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Abstract Learning from imbalanced data is a challenging

task in a wide range of applications, which attracts signif-

icant research efforts from machine learning and data min-

ing community. As a natural approach to this issue, oversam-

pling balances the training samples through replicating ex-

isting samples or synthesizing new samples. In general, syn-

thesization outperforms replication by supplying additional

information on the minority class. However, the additional

information needs to follow the same normal distribution of

the training set, which further constrains the new samples

within the predefined range of training set. In this paper, we

present the Wiener process oversampling (WPO) technique

that brings the physics phenomena into sample synthesiza-

tion. WPO constructs a robust decision region by expanding

the attribute ranges in training set while keeping the same

normal distribution. The satisfactory performance of WPO

can be achieved with much lower computing complexity. In

addition, by integrating WPO with ensemble learning, the

WPOBoost algorithm outperforms many prevalent imbalance

learning solutions.

Keywords imbalanced-data learning, oversampling, en-

semble learning, Wiener process, AdaBoost

1 Introduction

Imbalanced data are pervasive in a wide range of applications
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[1–4], where the minority class is important and with unequal

misclassification costs. In this circumstance, traditional strat-

egy that assumes a balanced distribution usually encounters

a significant bottleneck with suboptimal performance. To re-

duce the influence of the imbalanced classes, many solutions

have been proposed through applying resampling, ensemble

learning or their hybrid [5–7].

Resampling [8–11] balances the data set via oversampling

the minority class samples or undersampling the majority

class samples. Undersampling potentially leads to more ef-

ficient classification, but as it discards useful information in

the majority class, it eventually trembles the decision bound-

ary and leads to poor classifiers [2,12]. On the contrary, over-

sampling preserves more information via replicating exist-

ing samples or synthesizing new samples. Replication (also

known as Random Oversampling) randomly duplicates a few

minority samples, hence it usually produces smaller regions

of minority classes that possibly results in overfitting [8,13];

while Synthesization alleviates this issue through supplying

additional information on the minority class, such as syn-

thetic minority oversampling technique (SMOTE) [10]. En-

semble learning addresses the problem of imbalanced dataset

[1–4,14] through boosting a set of weak learners. Popular en-

semble algorithms include Boosting and Bagging, both re-

alize the classifier ensembles from a set of weak learners.

The hybrid approach addresses the imbalanced data issue

by integrating oversampling with ensemble learning, such as

SMOTEBoost [5,6,15].

In spite of the improved performance, existing approaches



Qian LI et al. Boosting imbalanced data learning with Wiener process oversampling 837

share some common limitations. For example, oversampling

attempts to make full use of both majority and minority

classes. However, no matter for Replication or Synthesiza-

tion, the synthesized samples remain within the range of orig-

inal training dataset and are prone to tremble the decision

boundary. Since the training dataset is sampled from amounts

of original set and may narrow down the range of the values

of original set. A robust oversampling strategy is expected

to break the attribute range confined in the training set and

represent the as many characteristics of the original set as

possible. Moreover, the ensemble learning still dominates in

tackling imbalanced learning issue [5,6,15], though training

base learners in each iteration results in significant computing

complexity. The oversampling technique is also expected to

be efficient for integration with ensemble learning. In conclu-

sion, a better oversampling is in demand to break the confined

attribute range and exert less computational cost to ensemble

learning.

Wiener Process (also known as Brownian Motion), origins

from physics, formulates the particles’ macroscopic move-

ment in d-dimensional space with linear complexity [16]. In

this paper, we adopt the Wiener Process into oversampling to

generate new minority class samples, by simulating the value

of a new sample as the particle’s position after movement.

As Wiener Process exhibits regularity when repeating, it can

be proved that synthesized samples of oversampling based

on Wiener Process conform to the distribution of the original

minority class. In addition, oversampling based on Wiener

Process imposes no constraint on the values of new samples,

which keeps the opportunity of breaking the attribute range

confined by the training set.

The contributions of this paper are two-fold:

• To the best of our knowledge, this is the first work that

brings the Wiener Process into oversampling. The pro-

posed Wiener process oversampling (WPO) constructs

a robust decision region by expanding the range of val-

ues in the training data set while preserving the same

normal distribution. This decision boundary is not con-

strained by the given training data set and allows the

classifier to gain a stable and robust decision. Exper-

iment results also indicate that WPO consistently en-

hances classifiers’ performance on imbalanced datasets.

Especially, we propose WPOBoost algorithm by inte-

grating WPO with ensemble learning, which achieves

the best performance among the state-of-the-art ensem-

ble methods.

• Most oversampling techniques achieve better perfor-

mance through extensive computation. WPO consumes

less time complexity to achieve superior capability on

imbalanced dataset. This further reduces the complex-

ity of integrating it into other classifiers.

The remainder of the paper is organized as follows: Sec-

tion 2 provides the preliminary and related work; Section

3 analyzes the WPO algorithm and the superiority proper-

ties over the prevalent oversampling technique. Section 4

presents the experimental results compared with the preva-

lent approaches. Finally, Section 5 concludes the paper and

envisages future directions.

2 Preliminary and related work

The imbalanced datasets are encountered by numerous real-

world applications where the class distributions are highly

imbalanced [1,2]. Most classification algorithms implicitly

assume a balanced distribution and equal misclassification

cost when optimizing the overall accuracy [17,18]. However,

the imbalanced datasets usually violate these assumptions

and compromise the classification performance. Without loss

of generality, in this paper, we discuss the binary classifica-

tion and assume the minority class as the positive class, and

the majority class as the negative class.

2.1 Three strategies

Existing imbalanced data learning methods can be catego-

rized into three strategies: oversampling, ensemble learning

and their hybrid. Oversampling and ensemble learning tackle

the issue on the data and the algorithm level respectively,

while their hybrid oversamples the data set before feeding

them into ensemble learning.

In real world applications, the dataset is imbalanced when

the ratio of the minority class to the majority class is sig-

nificantly low [19]. As a popular solution to the imbalanced

data, Oversampling re-balances the data through increasing

the size of minority class. A variety of oversampling methods

have been proposed in recent years, such as Random Over-

sampling (RO) and SMOTE [9,10,20]. Among them, RO ran-

domly selects some minority samples to replicate such that

the dataset can be re-balanced [8]. As a typical synthesization

method that explores the characteristics of minority samples,

SMOTE constructs the synthetic sample via linear interpola-

tions between two adjacent samples: it first finds k nearest-

neighbors for each minority sample; then draws a random

point from the line connecting every pair of neighbors.
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Instead of directly processing the imbalanced data, Ensem-

ble Learning invokes a series of individually trained base

classifiers through Boosting or Bagging. A typical Boost-

ing approach is AdaBoost that adapts weight-update rule to

guarantee that misclassified minority examples are assigned

with higher weights. A variant of AdaBoost, cost-sensitive

boosting algorithms (e.g., Easy-Ensemble and BalanceCas-

cade) [21], intentionally increases the weights of samples

with higher misclassification cost in the boosting process. A

final decision is made by voting from these trained learners.

Both Boosting and Bagging approaches exhibit high flex-

ibility in combining base learner without prior knowledge

[17,22–24].

The hybrid of oversampling with Ensemble Learning is an-

other common imbalanced data learning strategy [5–7,15],

where every successive classifier of ensemble learning em-

phasizes more on the minority class through oversampling.

The hybrid strategy broadens the decision region for the

minority class, since every trained classifier is constructed

from a different oversampled data set. For instance, SMOTE-

Boost [6] synthesized new minority-class samples using the

SMOTE algorithm in each boosting iteration.

2.2 Summary

Although existing approaches demonstrated their success in

imbalanced data learning, two issues remain open. Firstly,

in the oversampling strategy, synthesization provides a broad

decision region than Replication, but resulting in heavy com-

putational cost. Secondly, the hybrid strategy re-balances the

dataset with a broad decision region, but the Ensemble Learn-

ing strategy requires significant computational cost in train-

ing, especially when combining with the oversampling strat-

egy. Hence, this paper aims to alleviate the above limitations.

3 Wiener process oversampling

Oversampling in general outperforms over undersampling,

but those synthesized samples remain within the range of

original training dataset and the approach is prone to trem-

ble the classification decision boundary. To alleviate this is-

sue, we propose WPO, through which the new samples ex-

hibits regularity and conform to the mathematical expecta-

tions and variances of the original minority class. More im-

portantly, WPO with the typical stochastic feature imposes no

constraint on new samples’ generation, so the decision region

of the training classifier is augmented.

Definition 1 (Wiener process) A standard Wiener Process is

a stochastic process by a family of random variables {Wt}t�0+ ,

where t is a nonnegative real number, satisfying the following

properties [16]:

• W0 = 0.

• Function t → Wt is continuous in t with probability 1.

• The process {Wt}t�0+ has stationary, independent incre-

ments.

• The increment Wt+s −Ws follows Gaussian distribution

N(0, t).

The distribution of the increment Wt+s −Ws is the same as

Wt −W0 = W for any 0 < s and t < ∞. Meanwhile, “indepen-

dent increments” means that for every choice of nonnegative

real numbers s0 � s1 < t1 · · · � sn < tn < ∞, the increment

variables Wt1 − Ws1,Wt2 − Ws2, . . . ,Wtn − Wsn are mutually

independent.

By modeling new samples as the new positions of the par-

ticle, Wiener Process can effectively handle issues such as

the constraint on the range of synthetic sample values or

the high complexity in the current oversampling techniques.

Since “stationary increments” simulates the particle move-

ment, Wiener Process imposes no predefined constraints on

the new positions of the particle. The decision region is the

hyperspace that partitions the underlying vector space int

positive and negative class. Values of new samples by WPO

can go beyond the range of original training set, which po-

tentially provides more decision region for modeling. More-

over, “independent increments” allows the Wiener Process to

determine the relationship between the new samples and the

existing ones such that the new samples conform to the dis-

tribution of existing data set.

As an approximation to random physical processes, WPO

can oversample the new samples with above mentioned prop-

erties. The mathematical model of WPO can be defined

as follows. Let vector Xi = {xi1, xi2, . . . , xiK} be the sam-

ple instance of K attributes from the dataset and Xi =

{x′i1, x′i2, . . . , x′iK} be the new synthetic sample. Wiener Pro-

cess can be used to oversample K attributes of Xi and move

each attribute value xi j along the Brownian motion path. Let

xi j = x(t)
i j denote the attribute value j at t time, each attribute

j can be modeled as a set of stochastic variables independent

of each other. x(t+Δt)
i j represents the synthetic attribute x′i j after

time increases Δt:

Z =
x(t+Δt)

i j − x(t)
i j√

c2Δt
∼ N(0, 1);
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x(t+Δt)
i j = x(t)

i j + Z ·
√

c2Δt, (1)

where c is a constant.

3.1 Wiener process oversampling algorithm

Algorithm 1 presents the pseudocode of WPO and adapts

different strategies for continuous or nominal attributes. For

continuous attributes, let Δt be the time interval. According to

Eq. (1), the synthetic sample xi j can be regarded as xi j(t+Δt),

a new position of xi j(t) after Δt duration. In light of this, WPO

oversamples xi j from step 1) to step 3). In step 2), the variable

randn specifies an output following a Gaussian distribution,

which is scaled by f in step 3). For nominal attribute j, WPO

generates the xi j by randomly replicating existing values of

attribute j. After the Wiener Process on all K attributes, a

new synthetic sample Xi = {x′i1, x′i2, . . . , x′iK} is produced.

Algorithm 1 WPO: Wiener process oversampling

Inputs:

1) An attribute xi j(i = 1, 2, . . . , N, j = 1, 2, . . . , K) of sample Xi

2) Oversampling rate R

3) Time interval in seconds Δt

4) Diffusion coefficient d

5) Incremental quantity of Brown motion incr

Initialize: The amounts of synthetic samples S = �(R/100)� · N
Outputs: The set of new samples X

Do for s = 1, 2, . . . , S

Do for j = 1, 2, . . . ,K

For continuous attributes:

1) Compute parameter factor f =
√

2Δt

2) Calculate incr = f · randn

3) The synthetic attribute x′i j = xi j + incr

For nominal attributes:

1) Collect the attribute set A j for j attribute.

2) Randomly assign one value from A j to x′i j .

Involve the attribute x′i j into the synthetic sample X′i .
End Loop.

Update X = X ∪ X′i
End Loop

• Complexity analysis

WPO is efficient in the time and the space complexity that

are both mainly affected by the synthetic generation. Given

the amounts of synthetic samples S to be generated, the to-

tal complexity is O(S ). WPO is more efficient than algo-

rithms with complexity O(k · S ) such as SMOTE that re-

quire the distances among k neighbors. In addition, WPO

consumes less space than most existing oversampling tech-

niques. For instance, instead of extra space for storing neigh-

bors in SMOTE, the space consumed in WPO is allocated

merely according to the number of synthetic samples S .

3.2 Properties of Wiener process oversampling

Oversampling has gained its advantages over undersampling,

but those synthesized samples remain within the range of

original training dataset and is prone to tremble the classi-

fication decision boundary. To alleviate this issue, we pro-

pose WPO as an alternative oversampling technique, because

the new samples generated from WPO exhibit regularity and

conform to the mathematical expectations and variances of

the original minority class. More importantly, WPO with the

typical stochastic feature imposes no constraint on new sam-

ples’ generation, so the decision region of the training classi-

fier is augmented. In this subsection, we will formally prove

these two properties.

3.2.1 Distribution preservation

Based on the collection of samples, the original dataset is

characterized by certain descriptive quantities, such as the

expectation and the variance. Let μ j and σ j be the expected

value and variance of attribute j in the original minority class.

Similarity, Let μ′j and σ′j be the corresponding values of at-

tribute j in synthetic samples.

Proposition 1 Each attribute j in the synthetic sample Xi

approximately satisfies μ′j = μ j, for n→ ∞. Specifically, this

proposition demonstrates that each attribute j for new sam-

ples by WPO conforms to the mathematical expectations of

the original minority class μ j = μ
′
j when the number of sam-

ples n in the training set is large enough.

Z =
x(t+Δt)

i j − x(t)
i j√

c2Δt
∼ N(0, 1). (2)

Proof According to Eq. (2), the average value of synthetic

samples for attribute j represented by x(t+Δt)
j satisfying

x(t+Δt)
j =

1
n

n∑

i=1

(x(t)
i j + Z ·

√
c2Δt),

where n is the number of synthetic samples. The right part of

the equation can be further simplified as

x(t)
j + c · √Δt · ( 1

n

n∑

i=1

Z),

which yields the equation

x(t+Δt)
j = x(t)

j + c · √Δt · Z.
In light with the law of large numbers theorem, when n→ ∞,

the average should be close to the expected value μ′j = x(t+Δt)
j
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and μ j = x(t)
j . That is

μ′j = μ j + c · √Δt · Z.
As Z ∼ N(0, 1) and Z = 0 produces

μ′j = μ j,

the Proposition 1 is proved. �

Proposition 2 Each attribute j in the synthetic sample Xi

approximately satisfies σ
′2
j = σ

2
j , when n→ ∞.

Variance is another statistics that characterizes the distri-

bution of a dataset. This proposition states that the attribute

variance of new sample j is consistent with the original at-

tribute j, namely σ
′2
j = σ

2
j when the number of synthetic

samples n is large enough.

Proof For the variance, we have

σ j(x(t+Δt)
i j ) = lim

n→∞{
1
n

n∑

i=1

(x(t+Δt)
i j − x(t+Δt)

i j )2}

= lim
n→∞{

1
n

n∑

i=1

(x(t+Δt)
i j − x(t)

i j )2}

= lim
n→∞{

1
n

n∑

i=1

(x(t)
i j + Z ·

√
c2Δt − x(t)

i j )2},

which can be further factorized

lim
n→∞{

1
n

n∑

i=1

(x(t)
i j − x(t)

i j )2} + lim
n→∞{c

2 · Δt · 1
n

n∑

i=1

·Z2}

+ lim
n→∞{2Z ·

√
c2Δt · 1

n

n∑

i=1

(x(t)
i j − x(t)

i j )}.

Among them, the first term can be simplified as:

lim
n→∞{

1
n

n∑

i=1

(x(t)
i j − x(t)

i j )2} = σ j(x(t)
i j ). (3)

As Z ∼ N(0, 1), Z is a bounded function and

limn→∞{ 1n
∑n

i=1 Z} = μ j(Z) = 0 thus the second term is,

lim
n→∞{Z · c

2 · Δt · 1
n

n∑

i=1

·Z} = c2 · Δt · Z · μ j(Z) = 0. (4)

The third term can be simplified as:

lim
n→∞{2Z ·

√
c2Δt · 1

n

n∑

i=1

(x(t)
i j − x(t)

i j )}

= 2Z ·
√

c2Δt · { lim
n→∞(

1
n

n∑

i=1

x(t)
i j ) − x(t)

i j }

= 0. (5)

Accordingly, the Proposition 2 is satisfied based on Eqs.

(3)–(5). �

With two propositions being proved, each attribute j in

new samples synthesized by WPO is with the same expec-

tation and variance as the attribute j in the original data set.

3.2.2 Decision region broadening

Traditional oversampling techniques such as SMOTE confine

the new samples within the range of the original training set.

In contrast, this range can be broadened by WPO as it al-

lows the new samples to cover all possible values of minority

class. In the following discussion, we assume the oversam-

pling rate to be 300. For visualization purpose, we assume

that each sample contains three attributes in all figures of this

section.

Theorem 1 Denote a hypersphere S (rmax) with radius rmax

covering the range of original minority samples Xi, the syn-

thetic sample Xi generated by SMOTE satisfies Xi ∈ S (rmax).

Proof Since we assume each sample with three attributes,

we draw 11 black points to represent them in Fig. 1(a) in 3

dimensions. According to the SMOTE algorithm [10], one

synthetic sample is generated by multiplying the difference

between the sample and its nearest neighbor by a random

ratio between 0 and 1. Figure 1(a) depicts an original sam-

ple orsa1 and its three nearest neighbours. One new sample

synsa1 with yellow color is produced by applying Eq. (6) on

orsa1 and one nearest neighbor orsa2.

synsa1 = orsa1 + random(0, 1) · (orsa1 − orsa2). (6)

There are two other synthetic samples produced in this way

and colored with yellow in Fig. 1(a). The figure also shows

the projection from 3 dimension to 2 dimension, where the

blue points and green points corresponding to the original and

synthetic samples in (X, Y) space.

In light of the convex theory [25], θ1 x1 + · · · + θk xk is the

convex combination of points x1, . . . , xk, where θi > 0 with

θ1 + · · ·+ θk = 1. The set of all convex combinations of points

x1, . . . , xk constructs a convex hull. One critical characteristic

of Eq. (6) is that these three coefficients sum to 1.

Connecting all the blue points with black line segments

can generate a convex hull in (X, Y) as shown in Fig. 1(a).

To cover this convex hull extensively, a red big circle with

radius = rmax confines all original samples and synthetic

samples. Similar to the (X, Y) space, we can project these

samples to (X, Z) and (Y, Z) space individually, with two big

circles covering the samples in the corresponding space as

well.
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Fig. 1 Simulate the original and synthetic samples in three dimensions by
SMOTE. (a) The generation of synthetic samples by SMOTE; (b) Synthetic
samples are confined within a hypersphere

Accordingly, a hypersphere with the radius of the maxi-

mum value rmax among these three circles can contain all the

samples in 3 dimension shown in Fig. 1(b). This case demon-

strates that the samples by SMOTE are confined within a

hypersphere. Apparently, the radius rmax of this hypersphere

is specified by the values in (X, Y), (X, Z) and (Y, Z) of the

original dataset. This statement can be extended into multi-

dimension space. In conclusion, SMOTE confines the syn-

thetic samples within a limited space formed by the original

dataset. �

Theorem 2 Denote a hypersphere S (rmax) with radius rmax

covering the range of original minority samples Xi, any syn-

thetic attribute xi j generated by WPO satisfies that x(t+Δt)
i j −

x(t)
i j � S (rmax).

Proof Since the range of the original dataset in SMOTE

is rmax, a hypersphere with radius more than rmax can cover

all the original and synthetic samples. Equation (2) gener-

ates one value for attribute j in the synthetic sample Xi. For

simplicity, the following part proves that x(t+Δt)
i j − x(t)

i j can lie

outside of the circle with rmax.

From the mathematical integration and Z � ε,

P(Z > ε) =
∫ ∞

ε

φ(Z)dZ �
1
ε

∫ ∞

ε

Zφ(Z)dZ,

where Z follows the Gaussian distribution as in Eq. (2), then

the probability density function of Z is φ(Z) = (2π)
−1
2 e

−Z2

2 ,

and then we have:

1
ε

∫ ∞

ε

Z(2π)
−1
2 e

−Z2

2 dZ = −1
ε

∫ ∞

ε

(−Z)(2π
−1
2 e

−Z2

2 )dZ.

Since φ(Z)′ = (−Z)(2π
−1
2 e

−Z2

2 ), thus we have:

P(Z > ε) � −1
ε

∫ ∞

ε

φ(Z)′dZ =
φ(ε)
ε
=

e
−ε2

2

ε
√

2π
�

e
−ε2

2

ε
.

Similarity,

P(Z < −ε) =
∫ −ε

−∞
φ(Z)dZ �

1
ε

∫ −ε

−∞
(−Z)φ(Z)dZ =

e
−ε2

2

ε
.

Consequently,

P(|Z| > ε) = P(Z > ε) + P(Z < −ε) � 2e−ε2

ε
.

From Eq. (2),

P(|Z| > ε) = P(|
x(t+Δt)

i j − x(t)
i j√

c2Δt
| > ε) � 2e−ε2

ε

P(|x(t+Δt)
i j − x(t)

i j | > ε ·
√

c2Δt) �
2e−ε2

ε
.

As the original attribute of sample Xi, x(t)
i j is confined in

hypersphere with rmax radius. Let ε · √c2Δt = 2rmax. This

formula |x(t+Δt)
i j − x(t)

i j | > 2rmax implies that the distance be-

tween the new synthetic attribute and x(t)
i j is larger than the

diameter of the hypersphere. In other words, x(t+Δt)
i j lies out

of the hypersphere that confines the new dataset generated

by SMOTE. If this formula stands, we can conclude that the

new synthetic attribute x(t+Δt)
i j goes beyond the range limits

rmax defined by SMOTE.

The occurrence probability of the formula is

P(|x(t+Δt)
i j − x(t)

i j | > 2rmax) �
2e−ε2

ε
.

Apparently, the scenario that a specific synthetic attribute

lies out of the rang rmax with probability 2e−ε2/ε, where

ε = 2rmax/c
√
Δt. Other attributes can be proved in the similar

way. Consequently, the synthetic sample can break the range

limitation rmax of the hypersphere. �

Based on the proof above, we can conclude that, WPO ex-

pands the range of values in the training data set while pre-

serving the same normal distribution. The decision boundary

is not constrained by the given training data set and allows

the classifier to gain a stable and robust decision.

3.3 WPOBoost algorithm

We proposed WPOBoost as a hybrid of ensemble learning

and oversmapling, which adopts neural networks as basic
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learners [6,15]. The details of WPOBoost in Algorithm 2 is

given as follows.

Algorithm 2 The WPOBoost algorithm

Inputs:

1) Training dataset Γ{(Xi, Yi)|xi j ∈ Xi, Yi ∈ {−1,+1}}
2) Number of iterations T

3) Over-sampling rate R

Initialize:

1) The distribution D1 = 1/m

2) Randomly sample Γ into O

Outputs: The final hypothesis hf = sign(
∑T

t=1 γt · ht)

Do for t = 1, 2, . . . , T

1) Create new samples X′ from O via Algorithm 1 with rate N, Γ =
Γ
⋃

(X′,Y′), Y′ ∈ {+1}.
2) Compute the hypothesis ht : Γ→ {−1,+1} using Dt

3) Calculate the pseudo-loss et =
∑

Dt

4) Update the weight parameter γt =
1
2

ln(
1 − et

et
)

5) Update distribution Dt+1(X) =
Dt(X)e−γt ·Yi ·ht (X)

Zt
, Zt is a normalization

constant.

6) Update TrS = {Γ,Dt+1}
7) Set O = {Γ|Y = +1 and ht(X) = −1}
End Loop

Similarly with the traditional AdaBoost algorithm, the

classifier in each iteration of WPOBoost is trained with a

probability distribution D(X). D(X) is increased when the

sample X is misclassified. For instance, in the t + 1th iter-

ation, the sample X1 has a high probability to be chosen as

inputs than X2 when Dc(X1) is larger than Dc(X2). After the

parameters in the hypothesis are defined by training, the error

rate of each hypothesis is computed via et, which determines

its’ weight γt in the final hypothesis. In other words, the fi-

nal classifier more likely accepts the decision of the classifier

with less et by assigning a higher weight on it. The AdaNN

trains the weak classifier by putting more emphasis on the

misclassified samples. Finally, the AdaNN generates a single

classifier h f inal as a linear combination of T classifiers ht.

Generally speaking, training stronger classifiers bring the

superiority performance and somehow cause additional com-

plexity. WPOBoost can balance the trade-off between perfor-

mance and complexity based on two reasons. Firstly, WPO-

Boost merely oversampled the misclassified minority sam-

ples, to emphasize on those hard samples in each iteration and

reduce the computing complexity. Secondly, considering the

oversampling time in previous work is not only determined

by oversampling rate but other factors (e.g., the number of

neighbors in SMOTE), the WPO oversampling complexity is

only relevant with the oversampling rate.

4 Experiments

Similar to existing imbalanced learning methods, we con-

sider only two-class imbalanced problems in this experiment.

We adopt six measurements in imbalanced learning, includ-

ing Precision, F-measure, G-means, Area Under the Curve

(AUC), Receiver Operating Characteristic (ROC) curve, and

precision-recall (PR) curve. Among them, Precision, Re-

call, F-measure, G-means are based on the confusion matrix

as shown in Table 1. The receiver operating characteristic

(ROC) curve presents the pair (FPrate, TPrate), AUC denotes

the area size under the ROC curve, while the PR curve vi-

sualizes the relative trade-offs between precision and recall

rates.

FPrate =
FP

FP + FN

TPrate =
TP

TP + FN

TNrate =
TN

TN + FP

Presion =
TP

TP + FP

Recall =
TP

TP + FN

G − mean =
√

TPrate · TNrate

F − measure =
2 · Presion · Recall
Presion + Recall

.

Table 1 The confusion matrix for the two-class classification problem

Positive prediction Negative prediction

Positive class TP (true positive) FN (false negative)

Negative class FP (false positive) TN (true negative)

4.1 Experiment settings

Sixteen datasets with different sparsity levels from the UCI

machine learning repository [26] are used. Table 2 summa-

rizes their basic information. For each dataset, a ten-fold

cross-validation is performed, and the average over all folds

is compared. We also perform statistical tests (t-test) to eval-

uate the significance of the results.

We compare thirteen different methods to balance the class

distribution on training data. Among them, four methods are

the oversampling with single classifiers. The others are en-

semble methods with oversampling or under-sampling tech-

niques. For single classifiers, we compare two prevalent

oversampling techniques, Random Oversampling [8,13] and

Synthetic Minority Oversampling TEchnique [10], with our

method Wiener Process Oversampling. For the oversampling
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rate, we set it at 100%, 200%, 300% and 400% and report

their average result. Each ensemble method involve 20 weak

classifiers and 50 iterations in each weak classifier training.

Table 2 Dataset characteristic

Attribute Minority Distribution Imbalance
Dataset Size

(cont.,nomi.) Tag (min.,max.) ratio

Bupa 345 6 (6,0) class 1 (0.420,0.580) 1.38

Wpbc 110 33 (33,0) class R (0.373,0.627) 1.68

Pima 768 8 (8,0) class 1 (0.349,0.651) 1.87

Breast 698 9 (9,0) class 2 (0.346,0.654) 1.89

German 2 310 20 (7,13) class 2 (0.300,0.700) 2.33

Phoneme 5 404 5 (5,0) class 1 (0.293,0.707) 2.41

Haberman 306 3 (2,1) class 2 (0.265,0.735) 2.78

Hepatitis 155 19 (6,13) class 2 (0.207,0.793) 3.84

Ecoli 336 7 (7,0) class imU (0.104,0.896) 8.60

Satimage 6 435 36 (36,0) class 4 (0.098,0.902) 9.28

Vowel 988 13 (10,3) class 11 (0.092,0.908) 9.98

Glass 214 9 (9,0) class 3 (0.079,0.921) 11.58

Balance 625 4 (4,0) class B (0.078,0.922) 11.75

Abalone 4 177 8 (7,1) class 13 (0.058,0.942) 18.65

Yeast 693 8 (8,0) class VAC (0.043,0.957) 22.10

Letter 20 000 16 (16,0) class A (0.039,0.961) 24.34

Note: Size denotes the amount of samples. Attribute specifies the attribute
types and the corresponding amount, where cont. is continuous attribute and
nomi. is nominal one. Majority class size max. divided by minority class
size min. is imbalance ratio

• CART + Over-sampling Three over-sampling tech-

niques, RO(R), SMOTE(S), and WPO(W), are applied

to the dataset before inputting them into the classifica-

tion and regression trees (CART) classifier [27];

• Naive Bayes + Over-sampling Similarly, we combined

naive bayes (NB) [28] with three over-sampling tech-

niques RO(R), SMOTE(S), and WPO(W) respectively

for performance comparison;

• KNN + Over-sampling We combine K-nearest neighbor

algorithm [29] (KNN) with RO(R), SMOTE(S), and

WPO(W) as well, and the result is averaged from K =

3, K = 5 and K = 7;

• Neural Network + Over-sampling We used Back Propa-

gation algorithm for training Neural network, and also

applied RO (R), SMOTE (S), and WPO (W) in the Neu-

ral Network(NN) for comparison;

• AdaCART AdaBoost can combine several basic learners

and boost the performance. AdaCART is a type of Ad-

aBoost utilizing CART as the base learner without over-

sampling;

• AdaNN AdaNN is different from AdaCART and adapts

Neural Network as the base learner;

• SMOTEBoost SMOTEBoost [5] combines AdaBoost

with SMOTE to oversample the minority class cases

in training set before training the basic learners. The

goal of SMOTEBoost is to provide the learner with the

broader representation of training set by oversampling

from the minority class, thus indirectly changing the up-

dating weights and compensating for skewed distribu-

tions;

• SMOTEAdaNN Similar to SMOTEBoost, SMOTEAdaNN

introduces SMOTE into every training iteration of

AdaNN. In other words, the CART as the basic learner

in SMOTEBoost is replaced as neural network;

•WPOBoost Instead of combining SMOTE and AdaCART

in SMOTEBoost, WPOBoost oversamples the more of

the minority class cases by WPO in each round of

boosting before feeding the data to train the neural net-

works of AdaNN. Moreover, WPOBoost merely over-

sampleS the misclassified minority samples to further

reduce the bias inherent before the learning procedure

due to the class imbalance.

• EasyEnsemble This method belongs to ensemble type and

uses CART as the base learner. EasyEnsemble [21]

samples several subsets from the majority class and out-

puts jointly the CART learners trained by the subsets;

• BalanceCascade This ensemble approach BalanceCas-

cade [21] trains the learners sequentially, and in each

step remove the classified majority class samples from

further consideration;

• Bagging This method is proposed by [30], which gener-

ates several subsets from the training set by sampling

with replacement as the training set and uses majority

voting for final decision.

4.2 Evaluating the improvement on single classifiers

In general, single classifiers are not suitable for imbalanced

learning, since they are trained with imbalanced dataset and

unequal misclassification cost. Oversampling technique re-

balances the training set and hence improves the capability of

tackling imbalanced issue for single classifiers. We integrate

four single classifiers including CART, Naive Bayes, KNN,

Neural Network with RO, SMOTE and WPO, and conse-

quently, their results reflects the performance of RO, SMOTE

and WPO.

Tables 3–5 show the averaged results of compared F-

measure, G-mean and AUC, under four oversampling rates.

It is evident that WPO outperforms SMOTE on most metrics

with varied improvements across different data sets. Table 6



844 Front. Comput. Sci., 2017, 11(5): 836–851

Table 3 F-measure results for compared single classifiers

F-measure CART+R CART+S CART+W KNN+R KNN+S KNN+W NB+R NB+S NB+W NN+R NN+S NN+W

Bupa 0.596 5 0.621 0 0.598 6 0.592 5 0.593 7 0.603 0 0.588 5 0.586 6 0.596 0 0.571 8 0.555 9 0.573 9
Wpbc 0.393 9 0.436 5 0.458 6 0.503 0 0.601 5 0.431 1 0.559 8 0.515 1 0.581 0 0.391 3 0.542 5 0.560 1
Pima 0.597 0 0.608 3 0.630 5 0.570 9 0.567 3 0.576 9 0.541 8 0.571 0 0.576 6 0.637 3 0.623 4 0.637 8
Breast 0.901 8 0.912 5 0.906 1 0.928 4 0.932 7 0.930 7 0.923 2 0.925 6 0.927 5 0.921 0 0.928 1 0.926 5
German 0.484 8 0.498 2 0.487 5 0.373 4 0.382 5 0.412 9 0.541 1 0.556 6 0.546 9 0.438 7 0.426 3 0.465 1
Phoneme 0.738 2 0.739 5 0.755 8 0.781 2 0.788 4 0.787 8 0.670 2 0.671 6 0.673 8 0.654 9 0.672 5 0.663 7
Haberman 0.356 9 0.345 7 0.379 3 0.423 4 0.398 6 0.418 3 0.326 0 0.299 7 0.382 4 0.429 7 0.448 9 0.486 2
Hepatitis 0.837 3 0.842 7 0.846 5 0.821 3 0.817 3 0.841 4 0.878 7 0.893 6 0.888 7 0.837 6 0.838 6 0.849 8
Ecoli 0.859 7 0.869 5 0.863 3 0.858 5 0.866 1 0.870 3 0.859 2 0.861 4 0.859 3 0.842 6 0.819 8 0.844 1
Satimage 0.647 0 0.685 6 0.681 5 0.770 6 0.770 7 0.786 7 0.646 0 0.645 9 0.650 7 0.597 0 0.537 6 0.609 1
Vowel 0.932 5 0.931 1 0.933 5 0.946 0 0.916 3 0.935 6 0.817 5 0.815 9 0.821 7 0.925 7 0.941 0 0.934 9
Glass 0.580 9 0.575 3 0.597 6 0.581 3 0.575 9 0.588 5 0.584 6 0.584 4 0.587 4 0.583 2 0.590 1 0.594 8
Balance 0.069 7 0.050 9 0.100 7 0.070 7 0.041 2 0.082 0 0.179 7 0.291 2 0.285 9 0.160 6 0.091 3 0.104 5
Abalone 0.289 2 0.343 4 0.335 1 0.248 8 0.290 4 0.295 9 0.335 8 0.346 2 0.349 7 0.261 6 0.293 5 0.272 8
Yeast 0.789 6 0.769 2 0.812 8 0.797 5 0.817 4 0.809 8 0.850 4 0.853 3 0.855 2 0.829 8 0.838 7 0.847 1
Letter 0.805 9 0.798 7 0.823 2 0.795 4 0.786 1 0.823 6 0.854 1 0.859 9 0.856 6 0.837 1 0.838 5 0.838 8
Avg. 0.617 6 0.626 8 0.638 2 0.628 9 0.634 1 0.637 2 0.634 8 0.642 4 0.652 5 0.620 1 0.624 2 0.638 1

Table 4 G-mean results for compared single classifiers

G-mean CART+R CART+S CART+W KNN+R KNN+S KNN+W NB+R NB+S NB+W NN+R NN+S NN+W

Bupa 0.617 3 0.645 3 0.619 1 0.626 3 0.625 2 0.627 1 0.606 9 0.614 2 0.617 7 0.500 6 0.431 1 0.504 9
Wpbc 0.483 1 0.523 2 0.656 4 0.575 1 0.545 1 0.537 7 0.635 5 0.601 4 0.652 4 0.585 4 0.552 6 0.643 5
Pima 0.685 1 0.692 7 0.714 8 0.661 4 0.657 9 0.672 2 0.631 7 0.658 5 0.662 7 0.572 9 0.563 6 0.668 8
Breast 0.907 6 0.916 2 0.911 1 0.930 4 0.933 8 0.934 8 0.928 9 0.928 5 0.932 1 0.926 9 0.931 8 0.930 1
German 0.607 7 0.613 6 0.606 7 0.508 1 0.515 9 0.541 6 0.651 5 0.666 7 0.662 3 0.521 5 0.538 8 0.573 7
Phoneme 0.793 5 0.793 1 0.805 5 0.819 7 0.826 2 0.824 4 0.751 1 0.751 8 0.753 9 0.728 7 0.741 7 0.734 2
Haberman 0.517 6 0.509 5 0.531 6 0.587 4 0.570 4 0.592 5 0.593 5 0.572 0 0.634 6 0.593 6 0.540 3 0.637 2
Hepatitis 0.825 6 0.832 1 0.839 3 0.778 4 0.780 0 0.825 6 0.869 5 0.882 6 0.872 1 0.819 9 0.758 4 0.831 6
Ecoli 0.875 7 0.883 6 0.877 5 0.875 8 0.880 5 0.881 3 0.864 9 0.866 9 0.864 5 0.853 2 0.834 2 0.854 3
Satimage 0.752 9 0.787 6 0.789 2 0.847 0 0.853 7 0.861 2 0.821 6 0.822 7 0.827 3 0.682 1 0.631 6 0.692 0
Vowel 0.942 3 0.945 1 0.946 7 0.946 5 0.936 2 0.942 6 0.827 6 0.825 5 0.831 2 0.932 3 0.942 8 0.938 7
Glass 0.624 1 0.619 2 0.644 5 0.645 9 0.635 1 0.653 9 0.641 2 0.646 5 0.648 4 0.591 6 0.645 4 0.651 5
Balance 0.291 6 0.423 7 0.370 8 0.147 6 0.071 3 0.084 5 0.229 1 0.291 3 0.252 1 0.190 6 0.142 9 0.252 7
Abalone 0.480 0 0.513 1 0.540 6 0.372 2 0.408 2 0.415 5 0.452 1 0.465 6 0.464 3 0.387 8 0.411 1 0.341 7
Yeast 0.840 2 0.817 7 0.849 1 0.825 3 0.837 6 0.830 9 0.866 2 0.866 9 0.867 3 0.838 4 0.847 1 0.854 1
Letter 0.850 6 0.845 6 0.861 4 0.825 9 0.814 5 0.841 5 0.866 7 0.868 9 0.867 9 0.844 9 0.845 6 0.847 1
Avg. 0.693 4 0.710 1 0.722 8 0.685 8 0.680 7 0.691 7 0.702 4 0.708 2 0.713 2 0.660 7 0.647 4 0.684 8

Table 5 AUC results for compared single classifiers

AUC CART+R CART+S CART+W KNN+R KNN+S KNN+W NB+R NB+S NB+W NN+R NN+S NN+W

Bupa 0.624 7 0.649 7 0.627 8 0.629 9 0.633 0 0.632 3 0.608 1 0.622 6 0.623 8 0.658 3 0.571 4 0.626 2
Wpbc 0.502 6 0.525 9 0.568 3 0.586 9 0.621 1 0.564 1 0.644 9 0.603 5 0.657 2 0.505 4 0.492 6 0.567 5
Pima 0.693 1 0.698 7 0.719 7 0.665 9 0.661 4 0.678 9 0.668 5 0.689 5 0.688 2 0.789 0 0.751 1 0.794 5
Breast 0.908 0 0.916 6 0.911 3 0.930 7 0.934 1 0.935 0 0.929 2 0.928 8 0.932 3 0.950 3 0.954 1 0.943 3
German 0.623 1 0.635 1 0.623 8 0.561 2 0.565 1 0.584 9 0.661 1 0.671 1 0.669 5 0.778 4 0.779 2 0.779 3
Phoneme 0.796 6 0.796 6 0.808 7 0.823 5 0.829 2 0.820 8 0.751 5 0.752 4 0.754 4 0.859 6 0.865 1 0.853 8
Haberman 0.556 6 0.548 3 0.559 9 0.600 9 0.575 1 0.622 2 0.440 1 0.438 6 0.510 9 0.687 2 0.606 2 0.762 6
Hepatitis 0.827 7 0.833 3 0.841 5 0.787 7 0.788 9 0.827 1 0.871 7 0.885 2 0.873 7 0.862 4 0.867 1 0.872 4
Ecoli 0.8776 0.885 1 0.879 3 0.877 6 0.881 9 0.884 1 0.870 6 0.872 4 0.869 7 0.933 9 0.928 2 0.921 6
Satimage 0.7656 0.795 5 0.789 9 0.849 4 0.855 9 0.863 4 0.822 5 0.823 7 0.828 2 0.803 6 0.803 8 0.801 2
Vowel 0.942 6 0.945 3 0.946 9 0.947 1 0.962 1 0.967 3 0.837 8 0.835 3 0.840 8 0.954 6 0.957 7 0.957 9
Glass 0.775 4 0.770 6 0.796 3 0.797 2 0.786 4 0.804 5 0.792 6 0.797 3 0.799 1 0.817 5 0.818 4 0.810 2
Balance 0.412 9 0.602 9 0.593 5 0.488 4 0.472 3 0.475 0 0.536 5 0.581 6 0.545 2 0.672 3 0.669 5 0.677 3
Abalone 0.656 3 0.680 4 0.700 8 0.577 7 0.607 7 0.611 8 0.636 7 0.645 4 0.647 3 0.818 5 0.821 3 0.820 1
Yeast 0.846 7 0.826 2 0.854 6 0.834 9 0.845 6 0.839 9 0.871 7 0.872 4 0.874 8 0.930 3 0.919 9 0.933 1
Letter 0.860 1 0.850 9 0.865 1 0.830 7 0.827 1 0.849 1 0.873 1 0.873 9 0.871 4 0.934 1 0.929 4 0.930 5
Avg. 0.729 4 0.747 6 0.755 8 0.736 9 0.740 4 0.747 5 0.738 5 0.743 4 0.749 2 0.809 7 0.795 9 0.815 7
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Table 6 AUC results on Pima and Breast with five oversampling rates

SMOTE WPO RO
AUC

CART KNN NB NN CART KNN NB NN CART KNN NB NN

100% 0.683 9 0.677 1 0.673 1 0.723 9 0.675 6 0.704 2 0.698 0 0.748 4 0.667 4 0.654 2 0.690 2 0.725 1

200% 0.663 0 0.663 6 0.713 3 0.746 6 0.736 1 0.664 8 0.665 6 0.693 3 0.708 7 0.617 3 0.682 2 0.687 1

Pima 300% 0.697 3 0.667 9 0.709 7 0.751 3 0.746 5 0.671 8 0.719 9 0.767 7 0.725 5 0.653 5 0.701 4 0.749 5

400% 0.682 4 0.628 1 0.707 2 0.781 4 0.702 6 0.681 3 0.689 6 0.795 0 0.678 1 0.674 4 0.683 1 0.736 5

500% 0.678 6 0.660 2 0.694 4 0.707 8 0.683 6 0.685 0 0.712 8 0.798 9 0.633 2 0.645 7 0.703 7 0.770 4

100% 0.912 0 0.931 2 0.927 5 0.921 0 0.911 6 0.933 2 0.924 8 0.922 0 0.886 5 0.918 8 0.911 7 0.912 3

200% 0.905 4 0.933 7 0.928 6 0.915 8 0.901 8 0.936 2 0.929 9 0.924 0 0.900 2 0.920 3 0.926 8 0.915 1

Breast 300% 0.924 5 0.933 0 0.932 7 0.903 0 0.949 1 0.930 4 0.922 8 0.890 4 0.931 5 0.928 5 0.923 0 0.890 2

400% 0.895 5 0.945 1 0.922 3 0.905 1 0.893 6 0.936 7 0.924 1 0.901 7 0.890 0 0.940 5 0.913 6 0.901 9

500% 0.930 4 0.972 7 0.924 2 0.922 8 0.900 1 0.936 4 0.924 7 0.923 0 0.881 0 0.937 3 0.918 7 0.922 1

Fig. 2 The boxplot depicting the AUC distribution on sixteen datasets with single classifier. (a) AUC values distribution (CART); (b) AUC
values distribution (KNN); (c) AUC values distribution (NB); (d) AUC values distribution (NN)

further demonstrates separate AUC values under five different

oversampling rates, which is consistent with the average re-

sults of Table 5. To analyze the most significant metric AUC,

we also build the non-parametric statistical visual plot, box-

plot, averaging the AUC of four datasets.

The grey line in the box of Fig. 2 specifies the statistical

median of the corresponding AUC distribution. It is evident

that the median of WPO is significant different from RO and

SMOTE.

Above results demonstrate the average performances

among WPO, SMOTE and RO. Table 7 using the t-test at con-

fidence level of 95% to assess whether the means of WPO are

statistically different from SMOTE in CART. We set the null

hypothesis as that the average corresponding result of WPO

is smaller than SMOTE’s. The results use the form “Worse-

TIE-Better” when comparing WPO with RO or SMOTE. For

instance, the first item “2-2-12” of RO in CART indicates that

WPO is significantly better than RO in 12 data sets, worse in

two data sets and not significant difference in two datasets.

It shows that most results from WPO are significant higher

than from SMOTE. In summary, these observations imply

that integration WPO with single classifiers achieves supe-
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riority performance than SMOTE and RO.

Table 7 The t-test of three metrics on 16 data sets with significant level at
95%

t-test F-measure G-mean AUC

C 2-2-12 2-1-13 2-2-12

K 4-2-10 4-1-11 3-2-11
RO

B 3-2-11 3-1-12 2-3-11

N 2-3-11 2-2-12 2-1-13

C 2-2-12 2-4-10 1-3-12

K 4-3-9 3-5-8 3-4-9
SMOTE

B 2-4-10 3-2-11 3-2-11

N 3-2-11 4-2-10 3-3-10

Note: C, K, B and N represent the classifier CART, KNN, Naive Bayes and
Neural Network respectively. The results use the form “Worse-Tie-Better”
when compared WPO with RO or SMOTE

4.3 Evaluating the improvement on ensemble methods

This part will test the effectiveness of WPO in AdaBoost and

compare the proposed WPOBoost with other imbalanced-

learning strategies.

4.3.1 Performance analysis of WPOBoost and WPOAd-

aCART

Since single classifiers Neural Network and CART show bet-

ter performance in the previous experiment, we use them as

the base learners respectively in AdaBoost. Figures 3 and 4

show the results of using Neural Network as the basic classi-

fiers, which are also performed 10-fold cross validation.

Fig. 3 The PR and ROC curves of AdaNN, SMOTEAdaNN and WPOBoost. (a) ROC curve on Bupa; (b) PR curve on Bupa; (c) ROC curve
on Haberman; (d) PR curve on Haberman; (e) ROC curve on Vowel; (f) PR curve on Vowel

Fig. 4 The boxplot depicting the AUC distribution with AdaNN, SMOTEAdaNN and WPOBoost. (a) AUC values distribution on Bupa; (b)
AUC values distribution on Haberman; (c) AUC values distribution on Vowel
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All three ROC curves of WPOBoost in Fig. 3(a), Fig.

3(c) and Fig. 3(e) achieve high AUC values, which are

also evident in Fig. 4. More specifically, the lines of our

method WPOBoost achieves at least 20% improvement over

SMOTEAdaNN and AdaNN, as shown in Fig. 3(a) and Fig.

3(c).

Precision-Recall (PR) curves in Fig. 3(b), Fig. 3(d) and

Fig. 3(f) present the evaluation in the ROC space. Though Re-

call and Precision goals are usually conflicting, the curve of

WPOBoost in Fig. 3(b) and Fig. 3(d) increases the Recall but

sacrifices less Precision than AdaNN and SMOTEAdaNN.

Thus, the Precison of WPOBoost is more steady and less sen-

sitive to the variants of Recall. Hence, we could conclude that

WPOBoost achieves effective performance than AdaNN and

SMOTEAdaNN in both the ROC and the PR.

Similarly, for CART as the basic learner of AdaBoost, Fig.

5 shows the ROC and PR curves on datasets Pima, Balance

and Yeast. It is clear that both WPOAdaCART and SMOTE-

Boost achieve higher ROC and PR than AdaCART. More

specifically, WPOAdaCART outperforms SMOTEBoost with

high PR values in Figs. 5(b), 5(d) and 5(f). Figure 6 depicts

the AUC distribution by boxplot and further verifies aver-

agely better performance of WPOAdaCART.

In conclusion, the excellent performance of WPOBoost

Fig. 5 The PR and ROC curves with AdaCART, SMOTEBoost and WPOAdaCART. (a) ROC curve on Pima; (b) PR curve on Pima; (c) ROC
curve on Balance; (d) PR curve on Balance; (e) ROC curve on Yeast; (f) PR curve on Yeast

Fig. 6 The boxplot depicting the AUC distribution with AdaCART, SMOTEBoost and WPOAdaCART. (a) AUC values distribution on Pima;
(b) AUC values distribution on Balance; (c) AUC values distribution on Yeast
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and WPOAdaCART verify that integrating oversampling into

AdaBoost algorithm can consistently enhance the capability

of solving imbalanced issue.

4.3.2 Performance analysis of five state-of-the-art

imbalanced-learning approaches

To verify the performance of proposed WPOBoost, we fur-

ther compare it with other strategies. Figure 7 demonstrates

the ROC and PR curves of five state-of-the-art imbalanced-

learning approaches on datasets Glass and Ecoli. Figure 8

depicts the AUC using boxplot.

It is apparent that the Bagging performs the worst under

the same settings in Figs. 7 and 8. The lost of the potential

information of minority class by under-sampling leads to the

deteriorated performance of Bagging. In contrast, the corre-

Fig. 7 The PR and ROC curves with five ensemble approaches. (a) ROC curve on Glass; (b) PR curve on Glass; (c) ROC curve on Ecoli; (d)
PR curve on Ecoli

Fig. 8 The boxplot depicting the AUC distribution with five ensemble approaches. From left to right, the histograms represent Bagging,
WPOAdaCART, WPOBoost, EasyEnsemble and BalanceCascade. (a) AUC values distribution on Glass; (b) AUC values distribution on Ecoli
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Fig. 9 The oversampling time cost. The size of minority class n is (a) 2 300 and (b) 4 600

sponding point of WPOBoost in ROC is closer to the (0, 1)

point than the other, with the average AUC close to 0.95 in

Fig. 7(a) for dataset Glass. It is clear that the distribution of

AUC values for WPOBoost is much more favorable in Figs.

7(c) and 7(a). EasyEnsemble, BalanceCascade and WPOAd-

aCART follow the same trend but perform worse than WPO-

Boost. In addition, Figs. 7(d) and 7(b) show the Precision-

Recall curves and clearly show the significance improvement

over the other four methods.

From these observations, we can conclude that WPO-

Boost algorithm that integrates WPO with AdaNN outper-

forms most prevalent approaches.

4.4 Analysis of oversampling time

Figures 9(a) and 9(b) explore the time cost of RO, SMOTE

and WPO, with various oversampling rate. The size of mi-

nority class n is 2 300 in Fig. 9(a) and 4 600 in Fig. 9(b).

The SMOTE algorithm has a parameter k that determines the

searching space when generating new samples. We assign k

with two common using values 5 and 10 and compare with

RO and WPO under the same settings. In Figs. 9(a) and 9(b),

the oversampling rate rmax increases 200% each time.

From Figs. 9(a) and 9(b) it is clear that the time costs

of SMOTE and WPO grow as the oversampling rate grows.

SMOTE consumes the most time compared with RO and

WPO in both figures. The overall complexity in SMOTE is

theoretically specified by k · n + k · r, which is approximately

O(k · r) when n and k are predefined, as shown in Fig. 9(a)

and Fig. 9(b). In contrast, RO and WPO consume less time

than SMOTE. The RO oversamples the samples by randomly

choosing from existing samples, and the running time of RO

is irrelevant with the oversampling rate, so it is steady in both

Figs. 9(a) and 9(b).

However, the time saved in RO results in deteriorated per-

formance when compared with WPO and SMOTE. As we

mentioned previously, the complexity of generating new sam-

ples is O(1), which is independent from the number of orig-

inal samples. Consequently, the oversampling time of WPO

increases as the oversampling rate varies from 200 to 4600.

In conclusion, With the running time close to RO but much

shorter than SMOTE, WPO achieves much superiority capa-

bility of tackling imbalanced datasets.

5 Conclusion

Learning from imbalanced data has aroused significant re-

search efforts in recent years. Since undersampling may dis-

card useful information in original dataset, oversampling has

been proposed to generate synthetic minority samples by

replication or synthesizing. Nevertheless, oversampling con-

straints the values of new samples within the range of original

training dataset, which further results in the tremble of the

decision boundary. Moreover, the involved time complexity

usually make it inefficient to incorporate oversampling with

classifiers.

This paper adopted the Wiener process, and developed

a novel over-sampling technique Wiener Process Oversam-

pling, which has two advantages:

• Firstly, theoretic proof shows that the new samples gen-

erated by WPO conform to the distribution of the mi-

nority class while broadening the decision region. This

lays the foundation for the unbiased and robust clas-

sifier. Experimental results indicate that WPO consis-

tently enhances the capability of classifiers, with im-

proved performance over SMOTE. Especially, by inte-

grating WPO with AdaNN, WPOBoost outperforms all

compared ensemble learning approaches.
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• Secondly, as WPO can be implemented with linear

complexity, WPO is more efficient than common over-

sampling. Consequently, it is feasible to efficiently in-

tegrate WPO with any classifier for imbalanced data

learning.
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