
Front. Comput. Sci., 2017, 11(6): 1061–1074

DOI 10.1007/s11704-016-5482-x

TCP-ACC: performance and analysis of an active congestion
control algorithm for heterogeneous networks

Jun ZHANG 1, Jiangtao WEN1, Yuxing HAN2

1 Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

2 TCP ENGINES, San Diego CA 92101, USA

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Abstract Transmission control protocol (TCP) is a reli-

able transport layer protocol widely used in the Internet over

decades. However, the performances of existing TCP conges-

tion control algorithms degrade severely in modern heteroge-

neous networks with random packet losses, packet reordering

and congestion. In this paper, we propose a novel TCP algo-

rithm named TCP-ACC to handle all three challenges men-

tioned above. It integrates 1) a real-time reorder metric for

calculating the probabilities of unnecessary Fast Retransmit

(FRetran) and Timeouts (TO), 2) an improved RTT estima-

tion algorithm giving more weights to packets that are sent

(as opposed to received) more recently, and 3) an improved

congestion control mechanism based on packet loss and re-

order rate measurements. Theoretical analysis demonstrates

the equilibrium throughput of TCP-ACC is much higher than

traditional TCP, while maintaining good fairness with regard

to other TCP algorithms in ideal network conditions. Ex-

tensive experimental results using both network emulators

and real network show that the algorithm achieves signifi-

cant throughput improvement in heterogeneous networks as

compared with other state-of-the-art algorithms.

Keywords TCP, packet reordering, wireless networks, con-

gestion control

1 Introduction

The main function of TCP congestion control algorithms is

Received November 13, 2015; accepted June 28, 2016

E-mail: junzhang10@mails.tsinghua.edu.cn

to dynamically adjust the congestion window (cwnd) so as to

send packets into the network at an appropriate rate that more

fully utilizes available bandwidth without incurring conges-

tions.

TCP congestion control algorithms typically use two

mechanisms for packet losses detection. The first is sender

retransmission timeout, i.e., a packet is considered lost if the

sender does not receive the corresponding acknowledgment

after a certain amount of time. Alternatively, the “fast retrans-

mit” mechanism is based on the receipt of duplicate ACKs.

Under this mode, the receiver keeps track of the sequence

number of the received packets and generates a duplicate ac-

knowledgement (DUPACK) for every “out-of-order” packet.

If the sender receives three DUPACKs in a row, it will re-

transmit the “lost” data packet immediately, without waiting

for the retransmission timer to expire, and reduce the con-

gestion window at the same time. Because of their efficiency

and reliability, the above two packet loss detection mecha-

nisms are implemented in virtually all standard TCP conges-

tion control algorithms. However, various researches show

that the performances of existing algorithms degrade severely

in modern wireless and long-distance environments with a

high level of packet reordering and random packet losses in

addition to network congestion [1]. For heterogeneous net-

works, not only are the bandwidth and RTT highly variable,

packet losses may also occur not because of congestion, but

due to impairments in the wireless links , random collapse or

advanced Ethernet NICs performing [2].

Existing research on wireless LAN and wireless cellular

networks [3] shows that packet reordering and random packet

1062 Front. Comput. Sci., 2017, 11(6): 1061–1074

loss caused by channel error, mobility and communication

asymmetry strongly affect TCP performance in modern wire-

less networks. Usually, channel errors due to relatively high

bit error rate would lead to packet or ACK losses, unnecessar-

ily triggering Fast Retransmission (FRetran) or Timeout (TO)

in state-of-the-art TCP congestion control Algorithms. Due

to user mobility in wireless networks as well as temporary

disconnections, out-of-order packets and random delays are

much more frequent in wireless networks than in traditional

networks, affecting TO counting and RTT measurements. In

addition, TCP packet corrupts frequently due to congestion

in wireless network because of communication asymmetry.

In fact, long-distance wired networks share the problem with

wireless network such as out-of-order packets. Some rout-

ing protocols such as TORA [4] maintain multiple routes and

use multi-path routing to transfer data. In this situation, data

packets coming from different paths may not arrive at the re-

ceiver in order, which also trigger the temporary disconnec-

tions and unnecessary Fast Retransmission.

An advanced TCP algorithm named TCP-ACC can detect

the level of packet reordering as well as random packet losses,

by combining a packet reordering measurement and conges-

tion control so as to avoid unnecessary slowing down of the

data transmission rate while avoiding introducing congestion

and maintaining good fairness. In this paper, we introduce

a new RTT measurement considering reorder metric, giving

more weights to packets that are sent (as opposed to received)

more recently. We also introduce a novel concept of out-of-

order probability to quantify reorder metric, as well as to

distinguish random packet loss from congestion packet loss,

which significantly improve the proposed algorithm behavior

in presence of heterogeneous networks. Further more, in ad-

dition to software and hardware emulators, we conduct exten-

sive experiments on large scale “live” networks all over the

world. Results in multiple cities and ISPs are shown with 4G,

Wi-Fi and wired connections achieving significant through-

put improvement as compared with other state-of-the-art al-

gorithms. Theoretical analysis demonstrates the equilibrium

throughput of TCP-ACC is much higher than traditional TCP,

while maintaining good fairness with regard to other TCP al-

gorithms in ideal network condition.

2 Related work

For congestion control of TCP connections over wireless and

long-distance links, various algorithms have been proposed

[5]. Among them, TCP Westwood [6] is not a typical AIMD

(additive increase multiplicative decrease) based TCP con-

gestion control algorithm. By counting the rate of receiving

ACKs, TCP Westwood could estimate the end-to-end avail-

able bandwidth. It then sets the slow start threshold to the

estimated bandwidth instead of half of the current cwnd, so

as to avoid unnecessary reduction of the congestion window

in wireless networks.

TCP Hybla in [7] was designed for satellite networks, with

extra benefit of performing well over long delay wireless

links as well. When the network RTT is small, TCP Hybla

behaves similar to TCP Reno. With network RTT becoming

large, Hybla scales cwnd by a fraction greater than 1, thus el-

eminates degradation caused by high-latency in the network.

The tax-rebate algorithm [8] was based on the AIMD

method. By adapting the cwnd adjustment in AIMD, the

Tax-rebate algorithm aims at keeping the trend of congestion

window variation over time in wireless networks similar to

that for wired networks. The simulation shows that the algo-

rithm performs well when the network parameters, such as

the packet loss rate and the reordering rate, are given.

Some delay-based TCP congestion control algorithms,

such as TCP Vegas [9] , FAST TCP [10], and FAST-FIT

[11] use the queuing delay as an indication of congestion.

The queuing delay is the difference between the RTT and

the propagation delay. A large queuing delay means that the

probability for congestion is high. As delay-based TCP algo-

rithms do not respond to packet lossed directly, they can avoid

throughput collapse from random packet losses. The down

side of these approaches is their sensitivity to RTT variations.

Usually large variations of RTT in wireless network makes it

hard for such algorithms to estimate the queuing delay reli-

ably.

Some research articles [12,13] show that, in high RTT and

high packet loss rate heterogeneous networks, out-of-order

packets consume more resource to buffer and play back than

for ordinary wired networks. As out-of-order packets also

trigger the receiver to duplicate ACKs, when the number of

duplicate ACKs exceeds what is allowed by the parameter

dupthresh, TCP will classify the subsequently transmitted

non-acknowledged packet as lost and initiate FRetran.

Targeted at solving the problem caused by packet reorder-

ing, some algorithms modify switch to trace the out-of-order

packets [14] , and some algorithms are implemented into TCP

stack. In RRTCP [15], the constant dupthresh (typically 3)

value in other TCP algorithms is dynamically adjusted using

the reordering length stored in a reordering histogram that is

updated for every reordered packet. This approach reduces

the impact of unnecessary FRetrans caused by packets re-

Jun ZHANG et al. TCP-ACC: performance and analysis of an active congestion control algorithm for heterogeneous networks 1063

ordering. TCP-DCR [16] delays the initiation of Fast Retrans-

mit for one RTT after receiving the 1st DUPACK, creating a

buffer time of one RTT to determine if the duplicate ACKs

are caused by reordering or loss.

3 Motivation

There are several state-of-the-art TCP algorithms aiming to

improve the performance for wireless network with random

packet losses. Some TCP algorithms fit congestion event very

well in wired network. Also some TCP algorithms are de-

signed for packet reordering network. TCP-FIT [17] tried

to improve the performance in the wireless and high BDP

(bandwidth delay product) networks together, but it did not

take the influence of packet reordering into consideration.

In fact, TCP flow in heterogeneous network experiences

packet reordering significantly. To illustrate the phenomena

of packet reordering, we design an experiment to trace the

TCP flows from an AWS server in California to clients in dif-

ferent cities. Each client downloads 2MB file every minute

from the server for 6 hours. We use the reorder density (RD)

of [18] to measure the out-of-orderliness of the packets.

Assuming a sequence of packets (1, 2, . . . ,N) transmitted

over a network, and a receive index (1, 2, . . . ,N) is assigned

to each packet when it arrives at the receiver. In network with-

out packet reordering and packet loss, the arriving sequence

and receive index are the same for each packets. If the receive

index assigned to packet m is m + dm and dm � 0, then the

packet is out of order, and dm is the reorder length of packet

m. Packet m is 1) late iff dm > 0; 2) early iff dm < 0; and 3)

in order if dm = 0. For example in Table 1, receive index of

packet 4 is 3, then dm = −1 for packet 4, it indicates packet 4

arrives at client 1 packet earlier.

Defining RD(dm) as the ratio of dm values to total num-

ber of packets sent, the histogram of RD are shown in

Fig. 1, where the x-axis represents reorder length, with

negative values corresponding to early packets and positive

values designating delayed packets. It matches one’s intu-

ition that the value of RD decreases with higher reorder

length. The total reordering packet percentages in Sydney,

Moscow, Hong Kong, Cairo and Seattle are 20.33%, 27.41%,

32.63%, 43.55% and 5.24%, respectively, indicating out-of-

order packets as a significant phenomena of real-life network

behavior.

To design a more general TCP algorithm for heterogeneous

network than the existing TCP variants such as TCP-FIT, we

need to take into consideration packet reordering as well as

random packet losses and congestion. It inspired us to pro-

pose TCP-ACC algorithm.

Fig. 1 Packet reordering over live network

4 TCP-ACC algorithm description

Three techniques are introduced in TCP-ACC [19] algorithm

to improve TCP performance for heterogeneous networks

with a high level of packet reordering. First of all, a metric to

quantitatively measure reordering of packet is proposed with

in-order and out-of-order packets treated separately by track-

ing the received ACKs. Secondly, a new RTT measurement

mechanism using reorder metric is introduced to avoid unnec-

essary Fast Retransmit and Timeout. Thirdly, TCP-ACC uses

a novel congestion control algorithm based on reorder metric

and packet loss rate to improve the connection throughput. As

TCP-ACC is a sender-side-only algorithm that is fully com-

patible with the TCP protocol, its deployment is easy and low

cost.

4.1 A simplified reorder metric

The original RD measurement in the Linux OS requires a dy-

namic array to keep track of the RD histogram, and is there-

fore difficult to deploy in practical implementations of con-

gestion control algorithms as Linux kernel modules, because

the available memory is usually very limited.

In TCP-ACC, we modified the packet acknowledgement

processing mechanism to find an approximate value of the

reorder length and reorder density RD [18]. When the TCP

sender receives a new ACK segment, the expected sequence

number of receiver can be estimated from acknowledgement

number in ACK. We denote ACK gap as the acknowledge-

ment number displacement of two consecutive ACK seg-

ments received by TCP sender, so ACK gap should be 1 for

each ACK if data segment is arriving in order. If data seg-

ment is out of order or lost, then the acknowledgement num-

1064 Front. Comput. Sci., 2017, 11(6): 1061–1074

ber should be the same, i.e., ACK gap should be 0, until the

expected data arrives at the TCP receiver. If an ACK gap for

a new arriving ACK segment is greater than 1, it indicates

that TCP receiver finally received an out-of-order data seg-

ment. By examining the sequence of consecutively received

ACKs, we calculate the gap between two consecutive ACKs,

and then estimate the maximal reorder length and the num-

ber of reorder packets. For example, consider a sequence of

packets {1, 2, 3, 4, 5, 6, 7, 8}, and assuming that the arriving

sequence is {1, 2, 4, 5, 7, 8, 3, 6}, shown in Table 1. Because

there are four consecutive zero values of ACK gaps, the max-

imal reorder length is 4. The ACK gaps for both indices 3

and 6 is 3, indicating 3 reordered packets each, namely, {3,

4, 5} reordered as {4, 5, 3} and {6, 7, 8} as {7, 8, 6}. Note

that, the number of consecutive zero values for the ACK gap

equals the maximal reorder length if and only if none of the

packets is corrupted.

Table 1 Illustration of reorder measurement

Arriving sequence 1 2 4 5 7 8 3 6

Receive index 1 2 3 4 5 6 7 8

Reorder length 0 0 –1 –1 –2 –2 4 2

ACK 2 3 3 3 3 3 6 9

ACK gap 1 0 0 0 0 3 3

A simple way to characterize reordering in a received

sequence is to count reorder packets and maximal reorder

length. As packet reordering introduces duplicate acknowl-

edgements, for networks with a high level of packet reorder-

ing, a sender should receive more duplicate ACKs than the

standard setting of the dupthresh parameter before initiating

FRetran. In the Linux OS, the value dupthresh is usually set

to 3. If a data segment is reordered for more than three pack-

ets, the receiver will send more than three duplicated ACKs

while the segment is only late. Thus we can estimate the rate

of Fast Retransmit triggered by packet reordering, i.e., the

probability of a segment is considered lost because of packet

reordering.

Po =
∑

i�dupthresh

MRL(i)/PacketNum, (1)

where MRL(i) is the number of reordered packets whose Max

Reorder Length is i, and PacketNum is the total number of

packets.
∑

i�dupthresh MRL(i) is the number of Fast Retransmit

events triggered by “late” segment.

We define NumAckGap(i) as the number of ACK segment

whose ACK gap is i. By counting the number of ACK seg-

ment whose ACK gap is greater than 1, we can get the number

of out-of-order data segment. Thus we can estimate the rate

of out of ordering, i.e., the probability of a segment could not

arrive in order.

Pooo =
∑

i>1

NumAckGap(i)/PacketNum. (2)

Packets with ACKGap = 1 are excluded in Pooo calculation

as they are in order packets.

4.2 RTT measurement considering reorder metric

As packets sent and ACKs received, Linux OS keeps an expo-

nentially weighted moving average of smoothed RTT values.

The estimate used named as S RTT is given by:

S RTTnew = (1 − α) × S RTTold + α × rtt_sample, (3)

where 0 � α < 1 is a constant, and rtt_sample is the RTT

value of the packet whose acknowledgement has just arrived.

From the equation, it can be seen that any recent variation

in rtt_sample has a significant impact on the final estima-

tion. Such a mechanism works well for network conditions

whose acknowledgments arrive in order. However, for net-

works with a high level of reordering packets, it is appropri-

ate to give more weight to packets that are sent (as opposed

to have arrived) most recently, as they reflect the latest state

of the network.

Therefore, an improved RTT estimate RS RTT is defined

as

RS RTTnew = (1 − α) × RS RTTold + α × rttlast, (4)

where rttlast is an exponentially weighted average of past RTT

values that is updated whenever a new ACK arrives using

rttlast = max
{
rttlast, rtt_sample/βReorderLength

}
, (5)

where 0 � β < 1 is a constant, ReorderLength is 0 when

AckGap > 0, otherwise ReorderLength is the number of

continuous zero-valued ACKGap. Note that in the calcula-

tion of rttlast, when the reordering length of current ACK is

large, the current RTT observation would carry less weight.

Whereas when there is no out-of-order packet, Eq. (4) would

be identical to Eq. (3). In this paper, the parameter α is set to

1/8 as in Eq. (3), and β is set to 15/16, thus rtt_sample can

change slightly for each duplicated ACK.

Inside TCP stack, Timeout Phase was triggered when the

ACK of a packet is not received in the RTO (retransmission

timeout) time period. Our proposed modified RTT measure-

ment contributes to keeping RTO estimation to a more appro-

priate level by considering packet reordering. In Subsection

6.1, experimental results show this new RTT and RTO es-

timation technique effectively compensates for random RTT

spikes of packet reordering due to network mobility or asym-

metry.

Jun ZHANG et al. TCP-ACC: performance and analysis of an active congestion control algorithm for heterogeneous networks 1065

4.3 Compensated congestion control (CC) for TCP-ACC

The traditional Additive-Increase-Multiplicative-Decrease

(AIMD) cwnd update mechanism used in many TCP algo-

rithms works as follows:

Each ACK :

cwnd = cwnd + 1, cwnd < ssthresh;

cwnd = cwnd + 1
cwnd , cwnd � ssthresh.

Each loss :

ssthresh = cwnd/2,

cwnd = cwnd/2. (6)

In Eq. (6), the value ssthresh, known as the slow start

threshold, is critical for determining when to increase the

congestion window rapidly. In wireless networks where fast

transmissions and timeouts might be caused by congestion,

random wireless losses or packet reordering, the congestion

window calculated using the standard AIMD algorithm tends

not to fully utilize the network bandwidth.

In heterogeneous network with packet reordering, fast

transmissions and packet losses may be caused by DU-

PACKs, congestion or random packet losses. In TCP-ACC,

we use the reorder metric and packet loss measurement to

avoid unnecessary FRetran and throughput collapse. We esti-

mate the congestion probability by counting the number of

FRetran and TO function calls. Obviously, larger random

packet loss rate and out-of-order probability could trigger

more FRetran and TO functions calls. The packet loss proba-

bility is estimated as:

Ploss = [num(FRetran) + num(TO)] /PacketsNum, (7)

where num(FRetran) and num(TO) are the numbers of the

two function calls respectively.

As defined in Eq. (7), the probability for a packet to be

considered lost is Ploss, which is the sum of the probabilities

for the packet to be lost due to congestion, random wireless

loss, as well as reorder-introduced retransmission. Thus we

have:

Ploss = Pc + Pr + Po, (8)

where Pc, Pr and Po denote the probabilities for a packet to

be considered lost due to congestion, random error and out-

of-order retransmission, respectively.

As it is difficult for the sender to distinguish in real time

between a packet lost due to congestion and a packet lost due

to random errors, we assume that a packet is lost due to con-

gestion only when the queuing delay of previously ACKed

packet was larger than ζ × qmax, where ζ = 1+Pooo
2 is de-

cided by Pooo and qmax is the maximum queuing delay. We

can then count the numbers of congestion events and random

loss events accordingly.

The probability for a packet to be considered lost due to

reasons other than congestion is P f /Ploss, where P f = Pr+Po

is the non-congestion loss probability, in which case the val-

ues of cwnd and ssthresh should not be decreased. Other-

wise, cwnd and ssthresh could use the traditional adjustment

equations. On average therefore,

Each loss :

ssthresh =
P f

Ploss
× cwnd + (1 − P f

Ploss
) × 1

2
× cwnd,

=
P f + Ploss

2Ploss
× cwnd, (9)

cwnd = ssthresh.

Notice that P f is the probability of non-congestion packet

loss, it should be 0 in ideal network. Thus, Eq. (9) would be

the same as the AIMD algorithm (Eq. (6)) in ideal network.

After the fast retransmit following a packet loss, TCP-

ACC enters the congestion avoidance phase. For a TCP ses-

sion using the AIMD congestion window adjustment in well-

behaved networks with no random losses and no packets re-

ordering, the congestion window will grow from W to W , un-

til the session experiences a congestion-caused packet loss.

As congestion window in AIMD adjustment method is in-

creased by 1 for each RTT, then it will take W −W RTT inter-

val to update the congestion window. The average congestion

window in these RTTs is (W + W)/2. Thus in this period, a

total of (W
2 −W2)/2 packets were sent, with one congestion

loss, we can estimate the congestion loss probability.

Pc =
2

W
2 −W2

. (10)

The same holds for heterogeneous networks, if Pc is re-

placed by Ploss

Ploss =
2

W
2 −W2

, (11)

which means,

W =

√
W2 +

2
ploss
. (12)

Accordingly, we modify Eq. (12) and use the following to

1066 Front. Comput. Sci., 2017, 11(6): 1061–1074

set the appropriate congestion window:

Each ACK :

cwnd = cwnd +min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
cwnd2 + 2

ploss

cwnd
− 1,

δ

cwnd

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

(13)

For the sake of simplicity, in our implementation of the algo-

rithm as a kernel module in the Linux operating system, we

used the Newton-Raphson method to approximate the square

root, and prevented the increment of cwnd in single round

from exceeding a threshold δ. The increment of congestion

window for each ACK is greater than 0 and less than δ/cwnd,

by choosing a proper value of δ, we can have an average

increment around 1/cwnd, which is the increment value in

AIMD algorithm (Eq. (6)). As we should estimate packet loss

rate (Ploss) at first to change the congestion window.

If the TCP flow is too short to calculate the Ploss, i.e., there

is no packet loss in the flow, then the performance of TCP-

ACC will be the same as that of TCP-Reno, which will be

less than some fast startup TCP variants such as TCP Hybla

and TCP FIT. For high BDP (bandwidth delay product) net-

work with low packet loss rate and packet reordering rate, it

will take a lot of RTTs to increase the Congestion Window

to a proper situation after each packet loss for TCP-ACC and

other AIMD-like TCP variants, the throughput performance

is usually worse than delay-based TCP such as Fast TCP. It is

the tradeoff to keep TCP-ACC fair with other traditional TCP

such as TCP Reno in these network environment.

To reduce the impact of short-term network variations, we

update the probabilities, Po, Pooo, Pr and Ploss using a fixed

time interval, which was set to one second in the experiments.

At the end of the current time period, we update the probabil-

ities using Kalman filter:

Pnxt =
7
8
× Ppre +

1
8
× Psample, (14)

while Ppre is the corresponding probability of the previous

time period, and Psample is the probability calculated for the

current time period according to Eq. (7).

5 Throughput model of TCP-ACC

In this section, we use the approximate stable state through-

put model to analyze the performance of TCP-ACC in wire-

less networks. The model was originally introduced in [20],

and was also used in [17, 21].

Considering the periods between two continuous packet

losses indicated by three duplicate ACKs, we denote the con-

gestion windows size at the end of ith period as Wi, and the

duration of ith period as Ai. Without loss of generality, we

assume that there are Xi rounds of increments to the value of

the congestion window. For each round, congestion windows

is increased to √
W2

cur +
2

ploss
, (14)

according to Eq. (13). For each packet loss, congestion win-

dow is decreased to γ ×Wcur, where

γ =
P f + Ploss

2Ploss
, (15)

according to Eq. (9). For simplicity of notations, we will de-

note ploss as p in the subsequent analysis.

For the ith period, we assume that the number of packets

sent is Yi. Then the expected equilibrium throughput should

be

T =
E[Y]
E[A]

. (16)

Assuming as in [20] that Yi = ai +Wi − 1, where ai is the

number of first packet lost in ith period, then obviously, the

expected value of a is

E[a] =
∞∑

k=1

(1 − p)k−1 pk =
1
p
. (17)

Thus we have,

E[Y] =
1
p
+ E[W] − 1. (18)

At the beginning of the ith period, the value of conges-

tion window is γẆi−1. After the first round without packet

loss, congestion window would increase to
√

(γWi−1)2 + 2
p ,

or
√

(γWi−1)2 + 2k
p after the kth round. Because there are Xi

rounds in the ith period,

Yi =

Xi∑

k=0

√
(γWi−1)2 +

2k
p
+ bi

� p
3

((γWi−1)2 +
2Xi

p
)

3
2 − p

3
(γWi−1)3 + bi, (19)

where bi is the number of packets sent in the last round, and

Wi =

√
(γWi−1)2 +

2Xi

p
. (20)

From Eq. (20), we have

E[X] =
p
2

(1 − γ2)E[W]. (21)

Jun ZHANG et al. TCP-ACC: performance and analysis of an active congestion control algorithm for heterogeneous networks 1067

As bi is a random value smaller than Wi, we have E[b] =

E[W]/2. Combining Eqs. (19) and (21), we can find the ex-

pected value of Yi:

E[Y] =
p
3

(1 − γ3)E[W]3 +
1
2

E[W]. (22)

The expected value of Wi can be found from Eqs. (22) and

(18),

1
p
+ E[W] − 1 =

p
3

(1 − γ3)E[W]3 +
1
2

E[W],

E[W] ≈ (
3(1 − p)

p2(1 − γ3)
)

1
3 .

Denote the average RTT in the ith period as Di, then the

expected value of Ai is

E[A] = E[X]E[D]

=
p
2

(1 − γ2)E[W]E[D]

=
p
2

(1 − γ2)(
3(1 − p)

p2(1 − γ3)
)

1
3 E[D]. (23)

From Eqs. (23), (22) and (16), the equilibrium throughput

T =

1−p
p + E[W]

E[A]

=

1−p
p + (3(1−p)

p2(1−γ3))
1
3

p
2 (1 − γ2)(3(1−p)

p2(1−γ3))
1
3 E[D]

. (24)

When p is sufficiently small, the equilibrium throughput

can be simplified to

T =
(1 − γ3)

1
3

p
4
3 (1 − γ2)E[D]

. (25)

According to Eq. (15), we have 1/2 � γ < 1. As

(1 − γ3)
1
3 /1 − γ2 is an increasing function of γ, then we have,

T �
1.28

p
4
3 E[D]

. (26)

Compared with TCP Reno’s equilibrium throughput in

[20], Treno =

√
3
2/p

1
2 E[D], the equilibrium throughput of the

TCP-ACC algorithm is much higher as 0 < p < 1.

Using the modified growth function defined in Eq. (13)

when p is very small, e.g., for ideal wired networks, the be-

havior of the congestion window update for the TCP-ACC al-

gorithm is similar to the origin AIMD algorithm. This charac-

teristic ensures that the TCP-ACC algorithm maintains good

fairness with regard to other TCP algorithms in wired net-

works.

6 Experimental evaluations

We evaluat the performance of the proposed TCP-ACC algo-

rithm using software emulator (Network Simulator 2 (NS-2)),

hardware emulator (Linktropy), and “live” networks in mul-

tiple cities and ISPs all over the world.

6.1 Simulation result

Extensive simulations are conducted on NS-2. NS-2 is a

reknowned network event simulator supported varies TCP,

routing and multicast protocols. In simulation, TCP West-

wood, TCP Hybla, TCP SACK [22], RRTCP and TCP-DCR

algorithms are used for comparison. δ in Eq. (13) is set to 5.

The simulation topology is illustrated in Fig. 2, in which

different TCP senders {S1, S2, . . .} are connected to different

receivers {D1,D2, . . .} via a bottleneck (R1,R2). The connec-

tions from the senders and R1 and R2 to the receivers are

error-free wired links with a bandwidth of 10Mbps and 1ms

of delay. The connection between R1 and R2 is a simulation

link, with the bandwidth and baseRTT set to 10Mbps and

50ms. The random packet loss rate for the bottleneck link

(R1,R2) varies from 0% to 5%, while the packet reordering

rate varied from 0% to 30%. In the experiments, the delays

of the reordered packets follow a normal distribution with the

mean and standard deviation set to 25ms and 8ms respec-

tively.

Fig. 2 Simulation topology

First, performance of the proposed improved RTT mea-

surement algorithm as described in Subsection 4.2 is studied.

In this implementation, we set α = 1/8 and β = 15/16. Fig-

ure 3 shows the throughput of TCP CUBIC with traditional

RTT measurment vs. improved RTT mesurement, where x-

axis is packet reorder rate and y-axis is network throughput.

On average, 37% and 23% gains are achieved using the pro-

posed algorithm with network packet loss rate (PLR) at 0%

and 1% respectively. Besides, this further justifies how packet

1068 Front. Comput. Sci., 2017, 11(6): 1061–1074

reordering could impact network performance. For example,

in the case where packet reorder rate is as small as 0.01,

with 0% PLR the throughput of the traditional algorithm is

1,610Kbps while the proposed algorithm is 1,920Kbps, i.e.,

at least 19% performance loss because of packet reordering.

It is also verified in the experiemnt in the case of no packet

reordering, both algorithms could fully utilize bandwidth and

arrive at the same throughput number indicating Eq. (4) be-

comes identical as Eq. (3).

Fig. 3 Throughput comparison of traditional and proposed RTT mesure-
ment

Next, the complete TCP-ACC congestion control algo-

rithm is implemented and studied. Throughput achieved by

RRTCP, TCP Reno (with SACK), TCP DCR, TCP West-

wood, TCP Hybla and TCP-ACC algorithms are plotted as

a function of packet reorder rate in Fig. 4. In the case of

no packet loss rate in Fig. 4(a), TCP-ACC, TCP DCR and

RRTCP algorithms achieve significant throughput improve-

ments over other TCP algorithms that have not been designed

to handle packet reordering. Figure 4(b) shows the results

for packet reordering networks with a random packet loss

rate of 1%. The TCP-ACC algorithm still achieves signif-

icant throughput gain with a bandwidth utilization greater

than 70%, whereas the performances of the TCP DCR and

RRTCP algorithms severely degrade to about 17% and 12%

bandwidth utilization. Similar observations can be made from

Fig. 4(c).

To examine the fairness of the algorithm, ten senders are

used to transmit packets to their corresponding receivers si-

multaneously, and the system wide inter-flow fairness are cal-

culated using Jain’s Fairness Index (JFI) [23],

J =
(
∑n

i=1 ri)2

n
∑n

i=1 r2
i

, (27)

where n is the number of flows, ri is the throughput of flow

i. In Eq. (27), J = 1 indicates complete fairness across all

flows, while J = 0 means there is no fairness at all. In general,

a TCP algorithm is considered as “fair” with J > 90%. Ac-

cording to Eq. (27), JFI is independent of the throughputs of

the flows, and thus is applicable across groups of TCP flows

with different aggregate throughputs.

Fig. 4 Throughput vs. packet reordering. (a) PLR = 0%; (b) PLR = 1%; (c)
PLR = 5%

JFI values of TCP-ACC as a function of packet loss rate are

plotted in Fig. 5, with packet reorder rate varying from 0% to

30%. The random packet loss rate of bottleneck (R1,R2) is

set at 1% and 5%. It can be observed regardless of various

network conditions, TCP-ACC achieves good JFI fairness

above 90%, indicating the algorithm has good intra-fairness.

6.2 Testbed experiments

Jun ZHANG et al. TCP-ACC: performance and analysis of an active congestion control algorithm for heterogeneous networks 1069

In addition to simulations using the NS-2, we connect a Linux

server with the TCP-ACC algorithm to PC clients via a hard-

ware wireless network emulator named Linktropy. Hardware

emulator like Linktropy has extra benifit of setting network

parameters without affecting TCP stack on sender. The simu-

lation topology is illustrated in Fig. 6.

Fig. 5 Inter-flow fairness of TCP-ACC

Fig. 6 Testbed and live experiments topology

We implement TCP-ACC algorithm in Linux servers. In

order to update the probabilities, Po, Pr, and Ploss every sec-

ond, we have to keep a timer in Linux implementation to

trigger the updating method. What’s more, modifications in

RTT measurement function, fast retransmission function and

timeout function are needed to evaluate packet reordering and

packet losses for TCP-ACC, the same modification is unnec-

essary for other TCP variants in Linux Kernel. We use 64

bytes in kernel module to trace the state of TCP parameters

for each TCP-ACC flow, while other TCP algorithms usually

cost 30–40 bytes for each flow. Thus the memory occupation

of TCP-ACC is slightly larger than that of other algorithms.

We first use the “tcpprobe” kernel module to trace the val-

ues of cwnd and ssthresh for the TCP-ACC algorithm in the

Linux kernel. The random packet loss rate is set to 0.001%

and propagation delay is set to 50ms. As shown in Fig. 7(a),

the value of cwnd keeps increasing rapidly when cwnd is

small or when a random packet loss (i.e., not due to con-

gestion) occurs, while the growth of cwnd slows down when

its value is large enough. Figure 7(b) shows the cwnd and

ssthresh of TCP Reno, which uses the origin AIMD method,

under the same network conditions. As the Additive Increase

(“AI”) phase for the Reno algorithm is not able to “probe”

the network condition fast enough for the value of cwnd to

reach a reasonable value before a random packet loss occurs,

the average throughput of TCP Reno is only half of that for

TCP-ACC.

Fig. 7 Trace of cwnd & ssthresh. (a) TCP-ACC; (b) TCP Reno

Next, we test the performance of the proposed algorithm

on a relatively stable network such as LAN or Backbone

connections in a CDN or data center with relatively stable

RTT and small PLR. The parameter of bandwidth is set at

100Mbps with the random packet loss varying from 0.001%

to 1%, and propagation delay set at multiple constant val-

ues. In the experiment, throughput of TCP-ACC, Reno, Cu-

bic, Westwood and Hybla are ploted in Fig. 8. Each test lasts

for 300 seconds and is then repeated 20 times. It is observed

that TCP-ACC achieves higher throughput than all other TCP

algorithms. In the case where random packet loss rate is rel-

1070 Front. Comput. Sci., 2017, 11(6): 1061–1074

atively high, TCP-ACC achieves as high as 100%+ speedup

as compared to other TCP variants.

Fig. 8 Throughput vs. random packet loss rate with constant RTT for long-
duration flows. (a) Constant RTT is 50ms; (b) constant RTT is 150ms

In addition, we test performance of the proposed algorithm

in a varying network condition such as WLAN or Lastmile

connections in a CDN or data center with varying RTT and

relatively high PLR. The parameter of bandwidth is set at

30Mbps with random packet loss rate varying from 0.01%

to 5%, and propagation delay set as 50ms and 150ms with

standard deviation 16ms and 50ms following Normal distri-

bution. As illustrated in Fig. 9, TCP-ACC maintains signifi-

cant performance gain over other TCP variants.

Then we test the performance of short-duration flows. The

parameter of bandwidth is set at 100 Mbps with random

packet loss rate varying from 0.001% to 5%, and propagation

delay set as 50ms with or without standard deviation 16ms.

Each test lasts for 2 seconds and is repeated for 100 times. We

do not set the propagation delay to 150ms this time, because

150ms is too long for a 2-second duration flow. As illustrated

in Fig. 10, TCP-ACC still performs better than other TCP

variants on this kind of short-duration flows.

To test TCP-friendliness, we keep two servers sending data

competing in the same network whose bandwidth is 100Mbps

and RTT is 25ms, one is using TCP Reno, and the other is

using TCP Reno, TCP-ACC, Cubic, Westwood and Hybla.

We keep each algorithm transmitting for 200 seconds and

record the average throughput separately. First, we test the

ideal network environment whose PLR is 0. The result in

Fig. 11(a) shows TCP-ACC and TCP Cubic are most TCP-

friendly in ideal network. Second, we record the throughput

of two servers in network whose PLR is 1%. The result in

Fig. 11(b) shows that the throughput of TCP-ACC and Cubic

is quite different from the throughput of others. It is because

TCP-ACC and TCP Cubic could utilize the bandwidth that

the others cannot use in high PLR network.

Fig. 9 Throughput vs. random packet loss rate with RTT followed Nor-
mal distribution for long-duration flows. (a) Mean RTT is 50ms and standard
deviation is 16ms; (b) mean RTT is 150ms and standard deviation is 50ms

6.3 Live network experiments

Besides software simulation of NS-2 and hardware testbed of

Linktropy, extensive experiments are conducted in live net-

works. The experiment topology is similar to Fig. 6, except

that the connection links between server and clients are live

wireless (4G, 3G and WiFi) and wired (Backbone and Last-

mile) networks. Four servers are set up at the same location

in Southern California with each server impelmenting differ-

ent TCP algorithm, i.e., TCP Cubic, TCP Reno, TCP West-

wood and TCP-ACC. 235 global nodes in six continents with

wired, WiFi, 3G and 4G connections are selected to pull the

Jun ZHANG et al. TCP-ACC: performance and analysis of an active congestion control algorithm for heterogeneous networks 1071

same files from these servers. The transmitted file size is set

to 2MB in order for algorithms tested to reach steady-state. In

addition, this file size is consistent with slice size of ordinary

http streaming video such as YouTube, Yahoo and Netflix.

Fig. 10 Throughput vs. random packet loss rate for short-duration flows.
(a) Mean RTT is 50ms; (b) mean RTT is 50ms, standard deviation is 16ms

Fig. 11 TCP-friendliness test. (a) Ideal network; (b) high PLR network

Figures 12 and 13 illustrate throughput of the above four

algorithms over live network observing by catchpoint, which

is a World Wide Web performance monitoring system, in dif-

ferent locations and ISPs. In Fig. 12, TCP-ACC shows su-

perior performance over other three algorithms in multiple

cities. For each node, 25 tests are conducted with average

throughput calculated. In Fig. 13, multiple ISPs are selected

to illustrate algorithm performance over different network

conditions, where AT&T 4G and Verizon 4G representing

4G connections, AT&T uverse, Comcast and Google Filber

representing Lastmile connections, and Level3, NTT Veri-

zon and Zayo representing Backbone connections. It is ob-

served that TCP-ACC achieves the highest throughput among

all TCP variants by significant amount.

Fig. 12 Throughput of different locations over live network

Fig. 13 Throughput of different ISPs over live network

Figure 14 shows the load time of 2MB file in multiple

cities over a certain time period. In general, TCP-ACC re-

mains the fastest speed. For example, in the city of Paris,

TCP-ACC performs almost consistantly twice as fast as other

algorithms. In cities where big “spikes” occur in other algo-

rithms which is possibly caused by poor network condition

and thus number of out-of-order packets is high (i.e., Atlanta,

Moscow and Santiago, etc.), variantion in TCP-ACC is a lot

smoother.

We test performance of long-duration flows over 3G-wired

hybrid network, the server in Beijing is connected to the

1072 Front. Comput. Sci., 2017, 11(6): 1061–1074

Fig. 14 Load time of 2MB file over live network. (a) Atlanta; (b) Budapest; (c) Los Angeles; (d) Moscow; (e) Novosibirsk; (f) Paris; (g) Santiago; (h)
Sydney; (i) Tokyo

Internet via a 3G USB key, four clients located in Beijing,

Singapore, Los Angeles and Paris download 500MB file

from the server. The TCP congestion control algorithms on

the server are TCP-ACC, TCP Reno, TCP Cubic and TCP

Westwood. Figure 15 shows the throughput collected by four

clients. The result shows that TCP-ACC always works bet-

ter than the TCP Reno and TCP Westwood, TCP Cubic is

slightly better only in Los Angeles case, and overall TCP-

ACC works well for long-duration flows in live network.

Fig. 15 Long-duration flows over live 3G network

The intra-protocol fairness of TCP-ACC algorithm for par-

allel connections is investigated in Fig. 16. We set the server

and client on a LAN of 100Mbps bandwidth and the 20ms

RTT. A series of five TCP-ACC flows were started at 20-

second intervals, each lasting 100 seconds. The throughputs

of the five TCP-ACC connections are shown in Fig. 16. The

combined throughput of multiple connections is close to the

link capacity of 100 Mbps, with the throughput of each flow

stabilizing quickly at their fair share.

Fig. 16 Intra-protocol fairness of TCP-ACC over live network

Jun ZHANG et al. TCP-ACC: performance and analysis of an active congestion control algorithm for heterogeneous networks 1073

7 Conclusion

In this paper, we describe a novel TCP algorithm, namely

TCP-ACC that achieves good throughput and inter-flow fair-

ness in the presence of congestion, random packet losses and

packet reordering. It integrates 1) a real-time reorder metric

for calculating the probabilities of unnecessary FRetrans and

TOs, 2) an improved RTT estimation algorithm giving more

weights to packets that are sent (as opposed to received) more

recently, and 3) an improved congestion control mechanism

based on packet loss and reorder rate measurements. Sim-

ulations and “live” network test show that the performance

of the algorithm is significantly improved over other TCP

algorithms designed for networks with packet reordering

and random packet losses while achieving very good intra-

algorithm fairness and TCP-friendliness.

Acknowledgements This work was supported by the National Science
Fund for Distinguished Young Scholars of China (61125102) and the State
Key Program of National Natural Science Foundation of China (Grant No.
61133008).

References

1. Leung K C, Li V O K, Yang D Q. An overview of packet reordering

in transmission control protocol (TCP): problems, solutions, and chal-

lenges. IEEE Transactions on Parallel and Distributed Systems, 2007,

18(4): 522–535

2. Wu W J, DeMar P, Crawford M. Why can some advanced ethernet nics

cause packet reordering? IEEE Communications Letters, 2011, 15(2):

253–255

3. Chen X, Zhai H Q, Wang J F, Fang Y G. A survey on improving TCP

performance over wireless networks. In: Cardei M, Cardei I, Du D Z,

eds. Resource Management in Wireless Networking. Network Theory

and Applications, Vol 16. Springer US, 2005, 657–695

4. Park V D, Corson M S. A highly adaptive distributed routing algo-

rithm for mobile wireless networks. In: Proceedings of the 16th An-

nual Joint Conference of the IEEE Computer and Communications So-

cieties. 1997, 1405–1413

5. Afanasyev A, Tilley N, Reiher P, Kleinrock L. Host-to-host congestion

control for TCP. IEEE Communications Surveys & Tutorials, 2010,

12(3): 304–342

6. Mascolo S, Casetti C, Gerla M, Sanadidi M Y, Wang R. TCP west-

wood: bandwidth estimation for enhanced transport over wireless

links. In: Proceedings of the 7th International Conference on Mobile

Computing and Networking. 2001, 287–297

7. Caini C, Firrincieli R. TCP hybla: a TCP enhancement for heteroge-

neous networks. International Journal of Satellite Communications and

Networking, 2004, 22(5): 547–566

8. Lai C D, Leung K C, Li V O. Design and analysis of TCP aimd in

wireless networks. In: Proceedings of IEEE Wireless Communications

and Networking Conference. 2013, 1422–1427

9. Brakmo L S, O′Malley S W, Peterson L L. TCP vegas: new techniques

for congestion detection and avoidance. In: Proceedings of the ACM

Special Interest Group on Data Communication (SIGCOMM). 1994,

24–35

10. Wei D X, Jin C, Low S H, Hegde S. Fast TCP: motivation, architec-

ture, algorithms, performance. IEEE/ACM Transactions on Network-

ing, 2006, 14(6): 1246–1259

11. Wang J Y, Wen J T, Han Y X, Zhang J, Li C, Xiong Z. Achieving

high throughput and TCP Reno fairness in delay-based TCP over large

networks. Frontiers of Computer Science, 2014, 8(3): 426–439

12. Blanton E, Allman M. On making TCP more robust to packet re-

ordering. ACM SIGCOMM Computer Communication Review, 2002,

32(1): 20–30

13. Gharai L, Perkins C, Lehman T. Packet reordering, high speed net-

works and transport protocol performance. In: Proceedings of the

13th International Conference on Computer Communications and Net-

works. 2004, 73–78

14. Zhang Z M, Guo Z Y, Yang Y Y. Bounded-reorder packet scheduling

in optical cut-through switch. IEEE Transactions on Parallel and Dis-

tributed Systems, 2015, 26(11): 2927–2941

15. Zhang M, Karp B, Floyd S, Peterson L. RR-TCP: a reordering-robust

TCP with DSACK. In: Proceedings of the 11th IEEE International

Conference on Network Protocols. 2003, 95–106

16. Bhandarkar S, Sadry N E, Reddy A N, Vaidya N H. TCP-DCR: a novel

protocol for tolerating wireless channel errors. IEEE Transactions on

Mobile Computing, 2005, 4(5): 517–529

17. Wang J Y, Wen J T, Zhang J, Han Y X. TCP-FIT: a novel TCP conges-

tion control algorithm for wireless networks. In: Proceedings of IEEE

Global Communications Conference Workshops. 2010, 2065–2069

18. Piratla N M, Jayasumana A P, Bare A A. Reorder density (RD): a for-

mal, comprehensive metric for packet reordering. In: Proceedings of

International Conference on Research in Networking. 2005, 78–89

19. Zhang J, Wen J T. TCP-ACC: an active congestion compensation TCP

for wireless networks. In: Proceedings of the IEEE Symposium on

Computers and Communication. 2014, 1–7

20. Allman M, Paxson V, Stevens W. TCP congestion control. RFC 2581,

1999

21. Wang J Y, Wen J T, Zhang J, Han Y X. TCP-FIT: an improved TCP

congestion control algorithm and its performance. In: Proceedings of

the IEEE INFOCOM. 2011, 2894–2902

22. Mathis M, Mahdavi J, Floyd S, Romanow A. TCP selective acknowl-

edgement options. RFC 2018, 1996

23. Bhatti S, Bateman M, Miras D. Revisiting inter-flow fairness. In: Pro-

ceedings of the 5th International Conference on Broadband Communi-

cations, Networks and Systems. 2008, 585–592

Jun Zhang received the BS degree in com-

puter science and technology from Ts-

inghua University, China in 2010. He is

currently working toward the PhD degree

in computer science and technology in Ts-

inghua University. His research interests

are in the areas of transmission control pro-

tocol, data center, and wireless network

communications.

1074 Front. Comput. Sci., 2017, 11(6): 1061–1074

Jiangtao Wen received the BS, MS, and

PhD degrees (with honors), all in electri-

cal engineering, from Tsinghua University,

China in 1992, 1994, and 1996, respec-

tively. From 1996 to 1998, he was a staff

research fellow at the University of Califor-

nia, Los Angeles (UCLA), USA, where he

conducted cutting-edge research on multi-

media coding and communications. Many of his inventions there

were later adopted by international standards such as H.263, MPEG,

and H.264. Since 2009, he has been a professor at the Department

of Computer Science and Technology, Tsinghua University, China.

He is a fellow of IEEE.

Yuxing Han received the BE degree in elec-

trical engineering at Hong Kong Univer-

sity of Science and Technology (HKUST),

China in 2006, and obtained her PhD de-

gree at University of California, Los An-

geles, USA in 2011. Her research interests

include next generation cellular systems,

cognitive radio systems, network modeling,

and compressive sensing algorithms.

