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Abstract Mapping of three-dimensional network on chip

is a key problem in the research of three-dimensional net-

work on chip. The quality of the mapping algorithm used di-

rectly affects the communication efficiency between IP cores

and plays an important role in the optimization of power con-

sumption and throughput of the whole chip. In this paper, ba-

sic concepts and related work of three-dimensional network

on chip are introduced. Quantum-behaved particle swarm op-

timization algorithm is applied to the mapping problem of

three-dimensional network on chip for the first time. Sim-

ulation results show that the mapping algorithm based on

quantum-behaved particle swarm algorithm has faster con-

vergence speed with much better optimization performance

compared with the mapping algorithm based on particle

swarm algorithm. It also can effectively reduce the power

consumption of mapping of three-dimensional network on

chip.

Keywords three-dimensional network on chip, mapping al-

gorithm, quantum-behaved particle swarm optimization al-

gorithm, particle swarm optimization algorithm, low power

consumption

1 Introduction

Increased computational complexity of communication ter-

minals and more sophisticated devices have led to the higher

level of integration of communication chips [1]. As the num-

ber of IP cores integrated in system on chip (SoC) has risen
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dramatically recently, on-chip interconnection increasingly

becomes the bottleneck of system performance due to the

limitations of the traditional bus structure [2]. To solve this

problem, Dally is the first person to propose a new method

of communication between IP cores on chips using packet

routing. He named this communication method as network

on chip (NoC) [3,4]. Three-dimensional network on chip (3D

NoC) is an effective solution to the problem of interconnec-

tion complexity of large-scale SoC. 3D NoC breaks the limi-

tations on performance and size of two-dimensional Network

on Chip (2D NoC) by using integrated circuit stacking tech-

nology. However, the application of stacking technology has

led to the increased density of transistor, inevitably causing

overheating problem of the chip [5,6]. Optimization of map-

ping and layout [7] can reduce performance overhead and

increase versatility and has become an important means to

solve the heat problem for 3D NoC [8–10]. Therefore, it is

necessary to develop better mapping algorithms of 3D NoC.

Quantum-behaved particle swarm optimization (QPSO) al-

gorithm has many advantages such as global convergence,

less control parameters, robustness, fast convergence speed,

strong ability of optimization and so on. It is a meaningful

attempt to apply QPSO to the study of mapping problem of

3D NoC.

2 Basic problems of mapping of 3D NoC

2.1 Basic concepts of mapping of 3D NoC

Mapping of 3D NoC is used to decide which IP in a given ap-

plication characteristic graph (APCG) should be represented
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by which node of topology architecture graph of 3D NoC to

achieve the goal of minimizing power consumption or packet

latency described as objective functions [11,12]. Mapping

problem belongs to quadratic assignment problem and is an

NP-hard problem [13]. To formulate this problem, two defi-

nitions regarding the application tasks and the target 3D NoC

architecture first introduced in Ref. [14] will be presented

here.

Definition 1 An application characterization graph

(APCG) G1(V, E) is a directed acyclic weighted graph in

which each vertex vi ∈ V refers to an IP core (microproces-

sor, DSP and varieties of special function modules, etc.) and

each directed arc ei, j ∈ E denotes a communication trace

from a source vertex vi to a destination vertex v j. The weight

of the arc wi, j represents the communication volume and bi, j

is communication bandwidth requirement between these two

vertexes. For simplicity, this definition assumes implicitly

that application tasks are already assigned to IP cores of the

3D NoC platform.

Definition 2 An topology architecture graph (TAG)

G2(R, P) is a directed graph where each vertex ri ∈ R refers

to a node of the 3D NoC and each arc pi, j ∈ P represents a

physical link and hi, j represents Manhattan distance between

ri and r j. Bi, j is the largest communication bandwidth of pi, j.

Using these two definitions above, the mapping problem

can be formulated as follow.

Given an APCG G1 and a TAG G2, find a map function

map() which maps each IP core vi ∈ V in G1 to a node ri ∈ R

in G2, so that the objective function is optimized and meets

the following constraints:

∀vi ∈ V ⇒ map(vi) ∈ R, (1)

∀vi � v j ⇔ map(vi) � map(v j), (2)

size(G1) � size(G2), (3)

∀bi, j � Bi, j. (4)

In this paper, our goal is to minimize the power consump-

tion and the corresponding objective functions described in

the next section.

2.2 Mapping examples of 3D NoC

For each resource node can send data to any other resource

node, IP core in G1 can be mapped to any available re-

source node in G2. We assume the mapped relationship asX =

(x1, x2, . . . , xn), in which nis the number of IP cores in G1. X

is encoded as an arrangement of 1 to n, and a mapping scheme

can be obtained by decoding the encoding. Classic applica-

tion characterization graph MWD [15] contains 12 nodes as

shown in Fig. 1. IP cores in the figure are represented as 1

to 12. We explain the mapping process by taking MWD as

an example and mapping IP cores in MWD to a 3D Mesh

architecture of 2 × 2 × 3.

Fig. 1 Application characterization graph MWD [15]

Resource nodes on 3D NoC are represented as t0 to t11

as shown in Fig. 2. t0 to t3 represent the nodes on the first

layer, t4 to t7 represent the nodes on the second layer and t8 to

t11 represent the nodes on the third layer. X=(3,2,4,1,5,7,6,9,

12,8,10,11) represents mapping of IP core set (3,2,4,1,5,7,

6,9,12,8,10,11) to a set of processing unit (t0, t1, t2, t3, t4,

t5, t6, t7, t8, t9, t10, t11) and the mapping result is shown in

Fig. 3.

Fig. 2 Topologies of 3D Mesh. (a) Layer 1; (b) Layer 2; (c) Layer 3

Fig. 3 Mapping result

2.3 Power consumption model

Using the power consumption model given in Ref. [16],

power consumption of the process of node ti sending 1 flit

to node t j can be formulated as:

E
ti ,t j

bit = μERbit + μH ELHbit + μV ELVbit. (5)

In Eq. (5), μ represents the number of routers between ti
to t j. μH is the number of edges between ti to t j in horizontal

direction and μV is the number of edges between ti to t j in

vertical direction. ERbit represents the power consumption of

a flit through a router. ELHbit represents the power consump-

tion of a flit through circuit in horizontal direction and ELVbit

represents the power consumption of a flit through circuit in
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vertical direction. The computational formulae of ELHbit and

ELVbit as given in Ref. [17] are as follows:

ELHbit = dHV2
ddCwireH/2, (6)

ELVbit = dVV2
ddCwireV/2. (7)

In Eq. (6), dH represents the length of circuit and CwireH

represents the capacitance of circuit in horizontal direction.

In Eq. (7), dV represents the length of circuit and CwireV repre-

sents the capacitance of circuit in vertical direction. Vdd rep-

resents supply voltage.

Mapping of 3D NoC is to find an association between IP

cores and resource nodes. Find a mapping function under the

conditions of a given APCG and TAG, so that the total power

consumption is the lowest and the following conditions are

met:

min

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑

vi ,v j∈V
(wi, j × E

map(vi),map(v j)
bit )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (8)

∀vi ∈ V,map(vi) ∈ R, (9)

∀vi � v j,map(vi) � map(v j). (10)

For a determined topology, ERbit �ELHbit and ELVbit are de-

termined. According to Ref. [17], the power consumption on

the circuit is proportional to the length of the circuit. So the

length of the circuit between two communicating nodes is a

key influence affecting the power consumption of 3D NoC.

Power consumption of 3D NoC in vertical direction is much

less than that in horizontal direction when the same amount

of data is transferred due to usage of TSV (Through Silicon

Vias) technology.

3 Mapping of 3D NoC based on PSO and
QPSO algorithm

Currently, most of the mapping algorithms of 3D NoC are

heuristic mapping algorithms, and there are also some non-

heuristic mapping algorithms. In heuristic mapping algo-

rithms, mapping algorithms based on particle swarm opti-

mization algorithm are very representative.

3.1 PSO algorithm and QPSO algorithm

3.1.1 PSO algorithm

Particle swarm optimization (PSO) algorithm was proposed

by American social psychologist James Kennedy and elec-

trical engineer Russell Eberhart in 1995 [18]. They modified

the model of imitating flock [19] proposed by Hepper, so that

the particles can fly to the solution space and land on the

best solution, resulting in PSO algorithm. The algorithm is

an optimization algorithm based on swarm intelligence and

obtains best solution by the interaction among particles [20].

The algorithm is simple and easy to realize without gradient

information and has yielded good results for both continuous

optimization and discrete optimization problems. The feature

of natural real coding makes PSO suitable for handling real

optimization problems.

3.1.2 QPSO algorithm

Quantum-behaved particle swarm optimization (QPSO) al-

gorithm is proposed by Sun Jun from Jiangnan university of

China [21]. There are some flaws of PSO algorithm. First,

PSO is not a global convergence algorithm in theory [22].

Secondly, the evolutionary formula of speed and position of

PSO leads to low randomness and intelligence. In addition,

reliance of algorithm performance on speed leads to low ro-

bustness. In response to these shortcomings, Sun studied the

basic characteristics of swarm intelligence and human learn-

ing model in-depth and found that human’s intelligent behav-

ior is very similar to the behavior of particles in quantum

space. Quantum system has a strong uncertainty due to the

superposition of states and the human mind is also uncertain.

Thus it is logical to describe human thinking and intelligence

with the quantum model. Sun set up a particle swarm model

based on δ potential of quantum and proposed QPSO algo-

rithm. QPSO is a global convergence algorithm and has many

advantages such as global convergence, less control parame-

ters, faster convergence and stronger ability of optimization.

3.2 Theory of mapping algorithms of 3D NoC based on

PSO and QPSO

3.2.1 Theory of mapping algorithm of 3D NoC based on

PSO

The fitness function of mapping algorithm based on PSO used

is shown in Eq. (11):

Cost = MAXFit − (dx × wx + dy × wy + dz). (11)

In Eq. (11), MAXFit is the biggest fitness value set for in ad-

vance. dx, dy and dx are respectively represent the distance

between communication nodes in the x-axis, y-axis and z-

axis. wx and wy respectively represent traffic between nodes

in the x-axis and y-axis. Power consumption of 3D NoC in

vertical direction is much less than that in horizontal direc-

tion when the same amount of data is transferred due to TSV

technology involved [23,24]. Therefore, in the z-axis direc-

tion, it is no longer multiplied by the weight. From Eq. (11),

we can know that the fitness value is inversely proportional
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to the traffic of 3D NoC. The greater the traffic, the lower

the fitness value. We can know from the power consumption

model above that the greater the traffic, the higher the power

consumption. Thus the power consumption brought by the

algorithm can be judged by the size of the fitness value, i.e.,

the greater the fitness value, the lower the power consump-

tion. The evolutionary formulae of speed and position of the

algorithm are shown in Eqs. (12) and (13):

vi+1 = ωvi + c1ξ(indibesti − xi) + c2η(besti − xi), (12)

xi+1 = xi + vi. (13)

In Eq. (12), velocity vi and position xi are sequences with

DIM dimension. DIM is the number of IP cores of APCG.

The velocity is in the range [−DIM/4,DIM/4]. If the value

is larger than DIM/4, then it can be revised to equal to the

DIM/4. If the value is smaller than −DIM/4, then it can be

revised to equal to the −DIM/4. The position sequence of

particles is the sequence of IP cores of APCG on resource

nodes of 3D NoC. The position is in the range [1,DIM] and

the values in one sequence are different from each other. If the

value in sequence xi+1 is the same with one another, then re-

place one of them with a value in [1,DIM] that was not used

and ensure the value which is replaced is closer with the num-

ber which replaces it. The inertia weight ω is variable weight

and the calculated formula is shown as Eq. (14). The initial

value of ωmin and ωmax are 0.5 and 1. The parameter count

represents the current number of iterations and N represents

the maximum number of iterations. Learning factors c1 and

c2 use synchronous time-varying way and the calculated for-

mula is defined as Eq. (15). The initial value of cmin and cmax

are 0.25 and 3. Random parameters d1 and d2 are numbers

that program randomly generated between 0 and 1. The pa-

rameter indibesti represents the best position of the particle

itself, i.e., the sequence with best fitness value in the iteration

process of the particle. besti represents the optimum position

of particle swarm, i.e., the sequence with best fitness value in

the iteration process of the particle swarm.

ω = ωmax − (ωmax − ωmin) × count
N

. (14)

c1 = c2 = cmax − (cmax − cmin) × count
N

. (15)

3.2.2 Theory of mapping algorithm of 3D NoC based on

QPSO

In this paper, QPSO algorithm is applied to the mapping

problem of 3D NoC for the first time. QPSO algorithm is

used to optimize the mapping position of IP cores of APCG

on the resource nodes of 3D NoC.

The fitness function of mapping algorithm based on QPSO

used is shown in Eq. (11). The greater the fitness value, the

lower the power consumption produced in mapping. The evo-

lutionary formula of position of the algorithm is shown in

Eq. (16).

xi, j(t + 1) = pi, j(t) − α × |c j(t) − xi, j(t)| × ln(1/μ). (16)

In Eq. (16), position xi(t) is sequence with DIM dimension.

DIM is the number of IP cores of APCG.

The position sequence of particles is the sequence of IP

cores of APCG on resource nodes of 3D NoC. The position

is in the range [1,DIM] and the values in one sequence are

different from each other. If the value in sequence xi(t + 1)

is the same with one another, then replace one of them with

a value in [1,DIM] that was not used and ensure the value

replaced is closer to the number replacing it. pi, j(t) represents

the position of a random node and the calculated formula is

shown as Eq. (17). ϕ is a number that randomly generated

between 0 and 1. The parameter indibesti, j(t) represents the

best position of the particle itself, i.e., the sequence with best

fitness value in the iteration process of the particle. besti, j(t)

represents the optimum position of particle swarm, i.e. the se-

quence with best fitness value in the iteration process of the

particle swarm. α is an expansion shrinkage factor and the

calculated formula is defined as Eq. (18). The initial value

of αmax and αmin are 1 and 0.5. The parameter count repre-

sents the current number of iterations and N represents the

maximum number of iterations. c j(t) is the average optimal

position of the particle swarm and the calculated formula is

shown as Eq. (19). M is the size of particle swarm. μ is a

number that randomly generated between 0 and 1.

pi, j(t) = ϕ × indibesti, j(t) + (1 − ϕ) × best j(t). (17)

α = αmax − (αmax − αmin) × count
N

. (18)

c(t) = (c1(t), . . . , c j(t), . . . , cDIM(t)) =
1
M

M∑

i=1

indibesti(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
M

M∑

i=1

indibesti,1(t), . . . ,
1
M

M∑

i=1

indibesti, j(t), . . . ,

1
M

M∑

i=1

indibesti,DIM(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19)

3.3 Design and realization of mapping algorithms of 3D

NoC based on PSO and QPSO

3.3.1 Realization of mapping algorithm of 3D NoC based

on PSO

In this part, we show the realization of mapping algorithm

based on PSO. The steps are as shown in Algorithm 1.
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Algorithm 1 Mapping algorithm of 3D NoC based on PSO

Input: Particle swarm randomly generated

Output: Optimum position best of particle swarm

Step 1 Parameters initialization. Define the number of particles
as MAX_NP and the maximum number of iterations as
MAX_GENERS. Randomly generate MAX_NP initial particles
X0 and velocity V0 which are in [−DIM/4, DIM/4].

Step 2 Calculate the fitness value of each particle according to Eq. (11).
If the particle adapts better than indibest, then the value is as-
signed to indibest and update the best position of the individual
particle.

Step 3 If the fitness of indibest is better than best, then update the value
of best.

Step 4 Update the velocity and position of particles according to Eqs.
(12) and (13).

Step 5 Correct the obtained position and velocity information of parti-
cles according to the determined range of value of position and
velocity so that they would not exceed the available space.

Step 6 Decide whether the current iteration number reaches the maxi-
mum number MAX_GENERS. If it is reached, then output best,
else jump to step 2 and iteration number adds 1.

Step 7 Output best and end the algorithm.

3.3.2 Realization of mapping algorithm of 3D NoC based

on QPSO

In this part, we show the realization of mapping algorithm

based on QPSO which is proposed in this paper. The steps

are as shown in Algorithm 2.

4 Experiments and performance analysis

4.1 Simulation platform and parameter design

• Simulation platform

In this paper, Access Noxim 0.2 developed by Kai-Yuan

Jheng in National Taiwan University is adopted as our sim-

ulation software [25]. The Access Noxim is a co-simulation

platform for 3D NoC system that couples the network model,

power model and thermal model. They integrate Noxim

(a cycle-accurate SystemC NoC simulator) and HotSpot

(HotSpot provides the architecture-level thermal model), and

adopt the power model of Intel’s 80-core processor.

• Choice of topology and routing algorithm

3D Mesh architecture is formed by extending 2D Mesh di-

rectly to 3D space [1] and has a regular structure. The posi-

tion of network nodes of 3D Mesh is homogeneous and the

wiring is simple. TSV technology is used in the vertical di-

rection which can reduce the overall wiring length. In our ex-

periment, 3D Mesh is used in our simulations. As for routing

algorithm, we adopt XYZ routing algorithm. In XYZ algo-

rithm, data packets are passed first in the x-axis, then in the

y-axis, and finally in the z-axis. The algorithm is easy to un-

derstand and realize, and it is the most commonly used rout-

ing algorithm.

Algorithm 2 Mapping algorithm of 3D NoC based on QPSO

Input: Particle swarm randomly generated

Output: Optimum position best of particle swarm

Step 1 Parameters initialization. Define the number of particles
as MAX_NP and the maximum number of iterations as
MAX_GENERS. Randomly generate MAX_NP initial particles.

Step 2 Calculate the average optimal position of the particle swarm ac-
cording to Eq. (19).

Step 3 Calculate the fitness value of each particle according to Eq. (11).
If the particle adapts better than indibest, then the value is as-
signed to indibest and update the best position of the individual
particle.

Step 4 If the fitness of indibest is better than best, then update the value
of best.

Step 5 For every dimension of the particle, calculate a random positon
according to Eq. (17).

Step 6 Update the position of particles according to Eq. (16).

Step 7 Correct the obtained position and velocity information of parti-
cles according to the determined range of value of position and
velocity so that they would not exceed the available space.

Step 8 Decide whether the current iteration number reaches the maxi-
mum number MAX_GENERS. If it is reached, then output best,
else jump to step 2 and iteration number adds 1.

Step 9 Output best and end the algorithm.

• Parameter setting

1) Parameter setting of the algorithms Population size is

set as 200 and the number of iterations is set to 100.

2) Parameter setting of the simulation software Data pack-

ets are injected in the way of Memory-less Poisson distri-

bution. Packet injection rate is set as 0.02. The total power

consumption of 5000 cycles is summarized. The size of data

packet is between 2 flits and 10 flits. The size of cache of each

channel of the router is 8 flits.

4.2 Experiment results and performance analysis

In order to compare our proposed mapping algorithm of 3D

NoC based on QPSO with the original mapping algorithm

of 3D NoC based on PSO, we conduct the experiments of

these two algorithms on the same simulation platform. To

reflect the universality of the algorithms, we use both clas-

sic APCG and random APCG to do the experiment. Classic

APCG includes PIP (8-core), MWD (12-core), VOPD (16-

core) and DVOPD (32-core). Random APCG is generated by

using Task Builder TGFF [26], and different APCGs have

different numbers of IP cores. For each APCG, simulation

experiments are conducted separately using mapping algo-

rithms based on QPSO and PSO. Then the communication

mode files with the best solutions are generated. Finally, the
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communication mode files are fed into Access Noxim to start

the simulation. In this paper, convergence speed and power

consumption of the two algorithms are compared.

4.2.1 Comparison on convergence speed of mapping algo-

rithms based on PSO and QPSO

• Comparison on convergence speed of the two algorithms

for classic APCG

For classic APCG, comparison on convergence speed in

100 iterations of mapping algorithms based on PSO and

QPSO is shown in Fig. 4, where the abscissa represents the

number of iterations, the ordinate represents fitness value,

and the solid circle represents the convergence point of the

algorithm. From Fig. 4, we can observe that for any classic

APCG, mapping algorithm based on QPSO can get optimal

solutions within a few iterations and the convergence speed is

faster than the mapping algorithm based on PSO obviously.

Also, except for the PIP, optimal solution of mapping algo-

rithm based on QPSO fits better than the optimal solution

of mapping algorithm based on PSO. Because the number

of IP cores of PIP is less, PSO algorithm is not easy to fall

into local convergence and can get the same optimal solution

with QPSO algorithm. It also can be seen that for APCG with

large number of IP cores, the advantages of mapping algo-

rithm based on QPSO are more obvious, i.e., it can get better

solutions within a short period of time.

• Comparison on convergence speed of the two algorithms

for random APCG

In this paper, random APCGs with 22-core, 43-core, 62-

core, 83-core and 102-core are generated using TGFF. For

different random APCGs, comparison on convergence speed

in 100 iterations of mapping algorithms based on PSO and

QPSO is shown in Fig. 5. From Fig. 5, we can observe that for

any random APCG, convergence speed of mapping algorithm

based on QPSO is faster than that of the mapping algorithm

based on PSO. The final solution of mapping algorithm based

on QPSO is also better than that of mapping algorithm based

on PSO, and advantages are more obvious with increasing of

the number of IP cores in APCG.

4.2.2 Comparison on power consumption of mapping algo-

rithms based on PSO and QPSO

In our simulation experiments, for each APCG, the two algo-

rithms separately circulates for ten times and the best individ-

ual is used to generate communication mode files.

• Comparison on power consumption of the two algorithms

for classic APCG

Fig. 4 Comparison on convergence speed for (a) PIP, (b) MWD, (c) VOPD,
and (d) DVOPD

For different classic APCGs, mapping algorithm based on

PSO circulates for ten times and the value of power consump-

tion got from the simulation platform is shown in Table 1.

Mapping algorithm based on QPSO circulates for ten times

and the value of power consumption got from the simulation

platform is shown in Table 2.

The experimental results are analyzed and the minimum

power consumption, maximum power consumption and av-

erage power consumption of the two algorithms for the same
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Fig. 5 Comparison on conversation speed for APCGs with different num-
bers of IP cores. (a) 22-core APCG; (b) 43-core APCG; (c) 62-core APCG;
(d) 83-core APCG; (e) 102-core APCG

Table 1 Values of power consumption of mapping algorithm based on PSO
of ten times

Power consumption/J
No.

PIP MWD VOPD DVOPD

1 0.004 038 53 0.006 282 94 0.011 015 6 0.026 826 7

2 0.004 050 15 0.006 629 17 0.011 429 4 0.020 715 5

3 0.004 041 13 0.005 975 88 0.011 531 2 0.026 906

4 0.004 050 18 0.006 982 63 0.011 903 7 0.022 986

5 0.004 022 85 0.006 845 91 0.012 599 7 0.024 732 4

6 0.004 044 98 0.006 574 77 0.010 859 7 0.024 662 8

7 0.003 992 6 0.006 694 64 0.014 269 3 0.024 258 6

8 0.004 085 59 0.006 641 28 0.011 26 0.024 193 6

9 0.004 042 72 0.007 794 15 0.010 318 7 0.023 781 8

10 0.004 032 16 0.006 784 99 0.011 774 5 0.025 904 4

Table 2 Values of power consumption of mapping algorithm based on
QPSO of ten times

Power consumption/J
No.

PIP MWD VOPD DVOPD

1 0.003 985 42 0.005 646 99 0.010 432 4 0.023 757 5

2 0.004 025 27 0.006 812 48 0.011 131 3 0.020 235 7

3 0.004 066 38 0.007 266 12 0.010 870 6 0.022 427 2

4 0.004 018 08 0.007 430 89 0.011 029 4 0.025 009 4

5 0.004 078 97 0.007 414 03 0.009 392 3 0.025 147

6 0.004 024 03 0.006 000 24 0.011 96 0.024 062 8

7 0.004 039 13 0.006 369 77 0.010 544 6 0.023 499 7

8 0.004 075 01 0.006 940 53 0.013 052 1 0.025 118

9 0.003 989 51 0.005 253 46 0.010 520 5 0.025 969 7

10 0.004 001 63 0.005 461 01 0.011 358 1 0.019 688 8

APCG in ten simulation trials are separately compared. The

comparison on the minimum power consumption of mapping

algorithms based on PSO and QPSO is shown in Fig. 6. From

Fig. 6 we can observe for all classic APCGs, the power con-

sumption of mapping algorithm based on QPSO is lower than

that of mapping algorithm based on PSO with maximum case

as 13.75% (for MWD) and the minimum case as 0.81% (for

PIP).

The comparison on the maximum power consumption of

mapping algorithms based on PSO and QPSO is shown in

Fig. 7. From Fig. 7 we can see that for all APCGs, the power

consumption of mapping algorithm based on QPSO is lower

than that of mapping algorithm based on PSO with the max-

imum case as 9.33% (for VOPD) and the minimum case as

0.16% (for PIP).

The comparison on the average power consumption of

mapping algorithms based on PSO and QPSO is shown in

Fig. 8. From Fig. 8 we can see that for all APCGs, the power

consumption of mapping algorithm based on QPSO is lower

than that of mapping algorithm based on PSO with the max-

imum case as 6.05% (for VOPD) and the minimum case as

0.24% (for PIP).
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Fig. 6 Comparison on the minimum power consumption for classic APCG

Fig. 7 Comparison on the maximum power consumption for classic APCG

Fig. 8 Comparison on the average power consumption for classic APCG

In summary, it can be observed that power consumption is

reduced in various degrees with mapping algorithm based on

QPSO compared to the original mapping algorithm based on

PSO. When the number of IP cores of APCG is small, PSO

algorithm rarely falls in local optimum and the advantages

of QPSO algorithm are not very obvious. When the number

of IP cores of APCG is large, PSO algorithm tends to fall in

local optimum and the ability of optimization of QPSO al-

gorithm is stronger, especially it is easy to get very realistic

minimum power consumption.

• Comparison on power consumption of the two algorithms

for random APCG

In this paper, random APCGs with 22-core, 43-core, 62-

core, 83-core and 102-core are generated using TGFF. For

different random APCGs, mapping algorithm based on PSO

circulates for ten times and the value of power consumption

got from the simulation platform is shown in Table 3. Map-

ping algorithm based on QPSO circulates for ten times and

the value of power consumption got from the simulation plat-

form is shown in Table 4.

Table 3 Values of power consumption of mapping algorithm based on PSO
of ten times

Power consumption/J
No.

22-core 43-core 62-core 83-core 102-core

1 0.004 038 53 0.006 282 94 0.011 015 6 0.026 826 7 0.041 210 3

2 0.004 050 15 0.006 629 17 0.011 429 4 0.020 715 5 0.047 018 2

3 0.011 979 1 0.021 020 5 0.029 891 1 0.042 805 4 0.041 436 8

4 0.010 384 75 0.021 437 0.030 129 7 0.040 874 8 0.041 305 5

5 0.011 214 3 0.020 199 9 0.027 932 7 0.040 186 8 0.043 047 4

6 0.012 187 2 0.021 445 6 0.030 725 8 0.043 086 5 0.042 426 8

7 0.012 232 1 0.023 533 2 0.026 857 7 0.040 621 3 0.038 294 7

8 0.012 233 6 0.021 096 1 0.031 588 8 0.046 018 2 0.049 163 9

9 0.012 235 2 0.021 141 2 0.031 098 1 0.040 807 7 0.044 028 8

10 0.010 986 8 0.019 460 8 0.030 851 3 0.041 758 2 0.043 105 9

Table 4 Values of power consumption of mapping algorithm based on
QPSO of the times

Power consumption/J
No.

22-core 43-core 62-core 83-core 102-core

1 0.010 316 7 0.021 396 8 0.028 729 4 0.041 203 5 0.047 205 4

2 0.012 044 7 0.020 462 4 0.033 508 4 0.039 522 6 0.045 268 8

3 0.011 815 3 0.021 140 4 0.031 323 6 0.042 407 4 0.037 033 2

4 0.010 660 9 0.020 158 3 0.021 557 8 0.042 684 2 0.037 908 9

5 0.010 256 7 0.019 973 9 0.029 159 0.040 010 6 0.040 516 1

6 0.011 327 3 0.018 411 9 0.034 502 3 0.039 167 8 0.043 485 3

7 0.010 781 6 0.023 596 9 0.024 740 7 0.043 831 9 0.043 773 2

8 0.011 015 5 0.022 161 1 0.027 599 7 0.041 030 3 0.044 941 3

9 0.011 764 3 0.020 635 3 0.032 900 8 0.040 771 7 0.039 978 5

10 0.012 144 8 0.021 628 0.025 693 5 0.036 860 9 0.043 501

The experimental results are analyzed and the minimum

power consumption, maximum power consumption and av-

erage power consumption of the two algorithms for the same

APCG in ten simulation trials are separately compared. The

comparison on the minimum power consumption of mapping

algorithms based on PSO and QPSO is shown in Fig. 9. From

Fig. 9 we can see that for all random APCG, the power con-

sumption of mapping algorithm based on QPSO is lower than

that of mapping algorithm based on PSO with the maximal

decrease reaching 24.58% (for 62-core) and the minimum

case as 1.25% (for 22-core).

The comparison on the maximum power consumption of

mapping algorithms based on PSO and QPSO is shown

in Fig. 10. From Fig. 10 we can see that for all random

APCGs, the power consumption of mapping algorithm based

on QPSO is lower than that of mapping algorithm based on

PSO with the maximum case as 4.99% (for 83-core) and the

minimum case as 1.81% (for 22-core).
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Fig. 9 Comparison on the minimum power consumption for random APCG

Fig. 10 Comparison on the maximum power consumption for random
APCG

The comparison on the average power consumption of

mapping algorithms based on PSO and QPSO is shown

in Fig. 11. From Fig. 11 we can see that for all random

APCGs, the power consumption of mapping algorithm based

on QPSO is lower than that of mapping algorithm based on

PSO with the maximum case as 14.43% (for 62-core) and the

minimum case as 1.75% (for 102-core).

Fig. 11 Comparison on the average power consumption for random APCG

In summary, it can be observed that for random APCG,

power consumption is reduced in varying degrees and the

performance is more stable with mapping algorithm based on

QPSO compared to the original mapping algorithm based on

PSO. This is because once the mapping algorithm based on

PSO falls into a local optimum, it will lead to poor results. In

addition, mapping algorithm based on QPSO is more suitable

for APCG with about 60 IP cores.

5 Conclusions

In this paper, QPSO algorithm is used to solve the mapping

problem of 3D NoC for the first time. Simulation results

show that power consumption is reduced and the ability of

optimization is improved, effectively reducing the power con-

sumption of mapping of 3D NoC in the maximum case by

24.58% with mapping algorithm based on QPSO compared

to the original mapping algorithm based on PSO. In the fu-

ture, it is necessary to continue to improve QPSO algorithm

and make it more suitable for mapping problem of 3D NoC.

In addition, we will conduct research on mapping problem

of 3D NoC for different topologies and routings, and make

the proposed mapping problem based on QPSO be of more

general applicability.
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