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Abstract To extend the lifetime of wireless sensor net-

works, reducing and balancing energy consumptions are

main concerns in data collection due to the power constrains

of the sensor nodes. Unfortunately, the existing data collec-

tion schemes mainly focus on energy saving but overlook bal-

ancing the energy consumption of the sensor nodes. In ad-

dition, most of them assume that each sensor has a global

knowledge about the network topology. However, in many

real applications, such a global knowledge is not desired due

to the dynamic features of the wireless sensor network. In

this paper, we propose an approximate self-adaptive data col-

lection technique (ASA), to approximately collect data in

a distributed wireless sensor network. ASA investigates the

spatial correlations between sensors to provide an energy-

efficient and balanced route to the sink, while each sensor

does not know any global knowledge on the network. We also

show that ASA is robust to failures. Our experimental results

demonstrate that ASA can provide significant communica-

tion (and hence energy) savings and equal energy consump-

tion of the sensor nodes.
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ergy efficient, self-adaptive
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1 Introduction

One of the most important applications in wireless sensor net-

works (WSNs) is data collection, where the sensor nodes col-

lect the sensing data and then forward them to the sink [1,2].

Sensor nodes have limited supply of power, and thus such

operation may cause energy-hungry and further shorten the

lifetime of sensor network since wireless transmission costs

more energy compared with other operations, i.e., comput-

ing [3]. There are different definitions on the network life-

time, and here we use the lifetime definition of Ref. [4], in

which it is defined as the duration from initial start of the

network to the moment when a certain percent of sensors is

disconnected from the sink.

To extend the network lifetime, reducing while balanc-

ing the power consumption among all sensor nodes are great

challenges in designing data collection schemes. Unfortu-

nately, the existing research on data collection mainly focuses

on low energy consumption and overlooks the importance of

balancing the power consumption of the sensor nodes. Be-

sides, most of the existing data collection approaches [5] as-

sume that each sensor in the network has the global knowl-

edge on the network topology, which is not feasible due to

the dynamic features of WSNs.

Furthermore, an effective data collection method needs to

consider the following technical challenges as well. 1) How

to find an efficient routing (forwarding) path to the sink for
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a sensor without the global knowledge on the network topol-

ogy? 2) Sensing data often has spatial correlations, that is,

sensors in a certain region read the same or quiet similar data

in each time step. How to utilize this unique feature in the

routing path search? 3) Sensing data also has temporal cor-

relations, i.e., sensors may read quiet similar value in con-

secutive time steps. Ideally, we hope to find a “minimal” for-

warding solution to convey sensing data to the sink. Here,

“minimal” has two meanings: a shortest data routing path to

transmit all clusters readings, and a path that forwards least

updates to the sink. The difficulty is that the forwarding so-

lution cannot be determined or fixed in advance, since values

and clusters may change for different time steps. 4) How to

resilient to the failure caused by the sensor nodes and data

transmission?

To address above mentioned challenges, we propose an ap-

proximate self-adaptive (ASA) method, which can approxi-

mately gather the sensing data and prolong the network life-

time without any global knowledge of the network. That is,

given a fixed sink and an arbitrary distributed sensor network,

by using query “SELECT * FREQ f WITHIN ±ε”, ASA

makes the ρ(%) sensors connected to the sink as long as pos-

sible. In order to do it, ASA first divides the WSNs into mul-

tiple disjointed clusters based on the spatial correlations be-

tween the sensors. It then searches a “minimal” routing path

to the sink by transmitting the cluster readings instead of the

sensor readings. To balance the energy consumption of the

sensor nodes, the sensing data will be forwarded to the sink

through different nodes periodically. The main contributions

of this paper are as follows.

• We propose a novel ASA approach to cluster sensors

into different groups according to their sensing values

without global knowledge of network topology in Sec-

tion 3. If a set of sensors detect similar values with ±ε,
then ASA classifies them into one cluster, which we call

a value cluster (VC). Different from the existing clus-

tering approaches, ASA uses at most four messages to

construct small clusters when initializing the network.

• We design an effective map-based forwarding tech-

nique, which guides sensors to self-adaptively find a

“minimal” routing path to the sink. Furthermore, ASA

only forwards updates to the sink and changes routing

path periodically to balance the energy consumption of

the sensor nodes. We also propose a compact routing

map to compress the navigation message along the rout-

ing path, and discuss how to adjust the compact routing

map according to the remaining message size in a for-

warding package in Section 4.

• For each time step, our approach expands and main-

tains its clusters gradually through its routing nodes (see

Section 5). This clustering strategy is more practical

for sensor applications, since ASA needs a few mes-

sage communications for each time step and get optimal

clusters in convergent fashion.

• We describe different failures occurred in the data col-

lection, and analyze why ASA is resilient to the failures

in Section 6.

• Last but not the least, we evaluate ASA and demonstrate

its advantages on energy-balanced and energy-efficient

data collection through extensive experiments on syn-

thetic data sets.

2 Data collection problem

Sensor network A sensor network consists of a set of fixed-

location sensors, each of which has a unique ID. We use an

m × n grid to describe sensor locations. For each cell in the

grid, it contains at most one sensor. Without loss of general-

ity, we assume that the sink has unlimited energy, which lo-

cates in one edge of the grid and knows all sensors’ ID and lo-

cations, and is responsible for performing computation. Two

sensors are said to be neighbors if they are within the trans-

mission range of each other.

For the data collection task, the sink initially broadcasts

the locations of all sensors and a query “SELECT * FREQ

f WITHIN ±ε” to the network. Different from the existing

work, we focus on dynamic features of WSNs that only the

sink knows all sensor locations [6] and each sensor maintains

a location map about the sensor location but does not know

the topology of the network.

The primary consumption of energy in sensor nodes is for

radio communication, whereas computation cost is relatively

much smaller than communication cost [7]. That is, the total

amount of energy spent in sending a message with x bytes of

content is given by σs + δsx, where σs and δs represent the

per-message and per-byte sending costs, respectively. There-

fore, we try to maximize the lifetime of a network by min-

imizing the following factors, which are 1) the number of

forward messages, 2) the size of messages sent through the

network, and 3) the ratio of the used inner layer sensors to the

used outer layer sensors (to handle the case that inner layer

sensors “die” first).

Problem definition Given a sensor network that continu-

ously senses values at each time step, and a sink that requires
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an ε-loss approximation of the sensing data at all times, de-

sign a data collection protocol that makes ρ% sensors con-

nected to the sink as long as possible.

In our proposed approach, there are three interlaced steps

to accomplish approximate data collection at each time step:

clustering sensors, forwarding the cluster values, and main-

taining clusters dynamically along the time.

3 Value-based self-clustering model and ini-
tialization

As illustrated in Section 1, spatially neighbored sensing data

are generally quite similar, which inspires us to cluster sen-

sors into disjoint regions/clusters based on the sensing data

value. Therefore, there is no need to broadcast every sensing

data to the sink node and only a few sensors are chosen as

representatives for each cluster to report the sensing values.

Different from the existing approaches, we focus on dynamic

feature of a WSN, where clusters can be constructed without

any global knowledge. In this section, we devise energy ef-

ficient techniques with which sensors can automatically con-

struct disjoint clusters using up to four communication mes-

sages.

Figure 1(a) shows the snapshot of network communication

among ten sensors and their sensing values at time step t. For

clear presentation, no grid lines are drawn in the figure. Note

that, grid does not describle the communication topology,

but describes location of sensors. For example, two sensors

within communication distance does not mean that they are

Fig. 1 Disjoint value clusters when ε = 0.3 (Sensors and their values at
time t are 〈s1, 25.0〉, 〈s2, 24.9〉, 〈s3, 24.8〉, 〈s4, 24.7〉, 〈s5, 25.1〉, 〈s6, 25.0〉,
〈s7 , 24.5〉, 〈s8, 24.7〉, 〈s9 , 25.1〉, 〈s10, 25.2〉). (a) Snapshot of sensing values;
(b) three disjoint VCs

located in adjacent cells, and vice versa, since there may exist

an obstacle preventing them from communicating with each

other. Each node in the figure represents a sensor. Edges be-

tween nodes represent neighbors, i.e., one hop communica-

tion distance. For example, sensors s1 and s2 are neighbors.

The inner layer sensors s4, s5, and s9 are neighbors to the

sink. Figure 1(b) shows an example of clustering result when

ε = 0.3. We use shade colors to describe clusters. Notice

that, there are many different ways to divide the sensor net-

work into disjoint value clusters (DVCs). Ideally, a network

is desired to be partitioned into fewer clusters, so that fewer

sensors are employed to sense and transmit data.

The process of constructing clusters starts from an initial

wireless sensor network, where the sink broadcasts a start

message to all sensors to construct DVCs. We define VCs

as follows.

Definition 1 (VC) A set of sensors S = {s1, s2, . . . , sm}

belong to a value cluster C at time step t, if and only if C is

connected, and for any two sensors si, s j ∈ S , |vt(si)−vt(s j)| �
ε, where vt(s) denotes sensing value of s at time step t.

Definition 2 (DVC model) A VC model is denoted as Cv

= C1,C2, . . . ,Ck, where k is the number of VCs, and for any

two Ci and C j, they are disjoint.

In order to let sensors automatically construct VCs, in our

framework, some sensors are chosen to actively invite their

neighbors to join in their cluster. We call such chosen sensors

seeds. Seeds are desired to distribute evenly in the network,

so that all sensors can be involved in the clustering procedure

simultaneously. That is, for any sensor s in the network, ei-

ther s is a seed, or s is a neighbor to a seed. The choice of

seeds is critical to the performance of the DVC model. For

example, in Fig. 1(a), sensors s2, s4, and s6 are good choices

as seeds, since any other sensor in the network is a neighbor

of one of them.

If the sink is aware of the communication topology of the

network, then choosing seeds is a typical problem of con-

structing a dominating set over the topology graph. We can

use a greedy approach to choose seeds. That is, we 1) start

with the network and an empty set S ; 2) pick a sensor with

most neighbors which is not already in the set S and add it

to S ; 3) repeat step 2 until all sensors are in S or adjacent to

the sensors in S . This greedy approach can guarantee O(n)

complexity, where n is the number of sensors in the network.

However, as discussed in Section 1, in a dynamic wireless

sensor network, it is hard for the sink to know the topology

of the network, i.e., globally determining seeds is not practi-
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cal.

Therefore, we devise a self-clustering approach to tackle

this problem. Each sensor in the network is equipped with a

random number generator with range [0, 1]. When the sink

notifies that the network begins to work, each sensor gen-

erates a random value. If a sensor whose generated value is

greater than 0.5, then it is chosen as a seed. Random value

generator can guarantee a set of evenly distributed seeds in

the network. There may exist special cases, e.g., sensors in

a small region are all chosen as seeds or no seed exists in

a certain region. After receiving the start message sent from

the sink, each seed broadcasts its sensor reading and receives

neighbors responses.

The detailed techniques are covered in Algorithms 1 and 2.

The algorithm SeedDVC(s, t, tI ) shown in Algorithm 1 illus-

trates how a seed constructs a set of DVCs. Given a tolerant

time interval tI , if seed s gets responses within tI , s will con-

struct its value cluster VC(s) (lines 4–7). Otherwise in the

case that s cannot get any response from its neighbors within

tI , if it gets invitation message from another seed s′, then s

sends response message to s′ and waits for the response from

s′ to see if it can join in the cluster of s′ (lines 10–12). If s

does not get any response or invitation, it will find a neighor

s′′ to join in (lines 13–15).

Algorithm 2 describes a non-seed behaviors by using at

most four messages. For example, in Fig. 1(a), after us-

ing Algorithms 1 and 2, ASA builds up four DVCs, which

are C1 = {s1, s2, s10}, C2 = {s3, s4}, C3 = {s7, s8}, and

C4 = {s5, s6, s9}. If s2, s4, and s6 are chosen as seeds, ASA

only needs two messages to build up these VCs; however,

if s1, s2, and s10 are chosen as seeds, then ASA needs four

messages to achieve the four VCs.

4 Self-adaptive data routing

Once DVCs are constructed, every sensor in the WSN knows

the sensing value range VI(s) in its cluster. So any sensor can

play as a passer to route data to the sink.

Recall that sensors in the network are unware of the topol-

ogy of the network. So a crucial problem that we need to ad-

dress is how to smartly find a “minimal” route to send sensing

values to the sink by concatenating all DVCs.

Definition 3 (Valid data route) Given a set of DVCs

C1,C2, . . . ,Ck and sink s, a route s1 → s2 → · · · → sm → s

is valid, if and only if for each VC Ci, there exists at least one

routing sensor s j ∈ Ci (1 � j � m).

Based on above definition, the problem of minimal valid

data route analysis can be represented as: given a set of dis-

joint value clusters C1,C2, . . . ,Ck, find a valid route s1 →
s2 → · · · → sm → s to forward values of all clusters to the

sink s. The valid route is minimal if 1) s1 is disconnected to

s after removing s j (1 � j � m) from the route, and 2) only

updates are transmitted to the sink in the remaining lifetime

of the WSN.

In Section 1 we propose a novel data structure, called

routing map to guide sensors to concatenate the constructed

DVCs. In Section 2 we propose a compact routing map to
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further reduce the transformation cost. In Section 3 we de-

vise our techniques to balance energy consumption based on

routing map.

4.1 Routing map

Recall sensors in the WSN have no global knowledge about

the topology of the whole network. So it is a big challenge

to ask sensors to self-adaptively construct a data route to the

sink. A feasible way is to configure a very small routing map

for each sensor, so that sensors can be guided to concatenate

all DVCs in the network.

Figure 2(a) shows a sketch of a routing map. The routing

map is an m×n matrix corresponding to the network grid, and

each cell in the matrix is labelled using 0 or 1. If a VC has

been routed, then all cells covered by the VC are marked, i.e.,

labelled 1. All un-routed cells are unmarked, i.e., labelled 0.

Using a routing map, a sensor can know which regions need

to be routed.

In the initialization phase, the sink broadcasts sensors’ lo-

cations, i.e., the grid to the network. For each time step t, sink

randomly selects a sensor s to start routing. s first marks 1 on

sensors in its VC, and then it finds a shortest path to reach the

areas that have not been marked, and have long distances to

the sink if there are more than one shortest paths. The require-

ment 1) guarantees that the route crosses non-routed VCs,

and 2) lets ASA heuristically route sensors with more hops to

the sink in priority, which helps balance energy consumption

of the sensors.

Besides appending vt(s) in the forwarding message, in or-

der to navigate sensors to find a valid route, the last routing

sensor adds its routing map to the forward message. When a

routing sensor s′ receives the forward message, it determines

routing according to the attached routing map.

4.2 Compact routing map

Ideally we hope a routing map as small as possible so that it

will not cause too much transmission cost. In this section we

propose a compact routing map to compress the routing map.

A compact routing map consists of a compact matrix and

a set of key points stored in an array A, such that the set of

key points in A construct a contour line to distinguish routed

VCs from non-routed VCs. Figure 2(b) shows three compact

routing maps CRM1
8×16, CRM2

8×16, and CRM3
8×16, against the

full routing map RM8×16 shown in Fig. 2(a). A compact rout-

ing map can guide sensors to find its routing according to

following features.

• The left bottom region to the contour line marked by

the key points in A is marked, i.e., 1, which expresses

that VCs covered by the left bottom region have been

routed.

• The right top region to the boundary including key

points in A is unmarked, i.e., 0, which means that the

VCs covered by the right top region need to be routed.

• The region in the compact matrix M is partially marked,

i.e., part of 1 and part of 0.

The compact routing map contains the same information

with the whole routing map. For example, the first com-

pact routing map CRM1
8×16 = A1 + M2×6(〈5, 6〉) contains

two parts, which are the array A1 of key points and a small

matrix M2×6(〈5, 6〉). The four key points in A1 separate the

matrix of 8 × 16 cells into marked and unmarked parts. The

matrix M2×6(〈5, 6〉) contains marked and unmarked routing

cells. Different compact routing maps might require different

sizes of storage. For example, CRM1
8×16 requires eight inte-

gers and a (2 × 6) bitmap, CRM2
8×16 requires 6 integers and

a (3 × 6) bitmap, and CRM3
8×16 requires four integers and a

(4 × 8) bitmap.

Ideally, we try to make the compact routing map as small

as possible, that is, we use fewer key points and a small size

matrix to describe the routing status. Equation (1) estimates

the size of a compact routing map, where, α is 1 if we need

a compact matrix, and otherwise, it is 0. |M| is the size of

the compact matrix, and n is the number of key points. Each

key point costs 32 bits (i.e., 4 bytes) message (i.e., values in

x-axis and y-axis cost 2 bytes, respectively).

size(CRM) = α|M| + 32n. (1)

Fig. 2 Examples of different routing maps. (a) A full routing map RM8×16; (b) three compact routing maps
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Figure 2 shows three routing maps with compact informa-

tion. For example, size(CRM1
8×16) = 140, size(CRM2

8×16) =

114, and size(CRM3
8×16) = 96.

Minimal compact routing map problem Given a routing

maps with n key points, find the compact routing map whose

size is minimized.

Theorem 1 The problem of finding the minimal compact

routing map is NP-hard.

This problem can be reduced to the classic set cover prob-

lem. For limit space reason, please ignore proof. The optimal

solution that finds the minimal compact routing map can be

approximated by a greedy algorithm. The greedy algorithm

first selects a key point such that removing this point can con-

struct a smallest compact matrix. This selection and deletion

operation are repeated until no smaller compact matrix can

be found. The pseudo-code of the greedy algorithm is shown

in Algorithm 3.

Algorithm 3 is an H (n)-approximation algorithm, where

H (n) is bounded by 1 + log n.

Relax compact routing map In addition to compressing

routing map, we further cut the size of a compact routing map

adaptively according to packet size constraint in a sensor net-

work. The packet size in a sensor network has a limit L that

is determined by the hardware or network protocols [8]. For

example, the size limit of a packet is about 49 bytes on the

Crossbow MICA2 motes [9]. Consequently, ASA adjusts the

compact routing map under the permit transmission limit.

For example, if a transmitted message needs L − k bytes,

only k bytes are left for transmitting a compact routing map.

ASA transmits the compact matrix without key points if k is

too small for any minimal compact routing map. In this way,

a sensor who receives this compact matrix can still find re-

gions that has not been routed although it cannot know all

un-routed regions although the guide information is limited.

A good case is if a transmitted message occupies L+1 bytes, a

sensor s has to use two packets to do transmission, although

the second packet contains only 1 byte. In this case, s can

transmit a compact routing map up to L−1 size to maximally

utilize message packet. In Section 6, we show such a relax

approach results in more energy-efficient routing.

4.3 Balance of energy consumption

In order to balance the energy consumption of sensors, ASA

builds up different routes periodically. During one period of

time T , the route is expected to be similar so that only the

updates need to be forwarded. We first describe how to for-

ward messages when a new route is built up. Then, we discuss

forwarding updates to the sink along the constructed route.

Rules R1 and R2 describe how to forward messages along the

route at the time when a new route is built up.

• R1 For each routing sensor, it appends one sensing

value and the member sensors ID of its VC to the for-

warding message.

• R2 If there are more than one sensors in a VC which

has been routed, then only the last routing sensor needs

to append message.

For different period of routing time, sensors find a different

route to balance the energy consumption in the network. Each

sensor in the network keeps its routing history and is aware of

its remaining energy. Also, ASA utilizes Gossip protocol [10]

to intelligently find the new valid route. For instance, at the

first step of a new time period T , a new routing sensor sa is

chosen and then sa selects a sensor sb as its downstream rout-

ing node according to its routing history and (compact) rout-

ing map. It will choose a sensor from its neighbors such that

the chosen downstream routing node never or does not route

data much. Sensor sb checks its routing history and remaining

energy. In case that sb serves a routing sensor in recently time

period or has no enough energy to forward messages, it will

not forward messages further. After sa sends message to sb,

it can hear messages sent from sb although those messages

are not sent to sa according to Gossip protocol. If sa cannot

hear message from sb, then sa knows that sb does not forward

its message. So, sa chooses another sensor s′b. In this way, a

sensor can self-determine its role of routing according to its

own status. There is one exception that sa fails to monitor the

broadcast message from sb, and then sa chooses another rout-

ing sensor and meanwhile sb continues to forward messages.

Therefore, at least two routes will arrive at the sink.

Notice that, the selection of new route sensor is guided by

the routing history and (compact) routing map, which can

avoid a long route as well as too much energy consumption.
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5 Route-based VCs expansion and mainte-
nance

Ideally, a larger size of VCs is expected to be found accord-

ing to the sensing values, so that ASA uses fewer routing

sensors to forward messages. In addition, maintaining a large

VC along the time is a critical problem. In this section, we

describe VCs expansion and maintenance based on the valid

route. We do not consider failure in this section. We discuss

the failure processing in Section 6.

5.1 VCs expansion

Reexamine Fig. 1(a), the optimal DVCs under ε = 0.3 are

shown in Fig. 1(b), where each shaded area expresses a VC.

Instead of spending huge number of messages to get the op-

timal DVCs at one time step, ASA gradually expands VCs to

an optimal solution.

The main idea of expanding VCs is to utilize forwarding

values along data routing to concatenate VCs C1,C2, . . . ,Ch

into a larger VC C, where minimizes the value interval of C:

minimize VI(C) = [vl(C), vu(C)]

subject to: |vu(C) − vl(C)| � ε,
where vl(C) = mini{vl(Ci)}, vu(C) = maxi{vu(Ci)}.

Now we discuss how to expand VCs based on a valid data

route. As defined in Definition 3, each VC contains at least

one routing sensor in a valid data route. Assume s1 and s2

are adjacent routing sensors (s1 → s2) that belong to VCs C1

and C2, respectively. Sensor s2 receives the value of s1 and

checks if the distance between vt(s1) and the value interval of

cluster C2 is less than ε (see the distance function in Eq. (2)).

If so, s2 in C2 sends an invitation message containing sen-

sor IDs and its value interval to s1. Sensor s1 checks whether

the two VCs satisfy merge condition (|max{vu(C1), vu(C2)} −
min{vl(C1), vl(C2)}| � ε). If so, it broadcasts merge message

among sensors in the two VCs. In this way, sensors in the

two VCs know the new value interval and all sensor IDs of

the merged VC.

dist(v,VI(C)) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vu(C) − v, if v < vl(C);

v − vl(C), if v > vu(C);

0, otherwise.

(2)

For example, in Fig. 1, there are four constructed VCs

when initializing the network. Suppose the data route is

s10 → s7 → s3 → s5 → sink, then s3 knows vt(s7) and sen-

sors IDs what s7 represents. The distance between vt(s7) and

the value interval VI(s3) is 0.3 (� ε), and therefore, s3 sends

merge invitation to s7. They satisfy the merge condition and

can be merged to a big one (see Fig. 1(b)).

Lazy member refresh in a VC In the above discussion,

when two VCs are merged into one VC, the routing sensor

broadcasts sensor IDs of one VC to another VC. If the merged

two VCs are large, then broadcasting all sensor IDs also cost

large energy. In order to save more energy cost, ASA adopts

a lazy member refresh technique. That is, when the routing

sensor s1 in the upstream VC C1 receives the invitation of its

downstream VC C2, and finds the two VCs satisfy the merge

condition, it does not broadcast the new sensors IDs until it

becomes a non-routing sensor.

For a set of VCs that satisfy the merge condition, obvi-

ously, the merge order among these VCs depends on the

adopted data route. However, using our routing strategy, VCs

expansion is convergent since data route changes every pe-

riod of time to achieve an energy-balanced network.

5.2 Dynamic VCs maintenance

Sensing values in a WSN may change frequently. Therefore,

the self-adaptive data collection based on clusters needs to be

maintained dynamically.

One of the advantage of our approach is that routing sen-

sors also play roles for monitoring updates in their own VCs.

In order to monitor updated sensing values using few trans-

formed messages, when a valid routing path is built up, each

routing sensor broadcasts messages in its own VC and builds

up a steiner tree using tiny agregation (TAG) technique [8].

Figure 3(a) shows the steiner trees rooted at routing sensors

s and p, respectively. These steiner trees are used to report

updates of sensor readings.

Notice that, in order to save network communication, small

update will not report to the sink. Each cluster C has a value

interval VIt−1 (C) at time step t − 1, therefore, a sensor reports

its update at time step t only when its sensing value vt does

not belong to VIt−1 (C), i.e., vt(s) � VIt−1 (C), and then sen-

sor s informs vt(s) to its corresponding routing sensor. The

neighbors of s can hear such information. Generally, neigh-

bor sensors detect a similar value to vt(s). If the neighbors of

s cannot detect such updates, then we assume that vt(s) is a

noise (or outlier). If there is at least one neighbor s′ detects

update and |vt(s)−vt(s′)| � ε, then s uses Algorithm 1 to build

up a new VC.

Figures 3(a) and 3(b) show two update cases, respectively:

1) a new VC appears inside an old VC (e.g., regions II and



Bin WANG et al. Energy efficient approximate self-adaptive data collection in wireless sensor networks 943

Fig. 3 VCs maintenance. (a) Inside update; (b) boundary update; (c) routing adjustment

III in Fig. 3(a) are new VCs), and

2) a new VC appears in the boundary of more than one

old VCs (e.g., region III is a new VC that locates in the

boundary of regions I and II in Fig. 3(b)).

For case 1, an update message including sensing value and

the related sensor IDs is reported to its corresponding routing

node along a steiner tree. Routing nodes broadcast update IDs

in the old VC. Note that, any new VC only involve one hop

neighbor sensor, therefore, the number of update sensors is

small, which results in small size of broadcast message in the

old VC. For case 2, sensors located in region III report up-

dates to their own rooted routing sensor, e.g., sensors S and

P, respectively. Then all sensors in the network are aware of

the updates.

After VCs update or merge, ASA adjusts the old data route

to make itself valid for the new VCs. If update happens dur-

ing a routing time of period, then ASA only incrementally

updates route between the old VC and the new VC.

We discuss cases where there is only one update VC in the

network. Without loss of generality, it can be extended to the

case of multiple update VCs. For the update case 1, an update

VC is inside an old VC. When a routing node is involved in

a new VC (e.g., P in region II in Fig. 3(a)), then ASA keeps

using the old data route to forward update value through P.

When a new VC does not contain a routing node (e.g., region

III in Fig. 3(a)), then S forwards a compact routing map to a

root node in region III along the steiner tree and aims at P as

the routing target node. Furthermore, S notifies P a “cancel”

message to break the route path S → P.

For the update case 2, an update VC is located in the

boundary of more than one VCs (see Fig. 3(b)). In order to

avoid S and P duplicately adjusting their downstream route,

the new VC should specify a routing node. Since the new up-

date VC is little using our strategy, sensors inside the update

VC can exchange message to choose a routing node with a

shortest path to the update VC. Similar to the solution to case

1, a chosen routing sensor (e.g., S ) sends its compact routing

map to the update VC and lets it self-find a route to the down-

stream route sensor of S . The old routing path is broken after

the adjustment.

Figure 3(c) shows a special case where sensors in an old

VC all detect updates, and three new small VCs are built up.

ASA uses the same routing approach to add the red path in

between S and P and break the old path S → P. It is inter-

esting to find that if the three VCs have the same incremental

updates, then ideally, the old VC should not be broken into

three parts. Using ASA, each sensor builds up a new small

VC, and then using an update routing path, we can concate-

nate and merge these three VCs quickly after forwarding up-

dates.

6 Failure-resilient data collection

The problem of high failure rates for the processes of both

sensing and forwarding is a major concern in wireless sensor

networks. Zhang et al. [11] presented an innovative schedul-

ing algorithm, a fault-tolerant scheduling for data collection.

The main contribution of this work is that it observes that time

is a factor of improving fault-tolerance. It divides time into

discrete time slots and adjusts the pre-schedule and adaptive

schedule to improve the fault-tolerance performance. Notice

that, this approach is based on two implicit assumptions.

1) It knows exactly when the node failure could happen.

2) There exists a sink or node that stores a copy of the

sensing value of the failure node.

Different from this work, ASA enhances fault-tolerance

ability according to the correlation among sensing values.

According to our observations over real experiments, there

are three major failures in data collection: 1) node failure: a

sensor is power off; 2) sensing failure: a sensor may detect

a wrong value if its remaining energy is below than a critical

level; and 3) forwarding failure: a message gets lost when it

is forwarded along a certain routing path.
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Node failure Our approach is robust to node failure. In our

DVC model, a sensor forwards its message only after it de-

tects an update reading. When a sensor s is power off, it acts

as no update detected. In this case, if the neighbors of s do not

report any updates, then it assumes that readings in the region

of s do not change. If the neighbors of s report updates, s is

either inside or on the boundary of the changed region. For

the first case, a new VC covering s is constructed, since s

is the only sensor that has a different value (i.e., keeping the

old value) from those of its neighbors. As discussed in Sec-

tion 5, in this case, s is regarded as an outlier. For the second

case, a sensor on the boundary of the VC does not affect the

sensing value much. When s is chosen to forward message,

the previous sensor sa cannot hear any message from s using

Gossip protocol, then sa will choose another sensor to for-

ward its message as discussed in Section 1 if sensors within

an area fail, no sensing value can be collected in this area.

In this case, our approach still can collect and forward other

sensing values to the sink.

Sensing failure Sensing failure is a serious problem. How-

ever, to our best knowledge, it has not been discussed by any

previous work. When a sensor encounters a sensing failure, it

still acts as a normal sensor to detect and forward messages.

In this case, it has enough energy to correctly forward incor-

rect sensing values to other nodes. If a single sensing failure

lasts for a few time, like a node failure, it can be detected

as an outlier. When adjacent sensors all suffer from sensing

failures, the case becomes challenge. These sensors may con-

struct a new VC and further forward the wrong sensing value

to the sink. Since our approach tries to balance the energy

consumptions, the probability of a partial adjacent sensing

failure is very small. Even in the case, the sink can periodi-

cally check whether the energies of more than one close sen-

sors’ energies are below the critical level. According to the

affected region, the sink raises an alarm to require to add or

change sensors in the monitoring area.

Forwarding failure Forwarding failure is a critical problem

to our approach, since we use single path to forward values

of all update VCs to the sink. If one sensor along the rout-

ing path fails, all previous collected messages will be lost. In

order to address this issue, we use gossip protocol to make

our approach robust. Consider a routing path s1 → s2 → s3

and assume that s2 fails forwarding message to s3. There are

three possible reasons that cause such a failure: 1) s3 fails

to receive the message; 2) the radio signal between s2 and

s3 is breached; or 3) s2 fails to broadcast its message. For

the first two cases, if s2 cannot hear a message from s3 af-

ter s2 forwarding message, s2 will choose another sensor and

resend message. For the third case, s1 cannot hear messages

sent from s2, then s1 will resent its message to another sensor.

The side-effect of this strategy is that s3 correctly forwards

message to the next sensor, but s2 may not detect the mes-

sage. Thus, s2 makes wrong judgement that forwarding fail-

ure happens in between s2 → s3. The immediate result is that

two routing paths are constructed, one is from s3 to its next

sensor s′3 and the other is from s2 to another sensor s′2. Thus,

energy is wasted. For a period of time T , sensors use the same

route to forward messages. After the two routes are built up,

s2 chooses a path s2 → s′2 to forward message, whereas, s3

assumes that the value of previous sensors (e.g., s2) does not

change, since it does not get update message from s2. After

sink receives messages from these two routes, it records all

updates and chooses one route to forward updates in the re-

maining of T .

7 Experimental results

We evaluate the performance of our proposed approach by

simulating light monitoring experience in our lab.

7.1 Data sets

We simulate a data collection scenario of a light monitoring

application based on the real sensing data collected from a

network with 15 sensors in our laboratory. Figure 4 shows

the topology of the sensor network and part of the real sens-

ing data.

In order to simulate a network with large number of sen-

sors, we develop a simulator to construct a network based on

our lab data set. We build up a 30×40 grid, in which each cell

contains one sensor node. We set 10K communication edges

and varied communication edges between different sensors to

imitate dynamic network topology. We randomly choose sev-

eral cells to take the values of any 15 real sensing data in our

lab test as their readings and partitioned the grid from 40 to

60 value regions. For each chosen cell in a value region, we

change its values a little bit as the sensing value of a closer

sensor to it. In this way, sensors in the network can read their

own sensing data according to our real data set. Our simulator

can vary the number of node failures and forwarding failures.

Notice that sensing failures have been contained in the sens-

ing values, since sensing values were generated based on real

data test.

We let each sensor read values every five seconds and let

routing time period be 1 000 seconds. According to the set-

ting in Refs. [5, 12], where they considered the number of
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forwarding and receiving packets for evaluating energy con-

sumption, we let each sensor communicate at most 20K pack-

ets before it exhausted, where a sensor reading required 2

bytes, and each packet contained 49 bytes based on our ap-

plication development experiences on the Crossbow MICA2

motes [9]. The initial battery capacity for each sensor could

forward 20K packets, receive 33K packets, or do 50K sens-

ing operations, i.e., the energy consumption is calculated as

E = x + 0.6y + 0.4z, where x is the number of forwarding

packets, y is the number of receiving packets, and z is the

number of sensor readings. When E > 20K, we say a sensor

“died”. We omit each sensor’s energy cost for computing.

Fig. 4 Real sensing data collected from a network with 15 sensors. (a)
Topology of a sensor network with 15 sensors; (b) sensing light values; (c)
voltages of 5 different sensors

Different from the approaches [4,5] relying on topology of

the underlying sensor network or the spatial-temporal cluster-

ing results, ASA focuses on dynamic network environment.

We select snapshot [13] as the representative of state-of-the-

art data collection algorithm in this set of experiments. Snap-

shot is the most related work to ours, which deals with both

data and network dynamics.

7.2 Comparison of energy consumption on data collection

We first test energy consumption on data collection, includ-

ing network lifetime, energy balance, and energy efficiency.

Network lifetime As defined in Section 1, the lifetime of

a sensor network is defined to be related with ρ% connected

sensors in the network. Let n be the number of sensors in

the network. We say readings in the network is unreliable if

the ratio of disconnected sensors exceeds a threshold ρ%× n.

Figure 5(a) shows that when increasing ρ, the lifetime of the

network drops.

Fig. 5 Energy consumption. (a) Lifetime vs. varied ρ%; (b) ρ% = 20%; (c)
average packets with error bars (ρ% = 20%)

Energy balance Figure 5(b) shows the result of balancing

energies when ρ% = 20% and Fig. 5(c) shows results with

error bars for sensors in 20 tiers. The results for other tiers

are similar. We use TAG model [8] to classify sensors in dif-

ferent “tiers” and evaluate energy consumptions on different

tiers. We choose nodes with different distances to the sink

to do the test and consider three kinds of energy consump-

tions: forwarding messages, receiving messages, and sensing

readings. The figure shows that ASA can effectively decrease

the energy consumption ratio of inner “tier” sensors compare

with outer layer sensors.

Energy efficiency (i.e., energy consumption comparison be-

tween snapshot [13] and ASA) We implement snapshot and

compare its performance with ASA. Figure 6 shows compar-

ison results between snapshot and ASA.

Figure 6(a) shows the number of exhausted nodes when in-
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creasing time period. As expected, we find that the first node

failure by using ASA is at the 60th hour, which is much later

than snapshot. This is because ASA is an energy-balanced

approach. There are 30 nodes in the first layer of the net-

work. After these nodes fail, the outer layer nodes are dis-

connected to the sink. Figure 6(b) shows that the network

produced reliable readings within 600 hours when ρ% is set

to 20% for both two approaches. The network lifetime using

ASA is much longer than the lifetime using snapshot.

Fig. 6 Lifetime comparison (ρ% = 20%)

We also find that only a small number of outer layer sen-

sors encounter an energy problem before inner tier nodes

become exhausted. Therefore, the number of disconnected

nodes in Fig. 6(b) increases much sharper than the number

of exhausted nodes in Fig. 6(a).

7.3 Energy consumption on self-maintenance

Figure 7 shows the results of DVCs expansion and mainte-

nance during the first 12 time steps in the network initializa-

tion. In order to evaluate our approach, for each time step,

we collect all sensing readings in the network and calculate

the minimal number of DVCs as an optimal solution. We call

this approach Global in Fig. 7(a). We then generate DVCs

using ASA without any global knowledge and compare their

numbers with the minimal number of DVCs using optimal

solution.

Figure 7(a) shows the comparison results. At the first time

step, ASA builds up 140 DVCs, and then the number of

DVCs becomes smaller and inclines to the real number of

DVCs. It indicates that the DVC expansion technique is effec-

tive. It is interesting to find that when increasing the number

of time steps, the DVCs numbers increase to a peak and then

drop quickly. This is because that updating sensing readings

can change the number of DVCs. Upon the updates, ASA re-

constructs several small DVCs to break a previous one, so

the number of DVCs increases. Then ASA adopts DVC ex-

pansion technique to merge those small DVCs quickly. Fig-

ure 7(b) shows the scalability of ASA when increasing time

duration. We can see that the accumulative communication

costs increase slightly and keep stable when time goes by.

This is because that during the remaining time periods, the

major energy consumption is for reading values.

Fig. 7 DVCs expansion and maintenance. (a) Quality of DVCs; (b) main-
tenance costs

7.4 Effect of routing maps

We evaluate the sizes of different types of routing maps and

their impact to the number of routing sensors (see Fig. 8).

Figure 8(a) shows the sizes of different types of routing

maps when building up a new routing. We compare three

types of routing maps, which are 1) routing map without com-

pression (denoted RM), 2) compact map with minimal size

(denoted min-CRM), and 3) relax compact routing map (de-

noted relax-CRM).

As Fig. 8(a) shows that the size of RM keeps stable, since

RM describes all sensors in the network. Min-CRM and

relax-CRM require fewer sizes to transmit routing navigation

messages. Figure 8(b) shows the number of needed routing

sensors at different period of times when ASA adopts min-

CRM. Compared with the globally minimal number of rout-

ing sensors, ASA requires more sensors for routing at the

beginning of the routing period. The difference between the

number of routed sensors and minimal number of routing sen-

sors will be smaller when increasing time period, when ASA

self-adaptively finds good solution gradually.
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Fig. 8 Self-adjusted routing map size. (a) Number of routing maps; (b)
number of routing sensors

7.5 Robust to failures

We show that ASA is robust to failures in this section. We

used message loss rate to quantify forwarding failures. Fig-

ure 9(a) shows the number of routing sensors when varying

the message loss rate. We let the message loss rate vary from

5% to 30%. We find that ASA requires much more routing

sensors when increasing the message loss rate. It is not sur-

prising since more forwarding failure sensors require longer

paths to forward updates to the sink.

Fig. 9 Impact of failures. (a) Forwarding failure; (b) sensing failure

Figure 9(b) shows the impact of energy consumption when

varying sensing failure rate, i.e., ratio of number of incorrect

sensing nodes to the number of all sensors in the network.

We set a fix number of VCs in advance and test the effect

of sensing failure rate. When sensing failure rate is small,

the number of DVCs is close to 50, the real number of VCs.

However, when more sensing failures happen, sensors have

large abilities to use wrong sensing values to construct small

DVCs, which cause the increments of the number of DVCs.

This number climbs to a peak and then drops sharply, which

is consistent to our observations that most low-energy sensors

will produce the same but wrong sensing values.

8 Related work

A number of research work have been published on energy

efficient data collection over sensor networks. We can classify

them into centralized control approaches [14–21] and decen-

tralized control approaches [8, 13, 22–26].

Centralized control approaches Most of the existing pre-

diction model-based approaches adopt centralized control

strategy. Based on collected historic data, a sink (or PC base

station) generates a prediction model [17–19] and dissemi-

nates this model to the network. Both sensor and sink main-

tain a prediction model of how data evolve and keep the

model in synchronism. Barbie-Q: a tiny model query system

(BBQ) [14] is a model-driven data acquisition framework that

adopts a trained statistical model. BBQ can limit the number

of required sensor readings to answer queries with high con-

fidence. Potsch et al. [21] also adopted model-driven model

to collect temperature sensor readings. Deshpande et al. [14]

used a global model to capture dependencies based on a rela-

tively stable network topology. Both Ken framework [16] and

Kalman filter [15] fit the data into a model, in which sensing

data can be forwarded to the sink only when they are beyond

an approximation threshold. A disjoint-clique model is also

proposed in Ref. [16] to partition sensor attributes to multiple

localized clusters. CONCH [2] is a value-based data collec-

tion approach. The base station globally determines and dis-

seminates a minimal CONCH plan into the whole network so

that both temporal and spatial suppression can be combined

for saving as much communication energy cost as possible.

Different from the above centralized control approaches,

our work, ASA, allows an individual sensor self-adaptively

to make local decisions for data suppression without global

controller. It enables ASA to deal with the changes of sens-

ing data, network topology, sensor deployment, and failures.

Considering these dynamic cases, data distribution update

may frequently arise and it is hard to find a perfect model

adapted.

Decentralized control approaches TAG [8,23] can be cat-
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egorized as a decentralized control approach. Upon receiv-

ing a broadcast message from the sink, each individual sen-

sor self-determines their parent nodes and builds up a routing

tree rooted at the sink. The most related work to ours is snap-

shot [13], which also deals with both data and network dy-

namics. The primary difference between snapshot and ASA

is the definition of clusters and forwarding path chosen. In

snapshot, the sensor nodes of a cluster are within one hop

count and only the chosen representative node can produce

approximate data [27]. ASA, however, can partition the net-

work into several multi-hop disjoint clusters (a.k.a. VCs).

Any sensors in a value-based cluster can forward sensing

readings. Lin et al. [24] used selective sampling technique

to increase the network lifetime. A quiet similar cluster defi-

nition to our disjoint value clusters is proposed in Ref. [22].

Different from the approach in Ref. [22], ASA self-adaptively

finds a “minimal” routing path to concatenate all clusters to

the sink. Using this way, ASA saves more communication

cost. Furthermore, ASA only forwards updates to the sink.

In addition, self-adaptive routing protocols for sensor net-

work are well-developed in network domain [28]. The above

network-centric approaches mainly consider network topol-

ogy, whereas, ASA is a data-centric approach, which consid-

ers sensing readings along the routing path to dynamically

expand and maintain clusters for increasing the network life-

time.

Exploring spatial and temporal correlations EEDC [5] is

a data collection framework based on a careful analysis of the

surveillance data reported by the sensors. By exploring the

spatial correlation of sensing data, it dynamically partitions

the sensor nodes into clusters so that the sensors in the same

cluster have similar surveillance time series. They can share

the workload of data collection in the future since their future

readings may likely be similar. Furthermore, during a short-

time period, a sensor may report similar readings. Such a cor-

relation in the data reported from the same sensor is called

temporal correlation, which can be explored to further save

energy. Vuran et al. [12] considered the nature of the physi-

cal phenomenon constitutes the temporal correlation between

each consecutive observation of a sensor node. A theoretical

framework is developed to model the spatial and temporal

correlations in sensor networks and efficient communication

protocols are developed.

The above two approaches are based on an implicit as-

sumption that collection of data and the topology of a WSN

are correlated, which might not be true in some cases, for

example, the sensor network in a parking lot. Our data trans-

formation route does not depend on the network topology.

Instead, it can dynamically adapt according to the sensing

values.

9 Conclusion

In this work, we present ASA approach, which is an energy-

efficient and balanced data collection method based on adap-

tive map forwarding strategy. Moreover, ASA investigates

the spatial correlations between sensor readings to provide

an energy efficient route without knowing the global network

topology of WSNs. The experimental results demonstrate

that ASA provides significant energy savings and equal en-

ergy consumption among all sensor nodes, and is robust to

failures.
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