as a whole and finds one match

at a time. In order to further improve efficiency, we propose

a “partial evaluation and assembly” framework to find sub-

graph matches over large graphs. Last but not least, our index

has light maintenance overhead. Therefore, our method can

work well on dynamic graphs. Extensive experiments on real

graphs show that our method outperforms the state-of-the-art

algorithms.

Keywords subgraph search, holistic approach, partial eval-

uation and assembly

1 Introduction

Because of their flexibility, “graphs” have been adopted by an

increasing number of applications as an underlying model.

These applications include biological networks [1], social

networks [2], and resource description framework (RDF)
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data [3]. Therefore, graph databases have recently gained

considerable attention in the database community. Unlike re-

lational databases, graph databases focus on graph structure-

based operations such as shortest-path queries [4–7], reach-

ability queries [8–10], and subgraph queries [11–13]. These

queries are not optimized by existing relational database tech-

niques.

In this study, we study the problem of subgraph matching

that finds all subgraphs in a data graph G that are isomor-

phic to a query graph Q. Subgraph queries are often issued in

various domains. For example, answering a SPARQL query

is equivalent to finding all subgraph matches of query graph

Q over RDF graph G. Although subgraph queries have been

well studied during the past five years, most existing stud-

ies assume that the underlying graphs are vertex/edge-labeled

graphs, that is, that each vertex/edge has a label (e.g., A, B,

C, and so on), such as in [11,12]. However, many real graphs

contain rich-content vertices/edges rather than simple labeled

vertices/edges. For example, the content can be a numeric

value, multidimensional tuple, text file, or other. In addition,

the criteria in query vertices include not only exact vertex

label constraints but also many complex expressions. These

include value range constraints and regular expressions. Let

us demonstrate the diversity of vertex/edge content and the

usefulness of subgraph queries by the following two exam-

ples.

Example 1 Freebase is a large collaborative knowledge

base of structured data harvested from many sources. It is

a large entity graph of people, places, and things. Each en-

tity has a multidimensional tuple to describe its properties.

The relationship between entities is an edge in the graph.
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Assume that we want to find “all 40–50-year-old married

American couples who acted in the same biographical film.”

This query can be represented as a query graph Q in Fig. 1.

Obviously, this graph cannot be simplified as a vertex/edge-

labeled graph. Each vertex is associated with a multidimen-

sional tuple. The query uses complex semantics (such as

range constraints) rather than comparing exact vertex labels.

Fig. 1 Query graph Q over freebase

Example 2 Many online professional social networks, such

as LinkedIn (linkedIn.com), are also graphs, in which each

vertex represents an individual and an edge refers to the col-

laborative experience between two individuals. Each individ-

ual has a profile page to record his or her job titles, expe-

rience, skills, and so on. Obviously, some content (such as

experience and skills) is represented by text. A recent survey

(see MRINETWORK official website) reports that approxi-

mately 90% of recruiters use LinkedIn to identify job candi-

dates.

Assume that an IT distributor company wants to build a

new division. As we know, effective collaboration and low

communication cost are critical for a team. Therefore, qual-

ified candidates who have good cooperative experience are

preferred. For example, a department backbone group must

contain a division header, product manager, two core sales

staff, and a senior product engineer. Furthermore, the divi-

sion header should have at least ten years expertise in IT

product distribution. The two core sales staff should have at

least five years of marketing experience. In addition, the di-

vision header must have good cooperative experience with

the product manager, and the division header must have good

relations with the two core sales staff, as should the project

manager. That the project manager and senior product en-

gineer have previously worked together is desirable. All of

these recruitment requirements can be represented as a query

graph Q in Fig. 2.

The subgraph queries in Examples 1 and 2 cannot be mod-

eled as classical subgraph matching queries under the seman-

tics of exact label matching. Therefore, a subgraph query over

a general graph model (formally defined in Section 2) is de-

sirable. This is the problem we examine in this study.

Fig. 2 Query graph Q in IT company recruitment

1.1 Limitations of existing approaches

The new model proposes new challenges. Unfortunately, al-

though previous studies have expended considerable effort on

the subgraph query [11–22], few can be applied to this new

model. The existing techniques prove inadequate because of

the following deficiencies.

(1) Naive model Most existing studies on subgraph search

focus on the vertex/edge-labeled graph, in which each ver-

tex/edge has a single label such as “A,B,C.” More specifi-

cally, they focus on the subgraph query under the semantics

of exact label matching. Moreover, these methods build up

structural indices based on the vertex labels. For example,

NOVA [23] computes the label distribution of the neighbor-

hood around each vertex. ASP [19] classifies all edges by the

labels of their endpoints. These indices cannot be used in gen-

eral graphs (e.g., Examples 1 and 2), because we cannot de-

rive vertex/edge labels in these graphs.

(2) Perform issue Although some studies have examined

the semantics of the subgraph query over a general graph,

they do not address query optimization issues as do GraphQL

[13] and G-SPARQL [20]. Trinity proposes a traversal-based

subgraph search algorithm [21]. However, Trinity is a mem-

ory system (i.e., the whole graph resides in a memory cloud

formed by several machines). However, some real graphs

cannot be cached in memory. For example, each node in a

social network contains images, text files, and other large

content. Neo4j provides the Cypher query language, which

can support subgraph queries. The query implementation is

based on graph traversal, but it does not work well on a large

graph G with more than ten million vertices.

(3) High index complexity In addition, many existing

index structures have considerable space costs. GADDI [1]

mines some discriminating substructures. Based on these dis-

criminating substructures, GADDI defines a distance mea-

surement and creates an index for every two nodes within



968 Front. Comput. Sci., 2018, 12(5): 966–983

distance k. Thus, GADDI should enumerate all vertex neigh-

borhood subgraphs with length k. The space complexity of

GADDI is O(|V | × dk), where |V | is the number of vertices

and d is the average degree. Analogously, the index space in

SPath [18] is O(|V | × dk), which is unacceptable for a graph

having more than ten million vertices.

(4) Expensive maintenance overhead Furthermore, few

studies have addressed index maintenance issues in dynamic

graphs. As we know, social networks and knowledge graphs

change constantly. Rebuilding indices from scratch in real ap-

plications in order to represent frequently updated data is im-

possible.

1.2 Our contributions

In this research, we concentrate on subgraph query process-

ing in a large general graph in a dynamic environment. In this

model, each vertex/edge can be associated with any content

and inserted or deleted frequently. Our approach can guaran-

tee that indices are independent of the content of the vertices,

whereas most existing subgraph matching approaches build

indices based on vertex labels. For example, SPath [18] con-

structs indices by summarizing the vertex labels within the

k-neighborhood subgraph of each vertex. NOVA [23] uses

a vector to store the label distribution of the neighbors of

a vertex. Clearly, our model is more flexible in real-life ap-

plications. The dependent relationship between indices and

labels limits the reusability of the existing approaches, as

many graphs in many real applications contain rich-content

vertices. Thus, our approach is more reusable.

In particular, we integrate existing systems with graph

databases as the underlying storage. The vertex/edge-specific

content is stored in some existing systems, such as RDBMS

for relational tuples and inverted indices for text files. In ad-

dition, the graph structure is stored in a native graph system.

Considering the limitations of existing indices, we propose

an efficient offline index structure, which has linear space

complexity and light maintenance overhead. In general, we

design a distance-based vertex coding strategy. If two vertices

are close to each other, the difference between their codes is

small.

In addition to the index, we also design a holistic online

subgraph matching algorithm. In our method, we do not uti-

lize structural join to find matches step by step, as this may

generate a considerable number of intermediate results. In-

stead, we consider the query graph as a whole and find one

match at a time. In particular, we maintain a priority queue

(according to vertex codes) for each query vertex. When a

vertex v must be dequeued, we find subgraph matches con-

taining v directly. In order to speed up this step, we propose

the “distance preservation principle” to reduce the search

space next to the index. Because our holistic subgraph match-

ing algorithm avoids structural joins, the algorithm can find

matches without generating a considerable number of inter-

mediate results.

Furthermore, in order to handle subgraph matches in large

graphs, we propose a “partial evaluation and assembly”

framework. Specifically, we divide a graph G into several

blocks. We use the holistic subgraph matching algorithm to

find all partial matches (Definition 7), and then assemble all

partial matches to find all complete matches.

Last but not least, we evaluate our methods on graphs

that contain more than 100 million edges. To the best of

our knowledge, these are the largest data graphs described in

studies on the subgraph query problem and that use a single

machine.

Our study makes the following contributions:

• General models Each vertex/edge in our graphs can

have any kind of content, including a multidimensional

tuple, text, etc. This is because the indices in our meth-

ods are independent of the labels in the graphs; they rely

only on the link structure of graphs. Thus, our methods

are more reusable than are most existing methods.

• Structure-based index We propose a structure-based

index with a linear space complexity O(|V(G)|). This

index can reduce the search space considerably.

• Efficient solution We first propose a holistic approach

to match the query graph. The holistic approach consid-

ers the query graph as a whole and finds one match at

a time without producing a considerable number of in-

termediate results. We extend this holistic approach by

using the “partial evaluation and assembly” framework

to handle large graphs.

• Light maintenance overhead The index maintenance

complexity is O(|E(G)|+ |V(G)| log |V(G)|)) in the worst

case.

The remainder of the paper is organized as follows. We

formally define preliminary concepts in Section 2. Section

3 provides an overview of and explains the concepts behind

the proposed approach. We present a single pivot-based ver-

tex encoding technique and an associated holistic subgraph

matching algorithm in Section 4. In Sections 5, we introduce

our advanced holistic subgraph matching algorithm with mul-
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tiple pivots. We discuss the maintenance issues in Section 6

and present experimental results in Section 7. Finally, we sur-

vey related studies in Section 8 and conclude our study in

Section 9.

2 Problem definition

In this section, we review the terminology used throughout

this study. A data graph indicates the relationships between

entities, where each entity is represented as a vertex and the

relationship between two entities is denoted as an edge. The

query is also a graph, in which vertices and edges use query

criteria related to vertex/edge content. In this study, we do

not discuss the method used to store vertex/edge content or

find vertices/edges that satisfy the criteria. We can leverage

existing content management systems for this purpose, such

as relational database management systems (RDBMS) for re-

lational tuples, inverted indices for text files, and multimedia

databases for images. Our method can even support criteria

containing regular expressions over query vertices, as long

as existing content management systems support such regu-

lar expressions. The focus of this work is to find a manner in

which the structure of a graph can be stored and indexed and

the manner in which the subgraph queries can be answered

efficiently. Table 1 shows some frequently used symbols.

Table 1 The definitions of symbols

Symbol Definition

G,Q Data graph and query graph, respectively

v, u Vertices in data and query graphs, respectively

vv′ Single edge with v and v′ being the end points

dist(v, v′) Shortest path distance between v and v′

Dia(Q) Diameter of graph Q

L(v) Vertex code of v with a single pivot

(B(v), L(v)) Vertex code of v with multiple pivots

TL(u) List of all candidate vertices that match the criteria associated
with vertex u

C(u) Cursor that points to the next accessed vertex in TL(u) when
our holistic subgraph matching algorithm is executed

TQ(u) Queue that buffers some accessed vertices when our holistic
subgraph matching algorithm is executed

T Vertex vector with length |V(Q)| that forms a (partial) match
of Q over graph G

In order to handle the vertices and edges in a uniform man-

ner, for each edge e = viv j in graph G, we introduce an addi-

tional vertex (between vi and v j) to replace e. The new vertex

has the same content that is associated with edge e. We can

also change the query graph Q by introducing additional ver-

tices for edges. Therefore, in the following discussion, we

assume that no content is present in edges of G. In addition,

edges in the query graph Q have no query criterion. Although

we only focus on the undirected graphs in this study, our so-

lution can be easily extended to directed graphs.

Definition 1 (Data graph) A data graph is denoted as

G = {V(G), E(G),
∑
, Γ}, where (1) V(G) is a set of vertices;

(2) E(G) ⊆ V(G) × V(G) is a set of undirected edges; (3)
∑

is a set of content; and (4) Γ : V(G) → ∑ denotes the

content assignment function, where ∀v ∈ V(G), Γ(v) is v’s

corresponding content.

Definition 2 (Query graph) A query graph is denoted as

Q = {V(Q), E(Q), F}, where (1) V(Q) is a set of vertices; (2)

E(Q) ⊆ V(Q)×V(Q) is a set of undirected edges; (3) F = { fi}
is a set of query criteria associated with vertex ui ∈ V(Q),

i = 1, 2, . . . , |V(Q)|.

A data graph G and two query graphs are given in Figs. 3

and 4, respectively, which are used in this study as running

examples. Because our method does not rely on vertex con-

tent or specific query criteria, we use the same vertex shapes

as those data vertices(i.e., considering the query criteria in the

vertices of Q) of the query vertices shown in Fig. 4.

Fig. 3 Data graph (different shapes corresponding to different content in
vertices)

Fig. 4 Example query graph (matching vertices with the same shape in the
data graph)

Definition 3 (Subgraph match) Given a data graph G =

{V(G), E(G),
∑
, Γ} and a query graph Q = {V(Q), E(Q), F},

a subgraph M with m vertices {u1, u2, . . . , un} (in G) is said

to be a match of Q if and only if a bijection function μ from

{v1, v2, . . . , vn} to {u1, u2, . . . , un} exists, where the following

conditions hold:

1) Γ(μ(ui)) satisfies the criterion fi in query vertex ui,

i = 1, 2, . . . , n.
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2) ∀ui, u j ∈ V(Q), uiu j ∈ E(Q) ⇒ μ(ui)μ(u j) ∈ E(G),

1 � i, j � n.

A state [v1, v2, . . . , vn] is a serialization of a subgraph

match M.

Problem statement Given a data graph G and a query graph

Q, where |V(Q)| 	 |V(G)|, the subgraph query problem is to

find all subgraph matches (Definition 3) of Q in G.

In this study, we assume that data graph G and query graph

Q are connected; otherwise, all connected components are

considered separately.

3 Overview

A commonly used technique to find subgraph matches is to

adopt a structural join such as edge [24], path [18], edge-

pair [19], star-pattern [21], or twig [25]. However, the struc-

tural join often generates a considerable number of interme-

diate results and only a few final results. In order to address

this issue, we propose a holistic subgraph matching (HSM)

approach to match query Q as a whole. Unlike in structural

joins, the buffer size (for storing the intermediate results) in

HSM is linear with the number of vertices in G.

Although holistic pattern matching methods have been

studied for XQuery processing in XML databases [26, 27],

extending these methods to graph databases is not straight-

forward. This is because queries and data in XML databases

are both trees. In addition, all holistic methods use a tree

code to determine ancestor-descendant relationships to en-

able XQuery processing. However, this study considers a

general graph model. No ancestor-descendant relationships

exist in a general graph. Thus, the tree code or existing holis-

tic pattern matching algorithms in XML databases cannot be

used to solve the subgraph query problem.

We design a distance-based vertex code and propose a

structural pruning technique that is based on the distance

preservation principle. Specifically, given a query graph Q

with n vertices, if n vertices (v1, v2, . . . , vn) in G can form a

subgraph match of Q, their pairwise distances must be less

than Dia(Q), where Dia(Q) is the diameter of query Q. This

observation can help reduce the search space considerably.

Let us first illustrate the intuition by query Q1 of which the

diameter is 2. As shown in Fig. 5 and in u3 matches to v13,

if a subgraph match exists that contains v13, the distance be-

tween v13 and other matching vertices should be no greater

than Dia(Q1). Therefore, we need to consider only five ver-

tices to find subgraph matches containing v13. Note that the

pruning rule depends only on the link structure of graphs. It

does not rely on vertex content. Therefore, our method can

work with graphs having any kind of content.

Fig. 5 Example of distance preservation pruning

The previous example motivates us to identify a distance-

based pruning technique. However, materializing all pair-

wise shortest path distances in a large graph G is impracti-

cal. Therefore, we propose a pivot-based vertex coding tech-

nique. For the ease of presentation, we first discuss a single

pivot-based solution in Section 4. This scheme works well

with small graphs, but it is not efficient with large graphs. To

handle large graphs, we propose a “partial evaluation and as-

sembly” framework, as described in Section 5. Specifically,

we divide a large graph into several blocks. In each block, we

adopt a similar strategy as described in Section 4 to find par-

tial results in each block partial match (Definition 7). Finally,

we assemble the partial results to find subgraph matches of Q.

Furthermore, in this work, we consider the subgraph query

problem in a dynamic environment. In Section 5, we propose

an online index maintenance algorithm without rebuilding in-

dices from scratch.

4 Single pivot-based solution

4.1 Single-pivot encoding strategy

Given a pivot vertex v∗ in a data graph G, the vertex codes are

defined in Definition 4.

Definition 4 (Vertex code) Given a graph G and a pivot

v∗ ∈ V(G), ∀v ∈ V(G), the vertex code of v is L(v) =

dist(v, v∗), where L(v) denotes the vertex code and dist(v, v∗)
is the shortest path distance between the two vertices.1)

We use a two-column table TB to store all vertex codes,

where the vertex ID and code are listed in the first and sec-

ond columns, respectively. A clustered B+-tree is built over

the vertex code column. In addition, we maintain the short-

1) As previously mentioned, we assume that the data graph G is connected; otherwise, all connected components are considered separately
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est path tree of v∗ by storing the parent of each vertex in the

shortest path tree of v∗.
Given a query Q with n vertices u1, u2, . . . , un, based on

the query criteria in ui, we can find a candidate list TL(ui),

where all vertices in TL(ui) satisfy the query criteria in ui,

i = 1, 2, . . . , n. The following theorem can filter out the ver-

tices that violate the distance preservation principle.

Theorem 1 Given a query graph Q and a data graph G,

for any two query vertices ui and u j in Q, the correspond-

ing candidate lists are TL(ui) and TL(u j), respectively. For

a candidate v in TL(ui), if no vertex v′ is in TL(u j), where

|L(v)−L(v′)| � dist(ui, u j), v can be pruned from TL(ui) safely.

L(v) and L(v′) denote the vertex codes and dist(ui, u j) denotes

the shortest path distance between ui and u j in query Q.

Proof According to the triangle inequality, |L(v) − L(v′)| �
dist(v, v′). If no vertex v′ exists in TL(u j), where |L(v) −
L(v′)| � dist(ui, u j), then for each vertex v′ in TL(u j), |L(v) −
L(v′)| > dist(ui, u j). Therefore, for any vertex v′ in TL(u j),

dist(ui, u j) � dist(v, v′). Assume that a subgraph match M (of

query Q) exists that contains v and v′. v and v′ are matched

to ui and u j, respectively. Knowing dist(v, v′) � dist(v, v′)
is straightforward. This contradicts the previous analysis.

Therefore, no subgraph match exists that contains v and v′.
This also means that v can be pruned safely. �

If a vertex v in TL(ui) cannot be pruned by Theorem 1, the

following theorem tells us which vertices should be consid-

ered when we find subgraph matches containing v.

Theorem 2 Given a data graph G and a query graph Q, for

a vertex v in TL(ui), when we find a match M containing v,

for each TL(u j), the search space is {v′|v′ ∈ TL(u j) ∧ |L(v) −
L(v′)| � dist(ui, u j)}, where ui and u j are two vertices in query

Q (i � j).

Proof If a match M exists that contains both v in TL(ui)

and v′ in TL(u j), dist(v, v′) � dist(ui, u j). In addition, be-

cause of the triangle inequality, |L(v) − L(v′)| = |dist(v, v∗) −
dist(v′, v∗)| � dist(v, v′). Thus, |L(v) − L(v′)| � dist(ui, u j). If

|L(v) − L(v′)| > dist(ui, u j), v and v′ cannot form a match. �

Different pivots provide different pruning power. We show

the different pruning powers when selecting different pivots

in data graph G (in Fig. 3). If we select v10 as the pivot,

we can examine Fig. 6(a) to identify the shortest path trees

rooted at v10. Considering edge u1u2 in query Q1, T L(u1) =

{v2, v9, v12} and T L(u2) = {v1, v4, v5, v6, v14}. If we want to

find a match containing v9 (matching u1), |L(v9) − L(v4)| �
dist(u1, u2) = 1, |L(v9) − L(v5)| � dist(u1, u2) = 1 and

|L(v9) − L(v6)| � dist(u1, u2) = 1. According to Theorem 2,

we know the search space in T L(u2) = {v4, v5, v6}. If we select

v11 as the pivot, we can find that the search space in T L(u2)

is {v5, v6}. The shortest path tree rooted at v11 is given in Fig.

6(b). Obviously, selecting v11 as the pivot provides stronger

pruning power.

Intuitively, given two vertices, the greater the difference in

their distances to a pivot, the more impossible it is that they

can be contained by a match based on Theorem 2. Thus, we

should select the pivot to which the number of vertices having

different distances to it should be as high as possible. Thus, if

a shortest path tree rooted at a pivot has more layers and each

layer has fewer nodes, stronger pruning power can be pro-

vided. For example, as shown in Fig. 6(b), because the short-

est path tree rooted at v11 has more layers and each layer has

fewer nodes, selecting v11 as the pivot provides greater prun-

ing power than does v10. Based on this observation, we define

the vertex entropy and select the vertex having the maximum

vertex entropy.

Definition 5 (Vertex entropy) Given a vertex v, according

to the vertex codes, a list {(code1, f re1), (code2, f re2), . . . ,

(coden, f ren)} exists, where codei is a vertex code and f rei

denotes the number of vertices whose vertex codes are codei,

Fig. 6 Evaluation of vertices (a) v10 and (b) v11 as pivots
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i = 1, 2, . . . , n. The vertex entropy is defined as follows:

E(v) = −
∑i=n

i=1

f rei

|V(G)| log(
f rei

|V(G)| ). (1)

In order to compute the vertex entropy, we propose the fol-

lowing method. We first compute all pairwise shortest path

distances. For each vertex v ∈ V(G), we compute the vertex

entropy according to Eq. (1). The vertex v with the maximum

vertex entropy is selected as the pivot v∗. The complexity of

this process is O(|V(G)|3). In order to speed up this step, we

randomly select only some sample vertices and compute the

shortest path trees of these vertices to estimate their entropy.

Thus, the time expended finding pivots is acceptable.

When the graph G is large, randomly selecting vertices to

estimate the entropy still incurs high computational cost. We

discuss the partition-based solution in Section 5. We partition

G into several blocks and select pivots from each block.

4.2 Holistic subgraph matching algorithm

Based on vertex codes, we propose our HSM algorithm. We

discuss the data structures used in the HSM algorithm in Sec-

tion 4.2.1, then describe the algorithm itself in Section 4.2.2.

4.2.1 Data structures

Each vertex ui (in query Q) is associated with three data struc-

tures in HSM: candidate list TL(ui), cursor C(ui), and queue

TQ(ui). Figure 7 shows the corresponding data structures of

Q1.

Candidate list TL(ui) is a list of all candidate vertices that

satisfy the criteria associated with vertex ui. Note that all can-

didate vertices are sorted in non-descending order by vertex

code (see Definition 4) in TL(ui).

Cursor C(ui) points to the vertex (in the candidate list

TL(ui)) that is currently accessed. For simplicity of nota-

tion, we also use “C(ui)” to denote the vertex that C(ui)

points to when the context is clear. Initially, each cursor C(ui)

(i = 1, 2, . . . , |V(Q)|) points to the first vertex in TL(ui). In

each step, the cursor that points to the minimal vertex among

all vertices C(ui) moves one step forward to the next ver-

tex in the list. Let us examine Fig. 7. Because v1 is mini-

mal among {v9, v1, v10, v7} (according to vertex codes), cursor

C(u2) moves one step forward to the next vertex. Meanwhile,

v1 is moved into queue TQ(u2).

Queue TQ(ui) stores the vertices that have been accessed.

For an accessed vertex v in TQ(ui), the search space for find-

ing subgraph matches containing v is bounded by Theorem

2. If all vertices in the search space have been accessed, we

dequeue v from TQ(u). The dequeuing rule is described in de-

tail in Section 4.2.2. When a vertex v is dequeued from TQ(u),

we execute a graph exploration algorithm to find all subgraph

matches containing v. During this exploration, we use states

to record each step.

State T is a vertex vector with length |V(Q)|. Each dimen-

sion of the vector corresponds to a query vertex in Q. A state

is a serialization of a (partial) match of query graph Q.

4.2.2 HSM algorithm

The primary purpose of our HSM algorithm is to repeatedly

construct subgraph matches in which some vertices are close

to each other. During query execution, all queues store some

vertices close to each other. If a vertex in a queue is too far

from another vertex in another queue (as discussed in The-

orem 2), it dequeues. For example, let us consider a mo-

ment during query execution as shown in Fig. 8. At this

moment, the vertex codes of all candidates in any queue are

smaller than 5 and larger than 1. This means that all subgraph

matches whose distance to v∗ are less than 5 and more than

1 can be found by vertices in all queues. When cursor C(u4)

moves to the next element v8 and v8 enqueues, v7 becomes

too far from other vertices. Hence, v7 dequeues from TQ(u4).

When a vertex v dequeues, we call the graph exploration

function, ExploreGraph(v), to search all queues and find sub-

graph matches containing v. We utilize states to record each

step in graph exploration. Each state is a (partial) match of

Fig. 7 Candidate lists, cursors, and queues during execution
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Fig. 8 Example moment during query execution

query graph Q. We can then formulate our problem as one in

which we search the space of states that represent all possi-

ble partial matches. We propose a graph exploration method

over the state space to find matches. Algorithm 1 (Function

ExploreGraph(v)) in Algorithm 2 shows the details. When v7

dequeues from TQ(u4), we can examine Fig. 9 to see how our

graph exploration method finds matches containing v7.

Fig. 9 Finding matches through graph exploration

Algorithm 1 ExploreGraph(v)

1: Initialize a state T with T [u] = v.

2: Push T into a stack S .

3: while S � ∅ do

4: Pop the first state T ∈ S .

5: if all edges in E(Q) have been matched by T then

6: Insert T to RS .

7: for each unmatched edge u′u′′ where u′ has been matched by T [u′]
do

8: if T [u′′] � null then

9: if (T [u′], T [u′′]) ∈ E(G) then

10: Push T into S

11: else

12: for each neighbor v′ of T [u′] do

13: if v′ ∈ TQ(u′′) then

14: Initialize a state T ′ with T .

15: T ′[u′]← v′.
16: Push T ′ into S .

Algorithm 2 shows the pseudo-codes of our holistic sub-

graph matching algorithm. We first obtain all sorted vertex

lists TL(ui), i = 1, . . . , |V(Q)| according to the query criteria

in query vertices ui, i = 1, 2, . . . , |V(Q)|. All cursors C(ui)

point to the head of TL(ui) and all queues TQ(ui) are empty

(lines 1–4). Let v∗ = C(u∗) = Min{C(ui)}, i = 1, 2, . . . , n,

where C(ui) refers to the current vertex that cursor C(ui)

points to (line 6). We put cursor C(u∗) one step forward and

move v∗ into the corresponding queue TQ(u∗) (lines 7 and

8). At this moment, we also check if some vertices can be

dequeued (Line 9). Consider a vertex vi in queue TQ(ui),

i = 1, 2, . . . , n. Let Dia(ui) = MAX{dist(ui, u)|u ∈ V(Q)}.
If (L(v∗) − L(vi)) > Dia(ui), then the vertices whose vertex

codes are larger than L(v∗) cannot be in a subgraph match

containing vi (which can be proved by Theorem 1). In order to

find subgraph matches containing vi, considering the vertices

that are visited after v∗ is not necessary. In other words, we

need to consider only the vertices in the current queues to find

subgraph matches containing vi. At this moment, vertex vi is

dequeued from TQ(ui). When vi is dequeued from TQ(ui), we

first determine whether vi can be pruned according to Theo-

rem 1 (lines 11 and 12). If not, we call a graph exploration

function to find subgraphs (of Q) containing vi (line 13). Es-

sentially, the graph exploration function is the same as the

VF2 subgraph isomorphism algorithm. The only difference

is that our algorithm begins the search process from vertex vi.

Algorithm 2 Holistic subgraph matching algorithm

Input: Query graph Q and data graph G.

Output: All subgraph matches of Q.

1: for each vertex ui in query Q do

2: Find the candidate list TL(ui) that contains all vertices that satisfy
the query criteria fi in order of vertex codes.

3: Cursor C(ui) points to the head vertex of TL(ui).

4: TQ(ui) = φ

5: while at least one cursor C(ui) does not point to the tail of TL(ui) do

6: Let v∗ = Min{C(ui)}, i = 1, 2, . . . , n and v∗’s corresponding cursor
is C(u∗).

7: Forward C(u∗) to the next vertex in TL(u∗) if any.

8: Find the set of all vertices that need to be dequeued and denote as
VS according to Theorem 2.

9: for each vertex ui in query Q do

10: if v can be pruned by Theorem 1. then

11: Continue.

12: Call ExploreGraph(v) (Algorithm 1) to find the set of all matches
of Q, denoted as RS .

13: Dequeue all vertices in VS .

14: Put v∗ into TQ(u∗).
15: Return RS .
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5 Partial evaluation and assembly-based so-
lution

Given a pivot v∗ in a large graph G, many vertices exist that

have the same vertex codes, because their distances to v∗ are

equal. Obviously, this will affect the pruning power described

in Theorem 1. To address this issue, we propose a “partial

evaluation and assembly” framework, described in this sec-

tion.

We partition the whole graph G into several blocks. Here,

because graph partitioning is a well-studied problem in com-

puter science, we can leverage previously existing code to

perform the partitioning for us. Note that the partitioning al-

gorithm is orthogonal to our approach. Any vertex-disjoint

partitioning method can be adopted by our approach, such as

METIS [28] or MLP [29]. In our study, we adopt the METIS

algorithm [28], which is the most famous graph partitioning

method, to find a vertex-disjoint partition. In a future study,

we will switch to a better partitioner.

After partitioning is conducted, edges whose endpoints are

in two different blocks are called crossing edges. The end-

points of these crossing edges are called boundary vertices.

For each block B, we introduce one-hop neighborhoods of all

boundary vertices in B to form an extended block B′. We refer

to the vertices initially in block B as inner vertices. The new

vertices in B′ (i.e., B′ −B) are called extended vertices. Given

a graph G in Fig. 3, we can partition it into three blocks. The

dashed lines in Fig. 10 represent the extended vertices. The

bold lines in Fig. 10 represent the pivot in each block.

Fig. 10 Graph partition

Definition 6 Given a subgraph match M of query Q over

graph G, if all vertices of M are inner vertices of a block, M

is called an inner match; otherwise, M is called a crossing-

match.

Figure 11 shows a crossing-match M of Q1 that crosses

two blocks B1 and B2.

Fig. 11 Crossing-match of Q1

Employing the method described in Section 4.2 is straight-

forward for finding inner matches in each block. Therefore,

in the following discussion, we focus on finding crossing-

matches.

The “partial evaluation and assembly” framework consists

of two phases. First, we must find partial results in each block

(Section 5.1). Then, we assemble these partial results to find

crossing-matches (Section 5.2).

5.1 Partial evaluation

In this subsection, we focus on the partial evaluation phase.

In this phase, we consider each block separately. Assume that

we want to find partial results in an extended block B′. Ac-

cording to Definition 4, we can compute the vertex codes for

each vertex in block B′. Figure 12 shows the vertex codes of

all vertices after partitioning. Then, the complexity of the ver-

tex code is O(|V(G)| + |EP(G)|), where EP(G) is the set of all

crossing edges. In real applications, |EP(G)| is often smaller

than |V(G)|. Hence, the complexity of the vertex code is still

O(|V(G)|).

Fig. 12 Vertex codes in each extended block

When we consider crossing-match M and block B′, we can

examine three cases between edges in M and block B′.

1) The two endpoints are both inner vertices of B′.

2) One endpoint is an inner vertex in B′ and the other is an

extended vertex in B′. For example, as shown in Fig. 11,

both edges v6v10 and v9v10 have an endpoint as an inner

vertex of B′2 and an endpoint as an extended vertex of

B′2.

3) The two endpoints are both extended vertices in B′,
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such as edge v6v9 for B′2 as shown in Fig. 11.

Obviously, the edges in the first two cases should be found

in the extended block B′. The edges in the third case of

B′ must be the first or second case in another block and

therefore can be found in other blocks. For example, v6v9 in

Fig. 11 is the first case in block B′1.

Based on the previous analysis, we define a partial match

as follows. The aforementioned three cases correspond to

Conditions 2–4 in Definition 7, respectively.

Definition 7 (Partial match) Given a match M of query Q

with the mapping function μ, we say that M is a partial match

in an extended block B′ (the original block is called B) if and

only if the following conditions hold:

1) μ(ui) ∈ B′ ∨ μ(ui) = null, i ∈ [1, |V(Q)|];
2) μ(ui) ∈ B∧μ(u j) ∈ B∧(∃uiu j ∈ Q)→ ∃μ(ui)μ(u j) ∈ M,

i � j ∈ [1, |V(Q)|];
3) μ(ui) ∈ (B′ − B) ∧ μ(u j) ∈ B ∧ (∃uiu j ∈ Q) →
∃μ(ui)μ(u j) ∈ M, i � j ∈ [1, |V(Q)|];

4) μ(ui) ∈ (B′ − B)∧ μ(u j) ∈ (B′ − B)→ �μ(ui)μ(u j) ∈ M,

i � j ∈ [1, |V(Q)|];
5) The subgraph induced by all inner vertices in M is con-

nected.

For example, Fig. 13(a) shows a partial match of the ex-

tended block B′2 for query Q1, denoted as 〈v10, v6, v9, null〉.
Fig. 13(b) shows a partial match of block B2 for query Q2,

denoted as 〈v3, v4, v8, null, v10〉. Note that 〈v3, v4, v8, v2, v10〉
is not a partial state in B′2, because the subgraph induced by

inner vertex {v3, v8, v2, v10} is not a connected subgraph.

Fig. 13 Example partial matches over block B′2. (a) Partial match corre-
sponding to state 〈v10, v6 , v9 , null〉; (b) partial match corresponding to state
〈v3 , v4, v8, null〉

In addition, we should change the pruning rule given in

Theorem 1. After partitioning is performed, an extended

block contains only a partial graph. Therefore, two vertices

in a crossing-match may not be in the same extended block.

However, because an extended block contains all one-hop

neighbors, two adjacent vertices in a match must be in the

same extended block. Thus, given a candidate v in TL(u),

if no neighbor of v matching u’s neighbor exists, v can be

pruned. This pruning rule is described in detail as follows.

Theorem 3 Considering two vertices ui and u j in query Q,

where ui is adjacent to u j, their corresponding candidate lists

are TL(ui) and TL(u j) in block B′, respectively, i � j. For a

candidate v in TL(ui), if no vertex v′ in TL(u j) exists, where

|L(v)−L(v′)| � 1, v can be pruned from TL(ui) safely. L(v) and

L(v′) denote the vertex codes in B′ of v and v′, respectively.

Proof The proof is similar to Theorem 1. �

Algorithm 3 is our subgraph matching algorithm based on

the “partial evaluation and assembly” framework. It is the

same as Algorithm 2 except for five minor differences, which

are described as follows.

Algorithm 3 Partial-Assembly subgraph matching algorithm

Input: Query graph Q and data graph G with n blocks {B′1, B′2, . . . ,
B′n}.
Output: All subgraph matches of Q.

1: for each vertex ui in query Q do

2: Find the candidate list TL(ui) that contains all vertices satisfying the
query criteria fi in order of vertex codes.

3: Cursor C(ui) points to the head vertex of TL(ui).

4: TQ(ui) = φ

5: while at least one cursor C(ui) does not point to the tail of TL(ui) do

6: Let v∗ = Min{C(ui)}, i = 1, 2, . . . , n and v∗’s corresponding cursor
is C(u∗).

7: Forward C(u∗) to the next vertex in TL(u∗), if it exists.

8: Find the set of all vertices that need to be dequeued and denote as
VS according to Theorem 2.

9: for each vertex v in VS do

10: if v can be pruned by Theorem 3 then

11: Continue.

12: Call ExploreGraph(v) to find the set of all partial matches of Q,
denoted as MS .

13: for each partial match m in MS do

14: if the size of m is equal to |E(Q)| then

15: Put m into RS . // RS is the final result set.

16: else

17: Put m into IS . // IS is the intermediate result set.

18: Dequeue all vertices in VS .

19: Put v∗ into TQ(u∗).
20: Find subgraph matches of Q by calling Algorithm 4.

21: Return RS

1) Theorem 3 can be used as a pruning rule to filter out

some candidate vertices (lines 10 and 11 in Algorithm

3);

2) When an inner vertex v of B(v) is dequeued from

TQ(u), we perform the graph exploration-based func-
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tion (ExploreGraph(v) in Algorithm 3) to find all partial

matches of Q in block B. If the size of a partial match

is equal to |E(Q)|, meaning that it is already a subgraph

match of Q, the match is inserted into the result set RS .

Otherwise, we insert the partial subgraph matches into

the intermediate result set IS (lines 13–18 in Algorithm

3);

3) The terminating condition in ExploreGraph(v) is

changed. We terminate the function when we find par-

tial matches containing v in block B(v) (line 5 of func-

tion ExploreGraph(v) in Algorithm 3);

4) According to the fourth condition in Definition 7, a par-

tial match cannot contain an edge whose endpoints are

both extended vertices. Thus, when we explore the next

vertex from the current vertex T [u′], we do not need

to consider T [u′] if T [u′] is an extended vertex (lines 8

and 9 of function ExploreGraph(v) in Algorithm 3);

5) According to the topology structures of crossing edges,

we call Algorithm 4 to perform self-join recursively

over IS (discussed in Section 5.2). We can find all

crossing-matches of Q by merging partial intermediate

matches in IS (line 20 in Algorithm 3).

For example, let us consider the moment shown in Fig. 14.

The cursor with the minimal vertex code in B′2 is C(u3) = v8

and |L(v8) − L(v5)| = 2 > Dia(u2) = 1. Therefore, we need

to dequeue v5 and move v8 into query TQ(u4). When we de-

queue v5, no elements are present in T (Q4). Thus, we can

prune v5 safely.

5.2 Assembly

The final step in our solution is to assemble all partial

matches. The following definition tells us which two partial

matches can be joined and the join result.

Algorithm 4 Joining partial matches

Input: The intermediate result set IS .

Output: All crossing-matches.

1: IS 0 ← IS .

2: while |IS | > 0 do

3: IS ′ ← ∅.
4: for each partial match M1 in IS do

5: for each partial match M2 in IS 0 do

6: if M1 can join with M2 and M2 � M1 then

7: M ← M1 � M2.

8: if M is a final match of Q then

9: Put M into the answer set RS //M is a crossing-match.

10: else

11: Put M into IS ′

12: IS ← IS ′.

Definition 8 (Join condition and result) Given two partial

matches M1 and M2 with the mapping functions μ1 and μ2,

we can join them if and only if the following conditions hold:

∀i ∈ [1, n], μ1(ui) � null ∧ μ2(ui) � null→ μ1(ui) = μ2(ui).

If two partial matches M1 and M2 can be joined, the join

result M = M1 � M2 is defined as follows:

1) If μ1(ui) = μ2(ui), μ(ui) = μ1(ui).

2) If μ1(ui) = null ∧ μ2(ui) � null, μ(ui) = μ2(ui).

3) If μ1(ui) � null ∧ μ2(ui) = null, μ(ui) = μ1(ui).

4) If μ1(ui) = null ∧ μ2(ui) = null, μ(ui) = null.

Based on the previous definition, we propose Algorithm 4

to join intermediate results to find crossing-matches of Q. In

general, we recursively perform self-join over the intermedi-

ate result set IS and obtain all subgraph matches.

Fig. 14 Example moment during query execution over B′2
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6 Maintenance

In this work, we consider the subgraph query problem over

a dynamic graph. In order to support online updates, we ad-

dress index maintenance issues in this section. Because our

vertex codes rely on the shortest path tree rooted at pivots,

we discuss only how to update the shortest path tree in a

dynamic graph. As we know, the shortest path tree mainte-

nance problem has been well examined in [5, 30]. We can

apply existing algorithms to our index maintenance problem.

To make our study self-contained, we briefly introduce the

shortest path tree maintenance method as given in [5]. Inter-

ested readers can refer to [5] for more details. This actually

represents an advantage of our solution. Our index is easy to

maintain, whereas existing indices for subgraph queries must

be rebuilt from scratch to support updates.

Note that, as discussed in Section 5, when the graph is

large, we partition it into many blocks and build the short-

est path tree-based indices over these blocks. Then, we only

need to update the indices over the blocks for the purpose of

index maintenance. Hence, index maintenance for a block is

dependent only on the size of the block (i.e., independent of

the whole graph).

Inserting or deleting an isolated vertex does not affect the

shortest path tree. Deleting a vertex means deleting all adja-

cent edges to the vertex. Therefore, in this section, we only

discuss deleting or introducing an edge between two vertices

in a block B.

6.1 Deletion

Given a pivot v∗ in block B, the shortest path tree rooted at v∗

is denoted as T (v∗). Assume that we delete an edge e = v1v2

from B. Three cases can then be considered.

1) p[v1] � v2 ∧ p[v2] � v1, where p[v1] is the parent of v1

in the shortest path tree. This means that e is not in the short-

est path tree T (v∗). Thus, deleting e does not affect any vertex

code.

2) p[v1] = v2. We only need to recompute the codes of

vertices in the subtree of T (v1). We employ the Dijkstra algo-

rithm with the remaining vertices, T − T (v1), to compute the

new vertex code of vertices in T (v1).

In Fig. 15, v15 is a pivot in B′3 and the shortest path tree

of T (v15) is represented by the bold lines. If we delete edge

e = v14v12, we need to recompute the codes of v2, v3, v4,

v8, and v12. We run the Dijkstra algorithm from vertex v14

and the initial distance is dist(v14, v15) to update these ver-

tex codes. Obviously, the complexity of deleting an edge is

O(|E(B)|+ |V(B)|log|V(B)|) in the worst case.

(3) p[v2]v1. It is analogous to the second case.

Fig. 15 Deletion. (a) Before deletion; (b) after deletion

6.2 Insertion

Assume that we insert an edge e = v1v2 into B′. The ver-

tex codes of v1 and v2 are L(v1) and L(v2). If L(v1) < L(v2),

we employ the Dijkstra algorithm from v1 to recompute all

other vertex codes, and vice versa. For example, if we in-

sert edge e = v4v14 as shown in Fig. 16, we run the Di-

jkstra algorithm from v4 and update the vertex codes of

v2, v3, v4, and v8. Knowing that the time complexity is

O(|E(B′)| + |V(B′)|log|V(B′)|) is clear.

Fig. 16 Insertion. (a) Before deletion; (b) after deletion

7 Experimental evaluation

We evaluated our method using both real and synthetic

datasets and compared it with the state-of-the-art algorithms

such as GADDI [1], NOVA [23], and ASP [19].

7.1 Datasets and setup

We tested four real-life datasets in our experiments. Statistics

related to the graphs are given in Table 2.

Table 2 Real graph datasets

Dataset |V | |E| Label number

US Patents 3, 774, 768 16, 518, 948 -

Yago2 10, 557, 345 130, 447, 832 -

Yago 368, 587 543, 815 45, 450

HPRD 9, 460 37, 000 307

• US Patents US Patents contain details on U.S. patents

granted between January 1963 and December 1999. Each
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vertex represents a patent and has six attributes: “AppYear”,

“Subcat”, “Class”, “Date”, “Year”, and “Country”. Each edge

represents the citation between them.

• Yago2 Yago2 [31] is a huge semantic knowledge base

derived from Wikipedia, WordNet, and GeoNames. Vertices

correspond to entities in Yago2 and edges correspond to the

relationships among them. In addition, each vertex is associ-

ated with a string and is derived from the rdfs:label value of

each entity.

• Yago Yago is the original version of Yago2 without

spatial and temporal features. For each vertex, we used its

corresponding type information as its vertex label.

• HPRD HPRD is a human protein interaction network.

For each vertex, we used its GO term description as its label.

The graphs of US Patents and Yago2 do not have vertex la-

bels. Because existing state-of-the-art subgraph search algo-

rithms are based on the semantics of exact label matching, we

compared our method to them with respect to vertex-labeled

graphs such as Yago and HPRD.

In addition, we used two classic data models, the Erdos

Renyi (ER) and scale-free (SF) models, to generate two syn-

thetic datasets. We used these datasets to show the perfor-

mance of our methods with increasing |V(G)|. The ER model

is a classical random graph model. It defines a random graph

as N vertices connected by M edges, chosen randomly from

N(N − 1)/2 possible edges. By contrast, the degree distribu-

tion of the SF model follows a power law distribution.

In addition, our query set was generated using depth first

search traversal from a randomly chosen node. The first N

nodes were stored as the query pattern. Note that, as dis-

cussed in Section 2, our methods did not need to transfer the

queries; they only needed to consider the criteria associated

with a query vertex to derive lists of all candidate vertices.

We conducted all experiments on a computer with a 2.0-

GHz Intel Core 2 Duo processor and 32 GB memory run-

ning Linux. In our experiments, we used MySQL (version

5.5.15.0) as the vertex content management system (i.e., us-

ing MySQL to find candidate vertices that satisfy the criteria

in each query vertex).

7.2 Performance comparison

7.2.1 In graphs with rich-content nodes

We first evaluated our subgraph search methods (Algorithms

2 and 3) on US Patents and Yago2. Because most subgraph

match algorithms can work only on vertex-labeled graphs,

we compared our solution only to SQLs and the graph explo-

ration method [21]. For SQLs, we stored the graph structure

in two types of tables: vertex and edge. A subgraph query

can be modeled as an SQL query. In order to speed up query

processing, we built the B+-tree indices over all columns of

the tables. For the graph exploration method, we cached the

whole graph in memory.

Over the US Patent dataset, Fig. 17(a) shows our method

was faster than SQLs by an order of magnitude and twice

as fast as the graph exploration. Note that SQLs could not

complete query processing within a reasonable time when

|E(Q)| > 8, nor could the graph exploration method when

|E(Q)| > 12. Furthermore, we found that Partial-Assembly

(i.e., Algorithm 3) was better than HSM (Algorithm 2), par-

ticularly when |E(Q)| was large. In Partial-Assembly, we set

the pivot number to 1,000. Our evaluation of the effect of

the pivot number is provided in Section 1. We obtained sim-

ilar results over the Yago2 dataset, as shown in Fig. 17(b).

Note that although Yago2 was much larger than the US Patent

dataset, because the query criteria of each query vertex in

Yago2 were more selective, the performance of our method

over Yago2 was better than that over US Patent. In addition,

the SQL method over Yago2 was too slow to finish the query

when |E(Q)| � 4. This was because SQL required numerous

expensive join steps and generated a considerable number of

intermediate results.

Fig. 17 Online performance comparison over graphs with rich-content
nodes. (a) Online performance over US Patent; (b) online performance over
Yago2

7.2.2 In vertex-labeled graphs

For the comparison with existing solutions, we degraded our
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solution into a vertex-labeled graph, as existing solutions

only work on vertex-labeled graphs. We compared our meth-

ods (HSM and Partial-Assembly) with the following state-

of-the-art methods: GADDI [1], NOVA [23], ASP [19], and

TurboISO [32]. When a data graph was small, such as the

HPRD graph, our methods were not as effective as ASP

and TurboISO. Partial-Assembly was even worse than NOVA.

However, GADDI and Nova could not complete the index

construction for a large graph using the Yago dataset. There-

fore, we compared our methods only with ASP, as shown

in Fig. 18(b). We confirmed that both HSM and Partial-

Assembly are faster than ASP and TurboISO. We also found

that Partial Assembly is better than HSM in large graphs.

Fig. 18 Online performance comparison with existing vertex-labeled
graphs methods over real datasets. (a) Online performance over HPRD; (b)
online performance over Yago

Figure 19 shows the performance of our methods (HSM

and Partial-Assembly) over two synthetic datasets. This ex-

periment was designed to study the performance of our meth-

ods with increasing |V(G)|. In this experiment, we used the

ER and SF datasets and fixed |V(Q)| = 10 (i.e., the number of

vertices in query Q). In addition, the default number of labels

was 1, 000. As shown in Fig. 19, although HSM and Partial-

Assembly performed worse than NOVA, ASP, and TurboISO

when |V(G)|was small, the gap between them became smaller

as |V(G)| became larger. When |V(G)| = 100K, our algo-

rithms performed the best over the SF and ER datasets. Note

that GADDI did not work when |V(G)| > 20K.

Fig. 19 Online performance comparison with existing vertex-labeled
graphs methods over synthetic datasets. (a) Online performance over ER
dataset; (b) online performance over SF dataset

7.3 Online performance

7.3.1 Performance based on the number of blocks

In the Partial-Assembly algorithm, a large graph G was di-

vided into several blocks. In this experiment, we studied the

effect based on the number of blocks. In Fig. 20(a), we var-

ied the block number from 1 to 2,000 (note that a single block

means that the Partial-Assembly algorithm was degraded to

HSM algorithm) and fixed |E(Q)| to be 2. We proposed two

measures to evaluate the performance. The first was the op-

eration number. As we know, function ExploreGraph(v) is

called recursively in both the HSM and Partial-Assembly al-

gorithms. In line 13 of the ExploreGraph(v) algorithm (Algo-

rithm 1), we needed to determine v′ ∈ TQ(u′′). The operation

number refers to the number of operations necessary for this

determination. Figure 20 shows that the number of operations

decreased as the pivot number increased from 1 to 1,000 in

the US Patent dataset. This was because more blocks led to a

reduced search space. However, if the partition number was

too large, we had to assemble more small-size local partial

matches. Therefore, with an additional increase of the block

number from 1,000 to 4,000, the operation number increased

accordingly, as shown in Fig. 20(a). We also discovered that
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the time shown in Fig. 20(b) had a similar trend as that in Fig.

20(a). Thus, the default pivot number in the US Patent dataset

was set to 1, 000. Similar observations were made with the

Yago2 dataset. However, we do not report these in this sec-

tion due to space limitations.

Fig. 20 Effectiveness of multiple pivots. (a) Operation number; (b) total
response time

7.3.2 Performance of pivot selection method

This experiment was conducted to study the effectiveness of

entropy-based pivot selection (see Section 1). We compared

it with some other vertex importance measures, such as ver-

tex degree, vertex betweenness, and random selection. We

partitioned the graph into 1,000 blocks and fixed |E(Q)| = 2.

In addition, we counted the number of operations of Algo-

rithm 3 and reported the total response time. As shown in

Fig. 21, the entropy-based solution yielded the best perfor-

mance. Larger vertex entropy means that the shortest path

tree rooted at this vertex had more layers and each layer had

fewer vertices. According to the prune rule in Theorem 3,

the vertex codes based on this pivot will lead to the minimal

search space.

7.4 Offline performance

We next evaluated the offline performance of our method.

The index size and construction time are reported in Table 3.

The offline processing consisted of three steps. The first and

fastest step was graph partitioning. We then identified the ver-

tex having the maximal vertex entropy in each block. In order

to speed up this step, we selected only a few sample vertices

(we sampled 1,000 vertices in each block) and computed the

shortest path trees of these vertices. We utilized these trees to

estimate the entropy of all vertices. Thus, the time expended

finding pivots was still acceptable. Finally, the vertex with the

maximal entropy value was selected as the pivot. We com-

puted the shortest path trees of these pivots offline to obtain

the vertex codes of all vertices. Furthermore, the index sizes

were not large, as shown in Table 3, because our index has

linear space complexity.

Fig. 21 Effectiveness of our pivot selection method (HE: Highest Entropy;
Random: Random Selection; HD: Highest Degree; HB: Highest Between-
ness). (a) Operation number; (b) total time

Table 3 Index size and index construction time

Index construction time/min

Dataset Partitioning

graph

Finding

pivots

Computing

vertex codes
Total

Index

size/MB

US Patent 2.4 34.2 22.8 59.4 167.659

Yago2 5.4 223.8 30 259.2 523.026

7.5 Index maintenance

We evaluated the performance of our index maintenance

method by simulating a random sequence of 1,000 edge inser-

tions/deletions. Table 4 presents the average time for a single

edge insertion/deletion.

Table 4 Maintenance performance

Dataset Average insertion time/ms Average deletion time/ms

US Patent 0.145 0.016

Yago2 249.3 26.1
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8 Related work

Ullmann [33] and VF2 [34] are the two early efforts to ad-

dress the subgraph isomorphism problem. In order to speed

up the query response time, most subgraph search meth-

ods pre-compute some structural indices to reduce the search

space. They assume that the data graph is a vertex-labeled

graph (i.e., each vertex has a single label). These structural in-

dices are built based on vertex labels. For example, SPath [18]

constructs an index using neighborhood signature that sum-

marizes vertex labels within the k-neighborhood subgraph of

each vertex. For each vertex in a data graph, NOVA [23] uses

a vector to store the label distribution of its neighborhood ver-

tices. ASP [19] divides all edges in a data graph into several

classes according to vertex labels and uses bitmap structures

to index them. SSP [35] extends ASP and proposes some

optimizations to further improve query performance. Obvi-

ously, these methods cannot be adapted to a data graph with

various kinds of vertex-specific content. Another problem of

existing methods is the super-linear space complexity of the

index structure. Lee et al. [36] reimplemented some of the

aforementioned methods and provided a fair comparison of

them. They then presented a solution called TurboISO [22].

TurboISO defines a concept of the neighborhood equivalence

class (NEC). All query vertices in the same NEC have the

same matching data vertices. Thus, when TurboISO finds all

subgraph matches, only combinations for each NEC are gen-

erated. TurboHOM++ [32] further extends TurboISO to handle

SPARQL queries over RDF graphs. BoostIso [37] extends

the concept of neighborhood equivalence class in the data

graph and defines four types of relationships between vertices

in the data graph to further reduce duplicate computation.

Recently, some subgraph isomorphism approaches have

been conducted in distributed environments. Sun et al. [21]

used the Microsoft distributed graph database system, Trinity,

to answer the subgraph query. However, this method assumes

that the whole graph is cached in memory. If a graph has some

large-sized vertex/edge contents, such as texts, this assump-

tion cannot hold. In [38], the authors used Map-Reduce and

applied the multiway join to find all matches. This study fo-

cused on how to speed up the process of the multiway join.

In order to avoid graph isomorphism computation, many

works have revised the definition of graph matching [39–43].

Fan et al. [39–41] and Ma et al. [42] defined graph match-

ing based on graph simulation, and Ness [43] used an infor-

mation propagation model to redefine graph matching. With

these revisions, graph matching can be performed in polyno-

mial time.

Although holistic pattern matching has been studied ex-

tensively in XML databases, XML adopts a “tree” as the un-

derlying structure, which is different from a general “graph”.

These holistic pattern matching methods in XML databases

[26, 27] adopt a tree code to determine ancestor-descendant

relationships in order to support XQuery. The basic idea of

holistic pattern matching is to reduce the number of interme-

diate results. To the best of our knowledge, we are the first

to propose a holistic pattern matching for the subgraph query

problem.

Partial evaluation and assembly solution for graph prob-

lems were proposed by Buneman et al. [44–47]. In [44–46],

the focus was on Boolean XPath queries over an XML tree.

In [47], the authors discussed how to deal with reachabil-

ity queries over distributed graphs. Partial evaluation-based

graph simulation was well studied in Fan et al. [39] and Ma et

al. [42]. However, SPARQL query semantics is different from

these and pose additional challenges. In this study, we discuss

how to use this framework for the subgraph search problem.

The main contribution of this part of our study is the par-

tial computing results derived from addressing the subgraph

search problem.

9 Conclusion

In this study, we investigated the subgraph search problem

over a large general graph. We proposed a distance-based

vertex code. Based on the codes, we proposed a holistic sub-

graph matching algorithm to address the subgraph search

problem. To further improve the performance, we proposed

a “partial evaluation and assembly” framework to reduce the

search space. Extensive experiments over large real datasets

confirmed the superiority of our solutions.
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