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Abstract Differential evolution (DE) is a kind of evolution-

ary algorithms, which is suitable for solving complex opti-

mization problems. Mutation is a crucial step in DE that gen-

erates new solutions from old ones. It was argued and has

been commonly adopted in DE that the solutions selected

for mutation should have mutually different indices. This re-

strained condition, however, has not been verified either the-

oretically or empirically yet. In this paper, we empirically in-

vestigate the selection of solutions for mutation in DE. From

the observation of the extensive experiments, we suggest that

the restrained condition could be relaxed for some classical

DE versions as well as some advanced DE variants. More-

over, relaxing the restrained condition may also be useful in

designing better future DE algorithms.

Keywords differential evolution, mutation, the selection of

solutions for mutation, evolutionary algorithms

1 Introduction

Differential evolution (DE), proposed by Storn and Price in

1995 [1,2], is one of the most popular evolutionary algorithm

(EA) paradigms in the community of evolutionary compu-

tation. Like other EA paradigms, DE is a population based

optimization method, which contains a lot of solutions. In
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DE, each solution in the population is called a target vector.

DE includes three main operators, i.e., mutation, crossover,

and selection. In the classical DE, for each target vector, a

mutant vector is generated by making use of the mutation op-

erator. Afterward, the crossover operator is implemented on

the target vector and the mutant vector, and thus, a trial vec-

tor is obtained. Finally, the target vector is compared with the

trial vector, and the better one will be selected for the next

population. The mutation operator and the crossover operator

together are called the trial vector generation strategy, since

they are utilized to generate the trial vector. DE also contains

three important control parameters, i.e., the population size,

the scaling factor in the mutation operator, and the crossover

control parameter in the crossover operator.

Recent years have witnessed the significant progress in the

area of DE. Some representatives are briefly introduced as

follows:

• How to improve the trial vector generation strategy of

DE has attracted considerable interest. For example,

Fan and Lampinen [3] proposed a trigonometric muta-

tion as a local search operator. Zhang and Sanderson [4]

presented a new mutation operator called DE/current-

to-pbest/1. Das et al. [5] proposed a neighborhood-

based mutation operator. Wang et al. [6] used an orthog-

onal crossover to enhance the search ability of DE and

suggested a generic DE framework. Very recently, Guo
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and Yang [7] and Wang et al. [8] utilized the population

distribution information to establish an Eigen coordi-

nate system, and implemented the crossover operator in

the Eigen coordinate system with a predefined proba-

bility.

• Improving DE’s performance by adapting the control

parameter setting has also been an active research di-

rection. For example, Liu and Lampinen [9] used fuzzy

logic controllers to adapt the scaling factor and the

crossover control parameter. Brest et al. [10] designed

an efficient technique to self-adapt the scaling factor

and the crossover control parameter. In Ref. [4], the

scaling factor is generated according to a Cauchy distri-

bution and the crossover control parameter is generated

according to a normal distribution.

• Some researchers investigated hybridizing DE with

other search techniques. For example, Noman and Iba

[11] combined an adaptive local search with DE. Rah-

namayan et al. [12] adopted opposition-based learning

to improve the convergence rate of DE. Sun et al. [13]

proposed a combination of DE and estimation of distri-

bution algorithm (EDA).

• Recently, much attention has been paid to integrate

multiple trial vector generation strategies with multi-

ple control parameter settings in DE. For example, Qin

et al. [14] proposed a self-adaptive DE, in which both

the trial vector generation strategies and the control pa-

rameter settings are gradually self-adapted according

to the previous experiences. Mallipeddi et al. [15] em-

ployed an ensemble of control parameter settings and

trial vector generation strategies with DE. Wang et al.

[16] exploited DE researchers’ experiences to construct

the strategy candidate pool and the parameter candidate

pool, and randomly combined the trial vector gener-

ation strategies with the control parameter settings to

create multiple trial vectors for each target vector.

In the first DE paper [1], Storn and Price argued that the

solutions chosen for mutation should have mutually differ-

ent indices. Later, this restrained condition has been broadly

recognized by DE researchers during the past twenty years

[17]. However, the rationality of this restrained condition has

not been verified either theoretically or experimentally. Mo-

tivated by the above consideration, in this paper we investi-

gate the selection of solutions for mutation in DE empirically.

From the results of extensive experiments, some interesting

phenomena have been observed:

• If this restrained condition is relaxed, the mutation oper-

ators of DE might degenerate due to the fact that the dif-

ferential vector will be equal to zero with a small proba-

bility. This phenomenon slightly decreases the diversity

of the population and has an advantage of enhancing the

convergence speed.

• This restrained condition could be relaxed for some

classical DE versions with high randomness and for

some advanced DE variants with very competitive per-

formance. It is because the performance of such DE ver-

sions and variants can be further improved by acceler-

ating the convergence.

• However, this restrained condition cannot be removed

from the relatively greedy DE, in which the information

of the best solution in the population is exploited fre-

quently. It is not difficult to understand since the greedy

DE has a very fast convergence speed and poor diver-

sity, and relaxing this restrained condition further re-

duces the diversity and results in performance degra-

dation. Moreover, this restrained condition cannot be

removed from DE with a small population size, and

DE with a small scaling factor and meanwhile a large

crossover control parameter.

By investigating the effect of the solution selection for mu-

tation on the performance of different versions and variants of

DE, this paper is helpful for revealing and understanding the

search mechanism of DE, since mutation is the main operator

and characteristic of DE.

The remainder of this paper is organized as follows. In

Section 2, DE is briefly introduced, including its mutation,

crossover and selection operators. Section 3 discusses the se-

lection of solutions for mutation in DE. The experimental re-

sults are provided in Section 4. Section 5 concludes this pa-

per.

2 Differential evolution (DE)

DE is a population-based optimizer. The population of DE at

generation G can be formulated as follows:

PG = {�xi,G = (xi,1,G, xi,2,G, . . . , xi,D,G) , i = 1, 2, . . . ,NP}, (1)

where NP is the population size, �xi,G is the ith solution (also

called the ith target vector) in the population, and D is the

number of decision variables contained by each target vector.

For each target vector �xi,G, the following six classical mu-

tation operators have been broadly applied to create a mutant
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vector �vi,G = (vi,1,G, vi,2,G, . . . , vi,D,G):

• DE/rand/1:

�vi,G = �xr1,G + F × (�xr2,G − �xr3,G), (2)

• DE/rand/2:

�vi,G = �xr1,G+F× (�xr2,G−�xr3,G)+F× (�xr4,G−�xr5,G), (3)

• DE/best/1:

�vi,G = �xbest,G + F × (�xr1,G − �xr2,G), (4)

• DE/best/2:

�vi,G = �xbest,G+F×(�xr1,G−�xr2,G)+F×(�xr3,G−�xr4,G), (5)

• DE/current-to-best/1:

�vi,G = �xi,G +F × (�xbest,G− �xi,G)+F × (�xr1,G− �xr2,G), (6)

• DE/current-to-rand/1:

�vi,G = �xi,G+rand×(�xr1,G−�xi,G)+F×(�xr2,G−�xr3,G), (7)

where F is the scaling factor, �xbest,G is the best target vec-

tor in the population, and rand denotes a uniformly dis-

tributed random number between 0 and 1. Moreover, in the

first, second, and sixth mutation operators, indices r1, r2,

r3, r4, and r5 represent the mutually different integers ran-

domly chosen from {1, 2, . . . ,NP}\i, and in the remaining

three mutation operators, indices r1, r2, r3, and r4 repre-

sent the mutually different integers randomly chosen from

{1, 2, . . . ,NP}\{i, best}. It is necessary to note that in the

classcial DE, usually one mutant vector is produced for each

target vector.

After the mutation, the binomial crossover is usually im-

plemented on the target vector �xi,G and the mutant vector �vi,G

to generate a trial vector �ui,G = (ui,1,G, ui,2,G, . . . , ui,D,G) as fol-

lows:

ui, j,G =

⎧
⎪⎪⎨
⎪⎪⎩

vi, j,G, if rand j � CR or j = jrand;

xi, j,G, otherwise.
(8)

where CR is the crossover control parameter, jrand is a ran-

domly chosen integer from [1,D], and rand j denotes a uni-

formly distributed random number from [0, 1] and regener-

ated for each j. The purpose of jrand is to make �ui,G different

from �xi,G by at least one dimension.

The aim of the selection operator is to choose the better one

from the target vector �xi,G and the trial vector �ui,G as follows

(in the minimization sense):

�xi,G+1 =

⎧
⎪⎪⎨
⎪⎪⎩

�ui,G, if f (�ui,G) � f (�xi,G);

�xi,G, otherwise.
(9)

The general framework of DE has been given in Algor-

ithm 1 [18, 19].

3 On the selection of solutions for mutation
in DE

According to the introduction in Section 2, it is clear that the

solutions chosen for mutation should have mutually different

indices. A question which arises naturally is why the above

restrained condition should be satisfied for DE.

During the design of composite differential evolution

(CoDE) [16], we have noticed that DE/current-to-rand/1

without the restrained condition is able to greatly enhance

the performance (Tvrdík [20] also pointed out the above phe-

nomenon after carefully implementing CoDE). However, due

to space limitations, we have not investigated this issue in

[16] in depth. Note that Price et al. [21] provided a prelimi-

nary analysis on the difference between DE with and without

the restrained condition. However, they only tested the per-

formance of DE/rand/1/bin with and without the restrained

condition on the sphere function, and therefore, their conclu-

sion is limited. Recently, Liu et al. [22] also noticed the im-

pact of the above restrained condition on the performance of

DE. They proposed an unrestrained method to generate the

mutant vector, which allows the solutions in the population

to appear repeatedly in the mutation operator. Unfortunately,

they did not provide the related experimental results to verify

the effectiveness of the unrestrained method.
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Recognizing the current situation, in this paper we attempt

to empirically study the selection of solutions for mutation in

DE, which has been pending during the past twenty years. In

our experiments, we compare the performance between DE

with and without the restrained condition by extensive exper-

iments. DE without the restrained condition means that the

indices r1, r2, r3, r4, and r5 can be randomly chosen from

[1,NP].

Prior to the experiments, the properties of DE without the

restrained condition are given as follows.

• Property 1 At each generation, the probability that

one differential vector (such as (�xr2,G − �xr3,G)) degener-

ates to zero is 1/NP and the probability that two differ-

ential vectors degenerate to zero is 1/NP2.

• Property 2 For DE/rand/1 and DE/rand/2, at each

generation the probability that the mutant vector is

equal to the base vector is 1/NP and 1/NP2, respec-

tively.

• Property 3 At each generation, the probability that

DE/rand/2 degenerates to DE/rand/1 and DE/best/2 de-

generates to DE/best/1 is 2(NP − 1)/NP2.

• Property 4 For DE/best/1 and DE/best/2, at each

generation the probability that the mutant vector is

equal to the best solution in the population is 1/NP and

1/NP2, respectively.

• Property 5 At each generation, for DE/current-to-

best/1, the probability that the mutant vector is a linear

combination of the ith target vector and the best solu-

tion in the population is 1/NP, and for DE/current-to-

rand/1, the probability that the mutant vector is a linear

combination of the ith target vector and a randomly se-

lected solution in the population is also 1/NP.

• Property 6 For DE/rand/1 and DE/rand/2, the

centers of all possible mutant vectors in DE

with and without the restrained condition are
1

(NP − 1)

∑

j∈{1,2,...,NP}\i
�x j,G and

1
NP

∑

j∈{1,2,...,NP}
�x j,G, re-

spectively.

• Property 7 For DE/best/1, DE/best/2, and DE/

current-to-best/1, the centers of all possible mutant vec-

tors of DE with the restrained condition are equal to that

of DE without the restrained condition.

The differences between the current work and the previous

work in Refs. [16, 21, 22] are the following:

• In Refs. [16,21,22], the researchers have studied on the

restrained condition in DE. However, the experiments

in those papers are insufficient. In this paper, system-

atic experiments have been conducted to compare DE

with and without the restrained condition on two sets

of benchmark test functions, namely, 14 test functions

with 30 dimensions at the 2005 IEEE Congress on Evo-

lutionary Computation (IEEE CEC2005) [23] and 28

test functions with 30 and 50 dimensions at the 2013

IEEE Congress on Evolutionary Computation (IEEE

CEC2013) [24]. Moreover, six classical DE versions

and seven advanced DE variants have been chosen to

produce the experimental results.

• We have investigated the effect of the control parame-

ter settings on the performance of DE with and without

restrained condition.

• We have also given some guidelines on the types of DE

where the restrained condition is favorable or could be

relaxed.

4 Experimental study

In the experiments of this section, the function error value

( f (�xbest) − f (�x∗)) has been recorded in each run for each test

function, where f (�x∗) is the objective function value of the

global optimal solution and f (�xbest) is the objective function

value of the best solution found when the evolution halts.

We used the average and standard deviation of the function

error values over all the runs to compare the experimental

results. In order to make the comparison statistically sound,

Wilcoxon’s rank sum test at a 0.05 significance level was per-

formed between pairwise methods. For each test function, the

maximum number of function evaluations (FEs) was set to

10, 000 × D.

4.1 On classical DE versions

Firstly, the first 14 test functions with 30 dimensions

(30D) developed for IEEE CEC2005 [23] have been em-

ployed to investigate the influence of the solution selec-

tion for mutation on the performance of six classical DE

versions, i.e., DE/rand/1/bin, DE/rand/2/bin/, DE/best/1/bin,

DE/best/2/bin, DE/current-to-best/1/bin, and DE/current-to-

rand/1/bin. These 14 test functions are denoted as F1 − F14,

and can be divided into three categories: five unimodal func-

tions (F1 − F5), seven basic multimodal functions (F6 − F12),

and two expanded multimodal functions (F13−F14). We only

considered these test functions with 30D in this paper. Note

that in some papers (such as [16]), the binomial crossover is
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not applied to DE/current-to-rand/1 in order to keep its rota-

tion invariance. However, in this paper the binomial crossover

is also applied to DE/current-to-rand/1, and the correspond-

ing DE version is called DE/current-to-rand/1/bin. For DE

without the restrained condition, two letters “U-” are added

to the original DE. For example, U-DE/rand/1/bin denotes

DE/rand/1/bin without the restrained condition. For all the

classical DE versions in this subsection, the following param-

eter settings were used: NP = D, F = 0.9, and CR = 0.9. The

above parameter settings were the same as in Ref. [11]. For

each test function, according to the suggestion in Ref. [23],

25 independent runs were performed.

In Section 3, we have introduced the probabilities of some

situations in Property 1–Property 5. One may be interested

in the real probability that each of situations in Property 1–

Property 5 really happens in the experiments. To this end, Ta-

ble 5 compares the theoretic probability and the real probabil-

ity. From Table 5, it is clear that the real probability is nearly

consistent with the theoretic probability, which demonstrates

the contributions of these five properties directly.

The experimental results of the 14 test functions with 30D

have been summarized in the supplemental file (Appendix:

Table 1 The theoretic probability and the real probability of each situation in Property 1–Property 5

Theoretic probability Real probability
Situation

(NP=30) (NP=30)

Property 1: one differential vector degenerates to zero 1/NP ≈ 0.03333 0.03332

Property 1: two differential vectors degenerate to zero 1/NP2 ≈ 0.00111 0.00114

Property 2: in DE/rand/1, the mutant vector is equal to the base vector 1/NP ≈ 0.03333 0.03334

Property 2: in DE/rand/2, the mutant vector is equal to the base vector 1/NP2 ≈ 0.00111 0.00112

Property 3: DE/rand/2 degenerates to DE/rand/1 2(NP − 1)/NP2 ≈ 0.06444 0.06436

Property 3: DE/best/2 degenerates to DE/best/1 2(NP − 1)/NP2 ≈ 0.06444 0.06433

Property 4: in DE/best/1, the mutant vector is equal to the best solution in the population 1/NP ≈ 0.03333 0.03331

Property 4: in DE/best/2, the mutant vector is equal to the best solution in the population 1/NP2 ≈ 0.00111 0.00113

Property 5: in DE/current-to-best/1, the mutant vector is a linear combination of

the ith target vector and the best solution in the population
1/NP ≈ 0.03333 0.03335

Property 5: in DE/current-to-rand/1, the mutant vector is a linear combination of

the ith target vector and a randomly selected solution in the population
1/NP ≈ 0.03333 0.03332
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Tables S1–S3) and the statistical test results have been sum-

marized in Table 2. From Table 2, we can give the following

comments:

1) U-DE/rand/1/bin outperforms DE/rand/1/bin on four
out of five unimodal functions, which means that U-
DE/rand/1/bin exhibits a faster convergence speed. The
above phenomenon can be attributed to two aspects. In
one aspect, at each generation the mutant vector will
be equal to the base vector once on average accord-
ing to Property 2. Under this condition, if the base

vector (i.e., �xr1,G) is better than the target vector (i.e.,
�xi,G), the crossover operator might have the capability

to improve some dimensions of the target vector di-

rectly. On the other hand, at each generation the base

vector will be equal to its target vector once on aver-

age, since the probability that �xr1,G = �xi,G is 1/NP.

As a result, the mutation is similar to a local search

operator. In addition, U-DE/rand/1/bin performs bet-

ter than DE/rand/1/bin on basic multimodal functions

and has similar performance with DE/rand/1/bin on ex-

panded multimodal functions. As far as the overall per-

formance is considered, U-DE/rand/1/bin is better than

DE/rand/1/bin.

2) For the mutation operators with two differential vec-

tors (i.e., DE/rand/2 and DE/best/2), DE without the

restrained condition has an edge over DE with the re-

strained condition on all the test functions, see, for ex-

ample, U-DE/rand/2/bin versus DE/rand/2/bin, and U-

DE/best/2/bin versus DE/best/2/bin. It is not difficult to

understand since without the restraint, DE/rand/2/bin

and DE/best/2/bin will degenerate to DE/rand/1/bin

and DE/best/1/bin with the probability 0.06444 (i.e.,

30×0.06444×10,000≈19,332 times on average during

the evolution due to the fact that the total generation

number is equal to 10,000) according to Property 3 as

shown in Table 1, and in general, DE with one differen-

tial vector converges faster than DE with two differen-

tial vectors.

3) Like DE/rand/2/bin and DE/best/2/bin, the perfor-

mance of DE/current-to-rand/1/bin is significantly out-

performed by that of U-DE/current-to-rand/1/bin.

4) DE/best/1/bin beats U-DE/best/1/bin on all the test

functions. In addition, DE/current-to-best/1/bin per-

forms better than U-DE/current-to-best/1/bin in terms

of the overall performance. It is because at each gener-

ation the mutant vector will be equal to the best solution

in the population once on average for U-DE/best/1/bin

according to Property 4, and the mutant vector will be

a linear combination of the ith target vector and the

best solution in the population once on average for U-

DE/current-to-best/1/bin according to Property 5. Thus,

the population might be easily trapped into a local op-

timum due to the information of the best solution being

exploited frequently.

The above discussion suggests that the restrained con-

dition could be relaxed for four classical DE versions,

i.e., DE/rand/1/bin, DE/rand/2/bin, DE/best/2/bin, and

DE/current-to-rand/1/bin, and is unavoidable for two clas-

sical DE versions, i.e., DE/best/1/bin and DE/current-to-

best/1/bin. Figures 1 and 2 present the evolution of the av-

erage function error values derived from six classical DE ver-

sions with and without the restrained condition on F2 with

30D and F6 with 30D.

Fig. 1 Convergence graphs of the average function error values derived
from six classcial DE versions with and without the restrained condition on
F2 with 30D. (a) Convergence curves of DE/rand/1/bin, U-DE/rand/1/bin,
DE/rand/2/bin/, U-DE/rand/2/bin/, DE/best/1/bin, and U-DE/best/1/bin;
(b) convergence curves of DE/best/2/bin, U-DE/best/2/bin, DE/current-to-
best/1/bin, U-DE/current-to-best/1/bin, DE/current-to-rand/1/bin, and U-
DE/current-to-rand/1/bin

4.2 On advanced DE variants

In this subsection, the 28 test functions with 30 dimensions
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Fig. 2 Convergence graphs of the average function error values derived
from six classical DE versions with and without the restrained condition on
F6 with 30D. (a) Convergence curves of DE/rand/1/bin, U-DE/rand/1/bin,
DE/rand/2/bin/, U-DE/rand/2/bin/, DE/best/1/bin, and U-DE/best/1/bin;
(b) convergence curves of DE/best/2/bin, U-DE/best/2/bin, DE/current-to-
best/1/bin, U-DE/current-to-best/1/bin, DE/current-to-rand/1/bin, and U-
DE/current-to-rand/1/bin

(30D) and 50 dimensions (50D) designed for IEEE CEC2013

[24] have been further used to investigate the impact of the

solution selection for mutation on the performance of seven

advanced DE variants, i.e., JADE [4], jDE [10], SaDE [14],

EPSDE [15], CoDE [16], LSHADE [25], and JADE/eig [7].

These 28 test functions are denoted as c f1 − c f28 and can

be divided into three categories: five unimodal functions

(c f1 − c f5), 15 basic multimodal functions (c f6 − c f20), and

eight composition functions (c f21 − c f28). The mutation oper-

ator adopted by JADE, LSHADE, and JADE/eig is a general-

ized DE/current-to-best/1, called DE/current-to-pbest/1, jDE

uses the classical DE/rand/1 mutation operator, and SaDE,

EPSDE, and CoDE establish a candidate pool which con-

sists of several mutation operators. The above seven DE

variants without the restrained condition are denoted as U-

JADE, U-jDE, U-SaDE, U-EPSDE, U-CoDE, U-LSHADE,

and U-JADE/eig, respectively. Actually, in the original CoDE

[16], DE/current-to-rand/1 without the restrained condition

has been utilized. Therefore, CoDE in [16] is called U-CoDE

in this paper, and in this paper CoDE means that the indices

of the solutions for mutation are mutually different in all the

mutation operators.

For each DE variant, according to the suggestion in [24],

51 independent runs were performed on each test function

with 30D and 50D. The function error value ( f (�xbest)− f (�x∗))
smaller than 10−8 was taken as zero. The experimental re-

sults have been summarized in the supplemental file (Ap-

pendix: Tables S4–S9) and the statistical test results have

been summarized in Tables 3 and 4. It is noteworthy that

the parameter settings of JADE, jDE, SaDE, EPSDE, CoDE,

LSHADE, and JADE/eig were the same as in the original pa-

pers. In order to ensure the comparison fair, the parameter

settings of U-JADE, U-jDE, U-SaDE, U-EPSDE, U-CoDE,

U-LSHADE, and U-JADE/eig were kept the same as those of

JADE, jDE, SaDE, EPSDE, CoDE, LSHADE, and JADE/eig,

respectively.

From Table 3, it can be seen that for the 28 test functions

with 30D, the seven advanced DE variants are statistically

outperformed by their unrestrained competitors respectively.

In particular, JADE, SaDE, EPSDE, and LSHADE cannot

perform better than their unrestrained competitors even on

one test function. jDE is better than U-jDE on only one basic

multimodal function, CoDE is better than U-CoDE on two

test functions including one basic multimodal function and

one composition function, and JADE/eig beats U-JADE/eig

on only one basic multimodal function. However, U-jDE, U-

CoDE, and U-JADE/eig surpass their restrained versions on

9, 22, and 12 test functions, respectively. It is interesting to

note that relaxing the restrained condition fails to improve

the performance of DE/current-to-best/1, while it is effective

for JADE, LSHADE, and JADE/eig, which use a generalized

DE/current-to-best/1.

As shown in Table 4, the overall performance of JADE,

jDE, SaDE, EPSDE, CoDE, LSHADE, and JADE/eig can

be greatly improved by relaxing the restrained condition for

the 28 test functions with 50D. More specifically, U-JADE,

U-jDE, U-SaDE, U-EPSDE, U-CoDE, U-LSHADE, and U-

JADE/eig exhibit either similar or better performance on all

the test functions compared with their restrained versions ex-

cept that CoDE beats U-CoDE on two composition test func-

tions and JADE/eig performs better than U-JADE/eig on one

basic multimodal function.

The above extensive empirical evidences confirm that re-

laxing the restrained condition could be an effective way to

further refine the performance of some advanced DE vari-

ants. Figure 3 presents the evolution of the average function

error values derived from seven advanced DE variants with

and without the restrained condition on c f3 with 30D.
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Fig. 3 Convergence graphs of the average function error values derived from seven advanced DE variants with and without the restrained
condition on c f3 with 30D. (a) Convergence curves of JADE, U-JADE, jDE, U-jDE, SaDE, U-SaDE, EPSDE, and U-EPSDE; (b) convergence
curves of CoDE, U-CoDE, LSHADE, U-LSHADE, JADE/eig, and U-JADE/eig
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4.3 Effect of the control parameter settings

The aim of this subsection is to investigate the effect of the

control parameter settings on the performance of DE with and

without the restrained condition. We chose DE/rand/1/bin as

the instance algorithm and employed the first 14 test func-

tions with 30D from IEEE CEC2005 [23] to produce the ex-

perimental results.

Firstly, we tested the effect of the population size on the

performance of DE with and without restrained condition.

The population size was set to a relatively small value, i.e.,

10. Other parameter settings were kept the same as in Sec-

tion 4.1. Summarized in Table 5 are the experimental results

of DE/rand/1/bin and U-DE/rand/1/bin. It is clear from Table

5 that DE/rand/1/bin performs better than U-DE/rand/1/bin

on all the test functions, which means that a small popu-

lation size leads to drastic performance degradation for U-

DE/rand/1/bin. However, one should note that a small popu-

lation size also severely deteriorates the overall performance

of DE/rand/1/bin. The poor performance of U-DE/rand/1/bin

could be attributed to two aspects: 1) DE/rand/1/bin with a

small population size is not capable of maintaining the diver-

sity of the population, and 2) relaxing the restrained condi-

tion further reduces the diversity of DE/rand/1/bin. The above

comparison implies that the restrained condition cannon be

removed from DE with a small population size.

Subsequently, the effects of the parameters F and CR on
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Table 5 Experimental results of DE/rand/1/bin and U-DE/rand/1/bin over 25 independent runs on the 14 test functions with 30D from IEEE CEC2005 using
300,000 FEs

DE/rand/1/bin U-DE/rand/1/bin Statistical test
Test functions (30D)

Mean Error±Std Dev Mean Error±Std Dev

F1 5.65E+00±2.82E+01 1.22E+03±3.13E+03 –

F2 1.95E+01±9.76E+01 2.17E+03±6.34E+03 –

Unimodal functions F3 2.12E+05±1.05E+05 1.37E+07±5.53E+07 –

F4 1.29E+03±2.92E+03 1.18E+04±1.01E+04 –

F5 2.60E+03±6.98E+02 7.32E+03±3.05E+03 –

F6 1.33E+02±2.20E+02 8.74E+08±1.33E+09 –

F7 2.64E–02±3.12E–02 8.44E+01±1.67E+02 –

F8 2.09E+01±6.05E–02 2.11E+01±7.69E–02 –

Basic multimodal functions F9 7.53E+01±3.10E+01 1.39E+02±5.82E+01 –

F10 8.33E+01±2.36E+01 2.34E+02±8.25E+01 –

F11 3.05E+01±6.31E+00 3.44E+01±3.75E+00 –

F12 1.29E+04±1.19E+04 3.16E+04±2.19E+04 –

Expanded multimodal F13 1.04E+01±5.24E+00 3.69E+01±1.86E+01 –

functions F14 1.32E+01±3.96E–01 1.37E+01±3.02E–01 –

Note: The population size was set to 10. “Mean Error” and “Std Dev” indicate the average and standard deviation of the function error values obtained in
25 runs, respectively. Wilcoxon’s rank sum test at a 0.05 significance level is performed between DE/rand/1/bin and U-DE/rand/1/bin. “−” denotes that the
performance of U-DE/rand/1bin is worse than that of DE/rand/1/bin

the performance of DE with and without restrained condi-

tion were investigated. In our experiments, we tested three

different F: 0.5, 0.7, and 0.9, and five different CR: 0.1,

0.3, 0.5, 0.7, and 0.9. Thus, we obtained 15 different com-

binations of F and CR. The first 14 test functions with 30D

from IEEE CEC2005 [23] were also used to test the per-

formance of DE with and without restrained condition for

these 15 combinations. In all experiments, the population

size was set to 30. The experimental results are presented in

Fig. 4, in which “better”, “similar” and “worse” mean that

U-DE/rand/1/bin performs better than, similar to, and worse

than DE/rand/1/bin, respectively. From Fig. 4, we can give

the following remarks:

1) When F is set to a small value (i.e., 0.5), U-

DE/rand/1/bin outperforms DE/rand/1/bin in the cases

of CR=0.1, 0.3, and 0.5. They both have similar per-

formance when CR=0.7, and U-DE/rand/1/bin is worse

than DE/rand/1/bin when CR=0.9.

2) When F is set to a middle value (i.e., 0.7), U-

DE/rand/1/bin achieves better overall performance than

DE/rand/1/bin in the cases of CR=0.1, 0.3, 0.5, and

0.7, and DE/rand/1/bin beats U-DE/rand/1/bin when

CR=0.9.

3) It is interesting to note that when F is set to a big

value (i.e., 0.9), U-DE/rand/1/bin performs better than

DE/rand/1/bin, regardless of the setting of CR.

Fig. 4 Experimental results of DE/rand/1/bin and U-DE/rand/1/bin over 25 independent runs on the 14 test functions with 30D from IEEE
CEC2005 using 300,000 FEs (In the experiments, 15 combination of F and CR were tested. “Better”, “Similar” and “Worse” mean that
U-DE/rand/1/bin performs better than, similar to, and worse than DE/rand/1/bin, respectively)
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According to the above observation, we can conclude that

the restrained condition could be removed from DE in most

cases, but cannot be relaxed for DE with a small F and a big

CR. It is because in most cases, relaxing the restrained con-

dition is an effective way to improve DE’s convergence as

discussed in Section 4.1. The reason why the restrained con-

dition cannot be relaxed for DE with a small F and a big CR is

explained as follows. DE with a small F can only add a small

perturbation to the base vector to generate the mutant vector.

On the other hand, if a big CR is utilized in the crossover

operator, the trial vector will inherit more information from

the mutant vector. Therefore, the exploration ability of DE

with a small F and a big CR is limited. As pointed out previ-

ously, removing the restrained condition has a side effect on

the diversity of DE. Thus, the exploration ability of DE with

a small F and a big CR will further degrade if the restrained

condition is removed.

4.4 Discussion

Based on the above experimental results, we give some guide-

lines on the types of DE where the restrained condition

should be applied or could be relaxed:

• As shown in Table 2, the overall performance of

U-DE/best/1/bin and U-DE/current-to-best/1/bin is

worse than that of DE/best/1/bin and DE/current-

to-best/1/bin, respectively. In DE/best/1/bin and

DE/current-to-best/1/bin, the information of the best

solution in the population is exploited explicitly. There-

fore, they exhibit greedy characteristics and are suit-

able for unimodal problems. In this case, removing the

restrained condition has a negative influence on the di-

versity of the population, which inevitably induces the

poor performance. On the other hand, as pointed out

in Section 4.3, the unrestrained DE does not benefit

from a small population size, as well as a small F and

meanwhile a big CR. Consequently, we can conclude

that the restrained condition should be applied to the

greedy DE, DE with a small population size, and DE

with a small F and a big CR.

• As shown in Tables 2–4, the restrained condition

could be relaxed for four classical DE versions

(i.e., DE/rand/1/bin, DE/rand/2/bin, DE/best/2/bin,

and DE/current-to-rand/1/bin) and seven advanced DE

variants (i.e., JADE, jDE, SaDE, EPSDE, CoDE,

LSHADE, and JADE/eig). In terms of DE/rand/1/bin,

DE/rand/2/bin, and DE/current-to-rand/1/bin, the tar-

get vector learns the information from other randomly

chosen solutions. Therefore, they have the capability

to maintain the diversity of the population and are

suitable for multimodal problems. Under this condi-

tion, the removal of the restrained condition acceler-

ates the convergence to a certain degree. Note that

DE/best/2/bin also utilizes the information provided

by the best solution in the population. However, com-

pared with DE/best/1/bin, two differential vectors are

incorporated into DE/best/2/bin, which is able to al-

leviate the greediness and compensate for the conver-

gence pressure. On the other hand, by adding some ex-

tra mechanisms, the seven advanced DE variants have

very competitive performance on optimization prob-

lems with complex characteristics, such as multimodal

problems, non-separable problems, rotated problems,

and ill-conditioned problems. For example, in JADE,

LSHADE, and JADE/eig, the archiving technique and

the self-adaptive parameter adaptation are used to im-

prove the search ability. With respect to SaDE, EPSDE,

and CoDE, trail vector generation strategies and control

parameter settings with different properties are com-

bined to improve the performance. In addition, jDE

tunes the control parameter settings with a self-adaptive

manner. For these seven advanced DE variants, the re-

strained condition could be relaxed to further enhance

the performance by accelerating the convergence. Ac-

cording to the above analysis, relaxing the restrained

condition does play an important role in two types of

DE, i.e., DE with high randomness and DE with very

competitive performance.

5 Conclusion

This paper investigates an interesting issue in DE, i.e., the

selection of solutions for mutation. In the existing DE, the

indices of the chosen solutions for mutation should be mu-

tually different. The above restrained condition has been

extensively used during the past twenty years. However, in

this paper we verify that this restrained condition could be

eliminated for some classical DE versions and some state-

of-the-art DE variants by a large number of experiments.

Moreover, for some of them, the performance could be re-

markably improved by removing this restrained condition.

We also identify the types of DE in which the restrained

condition should be kept untouched or could be removed.

With this paper, we suggest that DE researchers make an at-
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tempt to ascertain whether relaxing the restrained condition

can improve the performance when designing a DE variant.

We guess that relaxing the restrained condition is useful for

large-scale optimization [26], since under this condition a

very large population size is usually adopted due to the high-

dimensional search space. In the future, we will carry out

an in-depth theoretical analysis on the insights derived from

experimentation.
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Appendix

Table S1 Experimental results of DE/rand/1/bin, U-DE/rand/1/bin, DE/rand/2/bin, and U-DE/rand/2/bin over 25 independent runs on the 14 test functions
with 30D from IEEE CEC2005 using 300,000 FEs

DE/rand/1/bin U-DE/rand/1/bin DE/rand/2/bin U-DE/rand/2/bin
Test functions (30D)

Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev

F1 6.54E–18±1.19E–17 1.84E–27±1.37E–27+ 5.99E+03±9.25E+02 5.46E–10±7.06E–10+

F2 4.97E–02±4.99E–02 7.33E–12±9.99E–12+ 2.91E+04±3.69E+03 1.17E+01±8.80E+00+

Unimodal functions F3 6.41E+05±3.78E+05 1.30E+05±5.78E+04+ 1.85E+08±4.87E+07 1.55E+06±7.54E+00+

F4 1.37E+01±1.56E+01 7.10E–02±1.50E–01+ 3.75E+04±5.48E+03 2.68E+02±1.51E+02+

F5 1.30E+02±1.55E+02 5.07E+02±3.22E+02– 1.20E+04±9.40E+02 6.84E+02±4.77E+02+

F6 2.51E+01±2.62E+01 2.12E+00±2.20E+00+ 3.04E+08±6.29E+07 6.25E+01±5.66E+01+

F7 5.51E–03±8.35E–03 1.57E–02±1.25E–02– 4.43E+03±7.45E+02 9.34E–03±9.24E–03+

F8 2.09E+01±6.91E–02 2.09E+01±6.25E–02= 2.09E+01±3.93E–02 2.06E+01±3.15E–01+

Basic multimodal F9 2.18E+01±7.73E+00 4.28E+01±1.19E+01– 2.40E+02±1.41E+01 2.62E+01±8.11E+00+

functions F10 1.32E+02±8.66E+01 4.94E+01±1.35E+01+ 2.88E+02±1.60E+01 3.83E+01±1.44E+01+

F11 3.76E+01±5.37E+00 1.79E+01±6.80E+00+ 3.97E+01±1.23E+00 1.54E+01±7.18E+00+

F12 4.59E+03±5.07E+03 5.11E+03±4.38E+03= 7.39E+05±8.16E+04 4.51E+03±5.48E+03+

Expanded multimodal F13 3.04E+00±8.86E–01 4.35E+00±2.10E+00– 5.20E+01±7.19E+00 3.08E+00±8.67E–01+

functions F14 1.34E+01±1.43E–01 1.32E+01±3.58E–01+ 1.34E+01±1.88E–01 1.30E+01±3.80E–01+

+ 8 + 14

– 4 – 0

= 2 = 0

Note: “Mean Error” and “Std Dev” indicate the average and standard deviation of the function error values obtained in 25 runs, respectively. Wilcoxon’s rank
sum test at a 0.05 significance level is performed between DE/rand/1/bin and U-DE/rand/1/bin, and between DE/rand/2/bin and U-DE/rand/2/bin. “+”, “−”,
and “=” denote that the performance of DE without the restrained condition is better than, worse than, and similar to that of DE with the restrained condition,
respectively

Table S2 Experimental results of DE/best/1/bin, U-DE/best/1/bin, DE/best/2/bin, and U-DE/best/2/bin over 25 independent runs on the 14 test functions
with 30D from IEEE CEC2005 using 300,000 FEs

DE/best/1/bin U-DE/best/1/bin DE/best/2/bin U-DE/best/2/bin
Test functions (30D)

Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev

F1 2.11E–27±9.05E–28 2.89E+01±6.59E+01– 1.62E+03±7.05E+02 6.48E–02±3.24E–01+

F2 4.94E–14±1.15E–13 9.24E+02±2.51E+03– 2.02E+04±5.54E+03 2.16E–03±2.85E–03+

Unimodal functions F3 1.30E+05±7.26E+04 6.10E+06±1.09E+07– 1.29E+08±3.53E+07 5.54E+05±3.80E+05+

F4 3.25E+00±1.27E+01 3.08E+03±6.19E+03– 3.00E+04±5.56E+03 3.93E+01±5.23E+01+

F5 2.38E+02±2.00E+02 4.27E+03±1.36E+03– 9.19E+03±9.80E+02 4.97E+02±3.60E+02+

F6 2.03E+00±2.24E+00 4.02E+07±1.32E+08– 5.64E+07±3.62E+07 1.22E+01±1.21E+01+

F7 2.02E–02±2.20E–02 9.14E+01±1.61E+02– 1.58E+03±5.84E+02 2.45E–02±2.85E–02+

F8 2.09E+01±5.99E–02 2.10E+01±9.62E–02– 2.09E+01±4.12E–02 2.01E+01±2.12E–01+

Basic multimodal F9 6.35E+01±2.60E+01 1.54E+02±4.04E+01– 2.37E+02±1.53E+01 6.69E+01±2.06E+01+

functions F10 8.99E+01±3.23E+01 1.86E+02±4.76E+01– 2.80E+02±1.98E+01 7.39E+01±1.85E+01+

F11 2.05E+01±5.01E+00 3.37E+01±3.40E+00– 3.96E+01±.9.58E–01 2.36E+01±7.88E+01+

F12 1.15E+04±1.17E+04 6.46E+04±6.34E+04– 6.82E+05±7.45E+04 4.80E+03±8.92E+03+
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(Continued)

DE/best/1/bin U-DE/best/1/bin DE/best/2/bin U-DE/best/2/bin
Test functions (30D)

Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev

Expanded multimodal F13 5.99E+00±2.60E+00 2.21E+01±7.20E+00 – 3.32E+01±7.79E+00 7.33E+00±2.50E+00+

functions F14 1.29E+01±4.69E–01 1.36E+01±1.85E–01– 1.34E+01±1.62E–01 1.30E+01±2.98E–01+

+ 0 + 14

– 14 – 0

= 0 = 0

Note: “Mean Error” and “Std Dev” indicate the average and standard deviation of the function error values obtained in 25 runs, respectively. Wilcoxon’s rank
sum test at a 0.05 significance level is performed between DE/best/1/bin and U-DE/best/1/bin, and between DE/best/2/bin and U-DE/best/2/bin. “+”, “−”,
and “=” denote that the performance of DE without the restrained condition is better than, worse than, and similar to that of DE with the restrained condition,
respectively

Table S3 Experimental results of DE/current-to-best/1/bin, U-DE/current-to-best/1/bin, DE/current-to-rand/1/bin, and U-DE/current-to-rand/1/bin over 25
independent runs on the 14 test functions with 30D from IEEE CEC2005 using 300,000 FEs

DE/current-to-best/1/bin U-DE/current-to-best/1/bin DE/current-to-rand/1/bin U-DE/current-to-rand/1/bin
Test functions (30D)

Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev

F1 1.53E–27±1.09E–27 2.53E–26±4.51E–26– 1.79E–17±3.22E–17 2.10E–29±6.35E–29+

F2 2.63E–16±7.21E–16 5.48E–25±2.26E–24+ 2.56E–02±2.16E–02 9.61E–17±4.00E–16+

Unimodal functions F3 1.24E+05±5.81E+04 3.10E+04±1.62E+04+ 7.04E+05±3.76E+05 1.00E+05±6.46E+04+

F4 1.11E–01±2.53E–01 2.55E+00±1.22E+01– 1.95E+01±1.79E+01 2.58E–03±3.72E–03+

F5 2.30E+02±2.07E+02 1.43E+03±4.89E+02– 1.82E+02±9.87E+01 9.03E+01±1.52E+02+

F6 1.27E+00±1.89E+00 1.59E+00±1.99E+00– 4.74E+00±3.11E+00 9.56E–01±1.73E+00+

F7 1.69E–02±1.24E–02 2.28E–02±2.63E–02= 1.65E–03±3.74E–03 1.35E–02±7.21E–03–

F8 2.09E+01±5.22E–02 2.09E+01±4.83E–02= 2.09E+01±3.28E–02 2.09E+01±5.36E–02=

Basic multimodal F9 3.77E+01±9.71E+00 9.60E+01±2.74E+01– 1.90E+02±1.10E+01 2.88E+01±8.17E+00+

functions F10 5.49E+01±1.86E+01 1.32E+02±5.77E+01– 2.14E+02±1.12E+01 3.92E+01±1.27E+01+

F11 1.60E+01±5.77E+00 2.89E+01±3.29E+00– 3.95E+01±7.05E–01 2.01E+01±5.79E+00+

F12 1.29E+04±1.93E+04 1.49E+04±1.76E+04= 3.13E+03±3.54E+03 3.75E+03±4.87E+03=

Expanded multimodal F13 3.63E+00±1.02E+00 9.82E+00±2.99E+00 – 1.80E+01±1.11E+00 3.48E+00±7.88E–01+

functions F14 1.31E+01±2.33E–01 1.21E+01±3.90E–01+ 1.34E+01±1.63E–01 1.30E+01±2.44E–01+

+ 3 + 11

– 8 – 1

= 3 = 2

Note: “Mean Error” and “Std Dev” indicate the average and standard deviation of the function error values obtained in 25 runs, respectively. Wilcoxon’s rank
sum test at a 0.05 significance level is performed between DE/current-to-best/1/bin and U-DE/current-to-best/1/bin, and between DE/current-to-rand/1/bin
and U-DE/current-to-rand/1/bin. “+”, “−”, and “=” denote that the performance of DE without the restrained condition is better than, worse than, and similar
to that of DE with the restrained condition, respectively

Table S4 Experimental results of JADE, U-JADE, jDE, and U-jDE over 51 independent runs on the 28 test functions with 30D from IEEE CEC2013 using
300,000 FEs

JADE U-JADE jDE U-jDE
Test functions (30D)

Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev

c f1 0.00E+00±0.00E+00 0.00E+00±0.00E+00= 0.00E+00±0.00E+00 0.00E+00±0.00E+00=

c f2 7.80E+03±6.74E+03 6.88E+03±5.13E+03+ 1.39E+05±8.26E+04 1.37E+05±9.15E+04=

Unimodal c f3 1.74E+06±5.71E+06 3.42E+05±1.46E+06+ 1.25E+06±1.69E+06 1.35E+06±1.87E+06=

functions c f4 5.35E+03±1.36E+04 4.72E+03±1.12E+04+ 5.22E+00±5.57E+00 5.25E+00±5.63E+00=

c f5 0.00E+00±0.00E+00 0.00E+00±0.00E+00= 0.00E+00±0.00E+00 0.00E+00±0.00E+00=

c f6 3.62E+00±9.17E+00 1.03E+00±5.17E+00+ 1.33E+01±4.45E+00 1.27E+01±3.85E+00+

c f7 5.26E+00±8.25E+00 4.11E+00±5.01E+00+ 3.56E+00±3.07E+00 3.35E+00±2.91E+00+

c f8 2.09E+01±4.33E–02 2.09E+01±1.31E–01= 2.09E+01±4.65E–02 2.09E+01±4.78E–02=

c f9 2.61E+01±1.83E+00 2.63E+01±1.42E+00= 2.82E+01±1.34E+00 2.51E+01±5.67E+00+

c f10 3.67E–02±2.45E–02 3.72E–02±2.53E–02= 4.01E–02±2.63E–02 3.66E–02±2.89E–02=

c f11 0.00E+00±0.00E+00 0.00E+00±0.00E+00= 0.00E+00±0.00E+00 0.00E+00±0.00E+00=

Basic c f12 2.38E+01±4.16E+00 2.37E+01±4.32E+00= 5.97E+01±1.01E+01 5.34E+01±8.96E+00+

multimodal c f13 4.43E+01±1.27E+01 4.50E+01±1.38E+01= 9.08E+01±1.67E+01 8.06E+01±1.78E+01+
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(Continued)

JADE U-JADE jDE U-jDE
Test functions (30D)

Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev

functions c f14 3.31E–02±2.39E–02 3.32E–02±2.88E–02= 2.44E–03±6.78E–03 1.51E–02±1.67E–02–

c f15 3.31E+03±3.01E+02 3.28E+03±3.43E+02= 5.11E+03±3.59E+02 4.85E+03±3.65E+02+

c f16 1.70E+00±6.69E–01 1.76E+00±7.43E–01= 2.37E+00±2.77E–01 2.36E+00±3.32E–01=

c f17 3.04E+01±2.74E–14 3.04E+01±3.45E–14= 3.04E+01±3.82E–14 3.04E+01±4.08E–14=

c f18 7.69E+01±6.06E+00 7.67E+01±6.01E+00= 1.59E+02±1.56E+01 1.49E+02±1.63E+01+

c f19 1.45E+00±1.20E–01 1.47E+00±1.01E–01= 1.61E+00±1.55E–01 1.64E+00±1.41E–01=

c f20 1.05E+01±5.07E–01 1.06E+01±5.35E–01= 1.16E+01±3.63E–01 1.16E+01±3.50E–01=

c f21 3.09E+02±7.22E+01 2.96E+02±6.02E+01+ 2.76E+02±7.29E+01 2.76E+02±7.31E+01=

c f22 9.14E+01±3.49E+01 9.18E+01±2.80E+01= 1.31E+02±2.36E+01 1.09E+02±2.27E+01+

Composition c f23 3.47E+03±4.74E+02 3.48E+03±4.57E+02= 5.49E+03±5.05E+02 5.48E+03±5.85E+02=

functions c f24 2.13E+02±1.23E+01 2.09E+02±7.13E+00+ 2.13E+02±1.11E+01 2.14E+02±1.04E+01=

c f25 2.74E+02±1.17E+01 2.73E+02±9.89E+00= 2.49E+02±8.68E+00 2.49E+02±6.25E+00=

c f26 2.19E+02±4.92E+01 2.12E+02±3.78E+01+ 2.05E+02±2.65E+01 2.02E+02±1.57E+01=

c f27 6.76E+02±2.33E+02 6.85E+02±2.33E+02= 6.86E+02±1.90E+02 6.23E+02±1.52E+02+

c f28 3.19E+02±1.39E+02 3.19E+02±1.39E+02= 3.00E+02±0.00E+00 3.00E+02±0.00E+00=

+ 8 + 9

– 0 – 1

= 20 = 18

Note: “Mean Error” and “Std Dev” indicate the average and standard deviation of the function error values obtained in 51 runs, respectively. Wilcoxon’s rank
sum test at a 0.05 significance level is performed between JADE and U-JADE, and between jDE and U-jDE. “+”, “−”, and “=” denote that the performance
of DE without the restrained condition is better than, worse than, and similar to that of DE with the restrained condition, respectively

Table S5 Experimental results of SaDE, U-SaDE, EPSDE, and U-EPSDE over 51 independent runs on the 28 test functions with 30D from IEEE CEC2013
using 300,000 FEs

SaDE U-SaDE EPSDE U-EPSDE
Test functions (30D)

Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev

c f1 0.00E+00±0.00E+00 0.00E+00±0.00E+00= 0.00E+00±0.00E+00 0.00E+00±0.00E+00=

c f2 4.03E+05±1.91E+05 4.26E+05±2.42E+05= 8.16E+05±5.00E+06 8.64E+05±3.50E+06=

Unimodal c f3 1.72E+07±3.10E+07 1.38E+07±1.84E+07+ 1.52E+08±4.11E+08 5.73E+07±3.25E+08+

functions c f4 3.28E+03±1.67E+03 3.43E+03±1.84E+03= 8.47E+03±2.78E+04 3.30E+03±9.79E+03+

c f5 0.00E+00±0.00E+00 0.00E+00±0.00E+00= 0.00E+00±0.00E+00 0.00E+00±0.00E+00=

c f6 3.09E+01±2.92E+01 2.93E+01±2.80E+01+ 9.31E+00±1.02E+00 9.07E+00±2.23E+00+

c f7 2.90E+01±1.41E+01 2.52E+01±1.12E+01+ 6.56E+01±4.88E+01 6.01E+01±3.84E+01+

c f8 2.09E+01±5.08E–02 2.09E+01±5.52E–02= 2.09E+01±4.52E–02 2.09E+01±4.28E–02=

c f9 1.78E+01±2.09E+00 1.75E+01±2.91E+00= 3.36E+01±3.59E+00 3.38E+01±3.63E+00=

c f10 2.69E–01±1.51E–01 2.72E–01±1.34E–01= 9.78E–02±6.92E–02 9.95E–02±5.80E–02=

c f11 1.56E–01±4.61E–01 1.85E–01±5.47E–01= 0.00E+00±0.00E+00 0.00E+00±0.00E+00=

Basic c f12 4.81E+01±1.14E+01 4.57E+01±9.52E+00+ 4.86E+01±9.87E+00 4.89E+01±1.65E+01=

multimodal c f13 9.87E+01±2.45E+01 9.92E+01±1.92E+01= 7.94E+01±1.75E+01 7.90E+01±2.06E+01=

functions c f14 7.76E–01±1.04E+00 7.82E–01±1.08E+00= 3.47E–01±4.89E–01 2.88E–01±3.52E–01+

c f15 4.74E+03±1.02E+03 4.75E+03±1.03E+03= 6.65E+03±8.15E+02 6.57E+03±7.55E+02=

c f16 2.24E+00±2.62E–01 2.22E+00±2.63E–01= 2.49E+00±2.59E–01 2.44E+00±2.94E–01=

c f17 3.04E+01±4.62E–02 3.04E+01±4.34E–02= 3.04E+01±4.86E–02 3.04E+01±2.22E–03=

c f18 1.30E+02±4.36E+01 1.17E+02±4.37E+01+ 1.36E+02±1.74E+01 1.34E+02±1.35E+01=

c f19 4.10E+00±8.18E–01 3.83E+00±9.04E–01+ 1.86E+00±2.40E–01 1.85E+00±2.15E–01=

c f20 1.08E+01±6.55E–01 1.06E+01±7.11E–01= 1.32E+01±6.00E–01 1.30E+01±6.75E–01+

c f21 3.14E+02±6.22E+01 3.20E+02±6.58E+01= 2.90E+02±7.61E+01 2.95E+02±8.23E+01=

c f22 1.26E+02±4.47E+01 1.19E+02±3.44E+01+ 3.33E+02±1.58E+02 3.00E+02±1.22E+02+

Composition c f23 4.68E+03±1.10E+03 4.36E+03±1.11E+03+ 7.07E+03±7.79E+02 6.86E+03±8.09E+02+

functions c f24 2.26E+02±6.69E+00 2.25E+02±5.70E+00= 2.90E+02±6.65E+00 2.88E+02±7.83E+00=

c f25 2.64E+02±1.22E+01 2.65E+02±1.14E+01= 2.98E+02±2.94E+00 2.98E+02±2.85E+00=

c f26 2.10E+02±3.53E+01 2.05E+02±2.51E+01+ 3.59E+02±6.55E+01 3.61E+02±4.89E+01=
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SaDE U-SaDE EPSDE U-EPSDE
Test functions (30D)

Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev

c f27 5.94E+02±6.53E+01 5.86E+02±7.75E+01+ 1.21E+03±7.03E+01 1.20E+03±7.91E+01=

c f28 3.00E+02±0.00E+00 2.96E+02±2.85E+01+ 3.20E+02±1.43E+02 3.00E+02±0.00E+00+

+ 11 + 9

– 0 – 0

= 17 = 19

Note: “Mean Error” and “Std Dev” indicate the average and standard deviation of the function error values obtained in 51 runs, respectively. Wilcoxon’s
rank sum test at a 0.05 significance level is performed between SaDE and U-SaDE, and between EPSDE and U-EPSDE. “+”, “−”, and “=” denote that the
performance of DE without the restrained condition is better than, worse than, and similar to that of DE with the restrained condition, respectively

Table S6 Experimental results of CoDE, U-CoDE, LSHADE, U-LSHADE, JADE/eig, and U-JADE/eig over 51 independent runs on the 28 test functions
with 30D from IEEE CEC2013 using 300,000 FEs

CoDE U-CoDE LSHADE U-LSHADE JADE/eig U-JADE/eig
Test functions (30D)

Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev

c f1 0.00E+00±0.00E+00 0.00E+00±0.00E+00= 0.00E+00±0.00E+00 0.00E+00±0.00E+00= 0.00E+00±0.00E+00 0.00E+00±0.00E+00=

c f2 1.86E+05±9.59E+04 8.28E+04±4.98E+04+ 0.00E+00±0.00E+00 0.00E+00±0.00E+00= 8.53E+03±7.30E+03 7.31E+03±5.50E+03+

Unimodal c f3 1.13E+09±6.65E+08 9.43E+05±2.39E+06+ 1.78E+00±1.05E+01 5.81E–02±4.01E–01+ 4.97E+05±2.46E+06 1.16E+04±5.30E+04+

functions c f4 6.21E–01±7.05E–01 1.07E–01±2.29E–01+ 0.00E+00±0.00E+00 0.00E+00±0.00E+00= 4.13E–07±7.45E–07 5.79E–07±6.28E–07=

c f5 0.00E+00±0.00E+00 0.00E+00±0.00E+00= 0.00E+00±0.00E+00 0.00E+00±0.00E+00= 0.00E+00±0.00E+00 0.00E+00±0.00E+00=

c f6 7.21E+00±7.14E+00 4.11E+00±8.99E+00+ 0.00E+00±0.00E+00 0.00E+00±0.00E+00= 3.10E+00±8.59E+00 1.11E+00±5.19E+00+

c f7 6.84E+02±2.09E+02 7.33E+01±4.00E+01+ 6.45E–01±4.46E–01 5.60E–01±4.99E–01+ 2.35E+00±2.46E+00 5.02E+00±7.65E+00–

c f8 2.09E+01±6.18E–02 2.08E+01±9.72E–02+ 2.08E+01±1.12E–01 2.07E+01±1.87E–01= 2.09E+01±5.69E–02 2.09E+01±5.69E–02=

c f9 3.22E+01±1.42E+00 1.38E+01±3.26E+00+ 2.63E+01±1.28E+00 2.58E+01±1.78E+00+ 2.57E+01±1.87E+00 2.60E+01±1.77E+00=

c f10 9.05E–03±2.32E–02 3.74E–02±2.52E–02– 2.90E–04±1.44E–03 2.90E–04±1.44E–03= 3.11E–02±1.90E–02 2.56E–02±1.72E–02+

c f11 0.00E+00±0.00E+00 0.00E+00±0.00E+00= 0.00E+00±0.00E+00 0.00E+00±0.00E+00= 0.00E+00±0.00E+00 0.00E+00±0.00E+00=

Basic c f12 1.89E+02±1.61E+01 3.68E+01±9.00E+00+ 5.44E+01±1.32E+01 5.46E+01±1.35E+01= 2.51E+01±4.64E+00 2.49E+01±4.25E+00+

multimodal c f13 2.04E+02±1.50E+01 7.58E+01±2.40E+01+ 5.95E+00±2.78E+00 5.42E+00±2.09E+00+ 5.42E+01±1.32E+01 5.25E+01±1.33E+01+

functions c f14 1.19E+02±2.52E+01 3.28E+00±3.53E+00+ 3.11E–02±2.54E–02 2.44E–02±2.19E–02+ 2.45E+01±5.92E+00 2.50E+01±7.13E+00=

c f15 6.65E+03±3.57E+02 3.53E+03±5.76E+02+ 2.69E+03±3.45E+02 2.70E+03±3.49E+02= 3.27E+03±3.56E+02 3.16E+03±3.54E+02+

c f15 2.46E+00±2.51E–01 3.40E–01±2.36E–01+ 7.85E–01±1.75E–01 5.25E–01±3.09E–01+ 1.81E+00±6.80E–01 1.53E+00±8.91E–01+

c f17 3.09E+01±1.86E–01 3.04E+01±3.29E–02+ 3.04E+01±7.24E–12 3.04E+01±1.60E–11= 3.06E+01±9.09E–02 3.06E+01±7.13E–02=

c f18 2.49E+02±1.21E+01 6.42E+01±1.27E+01+ 5.16E+01±3.21E+00 5.18E+01±2.64E+00= 7.75E+01±6.74E+00 7.53E+01±5.65E+00+

c f19 6.14E+00±5.49E–01 1.56E+00±2.82E–01+ 1.17E+00±9.37E–01 1.18E+00±9.90E–01= 1.72E+00±1.36E–01 1.69E+00±1.54E–01=

c f20 1.25E+01±2.46E–01 1.06E+01±6.65E–01+ 1.02E+01±1.45E+00 1.03E+01±1.49E+00= 1.04E+01±4.75E–01 1.03E+01±4.28E–01=

c f21 3.17E+02±1.09E+02 3.03E+02±9.35E+01+ 2.93E+02±3.69E+01 2.93E+02±3.44E+01= 3.14E+02±7.28E+01 2.91E+02±7.04E+01+

c f22 1.01E+03±2.18E+02 1.09E+02±2.72E+01+ 1.08E+02±2.37E+00 1.08E+02±2.51E+00= 1.44E+02±2.10E+01 1.46E+02±3.25E+01=

c f23 6.93E+03±3.24E+02 3.54E+03±6.49E+02+ 2.49E+03±2.90E+02 2.50E+03±3.37E+02= 3.24E+03±3.90E+02 3.29E+03±3.78E+02=

Composition c f24 2.77E+02±5.19E+00 2.21E+02±8.24E+00+ 2.00E+02±8.01E–01 2.00E+02±7.13E–01= 2.09E+02±1.18E+01 2.09E+02±1.23E+01=

functions c f25 3.01E+02±3.77E+00 2.84E+02±1.35E+01+ 2.41E+02±4.45E+00 2.42E+02±6.80E+00= 2.63E+02±1.54E+01 2.61E+02±1.62E+01=

c f26 2.00E+02±6.39E–03 2.15E+02±4.19E+01– 2.00E+02±2.72E–14 2.00E+02±2.63E–14= 2.09E+02±3.22E+01 2.10E+02±3.45E+01=

c f27 1.10E+03±3.74E+01 6.05E+02±9.58E+01+ 3.02E+02±5.64E+00 3.02E+02±6.35E+00= 5.52E+02±1.97E+02 5.09E+02±2.15E+02+

c f28 3.00E+02±4.66E–10 3.00E+02±0.00E–10= 3.00E+02±0.00E+00 3.00E+02±0.00E+00= 3.21E+02±1.51E+02 3.00E+02±0.00E+00+

+ 22 + 6 + 12

– 2 – 0 – 1

= 4 = 22 = 15

Note: “Mean Error” and “Std Dev” indicate the average and standard deviation of the function error values obtained in 51 runs, respectively. Wilcoxon’s rank
sum test at a 0.05 significance level is performed between CoDE and U-CoDE, between LSHADE and U-LSHADE, and between JADE/eig and U-JADE/eig.
“+”, “−”, and “=” denote that the performance of DE without the restrained condition is better than, worse than, and similar to that of DE with the restrained
condition, respectively

Table S7 Experimental results of JADE, U-JADE, jDE, and U-jDE over 51 independent runs on the 28 test functions with 50D from IEEE CEC2013 using
500,000 FEs

JADE U-JADE jDE U-jDE
Test functions (50D)

Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev

c f1 0.00E+00±0.00E+00 0.00E+00±0.00E+00= 0.00E+00±0.00E+00 0.00E+00±0.00E+00=

c f2 2.35E+04±1.11E+04 2.42E+04±1.47E+04= 5.24E+05±2.44E+05 5.45E+05±2.11E+05=

Unimodal c f3 4.87E+06±9.77E+06 3.83E+06±9.61E+06+ 7.05E+06±1.58E+07 5.13E+06±9.38E+06+

functions c f4 9.78E+03±2.02E+04 5.36E+03±1.66E+04+ 1.20E+01±9.97E+00 1.22E+01±1.60E+01=

c f5 0.00E+00±0.00E+00 0.00E+00±0.00E+00= 0.00E+00±0.00E+00 0.00E+00±0.00E+00=
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JADE U-JADE jDE U-jDE
Test functions (50D)

Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev

c f6 4.37E+01±1.11E+00 4.28E+01±5.66E+00+ 4.38E+01±4.43E–01 4.39E+01±7.65E–01=

c f7 2.29E+01±1.04E+01 2.32E+01±1.34E+01= 1.81E+01±6.92E+00 1.92E+01±7.07E+00=

c f8 2.11E+01±1.03E–01 2.11E+01±8.98E–02= 2.11E+01±4.65E–02 2.12E+01±3.60E–02=

c f9 5.46E+01±2.01E+00 5.41E+01±2.36E+00= 5.50E+01±2.61E+00 5.38E+01±4.86E+00+

c f10 3.09E–02±2.09E–02 3.11E–02±2.24E–02= 5.30E–02±3.55E–02 5.35E–02±4.06E–02=

c f11 0.00E+00±0.00E+00 0.00E+00±0.00E+00= 0.00E+00±0.00E+00 0.00E+00±0.00E+00=

Basic c f12 5.68E+01±9.48E+00 5.61E+01±9.39E+00= 1.06E+02±1.64E+01 9.25E+01±2.17E+01+

multimodal c f13 1.28E+02±2.52E+01 1.27E+02±2.33E+01= 1.81E+02±2.80E+01 1.70E+02±2.49E+01+

functions c f14 4.28E–02±2.61E–02 4.25E–02±2.70E–02= 6.33E–03±1.69E–02 4.64E–03±1.03E–02=

c f15 6.97E+03±4.67E+02 6.97E+03±4.72E+02= 9.87E+03±4.40E+02 9.59E+03±6.84E+02+

c f16 2.00E+00±7.86E–01 2.01E+00±7.91E–01= 3.01E+00±3.58E–01 2.97E+00±4.40E–01+

c f17 5.08E+01±3.52E–14 5.08E+01±3.61E–14= 5.08E+01±6.97E–14 5.08E+01±7.89E–14=

c f18 1.40E+02±1.11E+01 1.41E+02±1.06E+01= 2.79E+02±2.54E+01 2.59E+02±1.91E+01+

c f19 2.75E+00±1.82E–01 2.69E+00±2.01E–01+ 2.91E+00±2.06E–01 2.88E+00±2.10E–01+

c f20 1.96E+01±6.07E–01 1.97E+01±5.72E–01= 2.14E+01±4.47E–01 2.11E+01±5.10E–01+

c f21 8.06E+02±4.07E+02 7.69E+02±4.19E+02+ 5.79E+02±4.58E+02 5.83E+02±4.65E+02=

c f22 2.43E+01±4.63E+01 1.28E+01±5.55E+00+ 1.03E+02±5.13E+01 2.05E+01±1.23E+01+

Composition c f23 7.32E+03±8.42E+02 7.28E+03±5.69E+02+ 1.08E+04±7.47E+02 1.06E+04±6.76E+02=

functions c f24 2.49E+02±2.10E+01 2.47E+02±2.04E+01= 2.55E+02±1.49E+01 2.53E+02±1.20E+01=

c f25 3.52E+02±2.62E+01 3.52E+02±1.86E+01= 3.08E+02±2.11E+01 3.01E+02±1.04E+01+

c f26 3.40E+02±1.05E+02 3.42E+02±1.01E+02= 2.32E+02±6.69E+01 2.34E+02±7.05E+01=

c f27 1.40E+03±3.22E+02 1.32E+03±3.01E+02+ 1.09E+03±2.23E+02 1.03E+03±1.55E+02=

c f28 5.73E+02±7.00E+02 5.73E+02±6.98E+02= 4.57E+02±4.12E+02 4.00E+02±2.41E–14+

+ 8 + 12

– 0 – 0

= 20 = 16

Note: “Mean Error” and “Std Dev” indicate the average and standard deviation of the function error values obtained in 51 runs, respectively. Wilcoxon’s rank
sum test at a 0.05 significance level is performed between JADE and U-JADE, and between jDE and U-jDE. “+”, “−”, and “=” denote that the performance
of DE without the restrained condition is better than, worse than, and similar to that of DE with the restrained condition, respectively

Table S8 Experimental results of SaDE, U-SaDE, EPSDE, and U-EPSDE over 51 independent runs on the 28 test functions with 50D from IEEE CEC2013
using 500,000 FEs

SaDE U-SaDE EPSDE U-EPSDE
Test functions (50D)

Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev

c f1 0.00E+00±0.00E+00 0.00E+00±0.00E+00= 0.00E+00±0.00E+00 0.00E+00±0.00E+00=

c f2 8.65E+05±3.14E+05 8.78E+05±3.25E+05= 1.41E+07±2.86E+07 3.62E+06±1.41E+07+

Unimodal c f3 8.62E+07±1.13E+08 7.95E+07±7.20E+07+ 2.75E+09±8.50E+09 4.23E+08±1.31E+09+

functions c f4 5.11E+03±1.92E+03 5.23E+03±1.85E+03= 1.12E+04±3.54E+04 5.25E+03±2.13E+04+

c f5 0.00E+00±0.00E+00 0.00E+00±0.00E+00= 0.00E+00±0.00E+00 0.00E+00±0.00E+00=

c f6 5.31E+01±1.95E+01 5.33E+01±1.99E+01= 3.62E+01±1.87E+00 3.57E+01±4.71E+00+

c f7 4.97E+01±8.99E+00 4.99E+01±9.13E+00= 8.44E+01±3.31E+01 7.62E+01±3.19E+01+

c f8 2.11E+01±4.06E–02 2.11E+01±3.39E–02= 2.11E+01±3.67E–02 2.11E+01±4.47E–02=

c f9 3.96E+01±4.61E+00 3.83E+01±3.44E+00+ 7.05E+01±3.47E+00 6.96E+01±4.02E+00+

c f10 2.69E–01±1.68E–01 2.78E–01±1.55E–01= 1.32E–01±7.41E–02 1.24E–01±6.97E–02+

c f11 2.04E+00±1.78E+00 2.04E+00±1.71E+00= 9.75E–02±3.59E–01 9.53E–02±2.78E–01+

Basic c f12 1.25E+02±2.45E+01 1.18E+02±2.14E+01+ 1.62E+02±2.87E+01 1.66E+02±3.57E+01=

multimodal c f13 2.56E+02±3.96E+01 2.47E+02±3.97E+01+ 2.46E+02±4.99E+01 2.47E+02±4.17E+01=

functions c f14 7.22E+00±5.81E+00 6.95E+00±3.62E+00+ 9.96E+02±8.15E+02 8.73E+02±8.16E+02+

c f15 8.54E+03±2.11E+03 8.61E+03±2.23E+03= 1.40E+04±5.84E+02 1.38E+04±5.97E+02+

c f16 3.12E+00±3.09E–01 3.03E+00±2.56E–01= 3.35E+00±3.20E–01 3.27E+00±2.98E–01+

c f17 5.12E+01±4.33E–01 5.13E+01±3.93E–01= 5.08E+01±3.02E–01 5.10E+01±1.15E+00=

c f18 1.58E+02±7.35E+01 1.59E+02±7.41E+01= 3.37E+02±2.63E+01 3.41E+02±2.67E+01=
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(Continued)

SaDE U-SaDE EPSDE U-EPSDE
Test functions (50D)

Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev

c f19 1.09E+01±2.67E+00 1.09E+01±2.33E+00= 6.17E+00±8.21E–01 6.18E+00±9.64E–01=

c f20 1.99E+01±9.52E–01 2.00E+01±1.03E+00= 2.25E+01±9.77E–01 2.24E+01±9.60E–01=

c f21 8.32E+02±3.73E+02 8.34E+02±3.60E+02= 7.71E+02±4.05E+02 7.78E+02±4.02E+02=

c f22 9.30E+01±2.18E+02 3.36E+01±5.52E+01+ 2.04E+03±5.57E+02 2.07E+03±5.50E+02=

Composition c f23 8.40E+03±2.11E+03 8.42E+03±2.26E+03= 1.41E+04±6.16E+02 1.40E+04±8.00E+02=

functions c f24 2.78E+02±1.01E+01 2.78E+02±1.03E+01= 3.81E+02±5.38E+00 3.79E+02±5.19E+00=

c f25 3.45E+02±9.28E+00 3.43E+02±1.01E+01= 3.83E+02±4.15E+00 3.82E+02±3.83E+00=

c f26 2.95E+02±9.08E+01 2.69E+02±9.05E+01+ 4.73E+02±8.59E+00 4.67E+02±3.30E+01=

c f27 1.18E+03±1.20E+02 1.18E+03±1.05E+02= 2.11E+03±4.34E+01 2.10E+03±5.01E+01+

c f28 5.34E+02±6.71E+02 4.00E+02±1.79E–14+ 7.65E+02±1.01E+03 7.68E+02±1.05E+03=

+ 8 + 12

– 0 – 0

= 20 = 16

Note: “Mean Error” and “Std Dev” indicate the average and standard deviation of the function error values obtained in 51 runs, respectively. Wilcoxon’s
rank sum test at a 0.05 significance level is performed between SaDE and U-SaDE, and between EPSDE and U-EPSDE. “+”, “−”, and “=” denote that the
performance of DE without the restrained condition is better than, worse than, and similar to that of DE with the restrained condition, respectively

Table S9 Experimental results of CoDE, U-CoDE, LSHADE, U-LSHADE, JADE/eig, and U-JADE/eig over 51 independent runs on the 28 test functions
with 50D from IEEE CEC2013 using 500,000 FEs

CoDE U-CoDE LSHADE U-LSHADE JADE/eig U-JADE/eig
Test functions (50D)

Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev

c f1 6.03E–07±1.91E–07 0.00E+00±0.00E+00+ 0.00E+00±0.00E+00 0.00E+00±0.00E+00= 0.00E+00±0.00E+00 0.00E+00±0.00E+00=

c f2 2.32E+06±9.91E+05 5.40E+05±2.11E+05+ 7.47E+02±1.12E+03 7.58E+02±1.34E+03= 4.05E+04±2.42E+04 3.88E+04±1.98E+04+

Unimodal c f3 3.31E+10±4.98E+09 1.43E+06±2.33E+06+ 4.67E+03±1.30E+04 3.09E+03±1.23E+04+ 3.21E+06±7.47E+06 2.50E+06±5.09E+06+

functions c f4 2.35E+03±4.57E+03 3.96E–01±3.50E–01+ 0.00E+00±0.00E+00 0.00E+00±0.00E+00= 8.72E–03±4.76E–02 6.23E–03±4.17E–02=

c f5 4.01E–04±7.37E–05 0.00E+00±0.00E+00+ 0.00E+00±0.00E+00 0.00E+00±0.00E+00= 0.00E+00±0.00E+00 0.00E+00±0.00E+00=

c f6 4.40E+01±3.38E–01 4.34E+01±4.50E–14+ 4.34E+01±2.17E–14 4.34E+01±2.17E–14= 4.21E+01±8.69E+00 4.23E+01±8.65E+00=

c f7 1.17E+03±3.13E+02 5.06E+01±1.92E+01+ 2.51E+00±1.25E+00 2.11E+00±1.34E+00+ 2.19E+01±1.01E+01 2.65E+01±1.08E+01–

c f8 2.11E+01±4.24E–02 2.11E+01±4.17E–02= 2.11E+01±1.00E–01 2.09E+01±1.70E–01= 2.11E+01±8.87E–02 2.11E+01±8.42E–02=

c f9 6.50E+01±1.71E+00 2.44E+01±5.17E+00+ 5.28E+01±2.45E+00 5.26E+01±1.92E+00= 5.32E+01±2.01E+00 5.27E+01±2.42E+00+

c f10 1.97E+00±4.55E–01 3.02E–02±2.11E–02+ 9.08E–03±9.93E–03 9.75E–03±9.51E–03= 2.82E–02±1.84E–02 2.63E–02±2.08E–02+

c f11 4.93E+01±3.51E+00 1.26E+01±6.08E+00+ 0.00E+00±0.00E+00 0.00E+00±0.00E+00= 0.00E+00±0.00E+00 0.00E+00±0.00E+00=

Basic c f12 4.80E+02±1.74E+01 6.78E+01±1.53E+01+ 1.44E+01±2.59E+00 1.45E+01±2.48E+00= 6.88E+01±1.12E+01 6.57E+01±1.11E+01+

multimodal c f13 4.83E+02±1.91E+01 1.39E+02±3.77E+01+ 2.09E+01±8.05E+00 2.09E+01±7.89E+00= 1.51E+02±2.53E+01 1.49E+02±2.68E+01=

functions c f14 3.03E+03±2.26E+02 1.30E+03±2.75E+02+ 2.13E–01±4.60E–02 2.14E–01±5.12E–02= 6.85E+01±1.10E+01 6.41E+01±1.02E+01+

c f15 1.39E+04±4.14E+02 6.60E+03±8.33E+02+ 6.31E+03±3.35E+02 6.29E+03±3.82E+02= 6.91E+03±4.44E+02 6.73E+03±4.63E+02+

c f16 3.22E+00±3.55E–01 2.88E+00±5.83E–01+ 1.25E+00±2.16E–01 1.05E+00±3.92E–01+ 1.92E+00±8.91E–01 1.74E+00±8.62E–01+

c f17 1.16E+02±4.48E+00 8.89E+01±3.65E+00+ 5.08E+01±1.60E–03 5.08E+01±2.45E–03= 5.15E+01±1.82E–01 5.14E+01±1.76E–01=

c f18 5.46E+02±2.09E+01 1.10E+02±2.85E+01+ 1.04E+02±5.80E+00 1.02E+02±6.04E+00= 1.47E+02±9.21E+00 1.48E+02±1.02E+01=

c f19 2.17E+01±1.33E+00 1.26E+01±2.08E+00+ 2.50E+00±1.30E–01 2.52E+00±1.46E–01= 3.48E+00±3.15E–01 3.49E+00±3.29E–01=

c f20 2.26E+01±2.11E–01 2.08E+01±1.09E–01+ 1.82E+01±4.22E–01 1.82E+01±6.46E–01= 1.97E+01±5.28E–01 1.96E+01±5.65E–01=

c f21 2.18E+02±1.29E+02 4.78E+02±4.18E+02– 8.51E+02±4.24E+02 8.03E+02±4.34E+02+ 7.86E+02±3.67E+02 7.88E+02±3.75E+02=

c f22 4.74E+03±3.76E+02 1.86E+03±5.16E+02+ 1.37E+01±1.38E+00 1.38E+01±1.54E+00= 1.36E+02±9.72E+01 1.17E+02±6.54E+01+

c f23 1.40E+04±3.82E+02 6.89E+03±9.71E+02+ 5.78E+03±4.14E+02 5.79E+03±4.65E+02= 7.14E+03±6.44E+02 7.11E+03±5.64E+02=

Composition c f24 3.60E+02±5.81E+00 2.37E+02±1.12E+01+ 2.11E+02±5.89E+00 2.11E+02±5.02E+00= 2.43E+02±1.74E+01 2.44E+02±1.72E+01=

functions c f25 3.85E+02±3.56E+00 3.83E+02±4.25E+00+ 2.78E+02±6.55E+01 2.77E+02±6.22E+01= 3.31E+02±2.72E+01 3.29E+02±2.94E+01=

c f26 2.32E+02±8.54E+01 2.59E+02±7.80E+01– 2.47E+02±5.29E+01 2.48E+02±5.40E+01= 3.47E+02±9.52E+01 3.49E+02±9.27E+01=

c f27 1.96E+03±4.82E+01 8.83E+02±1.48E+01+ 4.04E+02±5.24E+01 3.84E+02±4.45E+01+ 1.15E+03±3.56E+02 1.18E+03±3.34E+02=

c f28 4.00E+02±1.81E–03 4.00E+02±2.27E–14+ 4.00E+02±4.95E–14 4.00E+02±3.50E–14= 5.17E+02±5.88E+02 4.00E+02±5.74E–14+

+ 25 + 5 + 10

– 2 – 0 – 1

= 1 = 23 = 17

Note: “Mean Error” and “Std Dev” indicate the average and standard deviation of the function error values obtained in 51 runs, respectively. Wilcoxon’s Rank
sum test at a 0.05 significance level is performed between CoDE and U-CoDE, between LSHADE and U-LSHADE, and between JADE/eig and U-JADE/eig.
“+”, “−”, and “=” denote that the performance of DE without the restrained condition is better than, worse than, and similar to that of DE with the restrained
condition, respectively
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