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Abstract Signcryption is a public key cryptographic

method that achieves unforgeability and confidentiality si-

multaneously with significantly smaller overhead than that

required by “digital signature followed by public key encryp-

tion”. It does this by signing and encrypting a message in a

single step. An aggregate signcryption scheme allows indi-

vidual signcryption ciphertexts intended for the same recipi-

ent to be aggregated into a single (shorter) combined cipher-

text without losing any of the security guarantees. We present

an aggregate signcryption scheme in the identity-based set-

ting using multilinear maps, and provide a proof of security

in the standard model. To the best of our knowledge, our new

scheme is the first aggregate signcryption scheme that is se-

cure in the standard model.

Keywords identity-based aggregate signcryption, multilin-

ear maps, standard model, GGH framework

1 Introduction

Signcryption, first proposed by Zheng [1], is a cryptographic

primitive that performs signature and encryption simultane-

ously in one logical steps at lower computational costs and

communication overheads than those required by the tra-

ditional sign-then-encrypt approach. Due to its advantages,
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there have been many signcryption schemes proposed af-

ter Zheng’s publication. Zheng’s original schemes were only

proven secure by Baek et al. [2] who described a formal se-

curity model in a multiuser setting. Many public key sign-

cryption schemes have been proposed after Ref. [1], such as

Refs. [3–5].

Identity-based cryptography (IBC) was introduced by

Shamir in 1984 [6]. The unique property of identity-based

cryptography is that a user’s public key can be any binary

string, such as an email address, IP address, that can iden-

tify the user. This removes the need for senders to look up

the recipient’s public key before sending out an encrypted

message. Identity-based cryptography is supposed to provide

a more convenient alternative to conventional public key in-

frastructure (PKI). Identity based signcryption (IBSC) with

formal security proof was introduced by Malone-Lee [7].

But Malone-Lee’s scheme was not secure and its weakness

was pointed out by Libert and Quisquater in Ref. [8]. Libert

and Quisquater also proposed three different types of IBSC

schemes which satisfy either public verifiability or forward

security. Then, Chow et al. [9] designed an IBSC scheme

that provides both public verifiability and forward security.

Boyen [10] presented an IBSC scheme that provides not only

public verifiability and forward security but also ciphertext

unlinkability and anonymity. Chen and Malone-Lee [11] im-

proved Boyen’s scheme in efficiency and Barreto et al. [12]

constructed the most efficient IBSC scheme to date.
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In many application scenarios, one may have to process

many signcryption quickly and simultaneously. In order to

reduce the compute cost and overhead of transmission, Selvi

et al. [13] introduced the concept of aggregate signcryption in

the identity-based setting. An aggregate signcryption scheme

allows individual signcryption ciphertexts intended for the

same recipient to be aggregated into a single (shorter) com-

bined ciphertext without losing any of the security guarantees

that would be present if the original signcryption ciphertexts

were transmitted individually.

In other words, the aggregate ciphertext still provides a

mechanism for message transmission with data confidential-

ity, data integrity and origin authentication, but with signif-

icantly reduced overhead. We stress that the aggregation al-

gorithm is entirely public — it can be performed by any en-

tity given a number of signcryption ciphertexts and the cor-

responding public keys. This allows for signcryption cipher-

texts intended for a single receiver to be combined within the

network. If a network node receives two signcryption cipher-

text which need to be routed to the same receiver, then the

node can run the aggregation algorithm and forward the ag-

gregate signcryption ciphertext at a reduced bandwidth cost.

After Selvi et al. [13] proposed the first identity-based ag-

gregate signcryption scheme (IBASC) along with a formal

security model and a formal security proof, there are many re-

searches focusing on this topic. Ren et al. [14], Qi et al. [15],

and Kar [16] proposed aggregate signcryption schemes in the

identity-based setting. Dent [17] proposed aggregate sign-

cryption scheme in public-key setting, and Eslami et al. [18].

Lu et al. [19] proposed aggregate signcryption schemes in the

certificateless setting. However, none of these aggregate sign-

cryption schemes was proven secure without random oracle.

Many researchers have expressed doubts about the wisdom

of relying on the random-oracle model (ROM). In particu-

lar, Canetti, Goldreich and Halevi [20] showed that there are

signature and encryption schemes which are secure in the

ROM, but insecure for any instantiation of the random ora-

cle. Furthermore, RSA-FDH (Full Domain Hash) and many

other schemes provably secure in the ROM require a crypto-

graphic hash function whose output size does not match any

of the standard hash functions. Therefore, constructing ag-

gregate signcryption schemes that are secure in the standard

model (without random oracle) is a meaningful work.

In this paper, we construct an identity-based aggregate

signcryption scheme that is secure in the standard model. To

realize this, we use the new method for implementing the

Full Domain Hash proposed by Hohenberger et al. [21]. We

present our results in a generic multilinear map [22] setting

and then show how they can be translated to the GGH [23]

graded algebras analogue of multilinear maps. To the best of

our knowledge, this is the first aggregate signcryption scheme

that is secure in the standard model.

We introduce the leveled multilinear maps, the GGH

graded encoding, and the complexity assumption in Section

2, and review the definitions and security model for IBASC

in Section 3 and 4. Then, we present our IBASC in generic

multilinear map setting in Section 5, and make it translated to

the GGH framework in Section 6. In Section 7, we give the

conclusion and open problems.

2 Leveled multilinear maps and the GGH
graded encoding

2.1 Generic leveled multilinear maps

We give a description of generic leveled multilinear maps.

More details of the GGH graded algebras analogue of mulit-

linear maps are included in Appendix, and for further details,

please refer to Ref. [23].

For generic leveled multilinear maps, we assume the exis-

tence of a group generator G, which takes as input a security

parameter 1λ and a positive integer k to indicate the number

of allowed pairing operations. G(1λ, k) outputs a sequence of

groups �G = (G1, . . . ,Gk) each of large prime order p > 2λ.

In addition, we let gi be a canonical generator of Gi (and it is

known from the group’s description). We let g = g1.

We assume the existence of a set of bilinear maps {ei, j :

Gi × G j → Gi+ j|i, j � 1; i + j � k}. The map ei, j satisfies the

following relation:

ei, j(g
a
i , g

b
j) = gab

i+ j : ∀a, b ∈ Zp.

We observe that one consequence of this is that

ei, j(gi, g j) = gi+ j for each valid i, j.

When the context is obvious, we will sometimes abuse no-

tation and drop the subscripts i, j. For example, we may sim-

ply write e(ga
i , g

b
j) = gab

i+ j.

2.2 Algorithmic components of GGH encodings

Garg, Gentry and Halevi (GGH) [23] defined an “approxi-

mate” version of a multilinear group family, which they call

a graded encoding system. As a starting point, they view gαi
in a multilinear group family as simply an encoding of α at

“level-i”. This encoding permits basic functionalities, such

as equality testing (it is easy to check that two level-i en-

codings encode the same exponent), additive homomorphism
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(via the group operation in Gi), and bounded multiplicative

homomorphism (via the multilinear map e). They retain the

notion of a somewhat homomorphic encoding with equality

testing, but they use probabilistic encodings, and replace the

multilinear group family with “less structured” sets of encod-

ings related to lattices.

Abstractly, their k-graded encoding system for a ring R in-

cludes a system of sets S = {S (α)
i ⊂ {0, 1}∗ : i ∈ [0, k], α ∈ R}

such that, for every fixed i ∈ [0, k], the sets {S (α)
i : α ∈ R} are

disjoint (and thus form a partition of S i =
⋃
αS

(α)
i ). The set

S (α)
i consists of the “level-i encodings of α”. Moreover, the

system comes equipped with efficient procedures, as follows:

• Instance generation The randomized InstGen(1λ, 1k)

takes as input the security parameter λ and integer k.

The procedure outputs (params, pzt), where params is

a description of a k-graded encoding system as above,

and pzt is a level-k “zero-test parameter”.

• Ring sampler The randomized samp(params) out-

puts a “level-zero encoding” a ∈ S 0, such that the in-

duced distribution on α such that a ∈ S (α)
0 is statistically

uniform.

• Encoding The (possibly randomized)

enc(params, i, a) takes i ∈ [k] and a level-zero en-

coding a ∈ S (α)
0 for some α ∈ R, and outputs a level-i

encoding u ∈ S (α)
i for the same α.

• Re-randomization The randomized reRand(params,

i, u) re-randomizes encodings to the same level, as

long as the initial encoding is under a given noise

bound. Specifically, for a level i ∈ [k] and encoding

u ∈ S (α)
i , it outputs another encoding u′ ∈ S (α)

i . More-

over for any two encodings u1, u2 ∈ S (α)
i whose noise

bound is at most some b, the output distributions of

reRand(params, i, u1) and reRand(params, i, u2) are

statistically the same.

• Addition and negation Given params and two

encodings at the same level, u1 ∈ S (α1)
i and u2 ∈

S (α2)
i , we have add(params, u1, u2) ∈ S (α1+α2)

i , and

neg(params, u1) ∈ S (−α1)
i , subject to bounds on the

noise.

• Multiplication For u1 ∈ S (α1)
i1

, u2 ∈ S (α2)
i2

, we have

mult(params, u1, u2) ∈ S (α1·α2)
i1+i2

.

• Zero-test The procedure isZero(params, pzt, u) out-

puts 1 if u ∈ S (0)
k and 0 otherwise. Note that in conjunc-

tion with the procedure for subtracting encodings, this

gives us an equality test.

• Extraction This procedure extracts a “canonical” and

“random” representation of ring elements from their

level-k encoding. Namely ext(params, pzt, u) outputs

(say) K ∈ {0, 1}λ, such that:

1) With overwhelming probability over the choice of

α ∈ R, for any two u1, u2 ∈ S (α)
k , ext(params, pzt,

u1) = ext(params, pzt, u2),

2) The distribution {ext(params, pzt, u): α ∈ R,

u ∈ S (α)
k } is statistically uniform over {0, 1}λ.

The realization method of GGH’s graded encoding system

is included in Appendix.

2.3 Complexity assumption

Assumption 1 (multilinear computational Diffie-Hellman

assumption) [21] The k-multilinear computational Diffie-

Hellman (k-MCDH) assumption states the following: A chal-

lenger runs G(1λ, k) to generate groups and generators of or-

der p. Then it picks random c1, . . . , ck ∈ Zp. The assump-

tion then states that given g = g1, gc1 , . . . , gck it is hard for

any poly-time algorithm to compute g
∏

j∈[1,k] c j

k−1 with better than

negligible advantage (in security parameter λ).

Assumption 2 (GGH analogue of k-MCDH assumption)

[21] The GGH k-multilinear computational Diffie-Hellman

(GGH k-MCDH) assumption states the following: A chal-

lenger runs InstGen(1λ, 1k) to obtain (params, pzt). Note

that params includes a level 1 encoding of 1, which we de-

note as g. Then it picks random c1, . . . , ck each equal to the

result of a fresh call to samp().

The assumption then states that given params, pzt,

enc(1, c1), . . . , enc(1, ck), it is hard for any poly-time algo-

rithm to compute an integer t ∈ [1, 2λ] and an encoding z such

that

isZero(pzt,mult(g, z) − enc(k, t ·
∏

j∈[1,k]

c j))

outputs true.

Assumption 3 (multilinear decisional Diffie-Hellman as-

sumption) [24] The k-multilinear decisional Diffie-Hellman

(k-MDDH) assumption states the following: A challenger

runs G(1λ, k) to generate groups and generators of order p.

Then it picks random c1, . . . , ck+1 ∈ Zp. The assumption then

states that given g = g1, gc1 , . . . , gck+1 it is hard for any poly-

time algorithm to distinguish g
∏

j∈[1,k+1] c j

k from a uniform Gk-

element with better than negligible advantage (in security pa-

rameter λ).
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Assumption 4 (GGH analogue of k-MDDH assumption)

[24] The GGH k-multilinear decisional Diffie-Hellman

(GGH k-MDDH) assumption states the following: A chal-

lenger runs InstGen(1λ, 1k) to obtain (params, pzt). Note

that params includes a level 1 encoding of 1, which we de-

note as g. Then it picks random c1, . . . , ck+1 and each equals

to the result of a fresh call to samp().

The assumption then states that given params,

pzt, enc(1, c1), . . . , enc(1, ck+1) and a level-k encod-

ing T , it is hard for any poly-time algorithm

to decide the output of isZero(pzt, reRand(T ) −
reRand(enc(params,k,

∏
j∈[1,k+1] c j))) is 1 or 0 with bet-

ter than negligible advantage (in security parameter λ).

3 Definitions for identity-based aggregate
signcryption schemes

We now give our definitions for identity-based aggregate

signcryption schemes. In our setting, each signcryption is as-

sociated with a multiset S over identities. A set S is of the

form {ID1, . . . , ID|S|}. Since S is a multiset it is possible to

have IDi = ID j for i � j. All signcryptions, including those

that come out of the signcrypt algorithm, are considered to be

aggregate signcryptions. The aggregation algorithm is gen-

eral in that it can take any two aggregate signcryptions and

combine them into a new aggregate signcryption.

Our definition allows for an initial trusted setup that will

generate a set of common public parameters PP. This will

define message space and identity space. The authority also

produces a master secret key used later to run the key gener-

ation algorithm.

We emphasize a few features of our setting. First, aggrega-

tion is very general in that it allows for the combination of any

two aggregate signcryptions into a single one. The aggrega-

tion operation does not require any secret keys. The multiset

structure allows one to combine two aggregate signcryptions

which both are signcrypted from the same sender.

An identity-based aggregate signcryption scheme (IBASC)

consists of the following five probabilistic polynomial time

(PPT) algorithms:

• Setup(1λ) The trusted setup algorithm takes the secu-

rity parameter λ as input, and outputs a common set of

public parameters PP and master secret key MSK. The

description of message spaceM and identity space ID
are included in PP, where ID = IDS ∪ IDR, IDS is

the sender identity space, IDR is the receiver identity

space, and IDS ∩ IDR = ∅.

• KeyGen(MSK, ID ∈ ID) The key generation algo-

rithm is run by the authority. It takes the master secret

key MSK and the identity information ID ∈ ID of user

UID as input and outputs a private key S KID. The au-

thority sends S KID to userUID through a secure chan-

nel.

• Signcrypt(PP, Mi ∈ M, IDR ∈ IDR, IDS i ∈ IDS ,

S KIDS i
) For generating the signcryption of a message

Mi from userUIDS i
to userUIDR , the senderUIDS i

pro-

vides the system parameters PP, the message Mi, the

identity information IDR ∈ IDR of receiverUIDR , the

identity information IDS i ∈ IDS of its own, and the

private key S KIDS i
for IDS i as input to this algorithm.

The signcryption algorithm outputs the valid signcryp-

tionσi for the message Mi from userUIDS i
to userUIDR

and an identities set of senders S = {IDS i }. We em-

phasize that a single signcryption that is output by this

algorithm is considered to also be an aggregate sign-

cryption.

• Aggregate(PP, Sx, Sy, σx, σy) The aggregation al-

gorithm takes as input two multisets Sx and Sy and

purported signcryption σx and σy. The elements of Sx

= {IDS x,1 , . . . , IDS x,|Sx |} consist of the identities corre-

sponding to σx and the elements of Sy = {IDS y,1 , . . . ,

IDS y,|Sy |} consist of the identities corresponding to σy.

The process produces a signcryption σAgg on the multi-

set SAgg = Sx
⋃ Sy, where

⋃
is a multiset union.

• Unsigncrypt(PP, S KIDR , S, σ) The unsigncryption al-

gorithm takes as input the public parameters, the private

key S KIDR for the receiver with identity IDR, a multi-

set S = {IDS 1 , . . . , IDS |S| } and an aggregate signcryp-

tion σ corresponding to S. It outputs a set of messages

{M1, . . . ,M|S|} or a false symbol ⊥ to indicate whether

verification succeeded, where Mi is the message sent

from user UIDS i
with identity IDS i ∈ S to user UIDR

with identity IDR, for i ∈ [1, |S|].

Correctness The correctness property states that all valid

aggregate signcryption will pass the unsigncryption algo-

rithm and output corresponding messages, where a valid ag-

gregate is defined recursively as an aggregate signcryption

derived by an application of the aggregation algorithm on two

valid inputs or the signcryption algorithm. More formally, for

all PP, MSK∈ Setup(1λ), all IDS 1 , . . . , IDS k ∈ IDS (k � 1),

all S KIDS i
∈KeyGen(MSK, IDS i ), {M1, . . . ,M|S|} ←Unsign-

crypt(PP, S KIDR , S, σ), ifσ is a valid aggregate signcryption

for multiset S under PP. We say that an aggregate signcryp-
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tion σ is valid for multiset S if: (1) S = {IDS i } for some

i ∈ [1, k], and σ ∈ Signcrypt(PP, Mi ∈ M, IDR ∈ IDR,

IDS i ∈ IDS , S KIDS i
); or (2) there exist multisets S̃, Ŝ where

S = S̃ ∪ Ŝ and valid aggregate signcryption σ̃, σ̂ on them

respectively such that σ ∈ Aggregate(PP, S̃, Ŝ, σ̃, σ̂).

4 Security model for identity based aggregate
signcryption schemes

Security of signcryption consists of two different mechanism:

one ensuring authenticity, and the other privacy.

4.1 Unforgeability

Informally, in the unforgeability game, it should be compu-

tationally infeasible for any adversary to produce a forgery

implicating an honest identity, even when the adversary can

control all other identities involved in the aggregate and can

mount a chosen message attack on the honest identity. This is

defined using a game between a challenger and an adversary

A with respect to scheme Π = (Setup, KeyGen, Signcrypt,
Aggregate, Unsigncrypt).

IBASC-Unforg (Π,A, λ):

• Setup The challenger runs Setup(1λ) to obtain PP. It

sends PP toA.

• Queries Proceeding adaptively, A can make three

types of requests:

1) Private key query On input an identity ID ∈ ID,

the challenger runs KeyGen(MSK, ID) to obtain

S KID. Then, it sends S KID to the adversaryA.

2) Signcrypt query On input an identity IDS ∈
IDS , an identity IDR ∈ IDR, and a message

M ∈ M, the challenger runs KeyGen(MSK, IDS )

to obtain S KIDS , and returns the signcryption re-

sulting from Signcrypt(PP, M, IDR, IDS , S KIDS )

toA.

3) Unsigncrypt query On input a multiset S =
{IDS 1 , . . . , IDS |S| } ∈ ID|S|S , an identity IDR ∈
IDR, and an aggregate signcryption σ (from S
to IDR), the challenger obtains the private key

S KIDR for IDR from KeyGen(MSK, IDR) and re-

turns corresponding messages {M1, . . . ,M|S|} or a

false symbol ⊥ to indicate whether verification

succeeded, where Mi is the message sent from

user UIDS i
with identity IDS i ∈ S to user UIDR

with identity IDR, for i ∈ [1, |S|].

• Response Finally, A outputs a multiset S∗ ∈ ID|S∗|S

of identities, a receiver identity ID∗R ∈ IDR and a pur-

ported aggregate signcryption σ∗.

We say the adversary “wins” or that the output of this ex-

periment is 1 if: (1) {M∗1, . . . , M∗|S∗ |} ← Unsigncrypt(PP,

S KID∗R , S∗, σ∗), (2) there exists an identity ID∗S i
∈ S∗ such

that ID∗S i
was not queried for a private key query by the ad-

versary, and (3) there exists a message M∗i corresponding to

ID∗S i
such that (M∗i , ID∗S i

) was not queried for a signcrypt

query by the adversary. Otherwise, the output is 0. Define

IBASC-ForgA as the probability that IBASC-Unforg(Π,A,

λ) = 1, where the probability is over the coin tosses of the

Setup, KeyGen, and Signcrypt algorithms and ofA.

Definition 1 (adaptive unforgeability) An ID-based aggre-

gate signcryption scheme Π is existentially unforgeable with

respect to adaptive chosen-message attacks if for all proba-

bilistic polynomial-time adversariesA, the function IBASC-

ForgA is negligible in λ.

Selective security: We consider a selective variant to

IBASC-Unforg (selective in both the identity and the mes-

sage) where there is an Init phase before the Setup phase,

wherein A gives to the challenger a forgery identity/ mes-

sage pair (ID∗S ∈ IDS , M∗ ∈ M). Note that M∗ is the mes-

sage sent form ID∗S . The adversary only “wins” causing the

experiment output to be 1 if: (1) {M∗1, . . . , M∗|S∗|} ← Unsign-
crypt(PP, S KID∗R , S∗, σ∗), (2) ID∗S was not queried for a pri-

vate key query by the adversary, and (3) M∗ ∈ {M∗1, . . . , M∗|S∗|}
is the message corresponding to ID∗S ∈ S∗, and (M∗, ID∗S )

was not queried for a signcrypt query by the adversary.

4.2 Confidentiality

Similar to unforgeability game, it should be infeasible for

any adversary to distinguish the challenge signcryption ci-

phertexts, even when the adversary can mount any adaptive

chosen identity and chosen ciphertext attacks. This is defined

using a game between a challenger and an adversaryA with

respect to scheme Π = (Setup, KeyGen, Signcrypt, Aggre-
gate, Unsigncrypt).

IBASC-IND-ID-CCA(Π,A, λ):

• Setup The challenger runs Setup(1λ) to obtain PP. It

sends PP toA.

• Phase 1 Proceeding adaptively, A can make three

types of requests:

1) Private key query: On input an identity ID ∈ ID,
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the challenger runs KeyGen(MSK, ID) to obtain

S KID. Then, it sends S KID to the adversaryA.

2) Signcrypt query: On input an identity IDS ∈
IDS , an identity IDR ∈ IDR, and a message

M ∈ M, the challenger runs KeyGen(MSK, IDS )

to obtain S KIDS , and returns the signcryption re-

sulting from Signcrypt(PP, M, IDR, IDS , S KIDS )

toA.

3) Unsigncrypt query: On input a multiset S =
{IDS 1 , . . . , IDS |S| } ∈ ID|S|S , an identity IDR ∈
IDR, and an aggregate signcryption σ (from S
to IDR), the challenger obtains the private key

S KIDR for IDR from KeyGen(MSK, IDR) and re-

turns corresponding messages {M1, . . . ,M|S|} or a

false symbol ⊥ to indicate whether verification

succeeds, where Mi is the message sent from user

UIDS i
with identity IDS i ∈ S to user UIDR with

identity IDR, for i ∈ [1, |S|].
• Challenge A chooses a multiset of identities S∗ =
{ID∗S 1

, . . . , ID∗S |S∗| } ∈ ID|S
∗|

S , a receiver identity ID∗R ∈
IDR, and two multisets of messages M∗1 = {M∗1,1, . . . ,

M∗1,|S∗|} and M∗2 = {M∗2,1, . . . , M∗2,|S∗|}, with the restric-

tion that |M∗1,i| = |M∗2,i|, for ∀i ∈ [1, |S∗|]. The Chal-

lenger generates the private keys for all identities in S∗.
Then, it chooses a random bit β ∈ {0, 1}, and computes

the signcryptions from Signcrypt(PP, M∗β,i, ID∗R, ID∗S i
,

S KID∗S i
) for ∀i ∈ [1, |S∗|]. Finally, the challenger ag-

gregates these signcryptions using the aggregation al-

gorithm, and returns the result {σ∗,S∗} toA. The adver-

sary’s choice of ID∗R is restricted to the identities those

are not queried for any private key queries in Phase 1.

• Phase 2 Phase 1 is repeated with the restriction that

the adversary cannot make a private key query on the

identity ID∗R, and cannot unsigncrypt {σ∗, S ∗}.
• Guess A outputs a bit b′.

Awins the game if b′ = b. The advantage ofA is given by

ADVA = |Pr[b′ = b] − 1
2 |.

Definition 2 (IND-ID-CCA) An ID-based aggregate sign-

cryption scheme Π is indistinguishable with respect to adap-

tive chosen-identity and chosen-ciphertext attacks if for all

probabilistic polynomial-time adversaries A, the advantage

ADVA is negligible in λ.

4.2.1 Chosen-plaintext attack

We consider a restricted variant to IBASC-IND-ID-CCA

where the adversaryA is not allowed to make Unsigncrypt
query in Phase 1 and Phase 2. We call this IBASC-IND-ID-
CPA game.

Definition 3 (IND-ID-CPA) An ID-based aggregate sign-

cryption scheme Π is indistinguishable with respect to adap-

tive chosen-identity and chosen-plaintext attacks if for all

probabilistic polynomial-time adversaries A, the advantage

ADVA is negligible in λ in IBASC-IND-ID-CPA game.

4.2.2 Selective security

We consider a selective variant to IBASC-IND-ID-CPA (se-

lective in receiver identity) where there is an Init phase be-

fore the Setup phase, wherein A gives to challenger the re-

ceiver identity ID∗R ∈ IDR. We call this IBASC-IND-sID-
CPA game.

Definition 4 (IND-sID-CPA) An ID-based aggregate sign-

cryption scheme Π is indistinguishable with respect to se-

lective chosen-identity and chosen-plaintext attacks if for all

probabilistic polynomial-time adversaries A, the advantage

ADVA is negligible in λ in IBASC-IND-sID-CPA game.

5 Identity-based aggregate signcryption con-
struction

5.1 Generic multlinear construction

The idea of this construction is inspired by the related work

[21] and [25], the former proposed an aggregate signature and

the latter proposed a key-encapsulation mechanism. Both of

them are constructed in the identity-based setting and using

multilinear maps.

• Setup(1λ, l, n) The trusted setup algorithm is run by PKG,

the master authority of the ID-based system. It takes as input

the security parameter as well the bit-length l of messages

and bit-length n of identities. The message space is defined

as {0, 1}l, and the identity space is defined as {0, 1}n, where

the sender identity space is defined as {0} × {0, 1}n−1, and the

receiver identity space is defined as {1}× {0, 1}n−1. It first runs

G(1λ, k = l + n) and outputs a sequence of groups
−→
G = (G1,

. . . , Gk) of prime order p, with canonical generators g1, . . . ,

gk, where we let g = g1.

Next, it chooses random exponents (a1,0, a1,1), . . . , (al,0,

al,1) ∈ Z2
p and sets Ai,α = gai,α for i ∈ [1, l] and α ∈ {0, 1}. It

also chooses random exponents (b1,0, b1,1), . . . , (bn,0, bn,1) ∈
Z

2
p and sets B j,β = gbj,β for j ∈ [1, n] and β ∈ {0, 1}.
These will be used to define two functions H̄(ID,M) :
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{0, 1}n × {0, 1}l → Gk and H̃(ID) : {0, 1}n → Gn. Let m1, . . . ,

ml be the bits of message M and id1, . . . , idn as the bits of ID.

It is computed iteratively as

H̄1(ID,M) = H̃1(ID) = B1,id1 .

For i ∈ [2, n],

H̄i(ID,M) = e(H̄i−1(ID,M), Bi,idi),

H̃i(ID) = e(H̃i−1(ID), Bi,idi).

For i ∈ [n + 1, n + l = k],

H̄i(ID,M) = e(H̄i−1(ID,M), Ai−n,mi−n).

It defines H̄(ID,M) = H̄k=n+l(ID,M), H̃(ID) = H̃n(ID).

Then, it sets a randomness extractor, which can extract a

uniform random l bits string form Gk, i.e., ext : Gk → {0, 1}l.
The public parameters, PP, consist of the group sequence

description plus: (A1,0, A1,1), . . . , (Al,0, Al,1), (B1,0, B1,1), . . . ,

(Bn,0, Bn,1), ext.
The master secret key MSK includes PP together with the

values (b1,0, b1,1), . . . , (bn,0, bn,1).

• KeyGen(MSK, ID ∈ {0, 1}n) The private key for identity

ID = id1 · · · idn is S KID = g
∏

j∈[1,n]bj,id j

n−1 ∈ Gn−1.

• Signcrypt(Mi ∈ {0, 1}l, IDR ∈ {1} × {0, 1}n−1, IDS i ∈
{0}×{0, 1}n−1, S KIDS i

, PP) The Signcryption algorithm takes

Mi = mi,1 · · ·mi,l, IDR = idR,1 · · · idR,n, IDS i = idS i,1 · · · idS i,n,

S KIDS i
= g

∏
j∈[1,n]bj,idS i , j

n−1 and PP as input, lets temporary vari-

able Di,0 = S KIDS i
, and chooses ti ∈ Zp randomly. Then for

j = 1 to l it computes Di, j = e(Di, j−1, A j,mi, j) ∈ Gn−1+i. The

output signcryption is σS i = (σS i,0, σS i,1, σS i,2), where

σS i ,0 = ext(e(H̃(IDR), gti
l )) ⊕ Mi, σS i ,1 = gti

l+1,

σS i ,2 = Di,l = (gk−1)
∏

j∈[1,n]bj,idS i, j
·∏ j∈[1,l]ai,mi, j .

This serves as an ID-based aggregate signcryption for the

(single element) multiset S = {IDS i }.
• Aggregate(PP, Sx, Sy, σx, σy) The aggregation algo-

rithm simply computes the output signcryption σz as σz =

(σx,0‖σy,0, σx,1‖σy,1, σx,2 · σy,2), where ‖ is a concatenation

symbol. This serves as a signcryption on the multiset Sz =

Sx
⋃ Sy, where

⋃
is a multiset union.

•Unsigncrypt(PP, S KIDR , S, σ) ForS = {IDS 1 , . . . , IDS |S| },
σ = { σIDS 1 ,0

‖ · · · ‖ σIDS |S| ,0, σIDS 1 ,1
‖ · · · ‖ σIDS |S| ,1, σ2 }, the

unsigncryption algorithm computes that

Mi = σIDS i ,0
⊕ ext(e(S KIDR , σIDS i ,1

)),

for i ∈ {1, . . . , |S|}.

It then accepts if and only if

e(σ2, g)
?
=
∏

i=1,...,|S|
H̄(IDS i ,Mi).

5.2 Correctness

For correct “decryption”, we have

H̃(IDR) = H̃n(IDR)

= e(H̃n−1(IDR), Bn,idR,n)

= e(e(H̃n−2(IDR), Bn−1,idR,n−1), Bn,idR,n)

. . .

= e(B1,idR,1 , . . . , Bn,idR,n)

= e(g
b1,idR,1

1 , . . . , g
bn,idR,n

1 )

= g
∏

j∈[1,n]bj,idR, j
n ,

e(S KIDR , σIDS i ,1
) = e(g

∏
j∈[1,n]bj,idR, j

n−1 , gti
l+1)

= g
∏

j∈[1,n]bj,idR, j ·ti
n+l .

Therefore, for i ∈ [1, |S|]:

e(H̃(IDR), gti
l ) = g

∏
j∈[1,n]bj,idR, j ·ti

n+l

= e(S KIDR , σIDS i ,1
),

then,

σIDS i ,0
⊕ ext(e(S KIDR , σIDS i ,1

)) = Mi.

For “authentication”, we have

σ2 =
∏

i∈[1,|S|]
σS i ,2

=
∏

i∈[1,|S|]
(gk−1)

∏
j∈[1,n]bj,idS i , j

·∏ j∈[1,l]aj,mi, j

= (gk−1)
∑

i∈[1,|S|](
∏

j∈[1,n]bj,idS i , j
·∏ j∈[1,l]aj,mi, j ),

∏

i=1,...,|S|
H̄(IDS i ,Mi)

=
∏

i=1,...,|S|
(gk)

∏
j∈[1,n]bj,idS i , j

·∏ j∈[1,l]aj,mi, j

= (gk)
∑

i∈[1,|S|](
∏

j∈[1,n]bj,idS i , j
·∏ j∈[1,l]aj,mi, j ).

Therefore, if (S, σ) is a “correct” aggregate signcryption

ciphertext, then

e(σ2, g) =
∏

i=1,...,|S|
H̄(IDS i ,Mi)

= (gk)
∑

i∈[1,|S|](
∏

j∈[1,n]bj,idS i , j
·∏ j∈[1,l]aj,mi, j ).
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5.3 Security

5.3.1 Unforgeability

Theorem 1 The ID-based aggregate signcryption scheme

for message length l and identity length n in Section 5.1 is

selectively secure in the unforgeability game under the (l+n)-

MCDH assumption.

Proof We show that if there exists a PPT adversary A that

can break the selective security of the ID-based aggregate

signcryption scheme in the unforgeability game with a non-

negligible advantage for message length l, identity length n

and security parameter λ, then there exists a PPT simulator

that can break the (l + n)-MCDH assumption. The simula-

tor takes as input an MCDH instance (g, gc1 , . . . , gck ) together

with the group descriptions where k = l+n. Let m j denote the

j-th bit of M and id j denote the j-th bit of ID. The simulator

plays the role of the challenger in the game as follows.

• Init Let ID∗S ∈ {0} × {0, 1}n−1 and M∗ ∈ {0, 1}l be the

forgery identity/message pair output byA.

• Setup The simulator chooses random x1, . . . , xl,

y1, . . . , yn ∈ Zp. For i = 1 to l, let Ai,m∗i = gci+n and

Ai,1−m∗i = gxi . For i = 1 to n, let Bi,id∗S ,i = gci and

Bi,1−id∗S ,i = gyi . We remark that the parameters are dis-

tributed independently and uniformly at random as in

the real scheme.

• Queries Conceptually, the simulator will be able to

generate keys or signcrypt or unsigncrypt for the adver-

sary, because its requests will differ from the challenge

identity or message in at least one bit. More specifi-

cally,

1) Private key query:

(a) On input an identity IDS ∈ {0} × {0, 1}n−1,

if IDS = ID∗S , the simulator will abort.

Otherwise, the simulator computes the pri-

vate key as follows. Let β be the first in-

dex such that idS ,β � id∗S ,β. Use n − 2

pairings on the Bγ,idS ,γ values to compute

s = (gn−1)
∏
γ=1,...,n∧γ�β bγ,idS ,γ . Then compute

S KIDS = syβ = (gn−1)
∏
γ=1,...,n bγ,idS ,γ . The simu-

lator sends S KIDS to the adversaryA.

(b) On input an identity IDR ∈ {1} ×
{0, 1}n−1, the simulator uses n − 2 pair-

ings on the Bγ,idR,γ values to compute s =

(gn−1)
∏
γ=2,...,n bγ,idR,γ . Then compute S KIDR =

sy1 = (gn−1)
∏
γ=1,...,n bγ,idR,γ . The simulator sends

S KIDR to the adversaryA.

Private keys are unique and perfectly distributed

as in the real game.

2) Signcrypt query: On input an identity IDS i ∈
{0} × {0, 1}n−1, an identity IDR ∈ {1} × {0, 1}n−1,

and a message Mi ∈ {0, 1}l, if IDS i � ID∗S , the

simulator creates signcryption ciphertext in the

usual way, because it can generate the private keys

of any identities IDS i � ID∗S as in the private

key query phase. If IDS i = ID∗S , then we know

Mi � M∗. The simulator creates σS i ,0 and σS i ,1

in the usual way. Let β be the first index such

that mi,β � m∗β. Use l − 2 pairings on the A j,mi, j

values to compute σ′i,2 = (gl−1)
∏

j=1,...,l∧ j�β aj,mi, j .

Next, compute σ′′i,2 = σ
′
i,2

xβ = (gl−1)
∏

j=1,...,l a j,mi, j .

Use n − 1 pairings on the B j,idi, j values to com-

pute t = (gn)
∏

j=1,...,n b j,idi, j . Finally, compute σi,2 =

e(t, σ′′i,2) = (gk−1)
∏

j∈[1,n]bj,idi, j ·
∏

j∈[1,l]ai,mi, j . Return σS i

= (σS i ,0, σS i ,1, σS i ,2) and S = {IDS i } to A. Sign-

cryption ciphertexts are unique and perfectly dis-

tributed as in the real game.

3) Unsigncrypt query: The simulator can run unsign-

cryption in the usual way, because it can gen-

erate the private keys of any identities IDR ∈
{1} × {0, 1}n−1 freely.

• Response A outputs an aggregate signcryption cipher-

text σ∗ on multiset S∗ where ID∗S ∈ S∗ and M∗ is the

corresponding message sent from ID∗S . The simulator

will extract from this a solution to the MCDH problem.

This works by iteratively computing all the other sign-

cryption in S∗ and then dividing them out of the aggre-

gate until only one or more signcryption ciphertexts on

(ID∗S , M∗) remain. That is, the simulator takes an ag-

gregate for S∗ and computes an aggregate signcryption

ciphertext for S′ where S′ has one less identity than

S∗ at each step. These signcryption will be computed

as in the query phase. Eventually, we have an aggre-

gate instances σ′ on w � 1 of (ID∗S ,M∗). We have that

e(σ′2, g) = H̄(ID∗S ,M
∗)w
= (gk)

w·(∏ j∈[1,n]bj,id∗S , j ·
∏

j∈[1,l]aj,m∗j )

and thus σ′2 = (gk−1)w
∏

j∈[1,k]c j . The simulator com-

putes σ′1/w2 (recall that w is not 0 mod p) which gives

(gk−1)
∏

j∈[1,k]c j and this is given as the solution to the

MCDH problem.

As remarked in the Setup and Query phase, the responses

of the challenger are distributed identically to the real un-

forgeability game. The simulator succeeds wheneverA does.
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5.3.2 Confidentiality

Theorem 2 The ID-based aggregate signcryption scheme

for message length l and identity length n in Section 5.1 is

IND-sID-CPA under the (l + n)-MDDH assumption.

Proof We show that if there exists a probabilistic poly-

nomial-time (PPT) adversaryA that can break the IND-sID-

CPA security of the ID-based aggregate signcryption scheme

in IBASC-IND-sID-CPA game with a non-negligible advan-

tage for message length l, identity length n and security pa-

rameter λ, then there exists a PPT simulator B that can break

the (l+n)-MDDH assumption. The simulator takes as input an

MDDH instance (g, gc1 , . . . , gck+1 , T ) together with the group

descriptions, where k = l + n, and T is identical to g
∏

j∈[1,k+1] c j

k

or uniform and independent in Gk. B’s goal is to output 1 if

T = g
∏

j∈[1,k+1] c j

k and 0 otherwise. Let m j denote the jth bit of

M and id j denote the jth bit of ID. The simulator plays the

role of the challenger in the game as follows.

• Init A outputs an identity ID∗R = id∗R,1 . . . id
∗
R,n, where

it wishes to be challenged, the id∗R, j is the j-th bit of ID∗R,

and id∗R,1 = 1.

• Setup B chooses random exponents (a1,0, a1,1), . . . ,

(al,0, al,1) ∈ Z2
p and sets Ai,α = gai,α for i ∈ [1, l] and

α ∈ {0, 1}. It also chooses random exponents b1,. . . , bn∈
Zp and sets (B j,id∗j = gcj , B j,(1−id∗j ) = gbj ) for j ∈ [1, n].

Then, it sets a randomness extractor ext : Gk → {0, 1}l,
and sends (A1,0, A1,1), . . . , (Al,0, Al,1),(B1,0, B1,1), . . . ,

(Bn,0, Bn,1), ext as well as the group sequence descrip-

tion toA. We remark that the parameters are distributed

independently and uniformly at random as in the real

scheme.

• Phases 1 and 2 Conceptually, the simulator will be

able to generate keys or signcrypt for the adversary, be-

cause its requests will differ from the challenge identity

in at least one bit.

1) Private key query:

(a) On input an identity IDS ∈ {0} ×
{0, 1}n−1, the simulator uses n − 2 pair-

ings on the Bγ,idS ,γ values to compute s =

(gn−1)
∏
γ=2,...,n bγ,idS ,γ . Then compute S KIDS =

sy1 = (gn−1)
∏
γ=1,...,n bγ,idS ,γ . The simulator sends

S KIDS to the adversaryA.

(b) On input an identity IDR ∈ {1} × {0, 1}n−1,

if IDR = ID∗R, the simulator will abort.

Otherwise, the simulator computes the pri-

vate key as follows. Let β be the first in-

dex such that idR,β � id∗R,β. Use n − 2

pairings on the Bγ,idR,γ values to compute

s = (gn−1)
∏
γ=1,...,n∧ j�β bγ,idR,γ . Then compute

S KIDR = sbβ = (gn−1)
∏
γ=1,...,n bγ,idR,γ . The simu-

lator sends S KIDR to the adversaryA.

Private keys are unique and perfectly distributed

as in the real game.

2) Signcrypt: On input an identity IDS i ∈ {0} ×
{0, 1}n−1, an identity IDR ∈ {1} × {0, 1}n−1, and

a message Mi ∈ {0, 1}l, the simulator creates sign-

cryption ciphertext in the usual way, because it

can generate the private keys of any identities

IDS i ∈ {0} × {0, 1}n−1.

• Challenge A chooses a multiset of identities S∗
= {ID∗S 1

, . . . , ID∗S |S∗ | }, and two multisets of messages

M∗1 = {M∗1,1, . . . ,M∗1,|S∗|} and M∗2 = {M∗2,1, . . . ,M∗2,|S∗|}.
B generates S KID∗S i

for ∀ ID∗S i
∈ S∗. Then, it chooses

a random bit β ∈ {0, 1}, chooses a random integer

t′i ∈ Zp, and calculates the signcryption ciphertexts σ∗S i

= (σ∗S i,0
, σ∗S i ,1

, σ∗S i ,2
) for ID∗S i

∈ S∗, where σ∗S i ,2
is cal-

culated in the usual way, and

σ∗S i ,0 = ext(T t′i ) ⊕ M∗β,i, σ
∗
S i ,1 = g

t′i
∏

j∈[1,l+1] cn+ j

l+1 .

Finally, the challenger aggregates these signcryptions

using the aggregation algorithm, and returns the result

{σ∗,S∗} toA.

• Guess A outputs his guess b′ ∈ {0, 1} for b.

If b = 1 thenA played the proper security game. On the other

hand, if b = 0, all information about the message M∗b is lost.

Therefore the advantage of A is exactly 0. As a result if A
breaks the proper security game with a non-negligible advan-

tage, then B has a non-negligible advantage in breaking the

(l + n)-MDDH assumption.

6 IB-ASC in the GGH framework

In this section, we show how to modify our ID-based con-

struction to use the GGH [23] graded algebras analogue of

multilinear maps. For ease of notation on the reader, we sup-

press repeated params arguments that are provided to every

algorithm. Thus, for instance, we will write α ← samp() in-

stead of α← samp(params). Note that in our scheme, there

will only ever be a single uniquely chosen value for params
throughout the scheme, so there is no cause for confusion.

For further details on the GGH framework, please refer to

Ref. [23]. The realization method of GGH’s graded encoding
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system is included in Appendix.

6.1 Construction in the GGH framework

• Setup(1λ, l, n) The trusted setup algorithm is run by PKG,

the master authority of the ID-based system. It takes as input

the security parameter as well the bit-length l of messages

and bit-length n of identities. The message space is defined

as {0, 1}l, and the identity space is defined as {0, 1}n, where

the sender identity space is defined as {0} × {0, 1}n−1, and the

receiver identity space is defined as {1}×{0, 1}n−1. It then runs

(params, pzt)← InstGen(1λ, 1k), where k = l+n. Recall that

params will be implicitly given as input to all GGH-related

algorithms below.

Next, it chooses random encodings ai,α = samp() for

i ∈ [1, l], α ∈ {0, 1}, and bi,β = samp() for i ∈ [1, n],

β ∈ {0, 1}. Then it assigns Ai,α = enc(1, ai,α) for i ∈ [1, l],

α ∈ {0, 1}, and B j,β = enc(1, b j,β) for j ∈ [1, n], β ∈ {0, 1}.
These will be used to define two functions H̄(ID,M) :

{0, 1}n × {0, 1}l → Gk and H̃(ID) : {0, 1}n → Gn. Let m1, . . . ,

ml be the bits of message M and id1, . . . , idn as the bits of ID.

It is computed iteratively as

H̄1(ID,M) = H̃1(ID) = B1,id1 .

For i ∈ [2, n],

H̄i(ID,M) = mult(H̄i−1(ID,M), Bi,idi),

H̃i(ID) = mult(H̃i−1(ID), Bi,idi).

For i ∈ [n + 1, n + l = k],

H̄i(ID,M) = mult(H̄i−1(ID,M), Ai−n,mi−n).

It defines H̄(ID,M) = reRand(k, H̄k(ID,M)), H̃(ID) =

reRand(n, H̃n(ID)).

Then, it sets a pseudorandom number generatorF (s)→ s′,
where s ∈ {0, 1}λ is the seed, and s′ ∈ {0, 1}l is a pseudoran-

dom number.

The public parameters, PP, consist of the group sequence

description plus: (A1,0, A1,1), . . . , (Al,0, Al,1), (B1,0, B1,1), . . . ,

(Bn,0, Bn,1), F .

The master secret key MSK includes PP together with the

values (b1,0, b1,1), . . . , (bn,0, bn,1).

• KeyGen(MSK, ID ∈ {0, 1}n) The private key for iden-

tity ID = id1 · · · idn is S KID = reRand(n − 1, enc(n −
1,
∏

i∈[1,n]bi,idi)).

• Signcrypt(Mi ∈ {0, 1}l, IDR ∈ {1} × {0, 1}n−1, IDS i ∈
{0}×{0, 1}n−1, S KIDS i

, PP) The Signcryption algorithm takes

Mi = mi,1 · · ·mi,l, IDR = idR,1 · · · idR,n, IDS i = idS i,1 · · · idS i,n,

S KIDS i
= reRand(n − 1, enc(n − 1,

∏
j∈[1,n]b j,idS i, j

)) and PP

as input, lets temporary variable Di,0 = S KIDS i
, and chooses

encodings ti = samp() randomly. Then for j = 1 to l it com-

putes Di, j =mult(D j−1, A j,mi, j) ∈ Gn−1+i. The output signcryp-

tion is σS i = (σS i,0, σS i,1, σS i,2), where

σS i,0 = F (ext(mult(H̃(IDR), enc(l, ti)))) ⊕ Mi,

σS i,1 = enc(l + 1, ti),

σS i ,2 = reRand(k − 1,Dl).

This serves as an ID-based aggregate signcryption for the

(single element) multiset S = {IDS i }.
• Aggregate(PP, Sx, Sy, σx, σy) The aggregation algo-

rithm simply computes the output signcryption σz as σz =

(σx,0‖σy,0, σx,1‖σy,1, σx,2 + σy,2), where ‖ is a concatenation

symbol. The serves as a signcryption on the multiset Sz = Sx

∪ Sy, where ∪ is a multiset union.

•Unsigncrypt(PP, S KIDR , S, σ) For S = {IDS 1 , . . . , IDS |S | },
σ = { σIDS 1 ,0

‖. . . ‖ σIDS |S| ,0, σIDS 1 ,1
‖. . . ‖ σIDS |S| ,1, σ2 }, the

unsigncryption algorithm computes that

Mi = σIDS i ,0
⊕ F (ext(mult(S KIDR , σIDS i ,1

))),

for i ∈ {1, . . . , |S|}.
It then accepts if and only if the under zero testing proce-

dure outputs true.

isZero(pzt,mult(σ2, g) −
∑

i=1,...,|S|
H̄(IDS i ,Mi)).

Correctness Correctness follows from the same argument

as for the IBASC scheme in the generic multilinear setting.

6.2 Security

6.2.1 Unforgeability

Theorem 3 The ID-based aggregate signcryption scheme

for message length l and identity length n in Section 6.1 is

selectively secure in the unforgeability game under the GGH

(l + n)-MCDH assumption.

Proof We show that if there exists a PPT adversary A that

can break the selective security of the ID-based aggregate

signcryption scheme in the unforgeability game with a non-

negligible advantage for message length l, identity length n

and security parameter λ, then there exists a PPT simulator

that can break the GGH (l+ n)-MCDH assumption. The sim-

ulator takes as input a GGH MCDH instance, params, pzt,

C1 = enc(1, c1), . . . , Ck = enc(1, ck) where k = l + n. Let

m j denote the j-th bit of M and id j denote the j-th bit of ID.

The simulator plays the role of the challenger in the game as

follows.
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• Init Let ID∗S ∈ {0} × {0, 1}n−1 and M∗ ∈ {0, 1}l be the

forgery identity/message pair output byA.

• Setup The simulator chooses random x1, . . . , xl,

y1, . . . , yn with fresh calls to samp(). For i = 1 to l, let

Ai,m∗i = Ci+n and Ai,1−m∗i = enc(1, xi). For i = 1 to n, let

Bi,id∗S i
= Ci and Bi,1−id∗S i

= enc(1, yi). We remark that the

parameters are distributed independently and uniformly

at random as in the real scheme.

• Queries Conceptually, the simulator will be able to

generate keys or signcrypt or unsigncrypt for the adver-

sary, because its requests will differ from the challenge

identity or message in at least one bit. More specifi-

cally,

1) Private key query:

(a) On input an identity IDS ∈ {0} × {0, 1}n−1,

if IDS = ID∗S , the simulator will abort.

Otherwise, the simulator computes the pri-

vate key as follows. Let β be the first in-

dex such that idS ,β � id∗S ,β. Use n − 2 mul-

tiplications on the Bγ,idS ,γ values to com-

pute s =
∏
γ=1,...,n∧ j�β Bγ,idS ,γ . Then compute

S KIDS = reRand(n−1, s·yβ). The simulator

sends S KIDS to the adversaryA.

(b) On input an identity IDR ∈ {1} × {0, 1}n−1,

the simulator uses n − 2 multiplications

on the Bγ,idR,γ values to compute s =
∏
γ=2,...,n Bγ,idR,γ . Then compute S KIDR =

reRand(n − 1, s · y1). The simulator sends

S KIDR to the adversaryA.

Private keys are unique and perfectly distributed

as in the real game.

2) Signcrypt: On input an identity IDS i ∈ {0} ×
{0, 1}n−1, an identity IDR ∈ {1} × {0, 1}n−1, and

a message Mi ∈ {0, 1}l, if IDS i � ID∗S , the sim-

ulator creates signcryption ciphertext in the usual

way. If IDS i = ID∗S , then we know Mi � M∗.
The simulator creates σS i ,0 and σS i ,1 in the usual

way. Let β be the first index such that mi,β � m∗β.
Use l − 2 multiplications on the A j,mi, j values to

compute σ′S i ,2
=
∏

j=1,...,l∧ j�β A j,mi, j . Next, com-

pute σ′′S i ,2
= σ′S i ,2

· xi. Use n−1 multiplications on

the B j,idS i, j
values to compute γ =

∏
j=1,...,n B j,idS i, j

.

Finally, compute σS i ,2 = reRand(k − 1, γ · σ′′S i ,2
).

Return σS i = (σS i,0, σS i ,1, σS i ,2) and S = {IDS i } to
A. Signcryption ciphertexts are unique and per-

fectly distributed as in the real game.

3) Unsigncrypt: The simulator can run unsigncryp-

tion in the usual way, because it can generate the

private keys of any identity IDR ∈ {1} × {0, 1}n−1

freely.

• Response A outputs an aggregate signcryption cipher-

textσ∗ on multisetS∗ where ID∗S ∈ S and M∗ is the cor-

responding message sent from ID∗S . The simulator will

extract from this a solution to the GGH MCDH prob-

lem. This works by iteratively computing all the other

signatures in S∗ and then dividing them out of the ag-

gregate until only one or more signcryption ciphertexts

on (ID∗S , M∗) remain. That is, the simulator takes an

aggregate for S∗ and computes an aggregate signcryp-

tion ciphertext for S′ where S′ has one less identity

than S∗ at each step. These signcryption will be com-

puted as in the query phase. Eventually, we have an

aggregate instances σ′ on w � 1 of (ID∗S ,M∗). How-

ever recall that H̄(ID∗S ,M
∗) is a level k encoding of

(
∏

j∈[1,n]b j,id∗S , j) · (
∏

j∈[1,l]a j,m∗j ) =
∏

j∈[1,k]c j. Thus veri-

fication of the signcryption ciphertexts implies that (w,

σ′2) is a solution to the GGH k-MCDH problem, and

so the simulator returns (w, σ′2) to break the GGH k-

MCDH assumption.

As remarked in the Setup and Query phase, the responses

of the challenger are distributed identically to the real un-

forgeability game. The simulator succeeds wheneverA does.

6.2.2 Confidentiality

Theorem 4 The ID-based aggregate signcryption scheme

for message length l and identity length n in Section 6.1 is

IND-sID-CPA under the GGH (l + n)-MDDH assumption.

Proof We show that if there exists a PPT adversary A
that can break the IND-sID-CPA security of the ID-based ag-

gregate signcryption scheme in IBASC-IND-sID-CPA game

with a non-negligible advantage for message length l, iden-

tity length n and security parameter λ, then there exists a PPT

simulator B that can break the GGH (l + n)-MDDH assump-

tion. The simulator takes as input an GGH MDDH instance,

params, pzt, C1 = enc(1, c1), . . . , Ck+1 = enc(1, ck+1) and a

level-k encoding T , where k = l + n. Algorithm B’s goal is to

output 1 if isZero(pzt, reRand(T )-reRand(enc(params, k,
∏

j∈[1,k+1] c j)))=1 and 0 otherwise. Let m j denote the j-th bit

of M and id j denote the j-th bit of ID. The simulator plays

the role of the challenger in the game as follows.

• Init A outputs an identity ID∗R = id∗R,1 · · · id∗R,n, where
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it wishes to be challenged, the id∗R, j is the jth bit of ID∗R.

• Setup B chooses random a1,0, a1,1 . . . , al,0, al,1, b1, . . . ,

bn with fresh calls to samp(), and sets (Ai,0 =

enc(1, ai,0), Ai,1 = enc(1, ai,1)) for i ∈ [1, l], sets (Bi,id∗R,i
= Ci, Bi,(1−id∗R,i) = enc(1, bi)) for i ∈ [1, n]. We remark

that the parameters are distributed independently and

uniformly at random as in the real scheme.

• Phases 1 and 2 Conceptually, the simulator will be

able to create keys or signcrypt for the adversary, be-

cause his requests will differ from the challenge identity

in at least one bit.

1) Private key query:

(a) On input an identity IDS ∈ {0} × {0, 1}n−1,

the simulator uses n − 2 multiplications

on the Bγ,idS ,γ values to compute s =
∏
γ=2,...,n Bγ,idR,γ . Then compute S KIDS =

reRand(n − 1, s · b1). The simulator sends

S KIDS to the adversaryA.

(b) On input an identity IDR ∈ {1} × {0, 1}n−1,

if IDR = ID∗R, the simulator will abort.

Otherwise, the simulator computes the se-

cret key as follows. Let β be the first in-

dex such that idR,β � id∗R,β. Use n − 2 mul-

tiplications on the Bγ,idR,γ values to com-

pute s =
∏
γ=1,...,n∧γ�β Bγ,idR,γ . Then compute

S KIDR = reRand(n−1, s·bβ). The simulator

sends S KIDR to the adversaryA.

Private keys are unique and perfectly distributed

as in the real game.

2) Signcrypt: On input an identity IDS i ∈ {0} ×
{0, 1}n−1, an identity IDR ∈ {1} × {0, 1}n−1, and

a message Mi ∈ {0, 1}l, the simulator creates sign-

cryption ciphertext in the usual way.

• Challenge A chooses a multiset of identities S∗ =
{ID∗S 1

, . . . , ID∗S |S ∗| }, and two multisets of messages M∗1 =
{M∗1,1, . . . ,M∗1,|S ∗|} and M∗2 = {M∗2,1, . . . ,M∗2,|S ∗|}. B gen-

erates S KID∗S i
for ∀ ID∗S i

∈ S∗. Then, it chooses a ran-

dom bit β ∈ {0, 1}, chooses random t′i with fresh calls to

samp(), and calculates the the signcryption ciphertexts

σ∗S i
= (σ∗S i ,0

, σ∗S i ,1
, σ∗S i ,2

) for ID∗S i
∈ S∗, where σS i ,2 is

calculated in the usual way, and

σS i ,0 = F (ext(T · t′i )) ⊕ M∗β,i,

σS i ,1 = t′i ·
∏

j∈[1,l+1]

Cn+ j.

Finally, the challenger aggregates these signcryptions

using the aggregation algorithm, and returns the result

{σ∗,S∗} toA.

• Guess A outputs his guess b′ ∈ {0, 1} for b.

If b = 1 thenA played the proper security game. On the other

hand, if b = 0, all information about the message M∗b is lost.

Therefore the advantage of A is exactly 0. As a result if A
breaks the proper security game with a non-negligible advan-

tage, then B has a non-negligible advantage in breaking the

GGH (l + n)-MDDH assumption.

7 Conclusions

We construct a new identity-based aggregate signcryption

scheme in multilinear map setting, and prove its security in

the standard model. To the best of my knowledge, this is the

first identity-based aggregate signcryption scheme that is se-

cure in the standard model.

This work motivates two open problems. The first is to find

an efficient identity-based aggregate signcryption scheme

(without random oracles). The second is to find an identity-

based aggregate signcryption scheme with full security.
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Appendix

Realization of graded encoding system

GGH’s n-graded encoding system works as follows. (This

is a whirlwind overview, see [23] for details.) The system

uses three rings. First, it uses the ring of integers O of the

mth cyclotomic field. This ring is typically represented as the

ring of polynomials O = Z[x]/(Φm(x)), where Φm(x) is m-th

cyclotomic polynomial, which has degree N = φ(m). Sec-

ond, for some suitable integer modulus q, it uses the quotient

ring O/(q) = Zq[x]/(Φm(x)), similar to the NTRU encryption

scheme [26]. The encodings live in O/(q). Finally, it uses the

quotient ring R = O/I, where I = 〈g〉 is a principal ideal

of O that is generated by g and where |O/I| is a large prime.

This is the ring “R” referred to above; elements of R are what

is encoded.

What does a GGH encoding look like? For a fixed ran-

dom z ∈ O/(q), an element of S (α)
i — that is, a level-i en-

coding of α ∈ R — has the form e/zi ∈ O/(q), where e ∈ O
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is a “small” representative of the coset α + I (it has coeffi-

cients that are very small compared to q). To add encodings

e1/zi ∈ S (α1)
i and e2/zi ∈ S (α2)

i , just add them in O/(q) to ob-

tain (e1 + e2)/zi, which is in S (α1+α2)
i if e1 + e2 is “small”. To

mult encodings e1/zi1 ∈ S (α1)
i1

and e2/zi2 ∈ S (α2)
i2

, just multiply

them in O/(q) to obtain (e1 · e2)/zi1+i2 , which is in S (α1·α2)
i1+i2

if

e1 · e2 is “small”. This smallness condition limits the GGH

encoding system to degree polynomial in the security param-

eter. Intuitively, dividing encodings does not “work”, since

the resulting denominator has a nontrivial term that is not z.

The GGH params allow everyone to generate encodings

of random (known) values. The params include a level-1

encoding of 1 (from which one can generate encodings of

1 at other levels), and (for each i ∈ [n]) a sufficient number

of level-i encodings of 0 to enable re-randomization. To en-

code (say at level-1), run samp(params) to sample a small

element a from O, e.g., according to a discrete Gaussian dis-

tribution. For a Gaussian with appropriate deviation, this will

induce a statistically uniform distribution over the cosets of

I. Then, multiply a with the level-1 encoding of 1 to get a

level-1 encoding u of a ∈ R. Finally, run

reRand(params, 1, u), which involves adding a random

Gaussian linear combination of the level-1 encodings of 0,

whose noisiness (i.e., numerator size) “drowns out” the ini-

tial encoding. The parameters for the GGH scheme can be

instantiated such that the re-randomization procedure can be

used for any pre-specified polynomial number of times.

To permit testing of whether a level-n encoding u = e/zn ∈
S n encodes 0, GGH publishes a level-n zero-test parameter

pzt = hzn/g, where h is “somewhat small” and g is the gen-

erator of I. The procedure isZero(params, pzt, u) simply

computes pzt·u and tests whether its coefficients are small

modulo q. If u encodes 0, then e ∈ I and equals g · c for some

(small) c, and thus pzt·u= h·c has no denominator and is small

modulo q. If u encodes something nonzero, pzt·u has g in the

denominator and is not small modulo q. The ext(params,

pzt, u) procedure works by applying a strong extractor to the

most significant bits of pzt·u. For any two u1, u2 ∈ S (α)
n , we

have (subject to noise issues) u1 − u2 ∈ S (0)
n , which implies

pzt(u1−u2) is small, and hence pzt·u1 and pzt·u2 have the same

most significant bits (for an overwhelming fraction of α’s).

Garg et al. provide an extensive cryptanalysis of the en-

coding system, which we will not review here. We remark

that the underlying assumptions are stronger, but related to,

the hardness assumption underlying the NTRU encryption

scheme: that it is hard to distinguish a uniformly random el-

ement from O/(q) from a ratio of “small” elements i.e., an

element u/v ∈ O/(q) where u, v ∈ O/(q) both have coeffi-

cients that are on the order of (say) qε for small constant ε.
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