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Abstract Although amazing progress has been made in ma-

chine learning to achieve high generalization accuracy and ef-

ficiency, there is still very limited work on deriving meaning-

ful decision-making actions from the resulting models. How-

ever, in many applications such as advertisement, recommen-

dation systems, social networks, customer relationship man-

agement, and clinical prediction, the users need not only ac-

curate prediction, but also suggestions on actions to achieve

a desirable goal (e.g., high ads hit rates) or avert an unde-

sirable predicted result (e.g., clinical deterioration). Existing

works for extracting such actionability are few and limited to

simple models such as a decision tree. The dilemma is that

those models with high accuracy are often more complex and

harder to extract actionability from.

In this paper, we propose an effective method to extract ac-

tionable knowledge from additive tree models (ATMs), one

of the most widely used and best off-the-shelf classifiers. We

rigorously formulate the optimal actionable planning (OAP)

problem for a given ATM, which is to extract an action-

able plan for a given input so that it can achieve a desirable

output while maximizing the net profit. Based on a state

space graph formulation, we first propose an optimal heuris-

tic search method which intends to find an optimal solution.

Then, we also present a sub-optimal heuristic search with an

admissible and consistent heuristic function which can re-

markably improve the efficiency of the algorithm. Our exper-

imental results demonstrate the effectiveness and efficiency

of the proposed algorithms on several real datasets in the
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application domain of personal credit and banking.

Keywords actionable knowledge extraction, machine

learning, additive tree models, state space search

1 Introduction

Machine learning techniques have achieved great success.

Tremendous efforts have made on achieving high accuracy

and efficiency. However, in many applications such as tar-

geted marketing, users need not only prediction, but also sug-

gestions on courses of actions to maximize profits or avert un-

desirable outcomes. Currently, in practice, users often need to

spend much manual efforts digging out the real “nuggets” of

knowledge, the actions, in order to achieve their goals.

In this paper, we study automatic extraction of actionabil-

ity from certain machine learning models. Given an input and

a desired output, the actionability of a model is the ability to

identify a set of changes to the input features that transforms

the prediction of this input to the desired output. Automatic

extraction of actionable knowledge rather than resorting to

domain experts is badly needed in many applications. We

elaborate this using two real cases that people encountered

in practice.

Example 1 In one of the world’s largest telecommunica-

tion carriers (“Company A”), data scientists need to build

models to predict customer churning. A set of more than 200

features related with clients’ service plans, call quality, roam-

ing coverage, Internet connection, and social-economic at-

tributes are used. They use a random forest model after ex-



Qiang LU et al. Extracting optimal actionable plans from additive tree models 161

tensive testing. In addition to having a predictive model, it

is needed to extract actionable knowledge to intervene with

these customers with high churn probability and try to retain

them. In general, it is much cheaper to retain existing cus-

tomers than obtaining new ones. It is especially valuable to

retain large, enterprise-level customers.

There are certain actions that Company A can take, such as

making phone contacts, sending promotional coupons, offer-

ing data gifts, offering discounts for mobile devices, provid-

ing roaming services, etc. Each of these actions can change

certain attributes of a customer. However, such intervention

incurs costs to Company A. Therefore, for each customer, we

want to extract an optimal set of actions that maximizes the

expected gain minus the costs. �

Example 2 A major hospital uses machine learning models

to predict sudden deterioration for hospitalized patients based

on their vital signs (such as blood pressure, heart rate, oxygen

saturation, etc.) [1, 2]. The current models are engineered to

give alert of an impeding deterioration in the next 48 hours

with pretty high precision, but cannot suggest any potential

intervention.

A model with actionability can be readily translated into

intervening actions to help avert potential clinical deteriora-

tion when the model predicts an undesired outcome. For ex-

ample, if the model not only predicts that a patient is likely to

have respiratory arrest in the next 48 hours, but also provides

actionable knowledge such as increasing oxygen saturation,

then the doctors can exploit the suggested actions to reduce

the likelihood of sudden deterioration. �

It should be noted that there are some existing techniques

to extract knowledge from complex models such as random

forests or neural networks. Such techniques include feature

sensitivity analysis [3] and extracting a simpler model (typ-

ically a decision tree) from a complex model [4]. In fact, a

random forest itself can be used to rank the importance of fea-

tures. For certain models with a continuous closed-form func-

tion such as neural networks, the direction of feature change

can be extracted by a gradient-based method [5]. However,

such approaches have some major drawbacks and are not

suitable for our problem. First, they are derived from the en-

tire population of training data and do not provide actionable

knowledge customized for each individual. For Example 1, a

customer who travels a lot may be more sensitive to roaming

charges while someone who watches a lot of videos may be

more interested in the data plan. For Example 2, patients have

very different alert-triggering reasons, such as sepsis, respi-

ratory, or cardiovascular problems. Automatic suggestion on

potential intervention actions will provide valuable guidance

to physicians and rapid response teams. Hence, extraction of

individualized actionable knowledge is much needed. Thus,

feature selection and ranking algorithms are not useful here

because their result is not personalized for each patient. Sec-

ond, these techniques did not take the cost of making changes

into consideration.

In order to address these challenges, we propose an effec-

tive framework to extract actionable knowledge from additive

tree models (ATMs), which encompasses some of the most

popular models such as random forest, adaboost and gradi-

ent boosted trees. The reasons why we choose ATMs are: 1)

In addition to superior classification/regression performance,

ATMs enjoy many appealing properties that many other mod-

els lack [6], including the support for multi-class classifica-

tion and natural handling of missing values and data of mixed

types. 2) Often referred to as the best off-the-shelf classi-

fiers [6], ATMs have been widely deployed in many industrial

products such as Kinect [7] and face detection in camera [8],

and are the must-try methods for some competitions such as

web search ranking [9].

However, extracting actionable knowledge from ATMs is

more difficult since the tree models are discrete in nature and

we cannot directly compute the gradients. The problem be-

comes even harder when it is compounded with the fact that

changing different features may have different costs. For ex-

ample, the cost of making a change to gender should be con-

sidered enormous or unrealistic. In fact, we will show that it

is an NP-hard problem.

In this article, we rigorously formulate the optimal action-

able plan (OAP) problem for a given ATM, which is to extract

a sequence of actions for a given input so that it can achieve a

desirable output while maximizing the net profit. After prov-

ing its NP-hardness, we propose a state space graph for-

mulation which allows us to tackle it using the state space

search algorithm. Moreover, we first introduce an optimal

state space search method which tries to find an optimal so-

lution. We also propose a sub-optimal state space search al-

gorithm with an admissible and consistent heuristic function

which can remarkably improve the efficiency of the search.

Experiments on four real-world datasets on personal bank-

ing and credits show that the proposed sub-optimal method is

superior in both quality and efficiency as compared to other

baseline methods.

To show the advantages of our scheme, we summarize our

contributions as follows:
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1) We start with an formulation of the OAP problem for a

given ATM and prove it is NP-hard.

2) We transfer the OAP problem to a state space graph

search problem and solve it by the state space search

algorithm. Specifically, we first present an optimal al-

gorithm which aims to find an optimal solution. Fur-

ther more, to achieve a good balance of search time and

solution quality, we propose a sub-optimal algorithm

which can find a sub-optimal solution within the very

limited time.

3) Our state space search algorithms can provide action-

able knowledge customized for each individual and take

account of the cost of making changes.

The rest of this article is organized as follows. In Section

2, we introduce the formal definition of ATMs. In Section 3,

we formally define the OAP problem based on an ATM and

prove the OAP problem is NP-hard. In Section 4, we propose

an encoding method which can transfer the OAP problem to a

state space search problem and present an optimal algorithm

and a sub-optimal algorithm to solve the problem. We present

the experimental results in a variety of four datasets in Sec-

tion 5. We discuss related work in Section 6 and conclude in

Section 7.

2 Additive tree models (ATMs)

Additive tree models (ATMs) include a wide range of tree-

based models that are widely used in machine learning ap-

plications. Special cases include random forests [10] and

boosted trees. For example, random forest is currently one

of the most popular and best off-the-shelf classifiers.

Note that our formulation is very general and encompasses

several most important and popular models for classification

and regression, not only random forest but also other addi-

tive tree models, such as adaboost, gradient boosting trees.

Thus, the proposed action extraction algorithm has very wide

applications.

In this paper, we assume we are given a dataset {X, Y},
where X = {x1, x2, . . . , xN } is the set of feature vectors and

Y = {y1, y2, . . . , yN} is the set of labels. Each feature vector

xi = (xi
1, x

i
2, . . . , x

i
M) has M attributes, where each attribute

x j ∈ D j has a finite or infinite domain D j. x j can be either

categorical or numerical. The label y’s have a finite discrete

domain DY . In the following, we also use x = (x1, x2, . . . , xM)

instead of xi = (xi
1, x

i
2, . . . , x

i
M) when there is no confusion.

For ease of presentation, we only consider binary output

where the label y ∈ {0, 1}. It is straightforward to extend this

work to the case of multi-way classification.

An ATM consists of an ensemble of K decision trees. Each

decision tree k has an output function ok(x) which takes an

input x and outputs a label y ∈ DY . The overall output is

H(x) =
K∑

k=1

wkok(x), (1)

where wk ∈ R are weights. H(x) also has a probabilistic in-

terpretation. For any label c ∈ DY ,

p
(
y = c | x

)
=

∑K
k=1 wkI(ok(x) = c)
∑K

k=1 wk

, (2)

where I(ok(x) = c) is an indicator function which evaluates

to 1 if ok(x) = c and 0 otherwise.

For a given input x, the typical predicted label yH by an

ATM H(x) is simply:

yH(x) = argmax
c∈DY

p(y = c|x). (3)

The ATM model in Eq. (1) is general enough to encompass

the following popular models.

• Random forests A random forest is generated as fol-

lows [10]. For k = 1, 2, . . . ,K,

1) Sample nk (0 < nk < N) instances from the dataset with

replacement.

2) Train an un-pruned decision tree on the nk sampled in-

stances. At each node, choose the split point from a

number of randomly selected features rather than all

features.

The output of the random forest is simply the average from

all the trees H(x) =
∑K

k=1
1
K ok(x), which is a special case of

the ATM in Eq. (1) with wk =
1
K .

• Boosted trees Boosting is a general method that ensem-

bles multiple weak learners to make a strong final model [11].

The boosting method trains the additive model sequentially in

a forward stage-wise manner. Suppose Hk(·) is the resulting

model up to stage k. The model of the next stage is

Hk+1(x)← Hk(x) + αkok(x),

where ok(·) is the weak learner obtained at stage k and αk is

the weight of this weak learner. The final model turns out to

be a weighted sum of all trees: H(x) =
∑K

k=1 αkok(x), which

is a special case of the ATM in Eq. (1) with wk = αk. There

are two common ways to train the weak learners, leading

to two different models: adaboost [11] and gradient boosted

trees [12].
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In adaboost, at stage k, the weight αk and the tree model

ok(·) are jointly optimized to minimize the loss function L of

the resulting model Hk+1:

minimize
αk ,ok

N∑

i=1

L(y(i),Hk(x(i)) + αkok(x(i))), (4)

where L is a loss function measuring the difference between

the true label y(i) and the model Hk+1(x(i)). In particular, when

L is the exponential loss (L(a, b) = e−ab), there is a nice

closed-form solution for αk, and fk can be learned by training

on the weighted instances.

Gradient boosting [12] counts each addition to the current

model Hk(·) as a gradient update of Eq. (4) in the function

space of Hk(·), where αk is the learning rate and ok(·) is the

negative gradient of minimizing the loss function L. Specifi-

cally, ok(·) is trained so that

ok(x(i)) ≈ −∂L(y(i),Hk(x(i)))
∂Hk(x(i))

,

which is equivalent to training a tree on the original instances

with new labels defined by the negative gradient.

3 Extracting optimal actionable plans from
ATMs

The OAP problem can be informally described as follows.

Given an ATM and an input x, we would like to find a set of

actions that, when applied to the input, change its predicted

class to a desirable one. Each action changes a number of fea-

tures in x. There is a reward for reaching the target class and a

cost for taking an action. The goal is to find a plan that gives

the best expected net profit.

Definition 1 (Feature partitions) Given an ATM, each fea-

ture xi, i = 1, 2, . . . ,M, is split into a number of partitions.

1) If xi is categorical with n categories, then xi naturally

has n partitions.

2) If xi is numerical, we assume each tree node branches

in the form of xi � b where b ∈ R is a splitting point.

If there are n splitting points for xi in all the trees in

the ATM model, feature xi is naturally split into n + 1

partitions.

In the following, let ni be the number of partitions for feature

xi, i = 1, 2, . . . ,M.

Naturally, each feature vector x = (x1, x2, . . . , xM) corre-

sponds to a unique feature partition vector (p1, p2, . . . , pM),

where pi is xi’s partition index. With a little abuse of no-

tations, we still use x to denote the feature partition vector,

since all x’s that map to the same feature partition vector are

non-distinguishable in our problem.

Definition 2 (Feature transition) Given an ATM model,

a feature transition T is a tuple T = (xi, p, q), where xi,

i = 1, 2, . . . ,M, is a feature, and p and q are two different

partitions of xi. A feature transition is applicable to a given

input x if and only if xi is in partition p.

Intuitively, a feature transition changes a feature xi from

partition p to another partition q.

Definition 3 (Action) An action a is a set of feature tran-

sitions, a = {T1,T2, . . . ,T|a|}, where each feature xi involves

with at most one of the transitions. Action a is applicable to

an input x if and only if all feature transitions in a are appli-

cable to x. Each action has a cost π(a) > 0.

For an input x with an applicable action a, we use x ⊕ a to

denote the resulting feature partition vector after applying all

the transitions in a to x.

In practice, the actions and costs are determined by do-

main experts. Typically, some features can be changed with

a reasonable cost, such as medicine intake volumes, interest

rates, and discount rates. These features are called soft at-

tributes [13]. On the other hand, the values of some features,

such as gender and marital status, cannot be changed with any

reasonable cost. These features are hard attributes and we do

not define any action associated with them.

A random forest H with two trees is shown in Fig. 1.

Among the three features, x1 is a hard attribute that cannot be

changed with a reasonable cost. x2 and x3 are soft attributes

that can be changed by certain actions. The split points for

x2 in the two trees are 2 and 3, respectively, leading to three

partitions for this feature, i.e., (−∞, 2), [2, 3) and [3,∞). Par-

titions are {married}, {single} for x1 and (−∞, 4), [4,∞) for

x3.

Fig. 1 An illustration of random forest containing three features

Given a feature vector x, we use p(x) to represent p(y =
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c|x).

Definition 4 (OAP problem) An OAP problem is a tu-

ple Π = (H, xI , c,O), where H is an ATM defined in

Eq. (1), xI is a given input, c ∈ DY is a class label, and O

is a set of actions. The goal is to find a sequence of actions

A = (a1, a2, . . . , an), ai ∈ O, to solve:

max
A⊆O

F(A) = (p(x̃) − p(xI))Rc −
∑

ai∈A
π(ai), (5)

subject to: p(x̃) � z, (6)

where 0 < z � 1 is a constant, Rc > 0 is the reward for

reaching class label c, and

x̃ = xI ⊕ a1 ⊕ a2 ⊕ · · · ⊕ an, (7)

is the new sample after applying the actions in A to xI se-

quentially. Note that F(A) � Rc.

Intuitively, the OAP problem entails finding a set of ac-

tions to make changes to any input sample so that the pre-

dicted class membership is changed while the net profit F(A)

(the expected incremental profit minus the costs of action) is

maximized.

Given the input feature vector x = {married, 1, 5} and

xG = {x|H(x) = 1}, the transformed OAP problem is

ΠOAP(H, xI , “good”,O), where xI = {married, 1, 5} and xG =

{x|H(x) = 1}. The feature partitions of variables are {0, 1},
{0, 1, 2}, {0, 1}, and sI = {0, 0, 1}. The goal state of the plan

is s = {0, 1, 0} and the corresponding feature vector is xG =

{married, 2, 3}. The actions are defined as changing the value

of x2 and x3 according to Definition 3. A plan of the problem

is (a1, a2), where a1 = {(x2, 0, 1)} and a2 = {(x3, 1, 0)}.
We now show that the OAP problem is an NP-hard prob-

lem by reducing from the DNF-MAXSAT problem [14]. The

DNF-MAXSAT problem is defined over a boolean formula

in disjunctive normal form with M binary variables and K

clauses. The problem is to determine if there exists an assign-

ment such that there are at least m clauses that evaluate to

true.

Theorem 1 The OAP problem is NP-hard.

Proof We reduce a well-known NP-hard problem, DNF-

MAXSAT, into the OAP problem with binary class labels.

Given any DNF-MAXSAT problem with K clauses and M

variables, we construct an ATM model with M features and

K trees where each tree represents a clause. Each literal in the

clause corresponds to a node in the tree. For k = 1, 2, . . . ,K,

the output of tree k is 1 if and only if all literals in clause k

are made true. Finally, the DNF-MAXSAT problem reduces

to the OAP problem with Rc = 0, π(a) = 0, and z = m/K. �

Since the OAP problem is in general an NP-hard problem,

it usually does not have any efficient algorithm for optimally

solving it. In this paper, we propose a sub-optimal state space

search algorithm to efficiently solve this problem with high

solution quality.

4 State space search for solving the OAP
problem

State space search is a core technique for AI. It is widely

used in domains such as automated planning, robotics, path

finding, and video games. For many NP-hard combinato-

rial problems, state space search is the dominating solution

technique. For example, in the recent International Planning

Competitions1), the First-Prize winners are all based on state

space search. Formally, state space search is usually to find

the shortest path from an initial state to a goal state on a state

space graph for planning and path finding problem formula-

tions.

A key feature of state space search is that its search ef-

ficiency is largely dependent on the heuristic function guid-

ing the search. In many cases, more accurate heuristic func-

tions usually lead to faster search. However, more accurate

heuristic functions sometimes also need more computation

time [15]. Thus, we need to take a good balance between

these two aspects, particularly for large-size instances. For a

state space graph where all edges have positive weights, when

the heuristic function is admissible (always underestimating

the true distance), the well-known A∗ search can guarantee to

find the optimal solution under very mild conditions.

Definition 5 (State space graph for OAP) For the OAP

problem, the state space graph is a directed graph G = (F , E),

where the vertex set F is the set of all possible states (par-

tition vectors) and the edge set E satisfies that for any two

states xi−1, xi ∈ F , there exists an edge (xi−1, xi) ∈ E if and

only if there is an action a ∈ O such that xi−1 ⊕ a = xi; the

weight for this edge is

w(xi−1, xi) =
[
p(xi) − p(xi−1)

]
Rc − π(a), (8)

where p(xi) is the ATM output as defined in Eq. (2).

Although the state space graph G may contain many states,

it is important to note that the state space search expands

1) http://icaps-conference.org/index.php/Main/Competitions
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states on-demand and typically only examines a tiny fraction

of F .

Definition 6 (Goal states) For an OAP problem in Defini-

tion 4 with a state space graph G = (F , E), a node x̃ is a goal

state if and only if p(x̃) � z where z is a constant.

Theorem 2 The OAP problem in Definition 4 is equivalent

to finding a path with the largest total weights on the state

space graph G = (F , E) from a given state xI to a goal state.

Proof Let the path with the largest total weights from x to a

goal state on G be x0 = xI , x1, . . ., xn = x̃, and let xi−1⊕ai = xi

for i = 1, 2, . . . , n, the total weights of the path are

n∑

i=1

w(xi−1, xi) =
n∑

i=1

[
p(xi) − p(xi−1)

]
Rc −

n∑

i=1

π(ai)

= (p(x̃) − p(xI))Rc −
n∑

i=1

π(ai).

When such a solution path is found, we know that x̃ satis-

fies Eq. (6) according to Definition 6 and the path maximizes

Eq. (5). The theorem can be seen from Definition 4. �

Note that the edge weight w(xi−1, xi) might be a negative

number, thus the widely used A∗ algorithm for optimal state

space search is not suitable for the OAP problem. Here we

first introduce an optimal algorithm based on the state space

search.

Algorithm 1 shows the anytime fashion optimal state space

search algorithm. It maintains two data structures, a max heap

(which takes 〈value, key〉 pairs) and a closed list, and per-

forms the following main steps:

1) Initialize the f ∗ and plan∗. Add the pair 〈xI , f (xI)〉 to

the max heap (lines 1–4).

2) Pop the state x from the heap with the largest f (x)

(line 7).

3) If x is a goal state and g(x) > f ∗, update f ∗ and the best

plan plan∗ (lines 8–10).

4) If x is not in the closed list, add x to the closed list and

for each edge (x, x′) ∈ E, add 〈x′, f (x′)〉 to the max heap

(lines 12–16). Otherwise the state x has been searched

before. If it finds a path with larger total weights from

xI to x, update the f (x) in max heap and the predecessor

of x in the closed list (lines 20–23).

5) Repeat from Step 2.

The closed list is implemented as a set with highly efficient

hashing-based duplicate detection. At the core of search is an

evaluation function f (x) that decides the order of state expan-

sions.

Algorithm 1 Optimal state space search

Input: G = (F , E), g, h

1: f ∗ ← −∞
2: plan∗ ← ∅
3: compute f (xI) = g(xI ) + h(xI)

4: MaxHeap.push(〈xI , f (xI)〉)
5: ClosedList← {}
6: while MaxHeap is not empty do

7: x←MaxHeap.pop() // x has the maximum f (x)

8: if p(x) � z and g(x) > f ∗ then

9: f ∗ ← g(x)

10: plan∗ ← path(xI , x)

11: end if

12: if x � ClosedList then

13: ClosedList=ClosedList ∪{x}
14: for each (x, x′) ∈ E do

15: compute f (x′) = g(x′) + h(x′)

16: MaxHeap.push(〈x′, f (x′)〉)
17: end for

18: else

19: xold ←MaxHeap.find(x)

20: if g(x) > g(xold) then

21: compute f (x) = g(x) + h(x)

22: MaxHeap.push(〈x, f (x)〉)
23: update the predecessor of x in ClosedList

24: end if

25: end if

26: end while

27: return plan∗

Definition 7 (Evaluation function) For a state space graph

G = (F , E), the evaluation function f (x) on x ∈ F has the

form f (x) = g(x) + h(x), where h(x) : F → R is a heuristic

function.

In f (x), g(x) is the “current” weights (the total weights of

the path leading up to x), while h(x) is the estimated “future”

weights. Let the path from xI to a state be x0 = xI , x1, . . .,

xm = x, and let xi−1 ⊕ ai = xi for i = 1, 2, . . . ,m, the current

weights are

g(x) =
m∑

i=1

w(xi−1, xi)

=

m∑

i=1

[
p(xi) − p(xi−1)

]
Rc −

m∑

i=1

π(ai)

=
[
p(x) − p(xI)

]
Rc −

m∑

i=1

π(ai). (9)

The perfect heuristic h∗(x) is the path with the largest total

weights from x to a goal state. Let the path with the largest
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total weights from x to a goal state be x0 = x, x1, . . ., xn = x̃,

and let xi−1 ⊕ ai = xi for i = 1, 2, . . . , n, the total weights are

h∗(x) =
n∑

i=1

w(xi−1, xi)

=

n∑

i=1

[
p(xi) − p(xi−1)

]
Rc −

n∑

i=1

π(ai)

=
[
p(x̃) − p(x)

]
Rc −

n∑

i=1

π(ai). (10)

As everyone knows, for positive edge state space graph,

when the heuristic is admissible (h(x∗) = 0 and h(x) � h∗(x))

and consistent (a monotonicity property) at any state x, a

maximal state space search will find an optimal solution [16]

when h(x) = 0. This special case is known as A∗ search.

For example, a trivial admissible heuristic is h0(x) = Rc, in

which case the algorithm is essentially the Dijkstra’s algo-

rithm. Unfortunately, since the edge weight w(xi−1, xi) might

be a negative number in the state space graph for OAP prob-

lems, Algorithm 1 cannot guarantee to find the optimal so-

lution when h(x) = 0. It might have to search all states to

guarantee finding the optimal solution. In our experiments, it

usually causes the search timeout. Thus, we propose a sub-

optimal algorithm which can remarkably reduce the search

time while obtaining a sub-optimal solution at the same time.

Algorithm 2 shows the sub-optimal state space search al-

gorithm. Similar to Algorithm 1, it maintains two data struc-

tures, a min heap (which takes 〈value, key〉 pairs) and a closed

list, and performs the following main steps:

1) Initialize the g∗, δ∗, and plan∗. Add the pair 〈xI , h(xI)〉
to the min heap (lines 1–4).

2) Pop the state x from the heap with the smallest h(x) (line

7).

3) If x is a goal state and g(x) > g∗, update g∗, δ∗, and the

best plan plan∗ (lines 8–11).

4) If x satisfies one of the termination conditions (h(x) ==

0 or p(x) � pu or |ClosedList| − δ∗ > Δu), stop the

search and return the best plan plan∗ ever found (lines

13,14).

5) Add x to the closed list and for each edge (x, x′) ∈ E,

add 〈x′, f (x′)〉 to the min heap if x is not in the closed

list (lines 16–20).

6) Repeat from Step 2.

Note that pu is the upper bound of the prediction value. δ∗

records the number of searched states when finding a better

plan. If the search has not found a better plan for a long time

(|ClosedList| − δ∗ > Δu), to get a good balance of efficiency

and plan quality, we stop the search immediately.

Algorithm 2 Sub-optimal state space search

Input: G = (F , E), g, h

1: g∗ ← −∞
2: δ∗ ← 0

3: plan∗ ← ∅
4: MinHeap.push(〈xI , h(xI )〉)
5: ClosedList← {}
6: while MinHeap is not empty do

7: x←MinHeap.pop() // x has the minimum h(x)

8: if p(x) � z and g(x) > g∗ then

9: g∗ ← g(x)

10: δ∗ ← |ClosedList|
11: plan∗ ← path(xI , x)

12: end if

13: if h(x) == 0 or p(x) � pu or |ClosedList| − δ∗ > Δu then

14: return plan∗

15: end if

16: if x � ClosedList then

17: ClosedList=ClosedList ∪{x}
18: for each (x, x′) ∈ E do

19: compute h(x′)

20: MinHeap.push(〈x′, h(x′)〉)
21: end for

22: end if

23: end while

24: return plan∗

Heuristic h1(x) We propose an admissible and consistent

heuristic function to be used as h(x) in Algorithm 2:

h1(x) =
[
1 − p(x)

]
Rc − π∗(x), (11)

where π∗(x) is the minimum cost of any edge (x, x′). Let

Ax be the set of actions on the edge from x to x′. We have

π∗(x) = mina∈Ax π(a).

Theorem 3 Heuristic h1(x) is admissible and consistent.

Proof Let the path with the largest total weights from x to

a goal state be x0 = x, x1, . . ., xm = x̃, and let xi−1 ⊕ ai = xi

for i = 1, 2, . . . ,m, the total weights is

h∗(x) =
m∑

i=1

w(xi−1, xi)

=

m∑

i=1

[
p(xi) − p(xi−1)

]
Rc −

m∑

i=1

π(ai)

=
[
p(x̃) − p(x)

]
Rc −

m∑

i=1

π(ai)

�
[
p(1 − p(x)

]
Rc − π∗(x), (12)

which shows that h1(x) is admissible. Also, for any edge
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(xi−1, xi) ∈ E, let xi−1 ⊕ a = xi, we have

w(xi−1, xi) + h1(xi) =
[
p(xi) − p(xi−1)

]
Rc − π(a)

+
[
1 − p(xi)

]
Rc − π∗(xi)

=
[
1 − p(xi−1)

]
Rc − π(a) − π∗(xi)

�
[
1 − p(xi−1)

]
Rc − π∗(xi−1)

= h1(xi−1). (13)

The triangle inequality w(xi−1, xi) + h1(xi) � h1(xi−1) shows

that h1(x) is consistent [16]. �

Compare to Algorithm 1, Algorithm 2 has two main dif-

ferences: 1) It does not have to search all states since it will

stop the search once a state x satisfies the termination con-

dition (lines 13,14); 2) Since a state with the smaller h value

is more close to the goal, it uses a Minheap to store the can-

didate states by the ascending order of the heuristic value (h)

and pops the state with the minimum h value in each iteration.

5 Experimental results

5.1 Experimental setup

We evaluate the proposed method on a real data set obtained

from a credit card company via private communication and

three datasets from the UCI Repository [4,17,18]. The infor-

mation of these datasets are listed in Table 1. M is the number

of attributes, Ms is the number of soft attributes, T is the train-

ing time for random forests in seconds, and |O| is the number

of actions. We randomly split each dataset into training and

testing sets with a 7:3 ratio. A random forest is built on the

training set using the Random Trees library in OpenCV 2.4.9.

Table 1 The detailed information of the dataset from a credit company and
other three datasets from the UCI repository

Sample size Recognition rate/%
Dataset M

Training Testing Training Testing
T Ms |O|

Adult 14 21 113 9 049 86.68 86.52 4.53 11 2 368

Bank 18 28 831 12 357 91.93 88.52 6.61 17 580

Credit 35 624 281 267 549 59.73 59.70 251.08 17 762

German 20 700 300 95.00 74.00 0.27 16 206

For each domain, we randomly choose 30 records from

the testing set that are labeled in a “negative” status (i.e.,

“<=50K” in Adult, “no” in Bank, labeled “negative” in

Credit, “bad” in German) to form OAP problem instances.

We randomly generate actions to change its soft attributes.

Each action is assigned a random cost in [10, 20]. Rc, the to-

tal profit of a state s in the desired status, is set to 1 000, and

z is set to 0.5.

• Adult This dataset is extracted from the 1994 Cen-

sus database [18]. The task is to determine whether a person

makes over 50K a year. This data consists 30 162 records,

and 14 attributes including 11 soft attributes. We use the 11

soft attributes to generate 2 368 actions.

• Bank This data is from direct marketing campaigns of a

Portuguese bank [4]. The marketing campaigns are based on

phone calls. The classification goal is to predict if the client

will subscribe (“yes” or “no”) a term deposit. This data con-

sists 41 188 records, and 18 attributes including 17 soft ones.

We use the 17 soft attributes to generate 580 actions.

• Credit This is a real dataset from a credit card com-

pany in the US. It has 891 831 records for customers, who

have two status as bringing “positive” or “negative” profits

to the company. Out of the 35 attributes, 17 can be changed

values with reasonable costs. We use the 17 soft attributes to

generate 762 actions.

• German This dataset classifies people as having “good”

or “bad” credit scores. It consists of 1 000 records, each has

20 attributes in total and 16 soft attributes. We generate 206

actions.

We run all experiments on a workstation with an Intel Xeon

2.50GHz processor and 16GB memory. For each solver on

each instance, the time limit is set to 600 seconds. If a solver

does not finish in 600 seconds, we record the best solution

found in terms of net profit and the total search time (600

seconds).

5.2 Adjust the tradeoff between net-profit and search time

In sub-optimal heuristic search with heuristic h1, denoted as

NS (h1), the main parameters controlling the tradeoff between

net-profit and search time are pu and Δu (See line 13 in Algo-

rithm 2). Considering the search time cost, finding the good

pu and Δu values is very important to get a good balance

between net-profit and efficiency, especially in some time-

sensitive domains. Note that the best values of pu and Δu are

highly domain dependent.

Figure 2 shows the results of the average net-profit and

search time of NS (h1) with different upper bounds pu for

each dataset. In these tests, Δu is set to∞. From Fig. 2(a), we

can see that the net-profit linearly increases with pu when pu

is smaller than 0.9. However, the net-profit has a very small

increase when pu is larger than 0.9. From Fig. 2(b), we can

see that the search time increases very fast when pu is larger

than a certain value (0.9 in Adult, 0.8 in Bank and Credit, and

0.95 in German). The reason is that the states with a high pre-

diction value p are pretty rare, it will spend much more time
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to find such a state. Thus, to gain the best tradeoff between

net-profit and search time, the best pu for the four datasets

can not be neither too small nor too large.

Fig. 2 The average (a) net-profit and (b) search time of NS (h1) with differ-
ent upper bound pu for each dataset (Δu = ∞)

Figure 3 shows the results of the average net-profit and

search time of NS (h1) with different upper bounds Δu for

each dataset. In these tests, pu is set to 1.0. From Fig. 3(a),

we can see that the net-profit increases with Δu under a cer-

tain value (104 in Adult and Bank, 103 in Credit and German)

and after that it almost keeps unchanged. Figure 3(b) shows

that the search time linearly increases with Δu when Δu is

larger than 104. We also present the net-profit and the number

of searched states of all solutions found by NS (h1) for each

dataset in Fig. 4. It shows that most of the solutions would be

found under a certain number of searched states (105 in Adult,

104 in Bank, 103 in Credit and German). Thus, NS (h1) does

not have to search a large number of states (larger than 106)

to find a sub-optimal solution.

5.3 Viability of our methods

To show the viability of our algorithms, five methods are

tested and compared in our experiments. We test the optimal

state space search Algorithm 1 using heuristic function h0(s),
denoted as OS (h0), and the sub-optimal state space search

Algorithm 2 using the admissible heuristic h1(s) and upper

bounds pu = 0.9 and Δu = 105, denoted as NS (h1). For

comparison, we also implement three solvers as follows: 1)

A breadth-first search using Algorithm 1 with an evaluation

function f b =
∑n

i=1 π(ai), denoted as OS ( f b); 2) A random

search using Algorithm 2 with a random heuristic hr which is

a random value from [1,Rc], denoted as NS (hr); 3) An itera-

tive greedy algorithm which chooses one action in each iter-

ation that maximizes the net-profit F(A) in Eq. (5). It keeps

iterating until there is no more variables to change. We denote

this algorithm as the Greedy algorithm.

Fig. 3 The average (a) net-profit and (b) search time of NS (h1) with differ-
ent upper bound Δu for each dataset (pu = 1.0)

We first show the summarized results of all methods on

all instances in Table 2. 30 random cases are tested for each

dataset. T is the average search time in seconds, and F(A) is

the average net profit. B/EQ( f b) is the number of cases that

the OS (h0) algorithm gets better/same F(A) as the OS ( f b)

method out of the 30 runs. B/EQ( f b), B/EQ(h0), B/EQ(hr),

and B/EQ(G) are the number of cases that the NS (h1) algo-
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Fig. 4 The number of searched states versus the net-profit of all solutions found by NS (h1) for each dataset. (a) Adult; (b) Bank; (c) Credit;
(d) German

Table 2 Summarization of experimental results of five algorithms on four datasets

Optimal Sub-optimal

Name OS ( f b) OS (h0) NS (hr) Greedy NS (h1)

T F(A) T F(A) B/EQ( f b) T F(A) T F(A) T F(A) B/EQ( f b) B/EQ(h0) B/EQ(hr) B/EQ(G)

Adult 600.01 318.23 600.01 606.43 26/1 600.01 –96.13 0.21 482.97 3.18 542.73 25/2 1/7 30/0 16/0

Bank 600.01 381.47 600.01 566.03 30/0 600.01 –112.63 0.25 322.57 4.20 549.47 29/0 0/10 30/0 28/0

Credit 600.01 243.70 600.01 261.23 22/4 600.01 24.17 0.44 217.03 4.92 237.20 5/4 0/4 30/0 20/0

German 580.01 466.30 600.01 469.60 13/11 563.26 229.30 0.05 361.43 1.72 467.07 12/10 0/21 30/0 30/0

rithm gets better/same F(A) as the OS ( f b), OS (h0), NS (hr),

and Greedy, respectively. As shown in Table 2, the OS (h0) al-

gorithm finds better plans than OS ( f b). Although both are op-

timal in theory, since we set an time limit of 600 seconds and

they often cannot finish the search within the time limit. As

a result, we count the optimal solution found within the time

limit. We can see that OS (h0) is much better than OS ( f b) in

terms of quality, due to its stronger evaluation function guid-

ance.

Comparing the NS (h1) with the optimal algorithms

OS ( f b) and OS (h0), we can see that OS (h0) finds the best

solutions in most of the instances within the given time limit.

Even though NS (h1) is a sub-optimal algorithm, it finds 71

better and 16 equal solutions compared with OS ( f b) and 1

better and 42 equal solutions compared with OS (h0) out of

total 120 instances while spending much less search time.

Comparing the NS (h1) with the random search NS (hr) and

Greedy algorithms, we can see that the Greedy algorithm is

very fast, taking less than one second on average to yield a so-

lution. However, NS (h1) finds better solutions in most of the

instances within the given time limit. More precisely, it finds

120 better solutions than NS (hr) and 94 better solutions than

Greedy out of total 120 instances. In many practical applica-

tions such as marketing and clinical decision-making, users

are often willing to pay a few minutes of time in order to

maximize their potential net benefits. Moreover, since action-

ability extraction can be viewed as an individualized feature

selection process for selecting the most sensitive and relevant
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features for a given sample, it is important to find the optimal

or sub-optimal solution.

Detailed results on all instances are shown in Fig. 5. Here,

we plot the search time (x-axis) versus the net profit (y-

axis) for each run. From the plots, we can clearly see that

the Greedy algorithm is very fast, but does not have very

good solution quality. The optimal OS (h0) algorithm has by

far the best solution quality. The speed and solution quality

of NS (h1) are in between the Greedy and OS (h0) methods,

which achieves a good tradeoff between solution quality and

search time. OS ( f b) and NS (hr) are not competitive in terms

of solution quality and search time.

5.4 Comparison with ILP method

For comparison, we also consider the integer linear pro-

gramming (ILP) method [19], one of the state-of-the-art al-

gorithms for solving the OAP problem. We test our sub-

optimal algorithm (NS (h1)) and ILP method on nine bench-

mark datasets from the UCI repository2) and the LibSVM

website3) used in ILP’s original experiments. The informa-

tion of the datasets is listed in Table 3. N, D, and C are the

number of instances, features, and classes, respectively. To

compare with ILP, for each dataset, we randomly sample 30

instances from testing set and generate 30 problems with the

same parameter settings. Specifically, we choose a weighted

Euclidean distance as the action cost function,

π(xi−1, xi) = βi(xi − xi−1)2, (14)

where βi is the cost weight on variable i. βi is randomly gen-

erated in the range between 1 and 100. Note that since ILP

aims to minimize the loss function

�(x̃, xI) =
D∑

i=1

βi(x̃i − xI
i )

2, (15)

for each dataset, we solve the 30 generated problems and re-

port the results of the average search time (Time) and total

action costs of the solutions (Cost). EQ(ILP) is the number

of optimal solution found by NS (h1) which has equal solu-

tion cost to ILP and #instances is the number of instances in

each domain.

Fig. 5 Search time in seconds versus the net-profit of different methods on all test cases from the four datasets. (a) Adult; (b) Bank; (c) Credit;
(d) German

2) https://archive.ics.uci.edu/ml/datasets.html
3) http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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Table 3 Comparison results of our sub-optimal search and ILP algorithms on nine datasets

ILP NS (h1)
Dataset N D C

Time/s Cost Time/s Cost Time(NS (h1))
Time(ILP) (%) Cost(ILP)

Cost(NS (h1))
EQ(ILP)/#instances

A1a 32 561 123 2 7.55 70.9 4.05 72.32 53.64 1.02 16/30

Australian 690 14 2 108.01 0.44 1.88 0.82 1.74 1.86 23/30

Breast cancer 683 10 2 31.04 10.09 1.45 10.09 4.67 1.00 30/30

Dna 2 000 180 3 35.47 12.2 4.49 15.68 12.65 1.28 13/30

Heart 270 13 2 5.77 3.19 2.31 8.01 40.03 2.51 20/30

Ionosphere 351 34 2 48.84 18.68 2.87 25.37 5.87 1.35 3/30

Liver disorders 345 6 2 31.62 0.15 0.17 0.15 0.53 1.00 30/30

Mushrooms 8 124 112 2 3.87 22.93 2.69 23.59 69.50 1.02 27/30

Vowel 990 10 11 68.73 1.15 1.97 2.02 2.86 1.75 17/30

Total 46 014 502 28 340.90 139.73 21.88 158.05 6.41 1.13 179/270

Table 3 shows a comprehensive comparison in terms of

the average search time and the solution quality measured by

the total action costs. From Table 3, we can see that NS (h1)

spends much less time to find a sub-optimal solution than the

ILP (21.88 seconds, 6.41% of ILP’s 340.90 seconds), espe-

cially in datasets australian (1.74%), breast cancer (4.67%),

dna (12.65%), ionosphere (5.87%), liver disorders (0.53%),

and vowel (2.86%). Moreover, NS (h1) finds 179 optimal so-

lutions in total 270 instances and the total average solution

costs (158.05) is a little larger than the ILP (139.73). Thus,

our sub-optimal algorithm achieves a good balance between

the search time and solution quality compared with ILP.

6 Related work

Actionable knowledge discovery has been studied in man-

agement and marketing science, where stochastic models are

used to find specific rules of the response behavior of cus-

tomers [20,21]. On the other hand, research on this subject is

still very limited in the machine learning community. Some

earlier works focused on the development of ranking mech-

anisms with business interests. Hilderman et al. proposed a

two-step process for ranking the interestingness of discov-

ered patterns [22]. Cao et al. proposed a two-way framework

to measure knowledge actionability which not only consid-

ers technical interestingness but also domain-specific expec-

tations [23].

Besides the ranking mechanisms, post-analysis techniques

have also been studied. Liu et al. introduced an actionable

knowledge discovery algorithm which could prune and sum-

marize the learnt rules by considering similarity [24, 25]. In

order to expand the ability of handling different problems and

applications, Cao et al. proposed domain-driven data mining,

a paradigm shift from a research-centered discipline to a prac-

tical tool for actionable knowledge [26]. More specifically,

meta-synthesize ubiquitous intelligence and several types of

other frameworks have been involved into the mining pro-

cess [27]. Techniques have also been proposed to postprocess

decision tree and additive tree models to extract actionable

knowledge [13, 19, 28]. Yang et al. used a greedy strategy to

find optimal strategies on decision trees [13, 28]. Cui et al.

found the actions to change sample membership on an en-

semble of trees using integer linear programming [19]. How-

ever, it did not consider expected net profit but only consid-

ered actions that change one attribute each time. Compared

to some previous work [13, 19, 28], the problem we stud-

ied is much more challenging. For instance, in the dataset

of “Bank Telemarketing” [4], a “contact” action may change

attributes “campaign” (number of contacts performed dur-

ing this campaign and for this client), “pdays” (number of

days that passed by after the client was last contacted from a

previous campaign), and “previous” (number of contacts per-

formed before this campaign and for this client) at the same

time. To complicate matters, one action could involve multi-

ple attributes and one attribute changing may associate with

multiple actions. In a word, these approaches can not handle

the complicated situations [13, 19, 28]. In this paper, the pro-

posed state space search based planning framework is capable

of tackling this problem.

7 Conclusions

In this paper, we studied automatic extraction of actionable

knowledge from additive tree models (ATMs), one of the

most widely used and best off-the-shelf classifiers. We started

from a mathematical formulation of ATM and the optimal

actionable plan (OAP) problem, which is used to find the

set of actions that can change an input instance’s status to

a desired one with the maximum net profit. Solving the OAP

problem not only provides an actionable plan, but also helps
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rank feature importance individualized for each input sam-

ple. Most feature selection algorithms are based on a given

training dataset and classifier, and are not customized for an

individual instance. In contrast, the output from OAP can be

viewed as a result of individualized feature selection, as it

identifies the few features that can most efficiently change

the prediction output of a particular instance. Such individu-

alized feature selection may find many applications, such as

personalized healthcare and targeted marketing.

We then proposed a state space graph formulation to model

the OAP problem as a well-studied combinatorial optimiza-

tion problem that can be solved by graph search. We further

introduced an optimal state space search to find the optimal

solution and a sub-optimal state space search which is more

effective than the optimal algorithm. We also introduced a

heuristic function which can largely improve the efficiency

of the sub-optimal algorithm. Extensive experimental results

on real-world credit and banking data showed that the pro-

posed sub-optimal method can efficiently and robustly solve

the OAP problems. In a word, the optimal search significantly

outperforms other baseline methods in terms of the solution

quality with the expense of a large number of search time.

Compared with the optimal algorithm, the sub-optimal search

takes a good balance between the search time and plan qual-

ity. Given its efficiency and robustness, we believe that the

proposed framework will become a popular method for ac-

tionable knowledge extraction on a large scope of real-world

applications.

In our current work, we have not considered the scalability

of the ATM models. When learning on a very large data set,

models like random forest can be extremely large and deep.

It may increase the time of computing the heuristic function

h1 and slow down the sub-optimal search. One interesting

future work is to simply the ATM and use a smaller model to

extract plans [29].
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