
Front. Comput. Sci., 2016, 10(6): 1082–1102

DOI 10.1007/s11704-016-5203-5

Impact of preprocessing on medical data classification

Sarab ALMUHAIDEB , Mohamed El Bachir MENAI

Computer Science Department, College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586,

Saudi Arabia

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Abstract The significance of the preprocessing stage in any

data mining task is well known. Before attempting medical

data classification, characteristics of medical datasets, includ-

ing noise, incompleteness, and the existence of multiple and

possibly irrelevant features, need to be addressed. In this pa-

per, we show that selecting the right combination of prepro-

cessing methods has a considerable impact on the classifica-

tion potential of a dataset. The preprocessing operations con-

sidered include the discretization of numeric attributes, the

selection of attribute subset(s), and the handling of missing

values. The classification is performed by an ant colony op-

timization algorithm as a case study. Experimental results on

25 real-world medical datasets show that a significant relative

improvement in predictive accuracy, exceeding 60% in some

cases, is obtained.

Keywords classification, ant colony optimization, medical

data classification, preprocessing, feature subset selection,

discretization

1 Introduction

Modern clinical information systems store an extensive

amount of data in medical databases. This encourages the ex-

traction of useful knowledge from medical databases, provid-

ing valuable insight for medical decision support. A branch of

data mining, known as medical data mining, is currently con-

sidered one of the most popular research subjects in the data
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mining community [1]. This, in part, is due to the societal

significance of the subject and also to the computational chal-

lenges it presents [2].

Normally, there exists a dataset of historic data describ-

ing a particular medical disorder. Such datasets consist of pa-

tients’ records relating to demographic, clinical and patho-

logical data, along with the results of medical investigations

that have been collected for the diagnosis and prognosis of

a particular medical disorder. Modern medical screening and

diagnostic methods generate a high volume of heterogeneous

data. These data are continually accumulating. Thus, mining

such data requires intelligent methods [3,4].

Medical data classification (MDC) refers to learning clas-

sification models from medical datasets and aims to improve

the quality of health care [5]. Medical data classification can

be used for diagnosis and prognosis purposes. MDC is dif-

ferent from medical classification, or medical coding, which

is the process of assigning internationally endorsed classifi-

cation codes to each medical diagnosis and procedure (the

WHO Family of International Classifications1) ).

Medical data exhibit unique features including noise re-

sulting from human as well as systematic errors, missing

values and even sparseness [4]. Table 1 illustrates medi-

cal dataset examples. These datasets are obtained from the

University of California Irvine (UCI) repository of machine

learning datasets2) . For example, some datasets, like derma-

tology, consist of different types of attributes. As another

example, the high dimensionality is a feature of the car-

diac arrhythmia dataset. The thyroid dataset contains more

than 7 000 instances. The hepatitis dataset is imbalanced. The

1) http://www.who.int/classifications/en/
2) http://archive.ics.uci.edu/ml/datasets.html
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Table 1 Example medical datasets and their associated complexity

Dataset No. instances No. attributes No. classes Missing values Input data type

Cardiac arrhythmia 452 279 16 0.32% 206 real, 73 nominal

Hungarian heart 294 13 5 20.46% 3 binary, 10 real

Dermatology 366 34 6 0.06% 1 nominal, 1 binary, 32 integer

Hepatitis 155 19 2a 5.67% 13 integer, 6 real

Thyroid 7 200 21 3 No 15 binary, 6 real

Note: a=Live (79.35)/Die (20.65%)

percentage of missing values in the Hungarian heart dataset

exceeds 20%. Due to this nature, Tanwani et al. [4] called for

the classification of medical data as a separate domain.

Data preprocessing has a profound effect on the perfor-

mance of the learner. The classification potential of a dataset

can be improved to a large extent by selecting the right com-

bination of preprocessing methods. Preprocessing is espe-

cially important for medical datasets due to their character-

istics. However, each dataset is different, and there is no pre-

processing method that is best across all datasets. Deciding

the best combination of preprocessing methods for a spe-

cific dataset is not possible without trial and comparisons.

Technology is advancing rapidly. The advent of various open-

source libraries, like Weka [6] and KEEL [7], hosting an ex-

tensive set of off-the-shelf preprocessing methods, combined

with the leisure of standard formats like the attribute-relation

file format (ARFF)3) and advances in computer hardware

technology, encourages integration of automatic tuning for

preprocessing operations into the data mining task for each

dataset on an individual basis. The idea is suitable for off-line

applications.

In this research, we investigate the influence of individual-

ized preprocessing on the classification of medical datasets,

including the removal of missing values and a variety of dis-

cretization and attribute selection methods. Experiments were

conducted on 25 real-world medical datasets from the UCI

machine learning repository. Datasets are then classified by

means of the AntMiner+ algorithm [8]. Numerical results

show that there is a significant improvement in classification

performance, as measured by predictive accuracy, with rel-

ative improvement exceeding 60% in some cases, obtained

in the majority of datasets in the benchmark, through the in-

dividualized tuning of the preprocessing operations. More-

over, given a certain classification algorithm, the design of the

preprocessing stage can mean the difference between com-

plete failure and the achievement of good results on the same

datasets.

The rest of the paper is organized as follows. Section

2 highlights related work in the area. A discussion about

AntMiner+ as a classification algorithm from the family of

ant colony optimization (ACO) algorithms is presented in

Section 3. Next, Section 4 describes the individualized tun-

ing procedure. Experimental results are presented in Section

5 and discussed in Section 6. The paper is concluded in Sec-

tion 7.

2 Related work

Tanwani and Farooq [9–11] performed an extensive study

to present the challenges associated with biomedical data

and approximate the classification potential of a biomedical

dataset using a qualitative measure of this complexity. The

study concludes that the classification accuracy is found to be

dependent on the complexity of the biomedical dataset, not

on the classifier choice. The number and type of attributes

have no noticeable effect on the classification accuracy, as

compared to the quality of the attributes. It is shown that

biomedical datasets are noisy and that noise is the dominant

factor that affects the resulting classification accuracy. Only

high percentages of missing values severely degrade the clas-

sification accuracy. The study also shows that evolutionary

algorithms tend to overfit for small-sized datasets and are not

much affected by the class imbalance problem.

The quality of data has a large implication for the qual-

ity of the mining results. It is necessary to perform a pre-

processing step in order to remove or at least alleviate some

of the problems associated with medical data. Depending on

the characteristics of the data themselves, many preprocess-

ing techniques are pertinent. In this section, methodologies

for dimensionality reduction (Section 2.1), discretization al-

gorithms (Section 2.2), and handling missing values (Section

2.3) are described.

2.1 Dimensionality reduction

As medical datasets are generally characterized as having

high dimensionality, this section introduces techniques com-

3) http://weka.wikispaces.com/ARFF
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mon for dealing with this problem. There are two common di-

mensionality reduction techniques: feature construction (FC)

and feature subset selection (FSS). FC is a transformation

technique that constructs a new, reduced feature space with a

strong discriminative power but also loses the original feature

characteristics, which leads to difficulties in the interpretation

of the resulting models. FSS finds the minimum subset of fea-

tures that are useful for the classification process. Although

several features are discarded, this method preserves the orig-

inal physical interpretation of features. Further, in medical

diagnosis, it is desirable to select the clinical tests that have

the least cost and risk and that are significantly important for

determining the class of the disease.

The first step is the subset search step. A search engine

is used to generate candidate feature subsets for evaluation

based on a certain search strategy. An exhaustive search strat-

egy is practically prohibitive unless the number of variables is

small. Greedy and heuristic methods are more efficient in this

respect [12] and include sequential forward selection (SFS)

[13] and sequential backward selection (SBS) [14]. Hybrid

forms of SFS and SBS have been devised to reduce the

nesting effect, such as sequential forward floating selection

(SFFS) and sequential backward floating selection (SBFS)

[15]. However, all of these methods provide a suboptimal so-

lution [16].

Due to their well-known efficiency in combinatorial op-

timization problems, optimization-based search methods are

also applied to FSS. The use of metaheuristics along with

their hybrids is well established in the FSS research [16–20].

Several feature subset selection techniques do not employ

any search strategy. Individual features are ranked (weighted)

according to their relevance, independently of others’ con-

text. Feature ranking is not used to build predictors but is a

simple, scalable approach, with good empirical success [21],

which can be used as a baseline method to construct nested

subsets for building predictors. Similar to filters, correlation

and information theoretic measures can be used in feature

weighing and ranking. Another approach is to use single-

variable classifiers, which rank variables according to their

discriminative power when used individually to build a clas-

sifier.

Next, the candidate feature subset is evaluated in the subset

evaluation step. The evaluation criterion is essential in deter-

mining the best candidate subset. FSS methods can be clas-

sified into two approaches based on their dependency on the

learning model: model-free and model-based approaches.

• Model-free approach In the model-free (filter) approach,

features are selected independently of the classification algo-

rithm, as a pre-processing step. The selection employs mea-

sures that utilize intrinsic characteristics of the data to deter-

mine the relevance between the features and the class. These

measures evaluate the class separability. Among the popu-

lar measures applied are distance [22], consistency [23] and

correlation measures [24,25]. All these measures rely on the

actual values of the training dataset and are thus sensitive to

noise and outlier values [12]. Information measures [26–28]

are popular as well.

•Model-based approach The model-based approach for FSS

applies a specific learning algorithm and uses its predictive

accuracy as a measure of the subset effectiveness. Model-

based methods fall into two types [29]. Wrappers [30,31] use

the learning machine as a black box. Embedded methods in-

corporate the feature subset selection process as a part of the

training process, such as that in genetic programming [32]

and decision tree algorithms like CART [33].

Hybrid methods exist as well. For example, as an efficient

method, filters can be used initially to eliminate definitely re-

dundant features, thus reducing the search space, and then a

wrapper can be used for the search in the second phase [34].

2.2 Discretization algorithms

Some learning algorithms cannot deal directly with numeric

attributes. Discretization is thus an essential step to transform

these attributes into a form that can be handled. The numeric

domain is partitioned into a finite number of non-overlapping

intervals. An association is then established between each nu-

meric value that belongs to the attribute and the interval to

which it belongs. As a side effect, discretization works as

a data reduction and simplification method because it con-

verts the huge numeric domain into a much smaller subset

of nominal intervals [35]. Finding the optimal discretization

of a numeric attribute is NP-hard [36]. A recent survey [37]

lists over 80 discretization methods that belong to 33 different

categories of the discretization taxonomy.

If the class information is considered along with the eval-

uation measure during discretization, then it is called a su-

pervised discretization method. Most available discretization

methods belong to the supervised discretization type. The

class label is not considered in unsupervised methods. Equal-

Width and EqualFrequency [38] discretizers are examples of

unsupervised discretization methods.

Simple discretization methods do not use any evaluation

measure to decide cut points. A predefined number of bins

n is established and the domain is partitioned into n equal-

width intervals (EqualWidth) or into n intervals that contain
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an equal number of values per attribute (EqualFrequency)

[38]. Other discretization methods rely on some metric to de-

cide the next cut (or merge) point. Common evaluation cri-

teria include information measures like entropy and its de-

rived measures, as in ID3 [28] and the Fayyad and Irani dis-

cretizer [26]. Statistical measures use correlation and con-

sistency measures to determine cut (or merge) points, as in

ChiMerge [24]. Alternatively, a simple classifier is run for

each evaluation, and the classification error is the metric used

for the decision for cut (or merge) points.

2.3 Handling missing values

When dealing with real-life medical data, missing or un-

known values are unavoidable. For example, in a diagnosis

problem, the results of some tests may not be available be-

cause a health care institution lacks these tests. A physician

may decide that some tests need not be performed, as their

results are evident or they are unrelated. A test may also be

avoided due to the high hazard or cost associated. The model

learning process must deal with such missing values.

The most popular methods for handling missing

values [39] are based either on the removal of missing val-

ues or on imputation methods. The latter aim to substitute

missing values with new values as close as possible to the

real missing ones. Imputation methods includes statistical

methods such as mean (and mode) imputation, regression

imputation, hot and cold deck imputation (which replace

missing values with the corresponding values from a similar

case to the one with missing values), and multiple imputation

(where multiple datasets are generated, each with a possible

value for the missing ones). Hot deck analysis might require

several runs to replace missing values and may end up not

completely eliminating missing values when the percentage

of missing values is large [40]. In imputation based on ma-

chine learning methods, a model is built to predict the missing

values of a certain feature based on available other features,

such as employing the k-nearest neighbor (k-NN) algorithm

[41], support vector machines (SVMs) [42], and artificial

neural networks (ANNs) [43]. A separate model has to be

built for each attribute having missing values. These methods

are generally robust; however, the main drawback is their

high computational cost and sensitivity to some parameters.

Model-based imputation methods [44–46] are based on as-

sumptions about the statistical probability distribution of the

variables in the model, such as the expectation-maximization

(EM) algorithm.

3 Classification with ant colony optimization
algorithms

A wide spectrum of algorithms for classification model learn-

ing has been proposed, each with associated strengths and

limitations. Metaheuristic methods stand as interesting tech-

niques, because of their good performance and low computa-

tional requirements. Metaheuristics require little or no back-

ground knowledge of the problem at hand. Although finding

the optimal solution is not guaranteed, metaheuristics obtain

reasonable solutions in acceptable time. Among metaheuris-

tics, algorithms from the family of swarm intelligence are

particularly interesting when dealing with biological systems

[47–52]. This is because these algorithms are themselves in-

spired by biology. In ant colony optimization algorithms, ar-

tificial ants use pheromone trails and heuristic information

to guide solution construction for finding the shortest path

from food sources to their nest. The pheromone is a special

chemical released by ants during their search. The amount

of pheromone laid on a path increases with the number of

ants passing along that path and, thus, attracts more ants to

follow. With time, the pheromone evaporates, causing old

and expired paths to be forgotten [53]. Pheromone evapora-

tion facilitates the adaptation and fast finding of new, sub-

optimal paths in a robust and reactive way when sources of

food change dynamically. Ant-Miner [54] is the first ACO al-

gorithm for classification tasks. Among the different variants

of Ant-Miner, AntMiner+ [8] has been chosen as the classifi-

cation algorithm in this research. AntMiner+ is based on the

MAX–MIN ant system [55], which is recognized as one of

the best-performing algorithms in the ant colony optimization

family [56]. The classification model is constructed using the

sequential covering strategy. The results reported show that

AntMiner+, on average, obtained the highest rank among all

rule-based classifiers included [8], such as the C4.5 algor-

ithm [28], RIPPER [57], and Ant-Miner [54], as well as

other classification methods like logistic regression, 1-nearest

neighbor and RBF-SVM (Vapnik 1995). A study by Min-

naert et al. [58] examines several performance measures

for sequential covering rule-induction algorithms. AntMiner+

has been successfully hybridized with other nature-inspired

metaheuristics for the task of medical data classification in

the literature [5,59].

4 Individualized preprocessing procedure

The AntMiner+ is based on a sequential-covering strategy
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and a default rule related to the majority class. In effect, rule

induction focuses on classes other than the majority class.

This particular strategy is advantageous in MDC because the

majority of class instances are normally the negative cases of

which we care less. The sequential-covering strategy helps in

handling large-sized datasets; due to the removal of instances

already covered by induced rules, the progressive reduction

of the training set size is thus achieved.

AntMiner+ algorithm cannot handle instances containing

missing values. Thus, these instances are removed from the

dataset in the first step. To reduce the size of the solution

space, the number of attributes is limited to no more than a

default value of 10. If the dataset contains a larger number of

attributes, then attribute selection takes place prior to induc-

tion.

Various attribute types can be handled by the AntMiner+

algorithm. These include nominal and ordinal values, as well

as numeric values, including integer and continuous attributes

that are discretized. In effect, numeric values are encoded as

discrete intervals defined by [lower_bound − upper_bound].

The order of preprocessing steps in the concerned

AntMiner+ implementation is as follows:

1) removal of instances with missing values;

2) discretization;

3) attribute selection.

The AntMiner+ configuration is tuned for the following as-

pects:

1) timing of removing instances having missing values

(Section 4.1);

2) discretization algorithm (Section 4.2);

3) feature subset selection algorithm (Section 4.3);

4) rule evaluation function (Section 4.4).

4.1 Timing of removing instances having missing values

In the context of the AntMiner+ algorithm, all instances hav-

ing missing values are removed in the first step of prepro-

cessing. The next steps in the preprocessing consist of the

application of the discretization algorithm and attribute se-

lection algorithm (if necessary). This procedure might not be

the best in some cases. For example, consider datasets with

a large number of predictive attributes. If the removal of in-

stances having missing values is delayed after the attribute

selection step, then this would allow more instances to be

available for training and testing subsets, thus perhaps im-

proving the results. Otherwise, some instances would be re-

moved because they include missing values in attributes that

will be next removed by the attribute selection step. Thus,

the removal of these instances is no longer rationalized. We

hypothesize that if the removal of instances with missing val-

ues were delayed until after the attribute selection step, then

better results would be obtained.

4.2 Discretization method

Different discretization methods exist, but none can prove to

be the best across all problems and learners [37]. When deal-

ing with a specific problem or dataset, the choice of the dis-

cretization method has a considerable effect on the classifi-

cation results in terms of both predictive accuracy and model

simplicity.

Four discretization methods are selected for discretization

tuning. All of them are classified as static, univariate, and

splitting methods. A brief description of each, along with its

acronym used, is presented next.

• Fayyad and Irani discretizer (fay)

The Fayyad and Irani discretizer [26] is one of the most

popular discretizers that obtains a reasonable balance

between the number of intervals and the accuracy ob-

tained [37]. It is based on a supervised method that uses

an entropy measure to decide split points. Stopping is

based on a minimum description length (MDL) [60] cri-

teria that explains the attractive balance between model

complexity (number of intervals in this case) and per-

formance (accuracy).

• Kononenko’s MDL discretizer (kon)

This is similar to the Fayyad and Irani discretizer,

but it uses the Kononenko’s MDL criterion [61]. The

Kononenko’s MDL criterion has a lower bias in han-

dling multi-valued attributes and multi-class problems.

• EqualWidth discretizer (eib)

EqualWidth [38], or equal interval binning (eib), par-

titions the continuous domain into a predefined num-

ber of equal-width bins. For each dataset, a number of

5, 10, 15, and 20 intervals are examined. The resulting

models are referred to as eib5, eib10, eib15, and eib20,

respectively. EqualWidth is an unsupervised discretiza-

tion method.

• EqualFrequency discretizer (efb)

EqualFrequency [38], or equal frequency binning (efb),

partitions the continuous domain into a predefined num-

ber of intervals such that the intervals have an equal
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number of values. Similar to eib, for each dataset, a

number of 5, 10, 15, and 20 intervals are examined. The

resulting models are referred to as efb5, efb10, efb15,

and efb20, respectively. Also similar to eib, efb is an

unsupervised discretization method.

4.3 Feature subset selection method

FSS (or attribute selection) process is described relatively to

four aspects: subset search, subset evaluation, halting crite-

ria, and result validation.

Following is a list of the considered FSS methods. Next,

for each method we explain the strategy used for subset

search, subset evaluation, halting criteria, and result valida-

tion.

1) ReliefF attribute evaluation (rel) [62,63].

2) Correlation-based feature subset selection (cfs) [64].

3) Consistency subset evaluation (con) [65].

4) Chi-squared attribute evaluation (chi).

5) Gain ration attribute evaluation (gai).

6) Information gain attribute evaluation (inf).

7) OneR attribute evaluation (1R).

8) Symmetrical uncertainty attribute evaluation (sym)

[66].

9) No attribute selection employed (0AS).

• Subset search

The subset search methods described in Section 2.1 can be

grossly classified into exhaustive, exact, greedy, and heuris-

tic methods. In addition, there is the simple feature-ranking

method. Exhaustive methods are computationally intractable.

Heuristic methods require high computational time, which is

not suitable in combination with AntMiner+. For (cfs) and

(con), the best first search is used with a backward search

direction. The rest of the methods use the simple ranking

of attributes according to the attribute evaluation used [21].

Ranking is chosen due to its scalability, simplicity, and per-

formance [29].

• Subset evaluation

The methods selected include both model-free and model-

based subset evaluation. As for the model-free evalua-

tion methods, the selection includes distance-based (rel),

consistency-based (con), correlation-based (cfs), and infor-

mation theoretic-based evaluation measures (chi, gai, and

inf). Attributes are individually evaluated using ReliefF (rel).

The (gai) method measures gain ratio with respect to class.

The (inf) method evaluates each attribute individually accord-

ing to its measured information gain with respect to class.

The (chi) method uses the chi-squared statistical measure to

assess the degree of independence between the attribute and

the associated class. The (chi) method works on categorical

attributes.

A model-based evaluation is also included (1R). Each at-

tribute is evaluated individually by using the simple OneR

classifier [67]. The (1R) method generates a single rule for

each attribute and ranks attributes according to the error rate

associated with these rules.

• Halting criterion

Datasets are examined as follows. For model-free meth-

ods, we use a default number of attributes (10) to retain, as

recommended by Minnaert et al. [58]. The best-first search in

cfs and con terminates when a default number (5) is reached

for non-improving consecutive nodes. Finally, (1R) requires

no halting criteria as it generates a single rule per attribute

and then performs the ranking.

• Result validation

The (1R) model-based method uses a 10-fold cross vali-

dation procedure. The inclusion of the no attribute selection

method is applied for baseline comparisons.

4.4 Rule evaluation function

A rule evaluation function maps a rule r into a fitness value

Q+(r) that quantifies the quality of r. The higher Q+(r) is, the

better quality of r is. In the AntMiner+ algorithm, pheromone

is reinforced on the best ant’s path proportionally to the asso-

ciated quality of the resulting rule Q+(r).

Instances that belong to the current target class are referred

to as positive instances. Those that belong to other classes

are referred to as negative instances. Let the number of cor-

rectly classified positive instances be denoted TP, the number

of positive instances incorrectly classified into negative FN.

Similarly, the number of negative instances correctly classi-

fied as negative TN and those falsely classified into positive

as FP. A tradeoff has to be established between TP and FP

so that the coverage is maximized. Also, let D+ denote the

total number of positive instances remaining in the training

dataset. Similarity, let D− denote the total number of negative

instances remaining in the training dataset. Let D+ + D− � 0.

• Klösgen (K) measure

The Klösgen measure [68] balances the tradeoff be-

tween precision and coverage. The parameter ω con-

trols the weight assigned to coverage Eq. (1), (TP +
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FP) � 0.

Q+K = (
TP + FP
D+ + D−

)ω × (
TP

TP + FP
− D+

D+ + D−
). (1)

• m-estimate (M)

Equation 2 defines the m-estimate measure with param-

eter m. Setting m = 0 leads to the precision.

Q+M =
TP + m × D+

D++D−

TP + FP + m
, (TP + FP + m) � 0. (2)

• F-measure (F)

F-measure balances coverage and precision using the

parameter β (Eq. (3)).

Q+F =
(β2 + 1) × TP

TP+FP × TP
D+

β2 × TP
TP+FP +

TP
D+

, (TP + FP,D+) � 0. (3)

• The relative cost measure (RCM)

The relative cost measure [69] balances the TP and FP

rates through a parameter c (Eq. (4)). Setting c = 1

would reward TP, thus leading to a low precision and

high coverage rules. On the other hand, if c = 0, then

FP would be punished, thus leading to a high precision

and low coverage rules.

Q+RCM = c × TP
D+
− (1 − c)

FP
D−
. (4)

• The sum of confidence and coverage (A+)

Confidence measures the fraction of remaining in-

stances covered by r that are correctly classified. Cov-

erage measures the fraction of remaining instances cor-

rectly covered and classified by r [35]. This is the rule

evaluation function used in AntMiner+ [8] (Eq. (5)).

Q+A+ =
TP

TP + FP
+

TP
D+ + D−

. (5)

• The product of sensitivity and specificity (SS)

This measure has been used in Ref. [54]. It balances

the sensitivity and specificity often used in the med-

ical domain (Eq. (6)). A recent survey by Martens et

al. [70] shows that most ACO-based data mining algo-

rithms adopt this function.

Q+S S =
TP

TP + FN
× TN

TN + FP
. (6)

A large-scale empirical study of rule evaluation func-

tions on multiple metaheuristic-based, sequential-covering

algorithms was made by Minnaert et al. [58]. The default

rule evaluation function for AntMiner+ recommended in this

study is the function K with parameter ω = 0.44.

5 Experimental results

The implementation of the AntMiner+ algorithm from the

AntMiner+ website4) [58] is adopted with the same recom-

mended settings as shown in Table 2.

Table 2 Default parameters for the AntMiner+ algorithm

Parameter Default value

Maximum iterations per rule (limit) 200

Fraction of nonmajority class data (stop) 0.01

Number of ant (ants) 1 000

evaporation factor (rho) 0.85

MAX-MIN AS parameter (p) 0.1

Sensitivity of the convergence check (epsilon) 0.05

The above-described implementation uses a reasonable set

of methods from the open-source machine learning software

Weka5) . The methods consist of the implementation of dif-

ferent discretization and attribute selection algorithms, along

with filters used for the removal of instances containing miss-

ing values and other miscellaneous methods for dataset par-

titioning and randomization. In addition, the AntMiner+ im-

plementation addresses a variety of rule evaluation measures,

which are used to evaluate a rule within the rule list. These

methods/measures are used for the tuning process of the pre-

processing stage in this study and are described in Section

4.4.

As the cardinal essence of this research is the optimiza-

tion of decision lists generated using AntMiner+, we perform

a tuning of the associated preprocessing configuration to get

closer to the individual needs of each dataset included in the

benchmark.

Regarding the order of these steps, it is worth noting that

there exists no standard order for performing the preprocess-

ing steps in Ref. [35]. The first step is chosen to be the re-

moval of instances having missing value timing. This is be-

cause the AntMiner+ fails to run in several datasets due to this

timing, as will be shown in Section 5.2. As for the remaining

steps, any procedure to carry on these steps other than the full

permutation of all possibilities is not optimal. We choose to

perform the tuning of these steps in the same order of that

used for their processing in AntMiner+ implementation. This

allows the tuning for attribute selection to be done when nu-

meric attributes are in the same form that will be used for rule

4) http://www.antminerplus.com/
5) http://www.cs.waikato.ac.nz/∼ml/weka/
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induction. Rule evaluation is not considered a preprocessing

step but is in the core of the rule induction process. Its tuning

should take place after the preprocessing tuning.

The stratified 10-time, 10-fold cross-validation procedure

is used as it is considered the best error estimation strategy

[71,72].

Further, to compare the performance of the different mod-

els examined on a solid basis, it is necessary to use statistical

tests. In recent studies, the use of non-parametric statistical

tests is highly recommended when dealing with evolutionary

computation algorithms [73]. The Wilcoxon signed-ranks test

[74] is used for pairwise model analysis. The Friedman test

[75] is used for multiple comparison tests. Datasets having

statistically significant difference among their different mod-

els are marked with an asterisk (*). According to these tests,

the winner with a significance level α = 0.05 is stressed in

bold typeface. The first model in ranking is selected as (one

of) the best learning models. If the aim is only to locate the

best model, then the procedure is as follows. If the difference

is found statistically significant, then this means that at least

one of the models included in the comparison is significantly

higher (or lower) than the rest. Nevertheless, the top-ranked

model is selected in most cases as it represents the (or one of

the) best performing models. In some cases, several models

are equally good. That is, the difference among their perfor-

mance is not considered statistically significant. In this case,

other factors may be considered as will be explained in each

case.

5.1 Benchmark of the experimentations

In this research, we use 25 medical datasets obtained from

the UCI machine learning repository [76]. The list of medi-

cal datasets in the benchmark, together with the abbreviations

used hereafter, are demonstrated as follows.

1) Cardiac arrhythmia (arr).

2) Breast cancer Wisconsin original wbcd (bcw).

3) Contraceptive method choice (cmc).

4) Dermatology (derma).

5) Echocardiogram (echo).

6) Ecoli (ecoli).

7) Haberman’s survival (haber).

8) Heart disease Cleveland dataset (h_c).

9) Heart disease Hungarian dataset (h_h).

10) Statlog heart (h_stat).

11) Heart disease Swiss dataset (h_swiss).

12) Hepatitis (hep).

13) Horse colic (horse).

14) Thyroid disease hypothyroid dataset (hypo).

15) Liver disorders (liver).

16) Breast cancer (ljub).

17) Lymphography (lymph).

18) Mammographic mass (mammo).

19) Thyroid disease new thyroid dataset (new_thy).

20) Parkinson’s disease (park).

21) Pima Indian diabetes (pima).

22) Primary tumor (p_tumor).

23) Thyroid disease sick dataset (sick).

24) Breast cancer Wisconsin diagnostic (wdbc).

25) Breast cancer Wisconsin prognostic (wpbc).

The benchmark used hosts a wide variety of the charac-

teristics listed above. A summary of the main characteristics

is presented in Table 3. For each dataset, the number of in-

stances (#Inst.), number of attributes (#Attr.) including nu-

meric (#Num.) and nominal (#Nom.) attributes, and number

of classes (#Class.) are listed. Also included is the percentage

of overall missing values (%MV) computed as ( #missing values
#Inst. ×#Attr. ×

100) and the percentage of instances with missing values

(%Inst.MV) computed as ( #inst. with missing values
#Inst. × 100).

As for class imbalance, and as far as we are concerned,

there is no consensus in the literature on a quantitative mea-

sure for describing a dataset as imbalanced. The majority of

studies either limit the domain to binary classification prob-

lems, or compute the imbalance ratio as the cardinality of the

minority class over the total number of instances, ignoring

other classes that may be present in the dataset (for exam-

ple, Refs. [77,78]). The last two columns in Table 3 report

the class noise (Noise) and imbalance ratio (Imb.Ratio) as re-

ported in Ref. [9]. The imbalance ratio recommended by in

this study accounts for all classes in the dataset. For those

datasets that were not reported in Ref. [9], a dash (—) is

placed.

5.2 Timing of removing instances having missing values

Referring to Table 3, among the 25 datasets in the benchmark,

15 datasets contain missing values. To test the hypothesis,

we conduct the following experiment. We modify AntMiner+

such that the removal of instances having missing values is

delayed after the attribute selection step. We call this version
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Table 3 Summary of medical dataset characteristics

No. Dataset #Inst. #Attr. #Num. #Nom. #Class. %MV %Inst. MV Noise Imb. Ratio

1 arr 452 279 206 73 16 0.32 84.96 11.28 1.57

2 bcw∗a 699 9 9 0 2 0.25 2.29 2.72 1.21

3 cmc 1 473 9 2 7 3 0 0 31.98 1.04

4 derma 366 34 1 33 6 0.06 2.19 0.82 1.05

5 echo 132 10 8 2 2 7.37 45.26 6.06 1.24

6 ecoli 336 7 7 0 8 0 0 6.55 1.25

7 haber 306 3 2 1 2 0 0 16.67 1.57

8 h_c 303 13 6 7 5 0.18 2.31 17.82 1.37

9 h_h 294 13 6 7 5 27.94 99.7 13.61 1.74

10 h_stat 270 13 7 6 2 0 0 15.19 1.03

11 h_swiss 123 13 6 7 5 17.07 100 32.52 1.14

12 hep 155 19 6 13 2 5.67 48.39 10.97 2.05

13 horse 368 22 7 15 2 23.8 98.9 11.96 1.15

14 hypo∗b 3 772 29 7 22 4 5.41 100 0.54 9.99

15 liver 345 6 6 0 2 0 0 9.86 1.05

16 ljub 286 9 0 9 2 0.35 3.15 — 2.79

17 lymph 148 18 0 18 4 0 0 10.81 1.46

18 mammo 961 4 1 3 2 30.77 13.53 14.15 1.01

19 new_thy 215 5 5 0 3 0 0 2.79 1.78

20 park 195 22 22 0 2 0 0 — 3.39

21 pima 768 8 8 0 2 0 0 20.18 1.20

22 p_tumor 339 17 0 17 22 3.9 61.06 — 0.90

23 sick∗b 3 772 29 7 22 2 5.41 100 0.71 7.72

24 wdbc 569 30 30 0 2 0 0 2.11 1.14

25 wpbc 198 33 33 0 2 0.06 2.02 13.64 1.76

Note: ∗ameans in this study, attributes for the bcw dataset are encoded as nominal; ∗bmeans different number of instances stated by Ref. [9]

AntMiner+ with remove missing last (AM+RML). The aim

of this experiment is to decide which version of AntMiner+

(AM+Original or AM+RML) is more suitable to each dataset

considered. Results are compared and conclusions are based

on the following strategy. If AM+Original has failed, or there

is not a notable difference in the average predictive accuracy,

then AM+RML is used.

• Results

The results of this experiment are summarized in Fig. 1

and Table 4. For each AntMiner+ model, only the predictive

accuracy is shown in the comparison (Acc. ± STD). In the

first observation from Fig. 1, we note that the AM+Original

model fails in five datasets. The reason for failing is that

there are not enough instances to generate any folds. In all

of these datasets, we note that the percentage of instances

containing missing values is very high (98.90%–100.00%).

The AM+RML model produced output for all five datasets.

However, for those with a relatively low number of attributes

(h_h and h_swiss), the results are considerably poor and pro-

duced empty rules in several folds. As for the remaining three

datasets (horse, hypo, and sick), results are much better. The

large number of associated attributes (22–29) has helped in

decreasing the percentage of instances with missing values in

the remaining attributes post the attribute selection phase.

Fig. 1 Average predictive accuracy for the timing of removal of instances
having missing values experiment

For the remaining 10 datasets, we note that the AM+RML

model achieved a significant win over AM+Original in the

arr dataset. This is despite the fact that the class noise associ-

ated with this dataset is not low (11.28%). The AM+Original

obtains a significant win in one dataset: derma. For this par-
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ticular dataset, the percentage of class noise is not signifi-

cant. It is expected that the attribute noise is high, which

only adds more noise when adding more instances for this

dataset, thus deteriorating classification performance. For the

rest of the datasets, the difference in performance among the

AM+Original and the AM+RML models is not considered

statistically significant. Table 4 reports the average accuracy

(Acc), number of rules (Rules), number of terms per rule

(T/R), and rule-set induction time (Time) over all ten datasets

for which the AM+Original has produced output. From this

table it can be seen that overall, the AM+RML model has

higher predictive accuracy than the AM+Original.

Table 4 Averages for the timing of removal of instances with missing val-
ues

AntMiner+ version Acc Rules T/R Time/s

AM+Original 70.99 ± 3.67 3.94 ± 0.88 2.91 ± 0.37 19.63 ± 4.26

AM+RML 73.48 ± 3.02 4.10 ± 1.17 2.86 ± 0.34 18.85 ± 6.02

5.3 Discretization method

The AntMiner+ algorithm cannot directly handle numeric

attributes. Among the benchmark datasets, 21 contain nu-

meric attributes. Discretization is an essential step to trans-

form these numeric attributes into a form that the AntMiner+

algorithm can handle. The numeric attributes can now be han-

dled by AntMiner+ during rule induction as ordinal attributes.

The Weka implementation of the four discretization meth-

ods is used. This results in ten models as will be shortly de-

scribed. The best performing model for each dataset will be

outlined. The default discretization method in the implemen-

tation adopted is fay. For binning discretization methods, the

default number of bins is 10. Only datasets having continuous

attributes (Table 5) are included in this experiment. The col-

umn AntMiner+ version describes the version used (Original

or RML), as concluded in Section 5.2. The Friedman test is

used to test whether the difference among the predictive ac-

curacy of the selected models is considered statistically sig-

nificant. The discretization method associated with the best

rank is usually chosen. In few cases, a model other than the

best ranked is selected as justified. Reasoning will be usu-

ally based on the rule set size and/or the computational time

associated with these models.

• Results

The predictive accuracy with the associated standard de-

viation obtained by AntMiner+ in combination with each

of the used discretization methods is shown in Fig. 2. The

discretization method selected for each dataset is shown in

Table 9.

Table 5 Datasets included in discretization method experiment

No. Dataset AntMiner+ version No. Dataset AntMiner+ version

1 arr AM+RML 12 horse AM+RML

2 cmc AM+Original 13 hypo AM+RML

3 derma AM+Original 14 liver AM+Original

4 echo AM+RML 15 mammo AM+RML

5 ecoli AM+Original 16 new_thy AM+Original

6 haber AM+Original 17 park AM+Original

7 h_c AM+RML 18 pima AM+Original

8 h_h AM+RML 19 sick AM+RML

9 h_stat AM+Original 20 wdbc AM+Original

10 h_swiss AM+RML 21 wpbc AM+RML

11 hep AM+RML

In addition, the predictive accuracy, number of rules, num-

ber of terms per rule, and computational time per rule set

are averaged over all datasets for each discretization method

and shown in Figs. 3 and 4. The grand average of all ten dis-

cretization methods over the 21 datasets is also displayed.

From Fig. 2, it can be seen that even for the same learner

(AntMiner+), the performance across different datasets dif-

fers according to the discretization method used. Among the

21 datasets employed in this experiment, the difference in

AntMiner+ performance associated with the ten models for

each dataset and resulting from the use of different discretiza-

tion methods is found to be statistically significant in 12

datasets. In particular, the difference is quite large in three

datasets. Namely, the following is noted.

1) In the h_h dataset, the relative improvement obtained

by kon over fay exceeds 176% (= 80.17−28.96
28.96 × 100%).

2) In the liver_disorder dataset, efb10 improves over the

default discretization method fay for more than 41% in

predictive accuracy.

3) The improvement obtained when using eib5 over the

default fay is over 54% for the wpbc dataset as well.

In the remaining nine datasets, the difference among the

ten models for each dataset is not found to be statistically

significant. This result is not surprising for the derma dataset.

This dataset only has one numeric attribute against 32 nom-

inal attributes. However, for two datasets, namely new_thy

and wdbc, all the predictive attributes are numeric.

Among the ten models generated, the best rank is obtained

by fay, followed by efb10 the highest number of times (5 : 21

and 4 : 21, respectively). If the four eib models were aggre-

gated (eib5, eib10, eib15, and eib20), then eib would score

the best rank in (9 : 21) times followed by efb at (7 : 21).

The highest number of times a model is selected belongs to
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Fig. 2 Results summary of discretization tuning

fay and efb10 (4 : 21).

From Figs. 3 and 4, the following can be noticed.

1) Discretization methods that use binning obtain a higher

overall predictive accuracy average over entropy-based

methods. These models are also more robust as they

have lower overall average standard deviation. The

highest average accuracy is obtained by the efb10

method.

2) The difference among the model sizes obtained is not
significant for the ten models. However, the use of
entropy-based discretization methods (fay and kon) re-
sults in relatively smaller model sizes. The number of
bins does not seem to significantly affect the size of the
resulting model.

3) The shortest computational time belongs to models
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using entropy-based discretization methods. Models

based on binning discretization methods require almost

double the time.

5.4 Feature subset selection method

A diverse combination of FSS methods is included in the

comparison. For each dataset, we compare the AntMiner+

rule induction performance that uses each of the different fea-

ture subset selection methods listed in this section. We also

include the AntMiner+ performance when no attribute selec-

tion is used in the preprocessing phase. This is done for all

datasets in the benchmark except the (arr) dataset, where the

number of attributes is relatively high. Weka Java implemen-

tation with default settings for attribute selection methods is

used. A list of the included methods is presented along with

the corresponding synonym used in tables.

Fig. 3 Average predictive accuracy and time/s over all datasets for
AntMiner+ per discretization method

Fig. 4 Average model size over all datasets for AntMiner+ per discretiza-
tion method

The default feature subset selection method in the imple-

mentation [58] adopted is rel with ten as the default number

of attributes to retain. Therefore, only datasets having more

than ten attributes are included in this experiment (Table 6).

The column AntMiner+ version describes the version used

(Original or RML) as concluded in Section 5.2. The column

discretization method shows the discretization method as per

Section 5.3. The non-parametric Friedman test is used to test

whether the difference among the predictive accuracy of the

selected models is considered statistically significant. The

statistical comparison is only done among results associated

with the eight FSS methods. The model where no attribute

selection is employed (AS0) is not included in the statistical

comparisons. The FSS method associated with the best rank

is usually chosen. In few cases, a model other than the best

ranked is selected as justified. Reasoning is usually based on

the rule set size and/or the computational time associated with

these models.

Table 6 Datasets included in FSS experiment

AntMiner+ Discretization
No. Dataset #Attr.

version method

1 arr 278 AM+RML fay

2 derma 33 AM+Original efb5

3 h_c 13 AM+RML eib5

4 h_h 13 AM+RML kon

5 h_stat 13 AM+Original efb10

6 h_swiss 13 AM+RML kon

7 hep 19 AM+RML efb20

8 horse 22 AM+RML eib5

9 hypo 29 AM+RML fay

10 lymph 18 AM+Original —

11 park 22 AM+Original eib10

12 p_tumor 17 AM+RML —

13 sick 29 AM+RML efb10

14 wdbc 32 AM+Original efb5

15 wpbc 33 AM+RML eib5

• Results

The predictive accuracy with the associated standard de-

viation obtained by AntMiner+, in combination with each of

the used FSS methods, is shown in Fig. 5. The FSS method

selected for each dataset is shown in Table 9.

In addition, the predictive accuracy, number of rules, num-

ber of terms per rule, and computational time per rule set are

averaged over all datasets for each FSS method and shown in

Figs. 6 and 7. The grand average of all the eight FSS methods

over the 15 datasets is also reported. Table 7 shows the (AS0)

case, where no attribute selection is employed. Averages are

limited over the ten datasets where AntMiner+ produced a

non-zero output. The corresponding average for all the FSS

methods over the same datasets is also shown.

Table 7 Averages over all datasets for AntMiner+ for FSS vs. all features

FSS? Acc Rules T/R Time/s

All FSS 75.97 ± 2.50 4.39 ± 1.01 3.22 ± 0.29 21.89 ± 5.48

0AS 73.79 ± 2.82 4.99 ± 1.04 3.89± 0.50 57.13 ± 9.61
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Fig. 5 FSS tuning experiment results summary

Fig. 6 Average predictive accuracy and time/s over all datasets for
AntMiner+ per FSS method

Figure 5 shows that three FSS methods equally score the

best rank for the hep dataset: gai, 1R, and sym. The sym FSS

method is chosen as it features the highest average and me-

dian among the three FSS methods.

From Fig. 5 and Table 7, several observations can be

drawn. The first observation is noted when comparing rule in-

duction combined with FSS with that of full attributes (AS0).

The experiment confirms the benefit of FSS as a preprocess-

ing step in this case. Without FSS, the rule induction process

fails entirely in some datasets (h_h, h_swiss, hypo, and sick).

For all these datasets, the percentage of instances having

missing values is very large (� 99.7%). Therefore, when the

next step of preprocessing (removal of instances with miss-

ing values) is performed, no instances are left for induction.

Effectively, FSS significantly reduces the percentage of in-

stances having missing values and is thus fundamental in

this case. The same reasoning is related to the inferior per-

formance (predictive accuracy) obtained in similar datasets

Fig. 7 Average model size over all datasets for AntMiner+ per FSS method
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(e.g., horse dataset).

The second confirmed advantage is the acceleration of

search when using FSS methods in general. It is noticed that

using FSS methods reduces the computational time. For ex-

ample, this reduction is up to six times in the derma dataset.

In general, the computational time of AntMiner+ without FSS

is more than twice as much as that obtained by averaging the

computational time of AntMiner+ combined with each of the

eight FSS methods. Also, note that the solution size is larger

and the accuracy is on average lower.

When comparing results using the different FSS methods,

we note that out of the 15 datasets, the difference among

AntMiner+ results, when combined with each of the eight

FSS methods, is considered statistically significant in 11

datasets. The high imbalance ratio in some (e.g., hypo and

sick) seems not to affect the results. Among these, the dif-

ference is extremely significant in h_h, h_swiss, and wpbc

datasets. For example, it can be seen that changing the FSS

method used with AntMiner+ for the h_h dataset can improve

the predictive accuracy from (41.82%) when using sym to

(80.17%) when using rel, thus effectively providing over 91%

improvement in accuracy. These three datasets (h_h, h_swiss,

and wpbc) exhibit the highest level of class noise combined

with highest percentage of instances having missing val-

ues, and small number of instances (below 300). Most FSS

methods showed to be the preferred for at least one dataset,

however, the methods rel followed by cfs obtained the

largest count of best ranks. When considering grand averages,

Fig. 6 shows that the highest overall average is associated

with the correlation-based FSS method (cfs). It also fea-

tures the highest computational time. The follow-up is Re-

liefF method (rel). In all models, comparable rule set sizes

are found, as depicted in Fig. 7.

5.5 Rule evaluation function

This experiment involves all 25 datasets in the benchmark.

AntMiner+ is run on each dataset once for each of the six rule

evaluation functions K, M, F, RCM, A+, and SS. The default

parameter values recommended in the study by Minnaert et

al. [58] for K, M, F, and RCM are used and are shown in Ta-

ble 8. For each run, the settings concluded for each dataset in

the previous sections regarding the timing of the removal of

missing instances, discretization algorithm, and attribute se-

lection method are used. The non-parametric Friedman test is

used to test whether the difference among the predictive accu-

racy of the six models is considered statistically significant.

The rule evaluation function associated with the best rank is

usually chosen.

Table 8 Default parameters for rule evaluation functions

Rule evaluation function Parameter Default value

K ω 0.44

M m 0.28

F β 7

RCM c 0.028

• Results

The predictive accuracy with the associated standard devi-

ation obtained by AntMiner+ in combination with each of the

used rule evaluation functions is shown in Fig. 8. The figure

also displays the rule evaluation function selected for each

dataset.

Additionally, the predictive accuracy, computational time

Fig. 8 Rule evaluation function tuning results summary



1096 Front. Comput. Sci., 2016, 10(6): 1082–1102

per rule set, number of rules, and number of terms per rule

are averaged over all datasets for each discretization method

and are shown in Figs. 9 and 10. The grand average of all ten

discretization methods over the 25 datasets is also displayed.

The policy on ties needs to be clarified. In the derma dataset,

a tie is encountered between K and M. However, K is selected

as it produces the highest accuracy average and smaller model

size.

Fig. 9 Average predictive accuracy and time/s over all datasets for
AntMiner+ per rule evaluation function

Fig. 10 Average model size over all datasets for AntMiner+ per rule evalu-
ation function

The difference in predictive accuracy for each dataset

among the six measures is found to be statistically significant

in 21 out of 25 datasets. It is found that models associated

with the K function obtained the best rank in Friedman test in

12 out of 25 datasets followed by M (5 : 25). From Figs. 9 and

10, it can be seen that when averaged over all datasets, except

for the models associated with the SS rule evaluation mea-

sure, those associated with the K function obtain the high-

est predictive accuracy, shortest solution size, and require the

least computational time.

5.6 Performance of the tuned AntMiner+

By the end of the tuning phase with its four steps, it is time to

compare the results before and after tuning. Figure 11 shows

the predictive accuracy along with the standard deviation for

the original AntMiner+ with the default settings versus those

for the tuned version. The final model for AntMiner+ after

tuning is referred to as AM+Tuned hereafter. Table 9 sum-

marizes those findings.

Fig. 11 Average predictive accuracy for AntMiner+ showing the difference
before and after the tuning phase

Table 9 AntMiner+ tuning phase setting recommendations

AntMiner+ FSS Discretization Rule eval.
No. Dataset

version method method measure

1 arr AM+RML 1R fay M

2 bcw AM+RML — — K

3 cmc AM+Original — efb10 F

4 derma AM+Original cfs efb5 K

5 echo AM+RML — eib10 SS

6 ecoli AM+Original — eib20 K

7 haber AM+Original — eib15 F

8 h_c AM+RML rel eib5 K

9 h_h AM+RML rel kon K

10 h_stat AM+Original cfs efb10 SS

11 h_swiss AM+RML cfs kon F

12 hep AM+RML sym efb20 K

13 horse AM+RML eib5 rel K

14 hypo AM+RML 1R fay K

15 liver AM+Original — efb10 K

16 ljub AM+RML — — M

17 lymph AM+Original rel — M

18 mammo AM+RML — eib15 K

19 new_thy AM+Original — fay K

20 park AM+Original inf eib10 RCM

21 pima AM+Original — fay F

22 p_tumor AM+RML rel — M

23 sick AM+RML rel efb10 RCM

24 wdbc AM+Original sym efb5 K

25 wpbc AM+RML gai eib5 RCM

5.7 Global comparisons

As in any field where the model obtained will be used to sup-
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port a decision used by a human, in the medical field, the ac-

ceptance of machine learning models presented for the pur-

pose of medical diagnosis or prognosis is highly dependent

on its ability to be interpreted and validated [79]. Otherwise,

the user will not trust the model presented and even worst,

it might lead to wrong decisions. Artificial neural networks

and deep learning techniques are known for their compet-

itive predictive accuracy. However, these techniques gener-

ate black-box models, in the form of complex mathematical

functions that are difficult for humans to comprehend. Sim-

ilarly, statistical learning algorithms including Bayes classi-

fiers are also sub-symbolic classification methods that require

some background knowledge about the prior probabilities,

and thus are not appealing. Support vector machines [80,81]

are among the newest and strongest classification techniques.

However, the support vectors cannot easily communicate the

obtained knowledge to medical experts. Case-based meth-

ods and nearest-neighbor techniques merely store training in-

stances and do not create a classification model. Instances are

matched to the closest one stored and classification is based

on the closest match(es). Thus, this paradigm is also not suit-

able for the requirements in hand.

To compare the results of AM+Tuned, a selection of com-

petitive classification algorithms is included. PART [66] is

a rule-based classification algorithm. PART extracts rules

from decision trees created by the J48 algorithm [28]. In a

large comparative study on thirty-three classification algo-

rithms, Lim et al. [82] showed that the C4.5 algorithm had

a good speed/accuracy performance. The implementation on

the Weka benchmark is used for non-evolutionary learners

with default settings. Since PART and J48 are determinis-

tic algorithms, a single 10-fold cross-validation procedure

is used for evaluation. Evolutionary learners include SLAVE

[83] and UCS [84]. SLAVE is a genetic iterative rule learning

system based on fuzzy logic theory. UCS is a Michigan-style

learning classifier system derived from XCS [85] and spe-

cialized for supervised learning tasks. In a comparative study

of genetic-based learning classifier systems [86], UCS stands

out as a robust classification algorithm. A 10-time, 10-fold

cross-validation procedure is used for evaluation. For UCS

and SLAVE, the open-source software tool KEEL [7] is used

with default settings.

Figure 12 depicts the predictive accuracy obtained

with each of the algorithms when applied to the bench-

mark datasets. The highest overall average belongs to J48

(77.93%), closely followed by AM+Tuned (77.89%). The

lowest is scored by Slave (68.05%). The Friedman non-

parametric test shows that the difference in predictive ac-

curacy among the five models (AM+Tuned, Part, J48, UCS,

and SLAVE) over the 25 datasets is considered statistically

significant (p-value = 0.002). The best rank was scored by

AM+Tuned. However, the Holm post-hoc analysis did not

detect a difference among the four models (AM+Tuned, Part,

J48, and UCS). Thus, the AM+Tuned algorithm is considered

Fig. 12 Average predictive accuracy for AM+Tuned, Part, J48, UCS, and SLAVE
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comparable to state-of-the-art classification algorithms.

6 Discussion

Several medical datasets are associated with a considerable

percentage of missing values. However, when the intension is

to mine knowledge and extract conclusions, one must avoid

drawing unwarranted conclusions as much as possible; for

example, flagging imputed values when suitable and eval-

uating their significance [87]. The safe handling of miss-

ing values is not a trivial task. In fact, the selection of the

most appropriate missing data handling method is a hard and

complex task [39]. This study adopts the removal of miss-

ing values in medical datasets and investigates the best tim-

ing to apply it. The removal of instances having missing

values results in information loss. However, if this step is

delayed after FSS, then the percentage of information loss

is considerably decreased, thus allowing more instances for

the training and testing process. This conclusion particularly

holds for datasets having a larger number of predictor fea-

tures. The study also finds that despite the noise normally

associated with medical datasets, providing more instances

to the learning algorithm improves the classification results.

In some cases, the handling of instances with missing values

may explain the difference between an algorithm that com-

pletely fails to run and another that produces good results.

Discretization enhances model comprehensibility and ex-

cels the search. The selection of a discretization method de-

pends on the problem tackled and the learner used. It is im-

portant to find a balance between the number of intervals

generated and the performance obtained, as the search space

grows exponentially with the number of intervals. The choice

of the discretization method has a profound effect on the

model performance. It is not possible to identify a single

discretization method as the best over all medical datasets.

Among the discretization methods included in this experi-

ment, the use of entropy-based discretization methods has

a computational cost advantage in terms of model complex-

ity and computational time. Discretization methods based on

binning obtain overall higher averages in predictive accuracy

and lower variance than those based on entropy. The best way

is to experiment with different discretization methods and se-

lect the one producing the best balance of performance versus

cost defined as computational time and model complexity.

Like removing instances having missing values, FSS re-

sults in a loss of information as entire attributes are elimi-

nated. However, the aim is to remove irrelevant, redundant,

or noisy features. FSS not only reduces storage and computa-

tional complexity but also enhances model comprehensibility

and classification accuracy, particularly in small sample size

datasets [29]. Finding the optimal m feature subset from all

possible
(

n
m

)
feature subsets has been shown to be an NP-hard

combinatorial optimization problem [88]. In this study, it is

found that for datasets having more than 10 attributes, using

FSS methods always proves fruitful in comparison to induc-

tion without FSS. No FSS method performs the best over all

datasets, and this is an expected result. However, when av-

eraged over all datasets, induction using the cfs FSS method

scores the highest predictive accuracy with no payoff in rule

set size.

When considering different features of the datasets, in-

cluding number of instances, number and type of attributes,

imbalance ratio, noise, and missing values, the impact of

class noise, number of instances, and missing values on

FSS are found to be high. Missing values especially have a

strong effect on induction using FSS. From this experiment,

and among the FSS methods considered, the preferred FSS

method with each medical dataset has been highlighted.

As for the rule evaluation function, the results obtained in

this experiment confirm those found by Minnaert et al. [58]

that, overall, the K function is the best among the previous

six functions for the AntMiner+ algorithm.

The tuning process described here is not meant to be ex-

haustive due to time limitations, and thus, we do not claim

that the declared results are the best settings for each dataset.

Even within a single dataset, there may be different require-

ments related to different attributes. For example, each nu-

meric attribute, within the same dataset, may have a different

optimal discretization method. In this regard, Bacardit et al.

[89] include the selection of the best discretization method

for each attribute within the genetic algorithm (GA) cycle.

However, these steps are intended to improve the initial con-

figuration and tailor it, to some extent, for each dataset in the

described benchmark.

When evaluating the performance of AM+Tuned, a closer

look at Fig. 11 shows that no significant difference is encoun-

tered in 11 out of the 25 datasets. One interesting result is

that there is no improvement obtained at all during the tuning

process for the new_thy dataset. By investigating the dataset

characteristics, we note that it has no missing values, and no

attribute selection is needed as it contains only five attributes.

The tuning step concludes that the fay discretization method

and K rule evaluation function are found to be the best suited.

These are the same settings in the original AntMiner+ imple-

mentation, and that explains the situation.

In five datasets out of the remaining fourteen datasets (h_h,
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h_swiss, horse, hypo, and sick), the difference is of suc-

cess/failure in obtaining an output. The difference is statis-

tically significant in the nine remaining datasets (arr, cmc,

derma, echo, haber, liver, park, p_tumor, and wpbc). Thus,

in the majority of datasets, there is a significant improve-

ment achieved via the tuning process. The grand average

over the 20 datasets in the benchmark, where the output is

obtained by AM+ Original, shows an overall significant im-

provement obtained through the tuning process, as confirmed

by the Wilcoxon test that is applied to compare the two mod-

els (AM+ Original [72.65 ± 2.89] and AM+Tuned [78.08 ±
1.74]) for the same 20 datasets. The resulting model is robust

and comparable to state-of-the-art classification algorithms.

Although this study specifically addresses medical

datasets, the recommended preprocessing procedure can be

applied to arbitrary datasets with similar features. First, the

existence of missing values is addressed. If the dataset con-

tains missing values, then the timing of removing instances

with missing values should be examined, whether it is done

before or after the FSS step. Next, the discretization process

is examined. The discretization procedure applies to datasets

with numeric attributes, especially if the selected classifica-

tion algorithm cannot deal directly with numeric attributes.

If this is the case, then a number of discretization methods

should be investigated, and the associated classification re-

sults for the resulting models compared. Once the best model

is chosen according to measures of concern such as predictive

accuracy or model complexity, FSS step is considered. This

step is particularly recommended for datasets with a small

number of instances but a large number of features. Similar

to the discretization step, a number of feature subset selection

methods are to be explored and the resulting classification

models compared.

7 Conclusion

Data preprocessing has a profound effect on the performance

of the learner. Each dataset is different, and there is no pre-

processing method that is best across all datasets. Deciding

the best combination of preprocessing methods for a spe-

cific dataset is not possible without trial and comparisons.

Technology is advancing rapidly. The advent of various open-

source libraries, like Weka and KEEL, hosting an extensive

set of off-the-shelf preprocessing methods, combined with

the leisure of standard formats like the ARFF, and advances

in computer hardware technology, persuades the integration

of automatic tuning for preprocessing operations into the data

mining task and for each dataset on an individual basis. The

idea is suitable for off-line applications.

This work shows the results of the tuning for the prepro-

cessing stage, which is applied to AntMiner+ as an illustra-

tive example. For each dataset, the timing of removing in-

stances with missing values was examined. Experimentations

are done with different feature subset selection and discretiza-

tion methods for each dataset. The library used includes a va-

riety of common discretization and attribute selection meth-

ods, from open-source, on-line libraries. Also, the use of sev-

eral rule evaluation functions inside the AntMiner+ algorithm

is investigated. As with any tuning process, the proposed

method is time consuming. However, the disposal of open-

source libraries associated with rudimentary standard formats

facilitates a convenient custom preprocessing stage tuning.

Experiments show that there is a significant improvement in

classification performance measured by predictive accuracy

and obtained in the majority of datasets in the benchmark

through the individualized tuning of the preprocessing op-

erations. Moreover, given a certain classification algorithm,

the design of the preprocessing stage can make the difference

between complete failure and the achievement of results that

are competitive to rival classification algorithms in the same

datasets.

Several datasets in the benchmark are associated with a

large percentage of missing values. Removing instances with

missing values is definitely not the best choice for handling

such instances, particularly if performed before attribute se-

lection. Despite the noise associated with medical data, the

experiments show that providing more instances for train-

ing the rule induction algorithm improves the rule induc-

tion experience. Imputation techniques that are based on ma-

chine learning methods like ANN and SVM require signifi-

cant computational time. The mechanism by which data are

missing must be first identified and the method for handling

the missing values accordingly decided. The use of the re-

placement method for missing values prevents the loss of a

significant amount of information.

Among the different discretization methods examined in

this research, experiments find that entropy-based methods

are faster and result in smaller models than those based on

binning. However, binning methods achieved a higher pre-

dictive accuracy with less variance. As for feature subset

selection methods, the impact of class noise, the number of

instances, and missing values on feature subset selection are

found to be high. Missing values especially have a strong

effect. However, these findings are specific to the AntMiner+

algorithm. The real bounty of this step is that improving
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the classification potential of a dataset is now a convenient

problem-centered approach to computation.
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