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Abstract The prior knowledge is the significant supple-

ment to image-based 3D modeling algorithms for refining the

fragile consistency-based stereo. In this paper, we review the

image-based 3D modeling problem according to prior cate-

gories, i.e., classical priors and specific priors. The classical

priors including smoothness, silhouette and illumination are

well studied for improving the accuracy and robustness of

the 3D reconstruction. In recent years, various specific priors

which take advantage of Manhattan rule, geometry template

and trained category features have been proposed to enhance

the modeling performance. The advantages and limitations of

both kinds of priors are discussed and evaluated in the paper.

Finally, we discuss the trend and challenges of the prior stud-

ies in the future.

Keywords prior information, consistency-based stereo,

smoothness, illumination, silhouette, specific prior

1 Introduction

3D reconstruction is intended to capture the shape and ap-

pearance of real objects, and can be widely used in a variety

of fields, such as computer aided geometric design, com-

puter graphics, computer animation, computer vision, med-

ical imaging, computational science, virtual reality, digital

media, 3D printing, etc. In the past decades, the 3D recon-

struction technique draws widespread attentions and achieves

a great progress. Among various 3D modeling approaches,

image-based methods own their distinct characteristics: fea-

sible input and convenient operation. With the development
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of reconstruction algorithms and imaging techniques, the

state-of-the-art image-based methods update rapidly. The ac-

curacy of some well-designed recovering systems approaches

to that of the laser-scanning systems, while their computa-

tional speed can reach real-time level.

The photo-consistency measurements and reconstruction

algorithms have been well studied. Several excellent surveys

[1–3] have been proposed to review the early multi-view re-

construction methods. Nevertheless, there still remain a few

tough problems in image-based modeling methods. The pri-

mary problem is the ambiguity in textureless regions, which

makes the problem ill-posed and degrades the reconstruction

results. Furthermore, different applications demand models

with different peculiarity, and thus require different recon-

struction approaches. For example, the high-quality render-

ing needs the integrated and colored mesh model, while the

motion capture prefers the unambiguous model, which can be

a rough mesh or even the sparse point cloud. Therefore, the

additional depth cues, namely priors, are required to supple-

ment the image-based modeling methods, and make the algo-

rithms more practical, robust and distinctive. Different from

the above-mentioned surveys, this paper concentrates on the

studies and categories of the priors in the existing image-

based modeling methods, and summarizes a comprehensive

comparison of these priors, and analyzes the role of them in

the image-based modeling algorithms. As the state-of-the-art

has been improved a lot, we pay closer attention to recent

well-performed priors in this paper.

In the rest of this article, we first browse the related meth-

ods and discuss the subsistent challenges in Section 2. Then,

the priors are classified as common priors (discussed in Sec-

tion 3) and specific priors (discussed in Section 4). We ana-
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lyze the trend of the future research and make the conclusion

in Sections 5 and 6, respectively.

2 Related work

2.1 3D modeling techniques

Generally speaking, 3D modeling methods could be classi-

fied into three categories: active methods, image-based meth-

ods (passive methods), and the fusion of active and passive

methods, as shown in Fig. 1.

Passive modeling methods interfere with the object using

laser, infrared ray or other mediums. The traditional laser-

based 3D model scanners, e.g., Ref. [4], provide highly-

accurate 3D models, however, sophisticated equipments

which are expensive and hard to operate are required. Be-

sides, the reconstruction process of the laser scanners is time-

consuming and sensitive to calibration errors, which limits its

utilization for amateur applications. In contrast, the Kinect

[5,6] provides a more convenient and real-time way to ac-

quire depth images, but the spatial resolution is lower than

the corresponding intensity sensor, which makes it difficult

to capture the details of scenes.

Unlike active method, image-based methods recover depth

directly from the image sequences. The recording process of

image-based method is more achievable, since only images

are required, which can be captured by consumer-level cam-

eras. In exchange, the post-reconstruction of image-based

methods is complex and computational-consuming. With the

development of the imaging technology, the resolution of

consumer-level cameras has increased dramatically, and the

noise could be effectively restricted, which makes it possi-

ble to approach the quality of laser scanners. Furthermore,

the image-based methods capture the corresponding color or

texture of the 3D model simultaneously, while the traditional

3D scanner needs an additional RGB sensor and a registration

process to acquire the color and texture separately. Therefore,

image-based modeling methods have shown their advantages

to the traditional active 3D scanning techniques, and own ex-

tensive application prospects.

2.2 Image-based reconstruction methods

We consider the image-based modeling problem as a shape-

from-image process which may consist of various ap-

proaches. The related domain includes following research

points:

Photo-consistency based stereo is the most prevailing

way in multi-view 3D reconstruction, as it solves the dense

corresponding map between two calibrated images and gen-

erates the integrated shape. The main idea of the photo-

consistency based stereo is to match every pixel of one im-

age (known as the local image) to pixels of the other im-

age (known as the reference image) according to the pixel

consistency, and then compute the 3D position of each pixel

in the local image according to the epipolar geometry. The

stereo methods have been well studied over the last decades.

The “Middlebury stereo” evaluation [7] has received over a

hundred stereo matching algorithms. The main limitation of

stereo is its fragile performance on textureless objects, we

will explain this problem in detail in the defect analyzing part.

Multi-view 3D reconstruction generates the 3D model

from several images. The multi-view system usually adopts

an end-to-end pipeline with following steps: camera calibra-

tion (one-off phase if using fixed camera setup), depth esti-

mation in each image, fusion, and finally postprocessing like

meshing or coloring. Different from the photo-consistency

based stereo methods which are widely used in the depth esti-

mation, the multi-view 3D reconstruction methods pay more

attention to the multi-view fusion and optimizing of the final

model. Several surveys [1–3] have proposed thorough evalua-

tions and taxonomies on multi-view reconstruction methods,

we will further extend their review work and focus on the role

of priors in recent state-of-the-art methods.

Fig. 1 Relational graph (prior information has played an important role in image-based 3D modeling method to supplement the fragile
consistency-based reconstruction)
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Structure-from-motion (SFM) is the process of estimat-

ing three-dimensional structures from two-dimensional im-

age sequences, which is reviewed in detail in the survey [8,9].

Compared with the above research points, SFM focuses on

the estimation of camera parameters, including the camera

trajectory, focal length, distortion, etc. In the classical SFM

pipeline, the image features, e.g., SIFT [10], are firstly ex-

tracted from the images, then the feature correspondences be-

tween image pairs are computed. After that, the trajectories

of the features are filtered and then used to reconstruct their

3D positions and the camera’s motion. The SFM can incre-

mentally and real-timely generate a sparse point cloud from

the feature correspondences, and produce the 3D model after

subsequent process. The SFM algorithms have been success-

fully adapted in the simultaneous localization and map-
ping (SLAM) [11] systems, which can construct or update a

map of an unknown environment while simultaneously keep-

ing track of an agent’s location within it. The state-of-the-

art SFM systems can achieve real-time and dense tracking

SLAM using inexpensive cameras [12,13], even for the dy-

namic scenes [14].

Shape-from-shading (SFS) [15] and photometric stereo
[16] both are 3D reconstruction algorithms that utilize illumi-

nation priors. SFS technique was first presented by Horn in

the early 1970s, it aims at recovering the light source and the

surface shape from a single image. A common assumption

in the SFS problem is the Lambertian model, which consid-

ers that the intensity of each pixel depends on the direction

of the incident light and the surface normal. Under this as-

sumption, the problem remains to be ill-posed as the surface

shape and light direction contains overmuch unknowns. Pho-

tometric stereo extends SFS problem into multiple illumina-

tion, and estimates the surface normals of objects by observ-

ing that object under different lighting conditions. Generally

speaking, photometric stereo achieves more robust and accu-

rate result at the expense of more complex setups.

Besides the above topics, there are some other studies on

image-based reconstruction. Shape-from-template [17] re-

constructs the shape of a deformable surface from a sin-

gle image and a known 3D template. Shape-from-silhouette
[18], a.k.a. Visual Hull, reconstructs the 3D model of an ob-

ject from multiple silhouette images. The silhouette could be

segmented easily from the RGB image with pure color back-

ground or from multi-view images using multi-view segmen-

tation algorithms [19].

Some of the aforementioned studies focus on a single type

prior, and others integrate more than one prior. In this paper,

we review the priors of the existing 3D modeling methods,

as shown in Fig. 1. By categorizing the priors, we discuss

the widely used priors in detail, and summarize the research

development and future trend of the image-based 3D recon-

struction in the following sections.

2.3 Necessity of prior knowledge

Consistency-based stereo is significant in the universal

image-based 3D modeling method, since it reveals the dense

3D geometry in general case. However, the consistency-based

stereo is unreliable mainly in the following three cases:

1) Textureless or texture-repetitive object In textureless

region, the intensities of adjacent pixels are resemble, which

makes it almost impossible to distinguish the right matches.

Therefore, the depth estimation of textureless regions is un-

reliable and leads to the unfaithful results. In a similar way,

texture-repetitive region is very likely to mislead the stereo

matcher and results in the incorrect depth.

2) Too large matching range In the representative stereo

matching problem, we need to find a right pixel in reference

image corresponding to a certain pixel in local image. If there

is no constraint, the searching range can be huge, leading to

ambiguous matching and huge computational work.

3) Image degradation Image degradation contains image

noise, motion blur, out-of-focus blur, lens distortion, etc. The

noise of image is inevitable due to imaging mode and envi-

ronment disturbances, but can be reduced by enhancing the

illumination and adopting high quality sensors. Motion blur

and out-of-focus blur both confuse the detail features in im-

age and reduce the reconstruction accuracy. Lens distortion

is a deviation from rectilinear projection which is common in

short focal lens camera. A high level of lens distortion may

lead to misalignment and even calibration failure.

To supplement the defects above, various priors are em-

ployed to improve consistency-based stereo. Here we give a

definition of “prior” in image-based 3D modeling method:

the supplementing information which reflects the character-

istic of objects, images, or environments, and could be used

to make the consistency-based 3D reconstruction efficacious,

robust, or for special application.

Prior information has played an important role in image-

based 3D modeling method to supplement the fragile

consistency-based reconstruction. As the traditional match-

ing methods have been studied sufficiently, the prior informa-

tion determines the limit of best performance in image-based

3D modeling methods. In this survey, we concern the role of

prior in 3D modeling problem, analyze and compare different

kinds of priors in state-of-art method, and discuss the poten-
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tial development of 3D modeling method. First, the priors

presented in the past few decades are categorized into four

types, and a systematic review of different prior applications

is provided. Then we summarize the prevailing algorithm that

adopts prior to generate better result. In the end, we introduce

the trend and challenges of the image-based modeling prob-

lem.

3 Classical priors

Classical prior takes advantage of general attribute, ma-

terial characteristics and illumination, which are assump-

tions that generally exist in various targets. In this sec-

tion, we will discuss the classical priors in three categories:

smooth/continous, silhouette and illumination.

3.1 Smooth and continuous prior

It is intuitive that most of the objects should be smooth and

continuous, so these prior knowledge is studied at the earli-

est period. Generally speaking, smooth and continuous pri-

ors are applied to 3D modeling problem in two kinds: local

methods and global methods. The former approaches smooth

each part of the model according to local cues, which refers

to small neighbor patch/window on disparity/depth image, or

adjacent vertex on mesh. The local methods usually introduce

hierarchy or iterative framework to ensure efficiency and ro-

bustness. In contrast, global algorithms rifely formulate en-

ergy function with extensive information and then minimize

it. There are several mathematical translations of smooth hy-

pothesis in this framework, and the smooth terms are various

in different minimization algorithms, like Level set, Graph

cuts, Variational, etc.

We first review the smooth prior in local means. Segment-

based stereo [20] regards the scene structure as a set of pla-

nar surface patches because of continuous prior. Firstly, they

adopt an over-segmentation on reference image and then gen-

erate a set of planar hypotheses for each segment. A series of

algorithms [21–24] have been proposed to optimize the esti-

mation of over the planar hypotheses, making the excellent

results on the Middlebury stereo evaluation [25]. However,

as these methods assume the scene is local planar, they can-

not permit curved surface, and may lead to layering mesh

when applied in 3D modeling problem. Furukawa et al. [26]

provide a stereopsis pipeline that consists of match, expand,

filter to generate a dense set of small rectangular patches cov-

ering the surface. Furthermore, an additional method could

turn the resulting patch model into a mesh which can be fur-

ther refined. The key idea of the expanding step is to spread

the initial matches to nearby pixels due to the continuous

prior, then the error matches are eliminated using visibility

constraints in filtering step. These methods take advantage of

smooth and continuous assumption to build a simple patch-

like 3D model, which is convenient in computing and pro-

cessing. The main drawback is that the patch-like model is

open and sparse, as the global relation of different patches is

limited. Also, patch based model neglects detailed shape.

Another local approach smooths the surface in dispar-

ity/depth image phase. As the value of each pixel represents

the position of each point in 3D coordinate, traditional blur al-

gorithm for intense image, like Gauss blur and Laplace blur,

could be directly used in depth image. These methods effec-

tively smooth the surface and filter out outliers in a limited

window. Also, it is achievable to parallelize the computation,

reaching the real-time level. Beeler et al. [27] add photomet-

ric and surface consistence in an iterative local framework to

guide the smooth process. The sub-pixel disparity is updated

in every iteration as a combination of surface-consistency

term and photometric-consistency term: the surface consis-

tency term alter the disparity according to normalized cross

correlation (NCC) value of the contiguous region, and pho-

tometric consistency make depth in the textured areas of the

image count more, so the surface is smoother in textureless

area and accords with passive stereo result in texture area.

The defect of local means is its deficient effect in sparse

and noisy data, since only small range of data are involved.

Global methods, involving an energy function minimization

problem, have attracted much concerns in the past decades.

The smooth and continuous property is embodied as regu-

larization, which penalises high frequency noise ingredient,

forming smooth shape. The universal energy function to be

minimized in stereo problem is the sum of data term Edata(D)

and smooth term Esmooth(D), as follow:

E(D) = Edata(D) + Esmooth(D). (1)

Here D is undetermined disparity map of local image

and reference image, Edata(D) is formulated with photo-

consistency, Esmooth(D) is formulated with smooth priors. We

concentrate on the smooth term in following discussion.

Kolev et al. [28] enforce the smoothness implicitly by min-

imizing the corresponds to find the minimal surface with re-

spect to Riemannian metric:

Esmooth(D) =
∫

S
(1 − exp(− tan(

π

4
(c(x) − 1))2)/σ2)dS , (2)

where S is estimated surface, c(x) represents the photo-

consistency in terms of normalized cross-correlations (NCC).
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Liu et al. [29] formulate a variational energy function with the

smooth term that represents the interaction between neigh-

boring pixels:

Esmooth(D) =
∫ b

a
ψs(| � D|2) dx, (3)

where ψs =
√

s2 + ε2 is a robust operator, and ε is a small

positive constant. Yao et al. [30] further add the second-order

gradient term to reinforce the smoothness of local areas. The

variational methods have achieved a preferable result in Mid-

dlebury evaluation on both accuracy and integrity. The weak-

ness of variational methods is that the result tends to get stuck

into local optima, so it requires fair initial value to guaran-

tee the right convergence. Li et al. [31] propose to encourage

the second and third derivatives of depth to be zero as priors

on slanted and curved surfaces. Woodford et al. [32] further

stress the availability of second-order priors on the smooth-

ness of 3D surfaces, the smooth term is formulated as:

Esmooth(D) =
n∑
N∈N

W((N)ρs(S (N ,D)). (4)

Here, S (N ,D) is the smoothness of a neighborhood N ,

and ρs(.) is smoothness cost function. W(N) is an additional

per-neighborhood conditional random field (CRF) weight.

Deformable model based algorithms like [33,34] generally

combine smooth constraint with surface grid topology. Han et

al. [33] employ the curvature force in level-set framework as

a regularization force to counteract with the effect of image

noise. In latter work, Esteban et al. [34] propose to formu-

late the regularization term as Laplacian [35] deformation to

smooth the surface. In brief, the internal regularization tries

to move a given mesh point v to the gravity center of its 1-ring

neighborhood. The smooth force Fsmooth is formulated as:

Fsmooth(v) =
1
m

∑
j∈N∞(v)

v j − v, (5)

where v j is the 1-ring neighbors of vertex v, m is the total

number of these neighbors. Zeng et al. [36] propose to inte-

grate the local prior in a space carving framework, solved by

graph-cut optimization. Instead of applying the smoothness

term on the whole surface at once, they apply it on each patch

separately, overcoming the parameterization limitation of the

global approach. Their method reconstructs fairly smooth re-

sult and recovers more detail than level-set algorithm. Tas-

dizen et al. [37] generalize anisotropic techniques which have

been useful in image processing to surface reconstruction by

minimizing the second-order penalty functions. The experi-

ment results show that the algorithm does well in preserving

creases while denoising the input. The main shortcoming is

the vast computation time.

Smooth constraints of local and global method have mer-

its and demerits respectively. Global methods produce more

holistic smooth model, recovering more reasonable shape in

featureless region, but require high computational cost. Ex-

periments show that they could even achieve noise suppres-

sion and hole-filling on result models. Local methods are gen-

erally faster since the processing time is greatly reduced by

parallelizing the algorithm. Therefore, some high efficiency

demanding applications prefer local smooth methods.

3.2 Silhouette prior

Silhouette is the binary image that segments foreground ob-

ject from the original image. Many 3D reconstruction stu-

dio’s wall is designed to be single colored, making it easier

to obtain silhouettes. In nature scene, there are still methods

to achieve segmentation. Typical segmentation assumes that

background pixel values are constant, whereas foreground

pixel values vary. The well-known “Lazy Snapping” [38]

achieves a coarse-to-fine segmentation approach with user in-

terface, which leads to a fine silhouette using few clickings

on the image. However, the automatic segmentation remains

to be error-prone. Multi-view Segmentation methods [19,39]

take advantage of multi-camera cues to make a robust au-

tomatic segmentation. The development of the segmentation

algorithm makes it possible to utilize silhouette prior in auto-

matic 3D modeling.

Silhouette priors are generally adopted in two ways:

In the first case, the maximal solid shape, namely visual

hull, is firstly built using the silhouettes image of a series of

viewpoints, then this rough shape is used as an initial model

to constraint the subsequent process. Visual hull is firstly de-

fined in [18], and several excellent algorithms [40–42] are

proposed to solve this problem efficiently. Along with the

camera viewing parameters, the silhouette defines a back-

projected generalized cone that contains the actual object,

then the visual hull is extracted as the intersection of every

cones. When view points of images are dense and surround

the object in various direction, the visual hull is complete and

closed, which is suitable for initial estimation of one object.

On the contrary, if the view points are few and adjacent, the

visual hull will be open for extension and lack shape details.

The study of visual hull motivates the research on subse-

quent refinement. Esteban et al. [34] propose a deformable

mesh model, which comes from the visual hull, to fuse tex-

ture and silhouette information together. The construction is
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limited by the grid relation in visual hull. Later global op-

timizing reconstruction algorithms including [28,29,43–45]

use the visual hull to initialize the photometric error func-

tion. The initial value is important to these methods because

most of energy minimization algorithms are easy to fall into

incorrect local minimal if the starting value is too deflecting.

Also, the visual hull indicates the bounding box of the object,

thus reduces the matching calculated amount. One of the lim-

itations of using visual hull is that the initial model loses sight

of sunken part, which means it is more suitable for convex ob-

ject construction. Also, the method can not reconstruct some

large scale scenes, like indoor scene and aerial photo recon-

struction, because the shape cannot be carved from the inner

visual cones.

In the second case, silhouettes are used to refine a pre-

generated model in a gradual way. In point clouds edit, sil-

houettes are used to filter out the noisy points that fly away

from truth shape, thus reduce the ambiguity and improve the

accuracy [26,29,46]. In mesh edit, silhouettes help to move

the vertices of the mesh towards the corresponding edge con-

tours in multi-view images [47–49].

Sinha et al. [46] put forward to optimize photo-consistency

and smoothness in a global graph-cut framework, then re-

construct a surface that exactly satisfies all the silhouettes.

Vlasic et al. [48] propose to track human motion by deform-

ing the template into the multi-view silhouettes in a non-

rigid way. In their pipeline, first the template and skeleton

are registered with the visual hull using linear blend skin-

ning (LBS), then the Laplacian coordinates are used to pre-

serve mesh detail while satisfying silhouette constraints. Gall

et al. [47] adopt a Laplacian deformation framework to edit

mesh model, constraining the projection of the vertices to lie

on 2D positions on the image silhouette boundary. The re-

fined surface is reconstructed by solving a least-square prob-

lem which minimize the distance between silhouette and

mesh rim. The methods are widely used in motion track sys-

tem [50], where detailed shape is not so important. Straka et

al. [49] further use this technique to estimate hand or body

shape from skeleton with multi-view silhouettes.

The strength of silhouette prior is its determinacy, which

complements the ambiguity in the pixel-consistency match.

However, the limitation of silhouette prior is distinct: first,

the use of the silhouettes requires an accurate extraction of the

object from the background, which is not easy to achieve in

complex scene. Also, silhouette neglects concave details, and

may produce a error-prone result when viewpoints are lim-

ited. As silhouettes based refinements focus on certain con-

vex shape but not detail geometry, they are widely used in

motion or skeleton track [48–50].

3.3 Illumination prior

Illumination has played a key role in image-based 3D recon-

struction method. The basic function of illumination is co-

operating with camera to acquire high quality images, which

is bright and low-noise. In a further progress, illumination is

used to generate structure information, the related research

refers to shape from shading (SFS), photometric stereo (PS),

and some active methods using specific illuminant. Shape

from shading is first introduced by Horn [51] in 1970, which

means recovering shape from a gradual variation of shading

in the image. Photometric stereo is first described by Wood-

ham [16] in 1980, and they estimate surface normal of a Lam-

bertian object with the help of three distant light sources and

corresponding images. Both problems have been studied for

several decades, and some brilliant surveys have revisited the

existing methods in SFS [15,52] and PS [53]. In this section,

we will not repeat the work in aforementioned surveys, but

concentrate on means that apply illumination information to

achieve a synthetical reconstruction system, and reveal the

role of illumination prior.

Shape from shading and multi-view stereo are naturally

complementary to each other. The traditional multi-view

stereo(MVS) methods are good at generating rough shape,

but neglect the high-frequency details. In contrast, shape from

shading methods concentrate on shading cues, which recover

details in pixel level. Many algorithms have been proposed to

integrate SFS and MVS to produce a more accurate result.

The early work [54,55] uses stereo or multi-view result as

initialization, and then refines the model with SFS algorithm.

Refs. [56–58] further combine MVS and SFS with a series of

variational algorithms, achieving more detailed results. The

aforementioned methods all make a simple hypothesis about

the illumination, like a single distant light source, or unity of

a distant point light source and uniform ambient illumination.

They also assume that all the surface is Lambertian with no

self-shadowing.

The latter studies try to break the constraint of specific il-

lumination and Lambertian hypothesis, making the illumina-

tion prior easily applied into general scene. Yu et al. [59,60]

consider reflectance model of non-lambertian object and take

into account the effects of self-occlusions and self-shadows.

The rough shape is iteratively optimized using multi-view im-

ages with Phong or Torrence-Sparrow model. Yoon et al. [61]

formulate a global cost function with respect to both shape

and reflectance in a variational framework, and use gradi-
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ent decent to solve it. This method applies to a number of

classical scenarios, and considers general dichromatic sur-

faces besides Lambertian surfaces. Wu et al. [62] propose a

method that combines MVS and SFS for general, unknown il-

lumination. They use low-frequency spherical harmonics and

wavelet to model the illumination, assuming a single light-

ing condition and explicitly handling self-shadowing. Han

et al. [63] further study the lighting model in natural scene,

and introduce a general lighting model consisting of global

and local lights. The result shows the accurate performance

in uncontrolled natural illumination conditions, while their

method considers only uncontrolled natural illumination con-

ditions accurately.

Unlike shape from shading, photometric stereo (PS) uti-

lizes images taken under different lighting conditions to fully

constrain the surface normal. Many early researches work on

extending PS to non-Lambertian surfaces. Zhang et al. [64]

take all structures from motion, photometric stereo and multi-

view stereo into account, making a dense reconstruction of

textured and texture-less surfaces from a monocular image

sequence. Their main contribution includes stereo matching

with changes in lighting and photometric stereo for mov-

ing scenes, but the pipeline is not robust to complex scenes

with occlusion and mixed lighting. Basri et al. [65] present

a photometric stereo framework using a first order harmonic

approximation, or a second order harmonic approximation.

Both methods produce favorable result but require at least

four or nine images with various illumination as input. Their

work is still based on Lambertian assumption, but is ro-

bust under general unknown lighting conditions. Beeler et al.

[27] propose to recover mesoscopic geometry that can not

be reconstructed by stereo algorithm with a simple illumi-

nation model. The method is based on prior that the incom-

ing light in small concavities (like pores on face) is blocked

and the point thus appears darker. Therefore, they extract

mesoscopic gradient information in images to reconstruct lo-

cal high-frequency gradient geometry. The rendering mesh is

vivid like real human skin texture, but not metrically correct.

Hernández and Brostow [66,67] extend photometric stereo

to multi-spectral method. Their setup consists of an ordinary

video camera and three colored light sources, which emit red,

green, and blue light from different directions. As the reflec-

tion of three kinds of lights will not be mixed, they obtain

more information to produce better normal maps. They have

achieved fair reconstruction on human faces and cloth.

Roth et al. [68] combine photometric stereo-based methods

with face alignment techniques, recovering face model from

the unconstrained face images. They prepare an enhanced 3D

template with surface normal from a generic 3D face tem-

plate, of which 3D landmarks are consistent with the esti-

mated 2D landmarks on all images. In reconstructing phase,

2D face images at all poses are back projected onto the 3D

surface, where the collection of projections will form a data

matrix spanning all vertices of the template. The method in-

herits the advantages of PS, meanwhile maintains the con-

sistency of the overall shape with 2D landmarks, making it

feasible to unconstrained images.

In brief, illumination priors recover an even detailed geom-

etry, which is an appropriate supplement to consistency based

stereo. The prior strongly relies on assumption of albedo

and illumination. Although more adaptable and efficient re-

flectance models are presented, the results are still unsta-

ble especially when the object is consist of various materi-

als. For example, texture-copying, which means producing

false shape fluctuate in textured region, is one of the unavoid-

able problem in SFS issue. As for illumination, nature light-

ing is more universal, but increases the reconstruction diffi-

culty. Therefore, complex studio with elaborate lighting sys-

tem, like Refs. [66,67,69–72], is preferred when modeling

exquisite geometry.

The aforementioned classical priors are summarized in Ta-

ble 1. The application and comparison of various classical

priors are demonstrated. As shown in Fig. 2(b), with no con-

straint, mesh cannot be reconstructed as the point cloud is

scattered. Figure 2(c) is the rough model generated using

EPVH [40], and Fig. 2(d) is reconstructed using method [29]

with global smooth prior. Figure 2(e) is refined by illumina-

tion prior [62], which strengthen detailed shape. In Fig. 3, the

ground truth (Fig. 3(a)) is scanned using Kinect and recon-

structed using KinectFusion [5]. Models (Figs. 3(b)–3(e)) are

rendered according to error distance. Specifically, Fig. 3(b)

is generated using EPVH [40], the model is rough and miss

sunk geometry. Figures 3(c) and 3(d) are reconstructed using

local smooth prior [27] and global smooth prior [29]. These

priors smooth the surface but cannot tackle the shape decay

in textureless region (e.g., hair, trousers and shoes). Figure

3(e) is the refined model of Fig. 3(d) using silhouette adap-

tion method [47], which restores some of the decay regions.

Figure 4 mainly compares the effect of smooth prior and illu-

mination prior.

4 Specific priors

In recent years, increasing image-based 3D modeling re-

searches put forward specific priors to break the limitation
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Table 1 Comparison of different classical priors

Prior Strength Limitation Time

Smooth and continu-
ous (local)

• Suitable for most object and scene
• Low computational-cost

• Tend to fail when texture is too sparse
•Weaken high-frequency details
• Cannot tackle discontinuity case

Short

Smooth and continu-
ous (global)

•Make reasonable continuous model
• Take global depth into account

• High computational-cost
• Unmanageable for the trade-off between smooth and high-
frequency details

Long

Silhouette (visual hull) • Low ambiguity
• Constrain the bounding of object

• No sunk details
• Need adequate images in multi-view to make a whole model

Short

Silhouette adaption • Effectively refine convex shape
• Constrain the bounding of object

• The relation of silhouette and surface is ambiguous
• Easy to fail in occlusion part

Relatively
long

Fixed illumination • Emphasis on high frequency detail
• Do not need any Additional Settings

• Ill-posed problem, usually need preliminary shape
• Texture-copying problem
• Subject to specific albedo and lighting assumption

Relatively
short

Varying illumination • Emphasis on high frequency detail
•More robust than unknown lighting
method

• Require complex lighting setup
• Cannot reconstruct object that is too large to be placed in a studio

Medium

Multispectral light •More robust for matching
• Support other illumination priors

• Require complex lighting setup
• Cannot reconstruct object that is too large to be placed in a studio

Relatively
short

Fig. 2 Reconstruction result of a model with different priors. (a) One frame of image sequence; (b) point cloud with no constraint; (c) shape
from silhouette (visual hull); (d) consistency matching with smooth prior; (e) refined using ilumination prior; (f) rendered in color

Fig. 3 Reconstruction result of the model with different priors and quantitive evaluations. (a) Ground truth; (b) visual hull (silhouette prior);
(c) MVS with local smooth prior; (d) MVS with global smooth prior; (e) MVS (global smooth) + silhouette adapt

of universal multi-view reconstruction systems. Compar-

ing to classical priors, specific priors provide more forceful

constraint, which reflects deep characteristic and generates

fine result in some challenging case. In exchange, these ap-

proaches are certain to decay when object does not meet the

supposed case. Currently, the specific priors become more
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Fig. 4 Face reconstruction using Beeler’s algorithm [27], the left model takes advantage of local smooth method, while the right one is refined
with shading model, which recovers micro structure

and more intelligent, and improve the 3D reconstruction qual-

ity in many major applications.

We divide specific priors into following categories:

•Manhattan prior To strengthen the geometric constraint

in artificial buildings or indoor scenes, Manhattan priors [73]

are introduced in Refs. [74,75]. Manhattan priors assume that

all surfaces in the world are aligned with three dominant di-

rections, typically corresponding to the x, y, and z axes. Fu-

rukawa et al. [74] detect dominant orientations that most of

the geometries lie, and then assign one of the candidate planes

to each pixel in the image using Markov random field. In this

way, the conventional smoothness prior is replaced with a

structured model of axis-aligned planes, forming depth im-

age with complex surface. Vanegas et al. [75] extend previ-

ous work to model entire buildings from oblique-angle aerial

images by using grammar-based techniques, which describes

a compact set of transitions between consecutive floors. The

method employs an extruded bounding box of the building

footprint extracted from GIS data as the initial models, then

rewriting rules are used to perform transitions to the floors

of the initial 3D model, producing a refined building model.

Zeisl et al. [76] focus on building interiors reconstruction,

and replace the Manhattan-world assumption by a modified

prior: the space of building interior is bounded by parallel

ground and ceiling planes, and purely vertical structures, like

walls and doors. The Manhattan prior based algorithm pro-

duces clean and simple models in indoor scenes and outdoor

buildings, even if the area is textureless.

• Piecewise planar prior Piecewise planar prior assumes

that the object consists of many piecewise planes, so majority

of these methods take advantage of over-segmentation result

to guide the stereo matching model (e.g., [23,77]), or initial-

ize the disparity maps using segmentation prior (e.g., [78]).

The segmentation based method reduces the ambiguities

caused by textureless to some extent. On the base of color

segmentation, plane-fitting algorithm [79,80] is put forward

to recover dominant scene planes, which is not limited to

Manhattan scene, like [74].

Gallup et al. [81] further distinguish piecewise planar and

non-planar region in multi-view stereo. They first segment

an image into piecewise planar and non-planar region using

a classifier, which is pre-learned from hand-labeled planar

and non-planar image regions. Then the piecewise planar re-

gion is recovered with planar while the non-planar regions

are modeled with standard multi-view stereo algorithm. Kim

et al. [82] propose the two-stage method for piece-wise planar

scene reconstruction. First initial planes are allocated to each

segment, then the planes are refined with non-linear optimiza-

tion, generating a filtered and more accurate result. Mathias et

al. [83] introduce shape grammars to SFM and image-based

analysis, composing a system that improves modeling by au-

tomatically specializing the applied detectors.

• Multiple geometry prior Obviously, it is insufficient to

use merely plane to describe complex scene, therefore, mul-

tiple geometry prior incorporates various shape templates in

the reconstruction framework.

Zebedin et al. [84] take advantage of both planes and sur-

faces of revolution template prior, generating a much broader

family of roof shapes. Their approach is mainly used for au-

tomatic urban modeling from aerial imagery, so the prior is

specially designed for roof reconstruction. Wu et al. [85] pro-

pose swept surface prior to make a schematic surface repre-

sentation, which is preferred by architects. They assume that

the architectural scene is consist of transport curves which lie

in planes parallel to the ground, and profile curves which lie

in planes that are orthogonal to the ground. Such prior is ex-

traordinarily suitable to outdoor architecture, and the method

could even tackle point clouds generated from SFM, which is

comparatively sparse and incomplete. Lafarge et al. [86,87]

regard urban scenes as a combination of meshes and geo-
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metric primitives, including planes, spheres, cylinders, cones,

and tori. They make an efficient iterative mesh editing to pro-

duce a compact model, where detail elements are described

by meshes and regular structures are described by primitives.

Mahabadi et al. [88] present a shape prior which splits the

object into multiple convex parts. The idea of this shape prior

comes from Wulff shape, the equilibrium shape of a crys-

tal, for which it is natural that the input object shapes are

split into convex or almost convex segments. The first step is

achieving a volumetric multi-label segmentation, then each

of the transitions between labels is penalized with its individ-

ual anisotropic smoothness term. The means promote the ro-

bustness and accuracy of textureless object modeling, while

the experiment results are limited to the object in relatively

simple geometry.

• Example based prior Example based priors are designed

for some certain objects, like face, hair, buildings, plants, etc.

These priors have the most specific templates and achieve ex-

tremely difficult reconstruction.

Face modeling using monocular image strongly relies on

template methods due to its lacking depth cues. Early work

has been well reviewed in [89]. Existing algorithms recover

shape from silhouette, shape form shading, but the most suc-

cessful approach of that time is analysis by synthesis [90,91],

where the parameters of the 3D statistical model are adjusted

to match 2D face image to the reconstructed face, namely,

a mean template. As depth cues from one single image are

fairly limited, many studies adapt multi-view method, coop-

erating with template prior, to make more accurate and ro-

bust face reconstruction. Cheng et al. [92] propose to extract

face features using structure from motion/silhouette, and then

adapt these features to a generic face model using radial basis

function interpolation in 3D space. Fidaleo et al. [93] intro-

duce a deformable generic face model at the pose estimation,

face segmentation, and preprocessing stages, improving the

robustness and flexibility. Tytgat et al. [94] further employ

2D morphing techniques for generating an animated, person-

alized 3D model in real time. Baumberger et al. [95] present

a robust reconstruction system using a statistical shape model

and facial landmarks, which are defined in the first frame. The

pipeline is proved to be robust and efficient, and the rendering

model looks rather fine. Roth et al. [68] and Kemelmacher-

Shlizerman et al. [96] propose to recover 3D human face

model from vast internet images. Their methods integrate fa-

cial landmarks driven and unconstrained image aligning tech-

nique, achieving an unconstrained face modeling system.

Besides human face, example-based methods have been

developed in 3D reconstruction of eyes [97,98], hair [99,100],

structures [101,102], plants [103–105], etc. The main idea

of these method is combining traditional image based stereo

with specific template priors to simulate the ideal model.

• Trained category prior Comparing to example based

priors, trained category priors do not employ fixed pipeline,

but try to explore deep constraint from big data or statistics.

Therefore, these methods have the potential to be expanded

to different groups of objects.

Blanz et al. [106] recover 3D surface using a statistical

method. Their system relies on a dataset of 3D scans, which

are converted into a vector space representation (Morphable

Model). Then the missing vertex coordinates are inferred by

estimating the probability density of 3D faces. The regular-

ization trades off between fitting the surface to the feature

points and producing a plausible solution in terms of prior

probability. Therefore, the method requires sparse features

and is more robust than traditional consistency based recon-

struction.

Bao et al. [107] propose a semantic structure from mo-

tion (SSFM), which takes advantage of semantic and geo-

metrical properties associated with objects besides geome-

try constraints to recover structure of the scene. In follow-up

work [108], he introduces semantic information as prior to

promote performance of multi-view stereo. Their method in-

cludes two phase: learning and reconstruction. In learning

stage, 3D models of a set of samples are scanned in advance,

then they model semantic similarity as a shape prior which

consists of a set of automatically learned anchor points and a

learned mean shape. In reconstruction stage, the shape vari-

ation across instances and capturing semantic similarities are

combined to generate a fine model. The method has shown its

superiority on some challenge cases like textureless spherical

fruits or car models.

Dame et al. [109] integrate dense SLAM with 3D shape

and pose recovery. Initially, a dense representation of the

scene is reconstructed using photo-consistency. After that, an

object-class detector is used to identify the object, recovering

the 6D pose and geometry. The system reconstructs unseen

part of the object, and reduces the erroneous possibility in

SLAM. Hane et al. [110] propose to incorporate shape priors

based on surface normal distributions into convex multi-label

optimization. The object class specific shape prior is formu-

lated in the form of spatially varying anisotropic smoothness

terms, of which parameters are extracted from the training

data. This kind of prior can be generalized to various classi-

fied shapes and improves the robustness considerably.

Specific priors explore deep-level rules of the objects in the

same category. The aforementioned priors are summarized
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in Table 2. Figure 5 [26,74,81,86,99,103,108,111] illustrates

the improvement of specific priors in various cases. Although

these priors are limited in some certain occasions or require

pre-training process, they are more efficient in targeted as-

signment than classical priors, opening up a new prospect to

solve challenging problem in image-based 3D modeling field.

5 Future trend

Image-based 3D modeling has been studied for several

decades, and the study of consistency based methods reaches

bottleneck constraint. The introduction of prior knowledge

promotes the 3D reconstruction in both accuracy and effi-

ciency. In the future study, prior will still be the hot topic in

3D modeling field. We predict that the future trend will focus

on two aspects:

1) More intelligent prior The emerging researches of ma-

chine learning are gradually revealing the way of human in-

telligence, and are successfully applied in many computer vi-

sion fields. In 3D modeling field, intelligent prior means hav-

ing the ability to learn from the big data and enhance the re-

construction quality. Several recent studies have explored the

feasibility to take advantage of learning algorithm to enhance

3D modeling quality. Zhang et al. [112] explore the method

to learn from huge visual data, then reconstruct the 3D model

from a single image using category detector. Bao et al. [108]

take advantage of learned category-level shape priors and

object detection to enhance multi-view stereo. Mehrdad et

al. [113] propose a content based descriptor which employs

histogram of local orientation (HLO) as a geometric property

of the shape to retrieve 3D models. In addition to this, data-

learned methods are used to optimize normals [114], enhance

matching confidence [115] and perform large-distances regu-

larization [116]. We have seen that the trend to combine track,

categorization and recognition with 3D reconstruction, form-

ing more intelligent ways to utilize big visual data.

2) Practical and challenging application Although 3D re-

construction problem is studied for a long period of time,

this technology enters daily life merely in recent five years.

Image-based 3D reconstruction softwares, like PhotoScan1)

and 123D Catch2) , achieve classical 3D modeling pipeline,

however, their efficiency and robustness are still limited.

Refs. [117,118] integrate the developed monocular 3D mod-

eling method on a mobile phone, building a substantially 3D

scanning system. The works [68,96] recover 3D human face

model from a great many internet images, which are cap-

tured in unconstrained case. These study shows the potential

to achieve low-cost, convenient and unconstrained 3D recon-

struction in the future, and we believe there still exists large

room for improvement.

6 Conclusion

Inchoate study on prior focuses on intuitionistic informa-

tion like smooth, continuous and silhouette, which usually

applies to common objects. The introduction of reflectance

model takes illumination and surface property into account,

developing into structure from shading (SfS) and photomet-

ric stereo (PS). All these classical priors are utilized in the

most advanced modeling systems, which reconstruct steady

and fair model of still things and human body.

Recently, increasing researches attempt to expand image-

based modeling method to out-of-lab environment, where im-

ages contain much more noise and uncertain influence. Con-

Table 2 Comparison of different specific priors

Prior Strength Limitation Time

Manhattan • Produce clear model of Manhattan scenes
• Resistance to noise
• Suitable for texture-sparse region

• Specific to certain scene
• Lack of details

Short

Planar piece •Make preferable result for building or indoor scenarios
• Resistance to noise

• Specific to certain scene
• Lack of details

Relatively
short

Geometric template • Identify existing model
• Greatly improve the reconstruction result in some challenge
cases

• Require strong manual inference
• Need pre-category

Medium

Example based • Focus on decent reconstruction of some specified objects • The range of application is limited in extremely
small category
• Do not ensure high accuracy

Medium

Category learning • High roust result
• Relatively wider application range than example based
methods

• Require pre-training process
•May be prone to mean template

Relatively
long

1) http://www.agisoft.com
2) http://www.123dapp.com/catch
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Fig. 5 The improvement of specific priors in various cases. (a) and (b) [74] demonstrate that the manhattan prior greatly improves accuracy
in office and hall reconstruction; (c)–(e) [81] compare the result of non-planar method [26,111] and piecewise planar method in street building
scenes; (f) and (g) [86] show the effect of geometric template prior which refines the building model; (h) [99] and (i) [103] take advantage of
example based prior to reconstruct hair and trees; (j) and (k) [108] show one of the category learning prior method which reconstructs some
extremely challenging objects, including toy cars and fruits (In (j) and (k), the multi-view model is reconstructed using [26,111]. The specific
prior has shown its superiority on some extremely challenging modeling problem)
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sidering multifarious application, targeted priors have greater

potential to popularize 3D modeling technique into more

practical and simple use. Geometry priors like piecewise pla-

nar and Manhattan assumption greatly improve the feasibil-

ity of urban reconstruction, meanwhile, example based prior

opens the door to some extreme challenging object, includ-

ing hair, face, trees, so on and so forth. Training and learning

method makes it possible to reconstruct a class of object ro-

bustly and efficiently.
The priors to supplement ambiguous shape estimation have

been studied for a long time but still cannot be completely

solved. The enhancement of classical cues is limited when

images quality is low and lighting is unstable. By involving

geometry and template prior, reconstruction is more efficient,

but current assumptions such as planar piece do not work for

more complex object. In the future research, we believe more

intelligent prior and practical application are two hot topics,

and there still exists large room for accuracy and practicabil-

ity improvement.
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