
Front. Comput. Sci., 2017, 11(5): 895–911

DOI 10.1007/s11704-016-5346-4

MapReduce-based entity matching with multiple blocking
functions

Cheqing JIN , Jie CHEN, Huiping LIU

Institute for Data Science and Engineering, School of Computer Science and Software Engineering,

East China Normal University, Shanghai 200062, China

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Abstract Entity matching that aims at finding some records

belonging to the same real-world objects has been studied for

decades. In order to avoid verifying every pair of records in a

massive data set, a common method, known as the blocking-

based method, tends to select a small proportion of record

pairs for verification with a far lower cost than O(n2), where

n is the size of the data set. Furthermore, executing multiple

blocking functions independently is critical since much more

matching records can be found in this way, so that the quality

of the query result can be improved significantly.

It is popular to use the MapReduce (MR) framework to

improve the performance and the scalability of some compli-

cated queries by running a lot of map (/reduce) tasks in par-

allel. However, entity matching upon the MapReduce frame-

work is non-trivial due to two inevitable challenges: load bal-

ancing and pair deduplication. In this paper, we propose a

novel solution, called MrEm, to handle these challenges with

the support of multiple blocking functions. Although the ex-

isting work can deal with load balancing and pair deduplica-

tion respectively, it still cannot deal with both challenges at

the same time. Theoretical analysis and experimental results

upon real and synthetic data sets illustrate the high effective-

ness and efficiency of our proposed solutions.

Keywords entity matching, MapReduce, load balancing,

pair deduplication

Received August 14, 2015; accepted December 15, 2015

E-mail: cqjin@sei.ecnu.edu.cn

1 Introduction

Entity Matching is critical in both data cleaning and data in-

tegration, which is to find matching records belonging to the

same real-world object [1–5]. For example, papers or books

referring to the same citations may exist in several different

bibliographic sources; fingerprints belonging to the same per-

sons may be collected from different places. Entity matching

should be applied when integrating such data sources into one

clean source. In the literature on the subject, it has also been

referred to as object matching, record linkage, reference rec-

onciliation and so on.

It is challenging to execute entity matching upon a massive

data set efficiently since the number of record pairs is huge,

i.e., O(n2) complexity where n is the number of records in the

data set. The blocking-based method is a typical solution [6–

9]. With the help of a specific blocking function, it selects a

small proportion of record pairs for further comparison. The

rest record pairs are ignored directly, so it greatly saves the

computational cost.

Typical blocking methods include standard blocking [10],

sorted neighborhood method [11], locality sensitive hashing

(LSH) [12,13] and so on. Each specific blocking function can

generate a key for each record. Records that share the same

key are dispatched to the same block and any pair belong-

ing to the block is treated as a candidate pair, which is to be

verified later. In general, the keys for each record in the data

set can be generated by scanning the data set only once. It is

worth noting that the cost of key generation is cheap in com-

896 Front. Comput. Sci., 2017, 11(5): 895–911

parison with the exact verification cost.

Example 1 Table 1 illustrates a small data set containing

nine names, where the first six names refer to Martin Luther

King, a leader in the African-American Civil Rights Move-

ment, and the last three names refer to Mark Twain, an

American writer and humorist. Hence, there are in total 18(
=
(

6
2

)
+
(
3
2

))
matching record pairs. The First/Last K Letters

(FirstKL/LastKL) are two specific strategies of the standard

blocking techniques, where FirstKL (/LastKL) extracts the

first (/last) K letters of a record as the key. Using the FirstKL

(K = 2) method will divide all records into two blocks ac-

cording to the distinct keys: ‘‘Ma” and ‘‘M.”. Similarly, using

the LastKL (K = 2) method will result in three distinct keys:

‘‘ng”, ‘‘r.”, and ‘‘in”.

Table 1 A small data set

Key (K = 2)
rID Content eID

FirstKL LastKL

t1 1 Martin Luther King α Ma ng

t2 2 Martin Luther King, Jr. α Ma r.

t3 3 Marting Luther King α Ma ng

t4 4 Martin King α Ma ng

t5 5 Martin L. King α Ma ng

t6 6 M. L. King α M. ng

t7 7 M. Twaing β M. ng

t8 8 Mark Twain β Ma in

t9 9 M. Twain β M. in

Note: α =Martin Luther King, β =Mark Twain

Figures 1(a) and 1(b) illustrate the candidate pairs gener-

ated by each blocking function. The candidate pairs achieved

by each function are represented by the solid lines (for the

matching pairs) and dash lines (for the non-matching pairs).

For example, in Fig. 1(a), (t1, t2) is a matching candidate pair,

(t1, t8) is a non-matching candidate pair, while (t1, t7) is not

a candidate pair. We can observe that each blocking function

achieves 11
(
=
(

5
2

)
+
(
2
2

))
matching pairs.

Fig. 1 The candidate pairs. (a) FirstKL; (b) LastKL; (c) FirstKL+LastKL

1.1 Using one or multiple blocking functions?

As mentioned above, the candidate pairs generated by a spe-

cial blocking function cannot cover all matching pairs. The

blocking function may miss some matching pairs, while also

contain some non-matching pairs. Moreover, each blocking

function also has different effects on a data set.

An interesting extensive issue for qualified result is to se-

lect a suitable blocking function that is capable of finding

more matching pairs, executing more efficiently, or both. In

general, such a blocking function can be selected by the com-

putation upon a small training set. However, the quality may

still be restrained even using the best blocking function. The

reports upon real data sets (to be introduced later in Section

5) show that more than 10% matching pairs will be missed no

matter which of the five blocking functions is used. Similar

phenomenon is also reported in a survey paper [7].

An alternative method for qualified result is to use multiple

blocking functions simultaneously instead of a single block-

ing function. At first, it generates the candidate pairs by using

each blocking function, denoted as S i. Subsequently, it gen-

erates
⋃

i S i as the final candidate pairs. Finally, each pair in⋃
i S i is verified. The effects of using multiple blocking func-

tions are two folds. First, the execution cost increases since

more candidate pairs need to be verified. Second, the qual-

ity of the query result is further improved since more match-

ing pairs are detected. In general, we prefer to achieve better

qualities by paying a little more overhead [7,14,15].

For example, Fig. 1(c) illustrates all candidate pairs by us-

ing two blocking functions at the same time. The red lines

refer to the candidate pairs generated by both blocking func-

tions. Now, 15 matching pairs are found in the candidate

pairs, significantly better than using single blocking function.

1.2 Cloud computing based entity matching and the chal-

lenges

Using the cloud computing paradigm to implement some

data-intensive tasks efficiently is quite popular in recent

years, such as entity matching. In such a situation, a number

of tasks are running in parallel over a cluster that contains

many computers. As one of the most widely used program-

ming models in the cloud computing paradigm, the MapRe-

duce (MR) model enables multiple map (/reduce) subtasks

running in parallel to boost query processing. The motivation

of this paper is to devise novel MR-based solutions to process

entity matching.

Most recently, Kolb et al. first applied MapReduce frame-

work to entity matching with single blocking function, with a

special interest in load balancing because of the skewed block

distribution [16]. They proposed two MR-based solutions.

Their first solution, called BlockSplit, splits large blocks into

Cheqing JIN et al. MapReduce-based entity matching with multiple blocking functions 897

small ones (e.g., sub-blocks) according to the input data parti-

tions, and each sub-block will be handled by one task. How-

ever, the workloads may still be unbalanced due to varying

sizes of sub-blocks. Their second solution, called PairRange,

evenly dispatches record pairs to each reducer by enumerat-

ing all pairs based on statistical information called block dis-

tribution matrix, BDM. The BDM in their work in fact is a

2-D matrix that specifies the number of records of each block

across each input partition.

Besides load balancing, when employing multiple block-

ing functions to achieve high quality, another important ob-

servation is that many same pairs will exist in multiple blocks.

In Fig. 1(c), six overlapped candidate pairs are generated by

two blocking functions (described by red lines). We call such

pairs as duplicated pairs. In a centralized system, each pair

needs to be verified once after generating the union of all

candidate sets. However, it is challenging to verify distinct

pairs only once in a distributed system since the duplicates

spread across all running nodes. As we know, verifying the

pairs is expensive, which may take several hours or even days

for large data sets in real world [17]. Thus if we conduct re-

peated verification for these duplicates in different nodes si-

multaneously, it may lead to a huge waste. Kolb et al. also

proposed a straightforward technique to achieve pair dedupli-

cation [18]. Given a list of blocking functions, each mapper

not only emits the blocking key under current blocking func-

tion but also appends all blocking keys generated by previous

blocking functions. Thus each reducer can avoid evaluating

current record pair if their previous blocking keys are over-

lapped.

Dedoop [19] is a prototype and it provides load balanc-

ing techniques mentioned in Ref. [16] and pair deduplica-

tion mechanism mentioned in Ref. [18]. However, in fact the

problem of load balancing is still unsolved when we try to

combine above solutions to achieve pair deduplication and

load balancing at the same time. Although PairRange as-

sumes the number of comparisons in each reducer is nearly

equal, the solution of pair deduplication will damage this hy-

pothesis. Some reducers will avoid comparisons because of

the overlapped previous blocking keys, leading to the result

that workloads among reducers are still unbalanced. Hence, it

is critical to devise novel solutions to address both challenges.

1.3 Our framework

In this paper, we propose and evaluate five MR-based solu-

tions to handle entity matching, with special considerations

on pair deduplication and load balancing. In order to achieve

pair deduplication, we attempt to push the duplicated pairs

(generated by different blocking functions) to one working

node so that each pair can only be verified once. As for un-

balanced workloads caused by skewed data distribution, we

split heavy tasks into small subtasks. In summary, we make

the following contributions:

• We restudy the issue of entity matching in a distributed

environment by addressing two big challenges: load

balancing and pair deduplication. One significant limit

of the existing work is that these challenges cannot be

handled at the same time.

• We present a novel generalized framework (MrEm) to

address both challenges. Our framework consists of

four stages, called block building, interface implemen-

tation, pair verification, and pair cleaning. Stages 1,

3, and 4 construct the mainstream workflow to process

data, and Stage 2 is responsible for dealing with two

challenges: load balancing and pair deduplication. We

propose two concrete implementations to support the

framework: MrEm-SI and MrEm-NSI.

• We present three basic solutions to deal with this is-

sue, including Naive, PairUnit, and Dedoop+. Al-

though much simpler, their performance is lower than

MrEm, which emphasizes that this issue cannot be han-

dled by some straightforward attempts due to the big

challenges. Moreover, listing such methods also helps

to illustrate the MrEm method.

• Finally, we conduct a series of experiments on real and

synthetic data sets to illustrate high effectiveness, ef-

ficiency and scalability of the proposed solutions. We

also discuss several critical parameters.

The rest of our paper is organized as follows. We review the

preliminary knowledge in Section 2. In the next section, we

present three basic solutions to highlight the difficulty in deal-

ing with the two challenges, including Naive, PairUnit, and

Dedoop+. In Section 4, we propose a novel general frame-

work (MrEm) to overcome aforementioned challenges. Sec-

tion 5 reports experimental results upon real and synthetic

data sets. We review related work in Section 6. Finally, we

conclude this paper briefly in the last section.

2 Preliminaries

In this section, we introduce the MapReduce framework [20]

and some concepts. The MapReduce framework has been

898 Front. Comput. Sci., 2017, 11(5): 895–911

widely adopted for data-intensive parallel computation on

shared-nothing clusters. Hadoop is a popular implementa-

tion of this paradigm [21]. The MapReduce framework can

be simplified as the following two functions:

map: (keyin, valuein)→ list(keytmp, valuetmp);

reduce: (keytmp, list(valuetmp))→ list(keyout, valueout);
We describe the data flow in MapReduce framework be-

low. Data is stored on partitions of a distributed file system

(DFS). Each mapper reads a lot of key-value pairs in the form

of (keyin, valuein) from DFS and processes them separately.

Subsequently, they will emit list(keytmp, valuetmp) as out-

put. Then the jobs automatically sort the output according

to keytmp and copy it to different reducers. Once reducers

get the intermediate results, they will merge the records with

the same keytmp and take (keytmp, list(valuetmp)) as input.

Finally, they emit list(keyout, valueout) to DFS as the final

results.

Concept clarification For the ease of reading, We clarify

some concepts at first. The matching pair describes a pair of

records that refer to the same entity, i.e., (t1, t2) in Table 1 is

a matching pair since both of them refer to the entity α. The

duplicated pair describes a record pair that exists in multi-

ple blocks generated by different blocking functions. For ex-

ample, (t1, t3) is a duplicated pair when using FirstKL and

LastKL. Here, (t1, t3) is also a matching pair, while (t6, t7) is

a non-matching pair.

We use pair deduplication operator to avoid repeated veri-

fication for the duplicated pairs. In other words, it dispatches

all of the duplicated pairs to one working node, so that a du-

plicated pair only needs to be verified once. Let’s take (t1, t3)

as an example. If it is dispatched to one working node, we

can label this pair at the first verification, so that no further

verification for this pair will be conducted again. Otherwise,

such pair will be verified at different working nodes more

than once.

One of the main goals of this paper is to implement pair

deduplication as much as possible for efficiency.

3 Three basic solutions

In this section, we introduce three straightforward MR-based

solutions for entity matching, including Naive, PairUnit, and

Dedoop+. Although their performance is lower than MrEm,

the novel method that will be introduced in the next section,

listing such methods helps to illustrate the MrEm method.

3.1 Naive solution

The body of our first solution, Naive, contains two stages,

namely entity matching and pair cleaning. The first stage

generates and verifies the candidate pairs, and then emits the

matching ones. Since the same pairs may be outputted sev-

eral times after Stage 1, we also devise the second stage to

eliminate duplicates to meet some specific requirements.

At Stage 1, it first generates t blocking keys for an in-

coming record r, denoted as fi · fi(r) in the map phase

(1 � i � t), where fi denotes the i-th blocking function.

The symbol “·” denotes the concatenation operator between

two strings. In the reduce phase, each reducer will receive

the merged input data like (key, {v1, v2, . . . , vm}), where key

comes from the blocking key mentioned above (like fi · fi(r)),

and {v1, v2, . . . , vm} represents a number of input records shar-

ing that blocking key. It is worth noting that a block with

m records will result in
(

m
2

)
candidate record pairs. Subse-

quently, each reducer will call specific similarity function to

verify each candidate pair, and then emit the pair if matched.

At Stage 2, each mapper gets the output of Stage 1 as input.

For an arbitrary record pair (ti, t j), it uses i · j as the key, and

emits (i · j, (ti, t j))1) . In this way, any identical record pairs

outputted by different mapper will be assigned with identi-

cal keys. Subsequently, all identical record pairs will be dis-

patched to the same reducer, where only one copy is emitted.

This stage is a lightweight job.

Example 2 Figure 2 demonstrates a running example upon

the data set in Table 1. We assume the original data set is

split into two data partitions, and two mappers are used to

handle it. Each mapper assigns two keys for every record by

using FirstKL and LastKL. For example, the keys of record

t1 are “F ·Ma” and “L · ng”, where the symbols “F” and “L”

denote the blocking functions: FirstKL and LastKL respec-

tively. After shuffling, the records sharing the same key will

go to one reducer. For example, six records {t1, t2, t3, t4, t5, t8}
are merged together since they share the same key “F ·Ma”.

Subsequently, 15 (=
(
6
2

)
) candidate pairs are generated from

this block for verification. Finally, the reducer only outputs

ten pairs since there are only 10 matching pairs among 15

pairs after verification. After Stage 1, there exist some dupli-

cated pairs in two reducers, such as (t1, t3). Hence, we can

invoke Stage 2 to clean the results.

Although easy to implement, Naive approach still contains

two obvious drawbacks: duplicates verification and unbal-

1) If i > j, we use j · i as the key instead

Cheqing JIN et al. MapReduce-based entity matching with multiple blocking functions 899

Fig. 2 A running example of Naive

anced workloads. First, some pairs will be verified more than

once since they may be in different blocks, such as (t1, t3)

and (t1, t4) in Fig. 2. Second, the size of each block may

vary significantly, and it takes a long time to process a large

block. Hence, it will be encountered with unbalanced work-

loads. For example, reducer 1 (the upper reducer at Stage 1,

Fig. 2) is much heavier than reducer 2 (the lower reducer

at Stage 1) because two large blocks ({t1, t2, t3, t4, t5, t8} and

{t1, t3, t4, t5, t6, t7}) are dispatched to reducer 1 in this case.

3.2 PairUnit solution

There exists a simple 2-stage solution to deal with the above

two challenges. Our intuitive idea is that by enumerating

all pairs within the same blocks in the map phase, dupli-

cated pairs can be detected in the reduce phase. Meantime,

the problem of load balancing is also resolved because all

pairs are evenly dispatched to the reducers. At Stage 1, it

mainly generates the blocks according to the blocking func-

tions without generating or verifying the candidate pairs. At

Stage 2, it begins to generate the candidate pairs one by one

within the same block in the map phase. Then, each mapper

emits the key-value pairs, where the key is the composition of

two record IDs and the value refers to the pair of records. It

also means that all the duplicated pairs will be merged into a

single key-value pair due to the same key. Hence, any dupli-

cated pair only needs to be verified once, and this method can

balance the workloads because each basic unit only contains

one pair. We call this solution PairUnit.

Example 3 Figure 3 illustrates a running example of

PairUnit. After Stage 1, four blocks (b1, b2, b3 and b4) have

been built by using two blocking functions. At Stage 2, we

generate all candidate pairs in the map phase, and use the

composition of two record IDs as the key. For example, we

assign the key of the pair (t1, t3) as “1·3”, where the sym-

bol “·” still denotes the concatenation operator. Even though

the records like t1 and t3 belong to more than one blocks,

their pairs only require to be verified once in the reducer side

through this way.

It seems that this solution can easily solve the challenges

we have outlined, but it has its own shortcomings. First of all,

the amount of data to be shuffled from mappers to reducers

is huge. If a block contains m records, each record should be

replicated (m − 1) times since we can generate (m − 1) pairs

by integrating this record with the others. For a large m, the

cost on shuffling is intolerable. Although the I/O cost can be

lowered by using the combine function that can merge identi-

cal pairs in same mappers, the amount of data is still too big

to transfer. Second, the map function at Stage 2 will expand

to generate all candidate pairs. If a large block contains quite

Fig. 3 A running example of PairUnit

900 Front. Comput. Sci., 2017, 11(5): 895–911

a lot of records, the cost of pair generation still remains as

a big burden, which leads to unbalanced workloads among

mappers. Eventually, it will make all reducers wait until

all mappers complete. Hence, PairUnit can only be applied

to the applications with small data amount. When the data

amount becomes large, this solution is inefficient.

3.3 A variant of Dedoop solution: Dedoop+

The work in Ref. [16] by Kolb et al. only uses one block-

ing function for entity matching, with a special design to deal

with load balancing. Subsequently, the same authors study

how to deal with entity matching by using multiple blocking

functions, with a special design on pair deduplication [18].

Although these two techniques have contributed a lot in the

Dedoop system, how to combine them together have not been

reported yet, not to mention the performance [19]. Hence, we

try to propose a simple method called Dedoop+ by integrat-

ing these two techniques together.

Figure 4 illustrates this solution by using a running exam-

ple, which contains two stages. At Stage 1, four blocks are

generated: b1, b2, b3, and b4
2) by using two afore-mentioned

blocking functions. The output results of mappers also con-

tain additional information about the keys generated by pre-

vious blocking functions. For example, “F ·M.” and “L · ng”

are generated successively for record t6. The additional infor-

mation for “F ·Ma” is empty since it is the first blocking key.

Contrarily, the additional information for “L · ng” is “F ·Ma”,

which has already been generated. Meantime, it also outputs

a BDM file to collect statistical information about all blocks.

At Stage 2, the BDM file is used as the distributed cache

file to deal with load balancing, which will be loaded by map

(/reduce) tasks initially. In this example, there are 34 can-

didate pairs in total, so that each reducer needs to compare

17 record pairs. In the map phase, each mapper will transfer

record pairs in current block to the corresponding reducers

according to the BDM file. In the reduce phase, each reducer

will combine the records in the same block. Before executing

verifications, the additional information is used to determine

whether the current record pair needs to be compared or not.

For example, since the record pair (t1,t3) in the block b3 has

the same previous blocking key “F ·Ma”, this pair can be ig-

nored directly. This pair is verified by the upper reducer at

Stage 2 in Fig. 4.

Although the work in Ref. [16] deals with load balancing

well, its overall performance decreases if we combine it with

the work in Ref. [18]. The reason behind is that some reduces

will skip the current verification due to the overlapped addi-

tional information, which makes the load unbalanced. When

more blocking functions are employed, more duplicated pairs

in blocks will not be verified, leaving the workloads more un-

balanced. For example, the load in Fig. 4 is very biased, i.e.,

Reducer 1 compares 17 pairs while Reducer 2 only compares

ten pairs.

4 A novel solution: MrEm

As mentioned above, load balancing and pair deduplication

are two main challenges when using multiple blocking func-

tions, while three basic solutions cannot handle them well.

Naive simply sends all records in each block to one reducer

for pair verification, so that the problems of load balancing

and pair deduplication still remain. It seems that PairUnit can

deal with both challenges perfectly. Unfortunately, the actual

performance is poor in most occasions since much additional

overhead will be created, such as generating and shuffling

all record pairs. Dedoop+ also leaves the problem of load

Fig. 4 A running example of Dedoop+

2) For the ease of simplicity, we exchange b2 with b3

Cheqing JIN et al. MapReduce-based entity matching with multiple blocking functions 901

Table 2 Comparisons among all solutions

Solution Load Pair Block Description

balancing deduplication size

Naive No No Any Simple, but cannot handle any challenge

PairUnit Yes Yes Tiny Only suitable for small data amount

Dedoop+ No Yes Normal The problem of load balancing is still unsolved

MrEm Yes Yes Normal Detect duplicates and split large blocks together

balancing unsolved when combining two techniques [16,18]

together. Table 2 summarizes the differences of all solutions.

The 2nd and 3rd columns describe the support of load balanc-

ing and pair deduplication. The fourth column, Block Size,

refers to the size of blocks generated during execution.

Consequently, it is necessary to devise a novel solution to

deal with both challenges together. Next, we first introduce

the general framework in Section 4.1, and then describe the

critical stage in Section 4.2. Finally, we discuss the connec-

tion between basic solutions and our novel solution.

4.1 General MR-based framework

We propose a general framework for entity matching, called

MR-based entity matching(MrEm), with two primary goals:

1) dividing a large block into some small sub-blocks, and 2)

dispatching similar blocks to one reducer to detect duplicates.

Here, similar blocks means such blocks are sharing a large

proportion of common records. In summary, we need to im-

plement the interface em.

interface em {

int MAXBS;

splitBlock(largeblock);

assignKey(block);

}

In order to achieve load balancing, large blocks must

be split into some sub-blocks in advance. The parameter

MAXBS is used to control the maximal size of each block.

We will discuss how to set the value in Section 4.2.1. The

splitBlock function is responsible for splitting large blocks.

The assignKey function assigns a proper key to each block,

with the goal of assigning the identical key to similar blocks

so that they can be merged into one key-value pair. Conse-

quently, in single working node, we can detect the duplicated

pairs by maintaining a hash set or Bloom Filter [22] in mem-

ory to record the already compared pairs.

The distributed cache mechanism provided by Hadoop

[21] is critical to implement such an interface. It is a facil-

ity to cache files in all working nodes. However, since it will

bring in data communication, the file size must not be large.

Figure 5 presents our new framework with four stages.

• Stage 1 (Block building) At this stage, the input data

is divided into a number of blocks by using t blocking

functions. All records in one block have the same block-

ing key. Moreover, we sort the records within the same

block according to their IDs, which is essential for the

following stages. Note that this stage is same as Stage 1

in PairUnit.

• Stage 2 (Interface implementation) At this stage, some

statistics are gathered to implement the interface em,

which will be used in the next stage. We illustrate two

concrete ways to implement this interface in this paper.

Please refer to Sections 4.2.2 and 4.2.3 for details.

• Stage 3 (Pair verification) This stage contains the fol-

lowing steps. First, each large block will be divided

into some sub-blocks by calling splitBlock function

when its size exceeds MAXBS. Second, a proper key

is assigned to each block (or sub-block) by calling as-
signKey function. Finally, we use a hash set to detect

duplicates and verify distinct pairs by employing exact

similarity functions in the reduce phase.

• Stage 4 (Pair cleaning) Since there still exist a few du-

plicated record pairs in different reducers after Stage 3,

we use this stage to clean the results. This stage is same

as that in Naive.

Fig. 5 Our MR-based framework: MrEm

Stages 1, 3, and 4 form a mainstream workflow, and Stage

2 is the basis of Stage 3.

4.2 Stage 2: Interface implementation

Stage 2 is undoubtedly the most critical in our framework.

Here, we first introduce the principles to implement the in-

902 Front. Comput. Sci., 2017, 11(5): 895–911

terface em, following which we propose two concrete imple-

mentation plans.

4.2.1 Designing principles

The intrinsic principles to implement em are the answers of

the following two questions.

Question 1: How to split a large block?

The unbalanced workloads are mainly caused by large

blocks which need to be split into smaller ones. The first issue

arisen is how to define a large block. Commonly, this concept

is related to the settings of a cluster. Assuming there are R re-

ducers and P record pairs for verifying, a large block may

contain at least P/R pairs. In other words, a block containing

n records is treated as large if
(

n
2

)
� P/R.

The second question is how to divide a large block. Given

a block with size n (n > MAXBS), we first generate c sub-

groups where c =
⌈
n/MAXBS

⌉
. Then c +

(
c
2

)
sub-blocks

belonging to two categories are created. The first category,

called self-join sub-block, contains all records in each sub-

group. While the second one, called cross-join sub-block,

contains all records from two sub-groups. The maximal num-

ber of pair verifications for any self-join or cross-join sub-

block is no greater than
(
MAXBS

2

)
or MAXBS2 respectively,

thus MAXBS should be less than
√

P/R. In real evaluations,

the value of MAXBS can be set quite smaller. However, set-

ting MAXBS too small will deteriorate the overall perfor-

mance since the burst of too many small-sized sub-blocks

causes additional overhead, such as generating and shuffling

the record pairs.

Example 4 According to the FirstKL blocking function in

Table 1, six tuples {t1, t2, t3, t4, t5, t8} have the same key “Ma”.

Assuming MAXBS = 3, this block is split into two self-join

sub-blocks ({t1, t2, t3} and {t4, t5, t8}) and one cross-join sub-

block: {t1, t2, t3; t4, t5, t8} where “;” is a delimiter to distin-

guish two sub-groups.

Question 2: How to assign a same key to similar blocks?

Assigning a same key to similar blocks (containing many

common records) so that they can be processed in one re-

ducer is critical for pair deduplication. An equally important

requirement is that such work should be completed in paral-

lel.

At first, let’s consider two arbitrary blocks, b′ and b′′. If

they are totally different, |b
′⋃ b′′ |
|b′|+|b′′ | = 1, where |b′| denotes the

number of records in b′. Otherwise if b′ is the same as b′′,
|b′⋃ b′′ |
|b′ |+|b′′| =

1
2 . We also observe that for two similar blocks: b1

and b2 in Fig. 3, the value of |b1
⋃

b2 |
|b1 |+|b2| is 8

12 , close to 1
2 . Hence, a

small value of such metric is desirable. We define this metric,

tightness, formally below.

Definition 1 (Tightness) The tightness ξ for a set of blocks

(b1, b2, . . .) is computed as: ξ = |⋃i bi|/∑ |bi|.

Inspired by the above example, we describe our solution

below. We use h hash functions, and each of them is ca-

pable of generating a random permutation for all records

within the same blocks. The concatenation of top-k record

IDs in each permutation is treated as a signature for that

block. Note that each block b has h signatures, denoted

as sig1(b), sig2(b), . . . , sigh(b). Such work can be conducted

through a MapReduce framework.

• Map phase For each arriving block b, emit h key-value

pairs: (sig1(b), b), (sig2(b), b), . . . , (sigh(b), b).

• Reduce phase For each arriving key-value pair

(sig, (b1, b2, . . .)), compute tightness ξ, and then emit

(sig, ξ).

Similarly, in order to distinguish the signatures generated

by different hash functions, we use hi · sigi(b) instead of

sigi(b), where 1 � i � h.

The output of the reduce phase will be used by all tasks

in the next stage. Hence, we merge all the outputs of reduc-

ers into a single file3) , named as TiTable, and use it as a dis-

tributed cache file. It is efficient to use TiTable as a distributed

cache file since its size is quite small.

The final step is assigning a key for each block according

to TiTable. First, a group of h hash functions are assigned

to each mapper. Notice that these hash functions must be the

same with the previous step in order to generate the same

signatures. Subsequently, it looks up TiTable, and treats the

signature with smallest tightness value as its final key.

4.2.2 Plan 1: Splitting-based implementation (SI)

The first plan is a splitting-based implementation. At Stage

2, it divides large blocks into small ones in the map phase.

The way to split a large block has been described in Section

4.2.1. Then, it generates h signatures for each block by us-

ing h random hash functions. In the reduce phase, it creates

TiTable.

The implementation of interface em to be used by Stage 3

is described below. The splitBlock function is also the same

as that in Section 4.2.1, and the assignKey function looks up

3) We use a Hadoop instrument to execute this task: hadoop fs -getmerge <src> <localdst> [addnl]

Cheqing JIN et al. MapReduce-based entity matching with multiple blocking functions 903

TiTable to pick up a proper key for a given block.

Figure 6 shows the 2nd and 3rd stages by using SI. Assum-

ing MAXBS = 3, at Stage 2, the map function firstly splits b1

and b2 into three sub-blocks respectively. Let H1, H2 denote

two hash functions to generate two signatures (k = 1) for each

block. For example, block b3 has two signatures “H1 · 6” and

“H2 ·9”. Subsequently, we generate the TiTable in the reduce

phase. The first column refers to the signature, and the second

column refers to the tightness value. Note that at this stage,

we only need to transfer the IDs of records from the mappers

to the reducers since other attributes will not be used.

At Stage 3, each mapper first loads TiTable into memory

when it starts. Subsequently, it reads blocks from Stage 1,

splits large blocks into small sub-blocks, and then assigns a

proper key to each block (or sub-block) according to TiTable.

In the reduce phase, similar blocks sharing the same key are

merged into one key-value pair, such as these four sub-blocks

with key “H1 · 1”. Finally, matching pairs are emitted by

reducers. We can observe that five duplicated pairs are de-

tected by reducers, including (t1, t3), (t1, t4), (t1, t5), (t3, t4),

and (t3, t5).

We call the solution using SI implementation as MrEm-SI.

4.2.3 Plan 2: No-splitting-based implementation (NSI)

Different from SI, our second implementation (No-splitting-

based implementation, NSI) does not split any large blocks

into small sub-blocks in the map phase at Stage 2. Instead,

it tries to construct the TiTable based on the original blocks

in the reduce phase. Moreover, the TiTable in NSI is an im-

proved version since a new column is added to record the in-

formation about splitting points. Hence, we call the new data

structure TiTable+. The splitting points are a series of points

used to divide the whole block, which are constructed by vis-

iting each signature one by one. For each signature, if the

size of any block is no greater than MAXBS, the correspond-

ing splitting information is empty. Otherwise, we attempt to

find the largest block affiliated with this signature, and di-

vide it into a series of sub-groups with a size no greater than

MAXBS. The margin points of each sub-group are recorded

as the splitting points. Similar to TiTable, TiTable+ is also

suitable to be used as a distributed cache file, since we only

store record IDs of the splitting points.

Figure 7 shows the running example of Stage 2 using NSI.

In the map phase, each mapper generates two keys for each

original block using two hash functions: H1 and H2. Let

k = 1. In the reduce phase, each reducer merges signatures

and calculates the corresponding tightness value. Moreover,

it also needs to find the splitting points for large blocks un-

der current signature. For example, signature “H1· 1” brings

two large blocks b1 and b2 together. Since their length is the

same, it randomly regards one block (here, b1 is chosen) as

the largest one and finds its splitting points: {3}. Thus the

splitting points {3} are appended to the third column at the

first line in TiTable+.

Fig. 6 A running example of MrEm-SI

Fig. 7 A running example of MrEm-NSI

904 Front. Comput. Sci., 2017, 11(5): 895–911

We next describe how to implement the interface em to be

used at Stage 3. The splitBlock function will do nothing if the

size of current block is no greater than MAXBS. Otherwise,

it will look up the TiTable+ to find an entry with the smallest

tightness value, so that it is capable of splitting this block into

some sub-blocks according to the splitting points.

The assignKey function here is different from that in SI

implementation due to the requirement of assigning keys to

some newly generated sub-blocks. We divide the large block

into some sub-groups and mark each sub-group sequentially,

i.e, 1, 2, The key for each sub-block is the concatenation

of two parts: the signature in TiTable+ and the tag of the cor-

responding sub-group(s).

Figure 7 also shows the execution of Stage 3 using NSI

implementation. In the map phase, each mapper caches the

TiTable+ once setting up. Then it looks up TiTable+ to find

the proper key for each block. Meantime, it splits two large

blocks b1 and b2 into three sub-blocks respectively accord-

ing to the splitting points {3}. Finally, it assigns a new key to

each sub-block. For example, b2 is split into two sub-groups:

{t1, t3} and {t4, t5, t6, t7}. Thus the key of the self-join sub-

block {t1, t3} is “H1 · 1 · 1”, where the prefix “H1 · 1” denotes

the signature in TiTable+ and the last symbol “1” denotes it

is in the first sub-group. The key of the cross-join sub-block

{t1, t3; t4, t5, t6, t7} is “H1 ·1 ·1 ·2”, where “H1 ·1” still denotes

the signature and the suffix “1 · 2” denotes it is from sub-

groups 1 and 2. In the reduce phase, reducers run the similar

way without further explanations. In this manner, we can de-

tect six duplicates, including (t1, t3), (t1, t4), (t1, t5), (t3, t4),

(t3, t5), and (t4, t5).

We call the solution using NSI implementation as MrEm-
NSI. Alignment is the main advantage of NSI over SI, since

all large blocks with the same signature are split by a same se-

ries of splitting points. We take b1 and b2 in Fig. 7 as an exam-

ple. When using SI and NSI implementation, we can detect

five and six duplicated pairs respectively. However in NSI,

the splitting results for b1 and b2 are ({t1, t2, t3}, {t4, t5, t8})

and ({t1, t3}, {t4, t5, t6, t7}) respectively. We can see that the

splitting results are aligned better than SI.

4.3 Discussion

Our new solution has five characteristics: lightweight inter-

face implementation, excellent scalability, load balancing,

pair deduplication, and compatibility.

• Lightweight interface implementation As mentioned

above, Stages 1, 3, and 4 construct the mainstream workflow,

and Stage 2 serves to implement the interface em. In general,

we expect a lightweight implementation. We claim ours are

lightweight implementations because of two reasons. First, it

is efficient to generate signatures and calculate TiTable (or

TiTable+). Second, we only shuffle record IDs within blocks,

instead of records, to reducers to minimize the data commu-

nication.

• Excellent scalability Although MapReduce supports par-

allel mechanism by nature, some MR-based solutions cannot

support this functionality well, since part of the work must

be conducted by a single map (/reduce) task, such as global

sorting in Ref. [23]. Contrarily, in our framework, multiple

map (/reduce) tasks can run in parallel at any stage. Besides,

the size of the distributed cache file (TiTable) is small, which

can be easily loaded into memory.

• Load balancing and pair deduplication Our solution can

achieve good balancing since we evenly dispatch the split

sub-blocks into each node by randomly routing the keys in

MapReduce framework. Meanwhile, we attempt to dispatch

similar blocks to the same working node to support pair dedu-

plication. It is worth noting that the above two techniques can

work together and make the number of compared candidate

pairs in each node roughly same. This is the major difference

between Dedoop(+) and ours.

• Compatibility The framework of our solution contains

three stages in the mainstream, and one stage to implement

em. Three basic solutions, including Naive, PairUnit, and

Dedoop+, are compatible to this framework. For example,

PairUnit implements em below: splitBlock splits any block

into smallest blocks and one block contains only single pair,

and assignKey assigns the composite ID of records as the

key.

5 Experimental results

In this section, we evaluate the effectiveness, efficiency, and

scalability of our novel solutions, in comparison with three

basic solutions. We run experiments on an 8-node HP Pro-

Liant DL360 cluster. Each node has eight Intel Xeon E5606

2.13GHz quad-core processors, 32GB physical memory and

1TB disk. We install the RedHat Enterprise 6.0 operating sys-

tem, Java 1.6 with a 64-bit server JVM and Hadoop 1.0.3

on each node. One node is assigned to run the Hadoop job-

tracker (the MapReduce master node responsible for assign-

ing tasks to different working nodes) and the namenode (the

master node for HDFS). The rest seven nodes (datanodes) are

used to store data and to run MapReduce jobs, resulting in 28

(= 7 × 4) slots for mapper tasks and 56 (= 7 × 8) slots for

Cheqing JIN et al. MapReduce-based entity matching with multiple blocking functions 905

reducer tasks in total. Since we implement pair verification in

the reduce phase (the most costly step), we allocate 40 slots

for the reducers4). The allocation strategy will change at the

scalability testing part (Section 3).

For all experiments, we adopt edit distance as the similarity

function at pair verification stage and regard pair as matching

if the similarity value is above 0.8. We use real and synthetic

data sets, as introduced below.

• Real data set (CiteSeer) The CiteSeer data set5) is a citation

collection and has attributes such as author, title, date, page,

volume, publisher, etc. We use title for verification since its

length is longer than the rest attributes and has higher quality.

• Synthetic data set (Twitter) We generate a labelled syn-

thetic data set based on a Twitter data set. For each tweet,

we generate a number of matching records (the number is

uniformly selected in [2,200]) by randomly changing some

letters, and limit the error rate to no greater than 2%.

We use recall, running time, speedup and scaleup to mea-

sure the effectiveness, efficiency and scalability of entity

matching in the distributed environment. Recall measures

the proportion of the matching pairs detected by the block-

ing function(s). Recall = bm
am , where bm denotes the number

of matching pairs sharing at least one block and am repre-

sents the number of all matching pairs. A greater recall value

means higher effectiveness. Running time measures the effi-

ciency of our solutions. Speedup and scaleup test the scal-

ability of a parallel approach. Speedup describes how much

a parallel approach is faster than a corresponding sequential

approach, and scaleup refers to the ability of the parallelism

to increase with both the system and the amount of required

work.

5.1 Effectiveness testings

In general, using multiple blocking functions can achieve

higher effectiveness. Here, we adopt five specific meth-

ods: First/Last K Letters (FirstKL/LastKL), First/Last M To-

kens (FirstMT/LastMT) and min-Hash. We set K = 5 for

FirstKL/LastKL, and M = 1 for FirstMT/LastMT. Min-Hash

uses two parameters: r to control the number of hash func-

tions in each key and q to shingle an attribute into q-grams. A

min-Hash key is in fact the concatenation of r minimal hash

values upon all q-grams obtained by using such r hash func-

tions. By default, we set r = 2, and q = 5.

At first, we evaluate recall upon a randomly selected sub-

set of CiteSeer (containing 100 000 records) and Twitter

(containing 500 000 records) by using different blocking

functions. Figure 8(a) reports the recall values under differ-

ent blocking functions. We can observe that the recall value

is below 0.9 for all situations. Moreover, no blocking function

behaves well for both data sets, which highlights the impor-

tance of using multiple blocking functions for higher effec-

tiveness.

Fig. 8 Effectiveness of the blocking functions. (a) Single blocking func-
tion; (b) blocking function groups

Figure 8(b) shows the recall values under different groups,

each containing more than one blocking function. Table 3

shows the detailed combination of each group. The number

of blocking functions in each group rises from 2 to 10. For ex-

ample, the fourth group, G4, contains six blocking functions:

FirstKL, LastKL, and four independent min-Hash functions.

The recall value continues to grow with the increment of the

number of blocking functions.

5.2 Efficiency testings

Figure 9 shows the running time of Dedoop+, MrEm-SI, and

MrEm-NSI under different blocking function groups. Re-

member that the number of blocking functions continues to

4) It is fairly too expensive to build a large-scale cluster for an academic institute. In order to evaluate load balancing within the current cluster, we set the
number of reduce slots bigger than that of map slots
5) http://pike.psu.edu/download/edbt10/harra/

906 Front. Comput. Sci., 2017, 11(5): 895–911

increase from G1 to G6. MrEm-NSI performs better than De-
doop+ upon both data sets due to the better support of both

load balancing and pair deduplication. Moreover, the process-

ing cost of Dedoop+ grows faster than MrEm-NSI with the

increasing number of blocking functions.

Table 3 Six blocking function (BF) groups

Group name Combinations of BF Number of BF

G1 FirstKL, LastKL 2

G2 FirstKL, LastKL, min-Hash 3

G3 FirstKL, LastKL, min-Hash * 2 4

G4 FirstKL, LastKL, min-Hash * 4 6

G5 FirstKL, LastKL, min-Hash * 6 8

G6 FirstKL, LastKL, min-Hash * 8 10

Fig. 9 Executing cost under diff. blocking function groups. (a) CiteSeer
(500 000 records); (b) Twitter (1 000 000 records)

Figure 10 demonstrates the quartiles of 40 reducers at the

pair verification stage with G1, G3, G5. The lowest line and

the highest line in the quartile plot are the time when the first

reducer and the last reducer finish the task. Besides, the lower

bound and the upper bound in the box are the time when the

10th (= 1/4×40) and 30th (= 1/4×40) reducer finish the task

while the median line shows the 20th (= 1/2 × 40) reducer’s

finishing time.

From this figure, we can observe that Dedoop+ is over a

longer span than MrEm-SI and MrEm-NSI upon both data

sets. PairRange can support load balancing with the assump-

tion that the number of candidate pairs within all the reducers

is nearly equal. Taking pair deduplication into consideration

will lead to the fact that some reducers are free of comparing

the candidate pairs. Thus it causes the workloads unbalanced

and makes the performance worse. However, MrEm-NSI and

MrEm-SI can both support load balancing and pair dedupli-

cation at the same time. Furthermore, MrEm-NSI behaves

significantly better than MrEm-SI upon both data sets since

MrEm-NSI can align sub-blocks better. In the following ex-

periments, we choose G5 as the default blocking function

group at the block building stage.

Fig. 10 The quartiles of reducers at the pair verification stage. (a) CiteSeer
(500 000 records); (b) Twitter (1 000 000 records)

Figure 11(a) shows the performance of all solutions upon

the CiteSeer data set with different data sizes. Among five so-

lutions, MrEm-NSI behaves the best and MrEm-SI takes the

second place. Since Dedoop+ still has the problem of load

balancing, its execution time is nearly two times as much

as that in MrEm-NSI. Naive supports neither pair dedupli-

cation nor load balancing, so its performance is lagging far

behind the above three methods. PairUnit also performs bad

because too many tiny sub-blocks (only contain one record

pair) are generated and shuffled. With the increasing of data

set, PairUnit will generate huge data to transfer from map-

pers to reducers.

Figure 11(b) shows the execution time of all solutions upon

the Twitter data set by varying the data sizes. MrEm-NSI and

MrEm-SI perform best because both of them consider load

Cheqing JIN et al. MapReduce-based entity matching with multiple blocking functions 907

balancing and pair deduplication. An interesting observation

is that PairUnit runs the fastest when data set size is small

(500 000 records). In such a case, the number of candidate

pairs is relative small, so that PairUnit can process it rela-

tively quickly. However, the performance of PairUnit dra-

matically deteriorates when the data size increases, because

much more data needs to be transferred from the mappers to

the reducers.

Fig. 11 Execution time. (a) CiteSeer; (b) Twitter

To illustrate the execution time more clearly, Table 4 shows

the time spent in each stage for Dedoop+, MrEm-SI, and

MrEm-NSI. In all situations, the pair verification stage dom-

inates the overall time. Moreover, the pair verification cost of

Dedoop+ is nearly two times as much as that in MrEm-NSI.
Regarding to the interface implementation stage, MrEm-SI
consumes more time than MrEm-NSI since it needs to split

the large blocks at first while MrEm-NSI need not. Finally,

regarding to the pair cleaning stage, the amount of input data

determines the overall time.

5.3 Scalability testings

We continue to test the scalability of the proposed meth-

ods, including speedup and scaleup. In order to evaluate the

speedup of our two solutions: MrEm-SI and MrEm-NSI, we

fixed the data set size and varied the cluster size. Figure 12

shows the running time upon the CiteSeer data set (containing

100 000 records) when the number of reduce slots increases

from 1 to 40. As aforementioned, we test the performance un-

der different reduce slots because pair verification, the most

costly step, is implemented at the reduce phase. Table 4 also

shows that the cost on pair verification is over 80% of the

overall cost for large data sets.

Table 4 Execution time in each stage/s

The size of data set
Solution Stage

105 3 × 105 5 × 105

BDM Building 62 91 151
Dedoop+

Pair Verification 587 2 414 5 600

Block Building 61 66 130

Interface Implementation 67 108 530
MrEm-SI

Pair Verification 484 1 678 3 914

Pair Cleaning 96 251 404

Block Building 61 66 130

Interface Implementation 51 53 69
MrEm-NSI

Pair Verification 285 1 230 3 132

Pair Cleaning 69 224 397

Figure 12(a) shows the execution time of above two solu-

tions decreases with the increasing number of reduce slots.

Figure 12(b) illustrates the “relative scale”, which describes

the ratio between the running time for the smallest cluster

size (1-reduce slot) and that of the current setting. For exam-

ple, for the 40-reduce slot case, the “relative scale” of MrEm-
NSI is 22 (= 10 267/465). Figure 13 shows the running time

Fig. 12 Speedup on CiteSeer (100 000 records). (a) Running time; (b) rel-
ative running time

908 Front. Comput. Sci., 2017, 11(5): 895–911

Fig. 13 Speedup on Twitter (500 000 records). (a) Running time; (b) rela-
tive running time

of our solutions upon the Twitter data set (containing 500 000

records) on clusters of 1 to 40 reduce slots. The speedup val-

ues of two solutions are quite good.

We then test the scaleup. A system with good scaleup per-

formance tends to have similar running time when the work-

load increment rate is identical to that of the working nodes.

Since the running time is strongly dependent on the number

of candidate pairs, we set the increment of the working nodes

proportional to that of the candidate pairs. For example, when

the number of reduce slots is doubled, the number of candi-

date pairs is also doubled, even though the data set size is

not doubled. Figure 14 shows the scaleup results on the Cite-

Seer and Twitter data sets. We observe that our solutions have

good scaleup performance.

5.4 Evaluations of parameters

Finally, we evaluate some important parameters, including

the number of hash functions h, signature size k, and MAXBS
in the interface em (see Section 4). The first two parameters

are for pair deduplication, and the last is for load balancing.

5.4.1 Pair deduplication

We use the number of candidate pairs to measure different

parameters. It is worth noting that if there is no splitting large

block, MrEm-SI performs exactly the same as MrEm-NSI.
For the comparison purpose, we also calculate Distinct and

All, where the former assumes all candidate pairs have been

de-duplicated before verification, and the latter assumes no

de-duplication will be performed for any candidate pair be-

fore verification.

Fig. 14 Scaleup on two data sets. (a) CiteSeer; (b) Twitter

Figure 15 illustrates the change of the number of candidate

pairs when varying h and k upon the CiteSeer (containing 10

000 records) and Twitter (containing 100 000 records) data

sets respectively. In general, a smaller k will lead to better

Fig. 15 The evaluation of h and k parameters. (a) CiteSeer (100 000
records); (b) Twitter (500 000 records)

Cheqing JIN et al. MapReduce-based entity matching with multiple blocking functions 909

performance. When h becomes bigger, the values remain sta-

ble with different k values. Since more signatures are gener-

ated with the increment of h and then, more duplicates can be

detected so that the number of pairs to be verified is reduced.

Another aspect is when we set h bigger than 5, the number of

candidate pairs remains stable. Consequently, we set h = 10

and k = 2 as default.

5.4.2 Load balancing

MAXBS decides the size of sub-block after splitting. All ex-

periments were conducted on the CiteSeer data set (contain-

ing 100 000 records). Figure 16(a) shows the number of can-

didate pairs under different MAXBS values. For the com-

parison purpose, we also draw a curve for MrEm-NoSplit
which implements no block splitting strategy (for example,

we set: MAXBS= ∞). We can observe that the MrEm-NSI
curve is quite close to the MrEm-NoSplit curve, while the

MrEm-SI curve is above the other two curves. Moreover,

when MAXBS goes down, the number of candidate pairs

of MrEm-SI will rise, while MrEm-NSI still remains stable.

The reason is that MrEm-NSI can align the sub-blocks but

MrEm-SI cannot.

Fig. 16 The evaluation of MAXBS. (a) # Candidate pairs; (b) running time

Figure 16(b) shows the execution time under different

MAXBS values. We execute all four stages of MrEm in

the experiments. We observe that MrEm-NoSplit takes the

longest time to execute, due to the influence of unbalanced

workloads. Both MrEm-SI and MrEm-NSI support load bal-

ancing and pair deduplication, so they run much faster than

MrEm-NoSplit. Moreover, MrEm-NSI performs better than

MrEm-SI because more duplicates can be detected, making

the overall time shorter. We can observe that if MAXBS is

set too great, unbalanced workloads will lower the overall

performance. Another observation is that the execution time

rises when MAXBS is set too small, since a huge number of

small sized sub-blocks are generated and shuffled. Hence, we

recommend to set MAXBS = 100 as default under current

circumstances. We should note that this value is dependent

on the data amount and cluster environment.

6 Related work

The blocking-based method for entity matching generates

several blocking keys independently for each original record,

so that matching records can be pushed to the same block.

Typical work includes standard blocking [10], sorted neigh-

borhood method [11], q-gram based indexing [24], canopy

clustering [25], locality sensitive hashing [12,13], StringMap

[26] and so on.

The MapReduce framework is commonly used to analyze

large-scale data nowadays. He et al. designed a MapReduce-

based DBSCAN algorithm for heavily skewed data [27].

When applying blocking-based entity matching into the

MapReduce framework, some new challenges should be

overcome. Kolb et al. have proposed solutions to solve the

inherent problem in the MapReduce framework: load bal-

ancing. Meantime, they also apply multi-pass sorted neigh-

borhood method to MR framework [14]. Kolb et al. also

proposed a simple solution to achieve pair deduplication

[18]. Based on the previous work, Dedoop [19] is proposed

for blocking-based entity matching upon MapReduce frame-

work. However, Dedoop still has its own limitation when

solving the problem of load balancing and pair deduplication

at the same time.

Other applications like set-similarity joins to find similar

strings, documents clustering to combine similar document

together also face above two challenges when they use dis-

tributed framework. Since pair-wise computation is time-

consuming, a set of signatures will be generated at first to

avoid unnecessary comparisons. Vernica et al. [23] applied

set-similarity joins to MapReduce framework and proposed

three stages to provide end-to-end solutions. They partitioned

data across nodes according to the token frequency in order

to achieve load balancing and minimize the replication from

mappers to reducers side. However, since two strings will

910 Front. Comput. Sci., 2017, 11(5): 895–911

share several identical prefixes, they still face the problem of

verifying them in different nodes more than once. Refs. [28–

30] proposed efficient methods for similarity joins by using

MapReduce framework, they mainly focused on how to prune

the dissimilar pairs, while load balancing was not considered

deeply.

Moreover, there exist other popular parallel frameworks

for data analysis, such as Spark6) . Spark can work well upon

the machine-learning situations when a number of iterations

are inevitable, because it keeps a large number of tuples in

memory to avoid I/O cost. For example, the k-means algo-

rithm needs to re-compute the central point of each cluster

after generating new clusters, until the central point does not

change. As such step may repeat for many times, running

upon the Spark framework is a better choice. However, the

processing task will not repeat for so many times, which

means the performance gap between Spark and Hadoop is

insignificant.

7 Conclusions

In this paper, we study the problem of how to handle en-

tity matching based on the MapReduce framework. Recently,

some researchers try to consider MR-based entity matching

using blocking function(s). Load balancing and pair dedu-

plication are its intrinsic challenges. Our proposed solution

can solve above two challenges at the same time. Analysis

and experimental reports show that our novel solutions are

effective, efficient and scalable.

Acknowledgements Our research is supported by the National Basic
Research Program of China (2012CB316203), the National Natural Sci-
ence Foundation of China (Grant Nos. 61370101 and U1501252), Shanghai
Knowledge Service Platform Project (ZF1213), and Innovation Program of
Shanghai Municipal Education Commission (14ZZ045).

References

1. Benjelloun O, Garcia-Molina H, Menestrina D, Su Q, Whang S E,

Widom J. Swoosh: a generic approach to entity resolution. The VLDB

Journal—The International Journal on Very Large Data Bases, 2009,

18(1): 255–276

2. Bilenko M, Mooney R J. Adadptive duplicate detection using learnable

string similarity measures. In: Proceedings of the 9th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining.

2003, 39–48

3. Guo S T, Dong X L, Srivastava D, Zajac R. Record linkage with

uniqueness constraints and erroneous values. Proceedings of the VLDB

Endowment, 2010, 3(1–2): 417–428

4. Li P, Dong X L, Maurino A, Srivastava D. Linkingtemporal records.

Proceedings of the VLDB Endowment, 2011, 4(11): 956–967

5. Rastogi V, Dalvi N, Garofalakis M. Large-scale collective entity match-

ing. Proceedings of the VLDB Endowment, 2011, 4(4): 208–218

6. Bilenko M, Kamath B, Mooney R J. Adaptive blocking: learning to

scale up record linkage. In: Proceedings of the 6th IEEE International

Conference on Data Mining. 2006, 87–96

7. Christen P. A survey of indexing techniques for scalable record linkage

and deduplication. IEEE Transactions on Knowledge and Data Engi-

neering, 2012, 24(9): 1537–1555

8. De Vries T, Ke H, Chawla S, Christen P. Robust record linkage block-

ing using suffix arrays and bloom filters. ACM Transactions on Knowl-

edge Discovery from Data, 2011, 5(2): 9

9. Michelson M, Knoblock C A. Learning blocking schemes for record

linkage. In: Proceedings of the National Conference on Artificial Intel-

ligence. 2006, 440–445

10. Fellegi I P, Sunter A B. A theory for record linkage. Journal of the

American Statistical Association, 1969, 64(328): 1183–1210

11. Hernández M A, Stolfo S J. The merge/purge problem for large

databases. ACM SIGMOD Record, 1995, 24(2): 127–138

12. Gionis A, Indyk P, Motwani R. Similarity search in high dimensions

via hashing. The VLDB Journal — The International Journal on Very

Large Data Bases, 1999, 99(6): 518–529

13. Indyk P, Motwani R. Approximate nearest neighbors: towards remov-

ing the curse of dimensionality. In: Proceedings of the 30th Annual

ACM Symposium on Theory of Computing. 1998, 604–613

14. Kolb L, Thor A, Rahm E. Multi-pass sorted neighborhood block-

ing with MapReduce. Computer Science-Research and Development,

2012, 27(1): 45–63

15. Whang S E, Menestrina D, Koutrika G, Theobald M, Garcia-Molina H.

Entity resolution with iterative blocking. In: Proceedings of the 2009

ACM SIGMOD International Conference on Management of Data.

2009, 219–232

16. Kolb L, Thor A, Rahm E. Load balancing for MapReduce-based entity

resolution. In: Proceedings of the 28th IEEE International Conference

on Data Engineering. 2012, 618–629

17. Köpcke H, Thor A, Rahm E. Evaluation of entity resolution approaches

on real-world match problems. Proceedings of the VLDB Endowment,

2010, 3(1–2): 484–493

18. Kolb L, Thor A, Rahm E. Don’t match twice:redundancy-free similar-

ity computation with MapReduce. In: Proceedings of the 2nd Work-

shop on Data Analytics in the Cloud. 2013, 1–5

19. Kolb L, Rahm E. Parallel entity resolution with dedoop. Datenbank-

Spektrum, 2013, 13(1): 23–32

20. Dean J, Ghemawat S. MapReduce: simplified data processing on large

clusters. Communications of the ACM, 2008, 51(1): 107–113

21. White T. Hadoop: The Definitive Guide. 3rd ed. O’Reilly Media, Inc.,

2012

22. Mitzenmacher M. Compressed bloom filters. IEEE/ACM Transactions

on Networking, 2002, 10(5): 604–612

23. Vernica R, Carey M J, Li C. Efficient parallel set-similarity joins using

MapReduce. In: Proceedings of the 2010 ACM SIGMOD International

Conference on Management of Data. 2010, 495–506

6) http://spark.apache.org

Cheqing JIN et al. MapReduce-based entity matching with multiple blocking functions 911

24. Baxter R, Christen P, Churches T. A comparison of fast blocking meth-

ods for record linkage. ACM SIGKDD, 2003, 3: 25–27

25. Cohen W W, Richman J. Learning to match and cluster large high-

dimensional data sets for data integration. In: Proceedings of the 8th

ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining. 2002, 475–480

26. Jin L, Li C, Mehrotra S. Efficient record linkage in large data sets. In:

Proceedings of the 8th International Conference on Database Systems

for Advanced Applications. 2003, 137–146

27. He Y B, Tan H Y, Luo W M, Feng S Z, Fan J P. MR-DBSCAN: a scal-

able MapReduce-based DBSCAN algorithm for heavily skewed data.

Frontiers of Computer Science, 2014, 8(1): 83–99

28. Das Sarma A, He Y Y, Chaudhuri S. Clusterjoin: a similarity joins

framework using map-reduce. Proceedings of the VLDB Endowment,

2014, 7(12): 1059–1070

29. Deng D, Li G L, Hao S, Wang J N, Feng J H. Massjoin: a MapReduce-

based method for scalable string similarity joins. In: proceedings of

the 30th IEEE International Conference on Data Engineering. 2014,

340–351

30. Kim Y, Shim K. Parallel top-k similarity join algorithms using MapRe-

duce. In: Proceedings of the 28th IEEE International Conference on

Data Engineering. 2012, 510–521

Cheqing Jin is a professor at East China

Normal University, China. He received his

master and bachelor degrees from Zhe-

jiang University (ECNU), China in 1999

and 2002 respectively, and his PhD degree

from Fudan University, China in 2005, all

in computer science. He worked as an as-

sistant professor in East China University

of Science and Technology, China from 2005 to 2008, afterwards

he joined ECNU on October 2008. In 2003 and 2007, he visited

the University of Hong Kong, China and the Chinese University of

Hong Kong, China respectively. He has acted as the PC members

for more than ten conferences. His main research interests include

streaming data management, location-based services, uncertain data

management, data quality, and database benchmarking.

Jie Chen received his undergraduate and

master degree from East China Normal

University, China in 2011 and 2014, re-

spectively. As of now, he is working in Pay-

Pal, Risk Management team to be a risk

analyst. His research area is data quality

and data mining, especially for handling

big data.

Huiping Liu received the BS degree in soft-

ware engineering from East China Normal

University, China in 2013. Currently, he is

a PhD student supervised by Prof. Cheqing

Jin. His research mainly focuses on data

quality, massive data mining and process-

ing, and location-based services.

