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Abstract Together with the big data movement, many orga-

nizations collect their own big data and build distinctive ap-

plications. In order to provide smart services upon big data,

massive variable data should be well linked and organized

to form Data Ocean, which specially emphasizes the deep

exploration of the relationships among unstructured data to

support smart services. Currently, almost all of these appli-

cations have to deal with unstructured data by integrating

various analysis and search techniques upon massive storage

and processing infrastructure at the application level, which

greatly increase the difficulty and cost of application devel-

opment.

This paper presents D-Ocean, an unstructured data man-

agement system for data ocean environment. D-Ocean has an

open and scalable architecture, which consists of a core plat-

form, pluggable components and auxiliary tools. It exploits

a unified storage framework to store data in different kinds

of data stores, integrates batch and incremental processing

mechanisms to process unstructured data, and provides a

combined search engine to conduct compound queries. Fur-

thermore, a so-called RAISE process modeling is proposed

to support the whole process of Repository, Analysis, In-

dex, Search and Environment modeling, which can greatly

simplify application development. The experiments and use

cases in production demonstrate the efficiency and usability

Received January 29, 2015; accepted June 12, 2015

E-mail: jshao@zju.edu.cn

of D-Ocean.
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1 Introduction

Nowadays, data is being generated at an astounding rate by

everything around us at all times. Together with the big data

movement, many organizations try to collect their own big

data and build distinctive applications [1]. Due to the variety

characteristic of big data [2], these applications have to deal

with unstructured data, such as texts, images, videos, and au-

dios, whose content does not have a specific, pre-defined data

model.

Taking digital library application as an example, today,

the application maintains not only a great amount of digital

books, but also enrichments in various forms, e.g., pictures,

calligraphy, paintings, as well as the relationships between

them. NoSQL databases (e.g., HBase and MongoDB1))

and distributed computing frameworks (e.g., Hadoop and

Storm2)) are adopted to build massive storage and processing

infrastructure. Various unstructured data analysis and search

techniques (e.g., UIMA [3], Solr3)) are integrated to support

complex content based queries. In this way, massive variable

data are well linked and organized to form Data Ocean [4],

which specially emphasizes the deep exploration of the rela-

tionships among unstructured data to support smart services,

1) http://hbase.apache.org/, and http://www.mongodb.org/
2) http://hadoop.apache.org/, and https://storm.incubator.apache.org/
3) http://lucene.apache.org/solr/
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e.g., knowledge discovery, cross media retrieval, and person-

alized recommendation.

However, due to the lack of system support, almost all of

these applications have to deal with unstructured data at the

application level (integrating various unstructured data analy-

sis and search techniques upon massive storage and process-

ing infrastructure), which greatly increase the difficulty and

cost of application development. Additionally, such solutions

cannot well support the representation of links between data,

which is crucial to form Data Ocean.

Among these big data related applications, there is a great

need of unstructured data management system (UDMS),

which can store and use all forms of unstructured data. To

the best of our knowledge, there is no formal definition for

UDMS. In this paper, we define UDMS as a fundamental

software platform for managing unstructured data, with core

functionalities of storage, analysis, index, and search.

In the environment of Data Ocean with the issues beyond

volume, variety, and velocity of big data to the special em-

phasis on the deep exploration of the relationships among

unstructured data to support smart services, several require-

ments are imposed over each functionality in a UDMS, which

are listed as follows:

1) Storage Requirement

The underlying storage infrastructure should be scalable

and agile to deal with large volume of data and various types

of data. Specifically, it should support different storage re-

quirements of unstructured data, including raw data, low-

level features, and semantic features. In addition, in order to

adapt to the quick changes of unstructured data, the storage

should support evolution of the repository model over time

and extensibility of new types of unstructured data.

2) Analysis Requirement

The system should provide a set of analysis tools for deriv-

ing value from various types of unstructured data. Besides,

the system should not only execute analysis tasks in an incre-

mental manner to deal with growing datasets, but also need to

re-analyze the overall datasets using batch processing. More-

over, the analysis tools also need to be customized by users

for the various types of data and analysis tasks.

3) Index Requirement

The types of features of unstructured data are manifold.

It may be primitive, such as numerical value and strings, or

high-dimensional vectors from extracted features. In order to

efficiently retrieve unstructured data according to different

features, the system should not only support several index

types, such as B+tree index, inverted index, and hash index,

etc., but also support index customization.

4) Search Requirement

Typical searching services, such as range query, keyword

query, exemplar query, and cross-media query, etc., and the

compound query, a combination of all or some of the above

simple queries, should be provided. In addition, the search

strategies, such as filtering, ranking, merging and feedback,

should be customized.

5) Other Requirements

Several easy-to-use tools for system management and

monitoring should be provided. In addition, programming in-

terfaces and language are quite valuable for system develop-

ment. Specifically, if the system can model the whole process

of unstructured data storage, analysis, index and search, it

could also reduce the complexity of application development.

Motivated with above requirements, we present D-Ocean,

an unstructured data management system for data ocean en-

vironment, which has the following technical virtues:

• A data ocean oriented open architecture with the abil-

ity of extensible data type, storage, and processing for

different applications.

• A unified storage framework, which integrates different

kinds of data stores to support efficient storage of both

structured and unstructured data.

• A generalized processing framework, which supports

both batch processing and incremental processing un-

der a unified task management.

• A set of pluggable unstructured data process elements,

which supports analysis, index, and simple search, as

well as a combined search engine for compound queries

on diverse data types.

• A so-called RAISE process modeling method, which

supports the whole process of Repository, Analysis,

Index, Search and Environment modeling, as well as

a SQL-like Unstructured Query Language UQL to

streamline application development.

The rest of this paper is organized as follows. Section 2 in-

troduces the previous work relevant to our D-Ocean system.

Section 3 describes the architecture and design of D-Ocean,

whose details are then elaborated in Section 4. In Section 5

and Section 6, we present experimental results and use cases

in production obtained from the current system snapshot and

applications. We conclude in Section 7.

2 Related work

Our work related to a number of areas such as unstructured
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data model and query language, massive data storage and pro-

cessing, unstructured data analysis and search.

2.1 Unstructured data model and query language

Unstructured data model and query language have been stud-

ied both in the multimedia field and the database field. The

MPEG-7 standard [5] provides a rich set of multimedia de-

scription schemes, which can be used to describe various

types of multimedia data and their complex relationships.

Aiming at facilitating and unifying access to multimedia data,

MPEG Query Format [6] is proposed as a part of MPEG-

7 standard, which is essentially an XML-based query lan-

guage, however, it appears to be too complicated for SQL

users. SQL/MM [7] introduces structured user-defined types

and associated methods for texts, images, and spatial data.

UnQL [8] is proposed to query semi-structured data, which

mainly focuses on the tree abstractions for structured and un-

structured data sources. These earlier works give inspiration

to the design of our object based unstructured data model and

SQL-like query language for D-Ocean.

Dataspace [9] is proposed to manage a large number of di-

verse and interrelated data sources, which could support data

model to be evolved in a “pay-as-you-go” fashion. It is im-

plemented in iMeMax Data Model (iDM) [10], which uses

resource views that linked to each other in arbitrary directed

graph structure. The data model of D-Ocean also supports the

evolution, e.g., adding new features to an existing data model

to meet the requirements of new analysis activities.

2.2 Massive data storage and processing

Great changes are taking place in the massive data storage

and processing fields. Data storage is changing from SQL

databases to NoSQL, NewSQL [11], and multistore sys-

tems [12]. Data processing is shifting from batch process-

ing [13] to streaming processing (e.g., Storm), iterative pro-

cessing [14], and hybrid processing systems (e.g., Summing-

bird [15]).

From the perspective of data-intensive applications, it is

desirable to integrate storage and processing infrastructures

together to reduce the cost of data transfer. Hadoop is a rep-

resentative distributed computing system that incorporates

a distributed file system and MapReduce processing frame-

work, which can handle the data volume challenge success-

fully. However, Hadoop does not deal with the data vari-

ety well due to the limited programming interfaces and data

processing model. An extensible and scalable system epiC,

which integrates a file system federation, an elastic storage

system, an elastic execution engine and a flexible query lan-

guage [16], is proposed to address the data variety challenge.

So far many big companies provide all kinds of storage and

computing products. Some of them deploy these products in

the cloud and users have to pay for what they use, such as

Goolge Cloud Platform and Baidu Open Cloud4), while oth-

ers provide free products and sell services, like Hortonworks

and Pivotal5) . D-Ocean is designed to free developers from

all these different tools and simplify application development.

D-Ocean is designed with an open and scalable architecture,

which integrates various data stores and processing frame-

works with Hadoop. Specially for unstructured data, a RAISE

process modeling method is proposed to free developers from

all these different tools and reduce the complexity of applica-

tion development.

2.3 Unstructured data analysis and search

Analysis and search techniques for unstructured data have

been widely investigated, such as natural language process-

ing for information retrieval [17], content based multimedia

retrieval [18], and complex event processing for data streams

[19]. Accordingly, a lot of tools and services for unstructured

data analysis and search are developed. Many open source

tools can be readily used to set up our own server or cluster

for processing, such as SOLR, LIRE [20], and Cayuga [21].

In addition, some web services also can be invoked for re-

mote processing over cloud, such as AlchemyAPI and Ama-

zon CloudSearch6).

However, due to various processing interfaces and run-

ning environment requirements, it is not easy for develop-

ers to integrate above tools and services in one system. Re-

searchers concentrate more on designing a framework to

solve the generalized unstructured data analysis and search

problems. They take reliability, scalability and processing ef-

ficiency into their consideration and to satisfy the process-

ing for large-scale unstructured data. UIMA [3] is a frame-

work that focuses on providing unstructured data analysis ser-

vices to the end users. SAPIR7) is an unstructured data search

framework providing the audio-visual content search solution

under peer-to-peer environment. Compared with UIMA and

SAPIR, our D-Ocean is a more generic framework support-

4) https://cloud.google.com/, and http://bce.baidu.com/
5) http://hortonworks.com/, and http://pivotal.io/big-data/pivotal-big-data-suite
6) http://www.alchemyapi.com/, and http://aws.amazon.com/cn/cloudsearch/
7) http://sysrun.haifa.il.ibm.com/sapir/
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ing both the analysis and search for unstructured data. Re-

cently, AsterixDB [22] has been developed as an open-source

platform. The goal of AsterixDB is to ingest, manage, index,

query and analyze mass quantities of semi-structured data,

which is quite similar to D-Ocean. However, they have differ-

ent design decisions. AsterixDB provides a semi-structured

data model and an expression language, while D-Ocean ex-

ploits SQL-based query language and supports plugins man-

agement and task status management for unstructured data.

The important motivation of D-Ocean is to provide a full-

function UDMS and simplify application development on

different kinds of unstructured data.

3 D-Ocean architecture and design

In this section, we present the architecture of D-Ocean, the

data model, the query language, and the design philosophy of

architectural extensibility.

3.1 D-Ocean architecture

The D-Ocean system is designed to provide fig:3a compre-

hensive unstructured data management solution. Figure 1 il-

lustrates the architecture of D-Ocean, which consists of three

layers: a tools layer, a core layer and an infrastructure layer.

Fig. 1 The D-Ocean architecture

The tools layer offers users to manage and monitor the

whole system via auxiliary tools, e.g., command line inter-

face (CLI) client and graphical user interface (GUI) admin-

istration. A cluster management tool is used to deploy and

maintain the system, while a task monitor is in charge of task

status.

The core layer comprises of seven major modules: Inter-

faces, Environment controller, D-Repository, D-Analysis, D-

Index, D-Search and D-Processor.

To interact with the underlying system, users can utilize

either any above-mentioned tools or two kinds of interfaces,

API and UDBC (UDMS Database Connectivity). We pro-

vide java APIs for modeling, storing and analyzing unstruc-

tured data, while the entire functionalities can be obtained via

UDBC. The key part of UDBC is a SQL-like unstructured

query language, UQL. The environment controller module

handles all the activities between developers and the system.

For instance, the session manager maintains user connec-

tions and the UQL Parser is responsible for parsing UQLs.

The configuration manager takes charge of environment con-

figurations, e.g., batch job configuration and cluster con-

figuration. The cluster manager collects the cluster status

and sends to the cluster management tool. Meanwhile, it re-

ceives commands and controls the server status. The most

important module is the RAISE process manager which takes

charge of all requests. If the request is clear and concise, it

is delivered to the appropriate module directly. Otherwise,

the RAISE process manager encapsulates required configu-

rations for process modeling. The details will be introduced

later.

Data are fed into the system via the D-Repository mod-

ule which provides CRUD operations to manipulate data

objects. These operations are organized as a unified inter-

face for further data processing in D-Processor. According

to the process modeling, D-Processor downloads and instan-

tiates needed plugins from the corresponding plugin libraries,

fetches data from repository and executes the tasks in parallel.

Currently, plugins are divided into three categories including

Analyzer, Indexer and Searcher, maintained in D-Analysis,

D-Index and D-Search, respectively. Once analysis and in-

dex work is completed, D-Search supports unstructured data

search, including a wide range of simple queries and com-

pound queries.

The infrastructure layer provides necessary storage and

computing infrastructure to the upper layers. As for storage

infrastructures, we now integrate various kinds of data stores,

such as NoSQL databases (e.g., HBase) and distributed file

systems (e.g., HDFS and FastDFS8) ). As for computation in-

8) http://hadoop.apache.org/, and http://code.google.com/p/fastdfs/
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frastructures, a Hadoop MapReduce cluster is deployed. In

addition, indexing service (e.g., Solr) and coordination ser-

vice (e.g., ZooKeeper9)) are also supported.

3.2 Data model

The complexity of unstructured data is in two folds. First, un-

structured data has rich semantic info and features, which are

extracted from raw data. Second, there are complicated rela-

tionships between unstructured data objects, e.g., nesting and

inheritance. Take image as an example, after analyzing an im-

age, we get color features, shape features, semantic info, etc.

Images can be classified into different categories, e.g., people,

cars, aeroplanes, etc. Those categories may have inheritance

relations. Traditional data models are hard to fully describe

these info, thus an unstructured data model is proposed for

D-Ocean.

Figure 2 shows the data model of D-Ocean. In D-Ocean,

every instantiated unstructured data is called a UObject. A

UObject is uniquely identified by its ID. The ID can be gener-

ated by the system, or concatenated by user-specified primary

key(s). The ID allows users to quickly get the object. UObject

contains one or more Features, which contain values. UOb-

ject and Feature have corresponding UType and FeatureType,

which are described as follows.

Fig. 2 D-Ocean data model

1) UType

A UType is a named set of FeatureGroups, and has a quali-

fied name consisting of namespace and an actual name. Each

UObject is associated with an UType. Some UTypes have in-

heritance relations which describe the relationship between

two types of UObjects, e.g., a teacher is one kind of person

and an image crawled from the Internet is a special image.

For better description of these relations, D-Ocean supports

inheritance functionality. Thus, a UType Teacher is defined

by inheriting UType Person and UType WebImage inherits

UType Image. If an UType B inherits from UType A, B will

have all FeatureGroups that A has.

2) FeatureGroup

A FeatureGroup consists of FeatureTypes which share the

similar characteristics: they are always read and written to-

gether. FeatureGroup is proposed to make better use of this

characteristic. A FeatureGroup has a name, one or more Fea-

tureTypes, and StoreAccessType. StoreAccessType defines

where to store the features, e.g., key-value stores, file sys-

tems, and document stores. Features in the same Feature-

Group will be stored closely in the same storage engine,

which can improve I/O performance.

3) FeatureType

Each FeatureType has a Namespaced name and a Value-

Type. The reason we propose the concept of FeatureType is

that we want make it reusable: different UTypes can have

same FeatureTypes. For example, A FeatureType named Im-

ageBlob, can be used by an UType named Image, and an

UType named Keyframe. The design of FeatureType im-

proves system’s reusability, and users do not need to create

similar things over and over.

4) ValueType and PrimitiveValueType

The built-in types of D-Ocean consist of ValueType and

PrimitiveValueType. PrimitiveValueType includes Integer,

Double, String, Blob, Boolean, Vector, Date, DateTime, and

Link. Link type is used to store the relationships between

UTypes, and it can also support delink, the opposite direc-

tion of link. A ValueType can be defined by specifying a

PrimitiveValueType and an option of singleton, hierarchical,

or multi-value. Both hierarchical and multi-value options can

be used to support multiple values. The difference is that hi-

erarchical can maintain the order while multi-value cannot.

For example, to ValueType phone numbers, the order of them

is not important, while to ValueType paper authors, the or-

der of them is important. Thus, the ValueType phone num-

bers should be multi-value and the ValueType paper authors

should be hierarchical.

Note that, D-Ocean does not support the join operation for

the performance consideration. Instead, the PrimitiveValue-

Type Link and the hierarchical/multi-value options are em-

ployed to store the 1:N relationship between UTypes. It is im-

portant for applications. For example, we extract key frames

from videos. They are represented as two UTypes, Video and

Keyframe. The UType Video has a feature named keyframes,

whose PrimitiveValueType is Link (with hierarchical option

and links to the UType Keyframe). When users get a video of

9) http://zookeeper.apache.org/
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UType Video, they can quickly get all its key frames by the

feature of Link type, avoiding the join operation.

3.3 Query language

Relational databases usually use SQL to manage data. How-

ever, SQL cannot deal with unstructured data well. Similar-

ity search is quite popular to unstructured data. For example,

users input a text file and want the system to return similar

text files, ordered by the similarity score. SQL cannot sup-

port such kind of query, which constrains its application in

UDMS. Therefore, we design a SQL-like query language:

unstructured query language (UQL). Users can use it to de-

velop applications conveniently, instead of invoking complex

APIs. UQL has simple grammar form, complete functionali-

ties and strong query support. The functionalities of UQL are

divided into three groups:

1) Model definition

Model definition contains four categories that interact with

models: Storage, Index, Analysis, and Import/Export. Stor-

age UQLs manage Namespace, FeatureType, and UType. In-

dex UQLs manage index definitions, while analysis UQLs

manage analysis definitions. Import/Export UQLs are used

to load/save models from/to XML files.

2) Data management

Data management UQLs provide CRUD operations. The

most important feature is data query, which includes sorting,

aggregation, condition query, XML query, similarity search,

and full-text retrieval. Note that, the join operation in D-

Ocean is not supported and replaced by link instead. The pro-

vided UQLs are as follows:

• Support results ordering by some features;

• Support restriction on the size of results with keyword

TOP or LIMIT;

• Support basic aggregation functions with keyword

AVG, COUNT, MAX or MIN;

• Support text search with keyword CONTAIN;

• Support exemplar query with keyword LIKE;

• Support XML query with keyword XQUERY;

• Support relevance feedback with keyword FEED-

BACK;

• Support search with link. We use “->” to search for

linked UType. For example, “select from Video where

keyframes->image like @‘path_to_the_pic’” is a UQL

query for videos whose key frames are similar with the

provided picture. In this UQL statement, the UType

Video stores videos’ info like name, video blob, size,

keyframes, etc. The Feature named keyframes is a Link

type that links to a UType Keyframe, which has a fea-

ture named image.

3) Environment control

Environment control UQLs not only support traditional

data control languages, such as user’s privileges, roles, audit

and transactions, but also operations on plugins management

and task status management. We give several examples of the

latter as follows:

• Support plugins management with keywords

ADD/DELETE PLUGIN ANALYSIS/INDEX;

• Support task status update with keywords UPDATE

ANALYSIS ACTIVE/DISABLE.

3.4 Extensibility

As big data solutions are constantly emerging, we argue that

it is of great significance to make a system evolve gracefully.

At the beginning of D-Ocean, we took a lot of effort to de-

sign an open, scalable and extensible architecture. We present

three main aspects of the extensibility of D-Ocean as follows.

1) Extensible type

In the data model of D-Ocean, two extensible types are

FeatureType and UType. First, developers may multiplex the

existing accessible FeatureTypes or define their specific Fea-

tureTypes. The features with the same FeatureType can be

processed in the same way. Second, a new UType can be de-

clared by inheritance from other UTypes.

2) Extensible storage

To manage structured data and binary objects, we define

two different interfaces, namely StoreAccess and BlobStore-

Access. The former is responsible for the majority of value

types except the blob type, which is handled by the latter. It is

easy to replace or enhance the existing storage components,

in which the other modules and data flow are minimally or

not affected.

3) Extensible processing

As mentioned before, D-Processor utilizes three kinds of

plugins to execute incremental and batch tasks. We design

unified interfaces for each. These interfaces enable users to

extend the D-Processor’s capabilities.

3.5 Other features

As a distributed unstructured data management system, D-

Ocean has several fundamental features. Some of them are
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shown as follows.

1) High availability

High availability usually signifies that how to guarantee

the data is accessible and service is available when failure

happens. In order to protect data, we leverage data replica-

tion techniques of some storage engines, such as HDFS and

FastDFS. If MySQL is specified as the primary data store, we

also use HBase as a secondary data store, which will be ac-

cessed only when the primary store has no response. When

uploading a large binary object, we exploit a reference table

to first log the identifier of UObject which the object belongs

to. The object is visible after it is completely persisted and

the log in the reference table is removed.

2) Fault tolerance

We discuss three kinds of failures in D-Ocean. If no re-

sponse is received from a D-Ocean server, the set of alive

nodes maintained in Zookeeper is automatically updated and

the client needs to reconnect to D-Ocean. For worker fail-

ure during task processing, it is different for two processing

modes. In the batch mode, the job needs to be re-executed in

the presence of failures. Note that it is correct to re-execute

the analysis task by overwriting the analyzed results, while

the incomplete indexing results have to be removed before

re-execution. In the incremental mode, we use a task log to

handle failures. All failed UObjects with reasons are persisted

and used for manual re-execution at the granularity of UOb-

ject instead of the whole task. Finally, data node failure is

masked by data replication techniques.

3) Data consistency

In most cases D-Ocean leverages single-row atomicity of

HBase to guarantee consistency except the Blob data. As

mentioned before, we use a reference table to avoid incon-

sistent binary objects. In extreme cases, we need consistency

across multiple UObjects. D-Ocean exploits a strict two-

phase locking protocol to guarantee transactional multi-row

access. The transaction cost is also reduced by an optimized

single-phase commit protocol [23].

4 D-Ocean implementations

In this section, we present the implementations of D-Ocean.

Specifically, we show how we implement a unified storage

management and how to integrate two types of data pro-

cessing modes on top of it. After that, we describe how we

perform search on unstructured data. Finally, we detail the

RAISE process modeling.

4.1 Unified storage management

D-Repository is responsible for receiving clients’ requests

and providing a unified storage framework over different

kinds of data stores [24, 25]. Figure 3 shows the major as-

pects of a UDMS node and the unified storage framework.

Fig. 3 The unified storage framework of D-Repository

There are two types of operations to be handled by D-

Repository: type operations and data operations. After a con-

nection is established, these two types of clients’ requests are

forwarded to the type manager and repository, respectively.

The type manager takes charge of type definition and mainte-

nance, including UType, Namespace, FeatureType, etc. Since

UTypes are frequently accessed, the cache manager keeps the

consistent structures of UTypes in memory. The meta man-

ager is used to flush the type information into persistent stor-

age, which is currently implemented by a key-value store and

other databases are easy to replace it. As a significant sub-

module of D-Repository, the repository handles all data oper-

ations. It acquires logical structures of UTypes from the cache

manager, delivers the operations to the transaction manager.

The transaction processing module [23] in D-Ocean exploits

a strict two-phase locking protocol to guarantee transactional

multi-row access. It also reduces the transaction overhead by

an optimized single-phase commit protocol. In fact, the trans-

action manager handles transaction processing logic, such as

lock and log management, while data operations are routed to

the storage manager. In addition, repository will deliver the

operations directly to the storage manager in case of single

row operation or the disabled transaction capability.

The storage manager plays a critical role in D-Repository.

Only it knows the storage decisions that where the UOb-

jects are placed. The storage mapping component is respon-
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sible for mapping features to key-value stores or relational

databases since multiple data stores are allowed to co-exist.

Administrator is able to specify the mapping rules through

scripts or implementing a pluggable interface. In addition,

the storage optimizer is used for choosing the best data store

to place data. We provide two dedicated access interfaces

for structured and unstructured data storage. The features

with blob type are handled by the BlobStoreAccess, other-

wise StoreAccess. Both of them have several implementing

classes, each of which is used for executing physical data

operations with one data store. All implementing classes are

pluggable and configurable, making the whole storage frame-

work extensible to integrate new data stores. All in all, clients

have a unified storage interface, the repository, regardless of

the heterogeneity of underlying data stores.

4.2 Generalized processing framework

D-Processor provides a run-time environment in which de-

veloper can plug in their process elements and with which

they run processing tasks in both incremental mode and batch

mode. As shown in Fig. 4, it uses a master-slave distributed

computing as its parallel implementation. Each UDMS node

has a plugin manager and a task manager.

Fig. 4 The generalized processing framework of D-Processor

The plugin manager is responsible for uploading, deleting

and instantiating process elements. Three types of process el-

ements are defined in D-Processor: Analyzer, Indexer and

Searcher. Figure 5 shows unified interfaces for each category.

Fig. 5 The unified interfaces for Analyzer, Indexer and Searcher

The Analyzer is used for processing unstructured data

to extract structured information from low-level features to

high-level semantics. It takes UObjects as input and writes

back the analyzed results into D-Repository. It can be run

in local UDMS nodes or remote analysis services which are

managed by D-Analysis. Based on the unified Analyzer inter-

face, numerous concrete analyzer plugins are provided in the

library, such as DocumentAnalyzer, ImageAnalyzer, Audio-

Analyzer and VideoAnalyzer. Furthermore, a variety of un-

structured data analysis techniques, such as natural language

processing, multimedia content analysis, topic discovery, can

be made use of by choosing appropriate derived classes for

further inheritance and implementation.

The Indexer is used for building index for unstructured

data. It takes UObjects from D-Repository and puts them into

remote indexing services (e.g., Solr) which are managed by

D-Index. With a unified Indexer interface shown in Fig. 5, in-

verted indexer for full-text, b-tree indexer for numeric value,

m-tree indexer for multi-dimensional feature, and spectral

hashing (SH) indexer for high-dimensional feature have been

derived and implemented.

The Searcher is used for retrieving of unstructured data.

It receives simple queries from D-Search, then directly con-

ducts search on remote searching service, and returns in-

termediate result list to D-Search. Similarly, with a unified

searcher interface shown in Fig. 5, we have provided full-text

searcher, exemplar searcher and numeric searcher.

The task manager is responsible for task definition,

scheduling, execution and monitoring. Once task definitions

are added to the task model in any UDMS node by clients, all

other nodes in the cluster will be notified and keep their task

models in sync by Zookeeper. The task scheduler in master

node is in charge of task scheduling according to the defined

running mode: batch processing or incremental processing.

For batch processing, the master node will prepare and

submit tasks to Hadoop cluster on its own. At first, the batch

processor in master node gets the added task definition from

the task model, and splits the task into several logical parti-

tions for the use of Hadoop. Then, the split information ex-

pressed by the start and end IDs of UObjects, together with

the task definition information are packaged and submitted to

Hadoop Cluster, and plugins defined in task definition will be

instantiated in each mapper and used to process the data in D-

Repository. For task monitoring, a daemon thread in master

node is started to watch the execution status.

For incremental processing, the master node first picks sev-

eral slave nodes and notifies them to build a message queue

based real-time task processing pipeline. After this, once a
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UObject is inserted, updated or deleted in a node, the task

trigger in that node will trigger a task message including

UObject ID and definition ID, and deliver it to task queue.

At the same time, the task dispatcher will get task mes-

sages from task queue and dispatch them to the chosen nodes

where corresponding plugins have been already instantiated

at worker nodes, and the workers can consume task messages

by the task receiver one by one. The aforementioned task

monitor tool is used to watch the execution status.

In addition, we also adopt some advanced parallel comput-

ing techniques for incremental processing. For a collection

of UObjects, users may submit multiple task definitions on

them. RAISE process manager constructs a directed acyclic

graph (DAG) (Storm and Dyrad [26]) according to these def-

initions. Following that, tasks are distributed to a cluster of

workers with different roles to execute analysis or index tasks.

In order to deal with changing workload, the number of work-

ers and their roles can be tuned dynamically.

4.3 Combined search engine

Our designed UQL not only supports simple query for UOb-

jects by single feature type, such as keyword query over

free text, exemplar query over multimedia content, and range

query over numeric property, but also supports compound

query for UObjects by multiple features where the compound

query is a combination of all or some of the above simple

queries, as well as feedback query and link query. A com-

bined search engine, which consists of Query Optimizer and

Query Executor in D-Search as shown in Fig. 6, is imple-

mented for UQL query optimization and execution.

Fig. 6 Combined search engine in D-Search

The UQL parser receives UQL requests and transforms

them into a unified xml-style search format by extending the

standard MPEG-7 query format [6] for unstructured data ob-

jects. The search format encodes three kinds of information,

which are further organized as an original query execution

plan using a QueryTree structure with three types of nodes:

root, branch, and leaf.

• Root node contains search environment information

about the whole query, such as Namespace name and

UType name, the type of aggregation function if exists

and the weights of sub-results from sub-queries.

• Branch node contains search hierarchy information,

which describes relationships among sub-queries in-

cluding AND, OR, Weighted-AND and Weighted-Sum.

• Leaf node contains search execution information,

which describes each concrete sub-query including the

feature(s), the operator, the search value, the upper and

lower bound of the range query, the keyword of the full

text query or the example of the exemplar query, etc.

This information can be delivered to search workers in

D-Processor for actual search.

The query optimizer gets the original query plan tree and
re-organizes it through two sets of optimization rules. One is
the traditional database optimization rules, such as conjunc-
tive selection, commutative selection, conjunctive projection
and commutative projection [27]. Another is the heuristic
rules predefined by D-Ocean system or specially added by ap-
plication developers, such as the grouping of keyword queries
together when they use the same remote searching service,
the grouping of exemplar queries on multiple features when
these features use a hybrid index and user-defined search hi-
erarchy by exploiting the prior knowledge of application.

The query executor adopts the divide-and-conquer scheme
to conduct a hierarchical invocation of dispatching and merg-

ing actions to get merged result list. Although the indexing
techniques are adopted, the execution time for each sim-
ple search still varies dramatically. For example, the query
time for a keyword-based full-text search may be hundreds
of times faster than the one for content-based image search.
Therefore, the filter strategy is used to accelerate the com-
bined search by executing the short-time search first to get a
candidate result list and afterwards executing the long-time

search within this candidate list. After that, the filtered result

list will further re-ranked. D-Search provides some optional

re-ranking strategies, such as the simple threshold algorithm,

no random access algorithm [28]. Besides, in order to exploit

the various relationships among UObjects, a complex re-rank

strategy based on hypergraph manifold ranking is also inte-

grated in our system [29].

4.4 RAISE process modeling

Traditional databases only provide repository modeling.
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However, due to the complexity of unstructured data, repos-

itory modeling alone cannot satisfy all the needs. Thus, we

propose the RAISE process modeling, which supports whole

process modeling, including Repository, Analysis, Index,

Search, and Environment. One of the advantages of RAISE

is that each sub-process couples loosely, such that users can

organize each sub-process flexibly according to different re-

quirements. The details of each modeling process are shown

as follows.

1) Repository modeling

Repository modeling is based on the data model presented

in Section 3. Also, referring to MPEG-7 [5], we build an un-

structured data type library which contains types of text, im-

age, video, audio, etc., which can speed up repository model-

ing.

The results of repository modeling are outputted as XML

files. Figure 7 gives an example, the repository model of Im-

age. Here we define an UType named Image, which has fea-

tures height, width, encoding, cedd, and image. The first four

are in a FeatureGroup named basic, while the other one is

in a FeatureGroups named file. In the feature tag, we specify

the feature’s type, while in featureGroup tag, we specify the

StoreAccessType. If we want to create an UType Keyframe,

which has similar features with Image, we can create it as the

inheritance of Image, as shown in Fig. 8.

Fig. 7 Repository modeling for Image

Fig. 8 An example of Inheritance

2) Analysis modeling

In order to extract features from UObjects, we need to do

analysis modeling. Analysis modeling is based on UType,

and defines how unstructured data objects should be ana-

lyzed. Figure 9 shows an instance of analysis modeling for

Image. Here we give a unique definition ID, and specify

which plugin to use and what UType to analyze. We set image

as the input feature and the analyzed results will be written

back to feature cedd.

Fig. 9 Analysis modeling for Image

3) Index modeling

Index modeling is fairly similar with analysis modeling,

while it is used to index data for the purpose of improving

search performance. The only difference of analysis defini-

tion is that index definition does not have OutputFeature-

NameMap tag. Instead, it needs to specify the index server’s

URI and what index method to use in another PluginProper-

ties tag.

4) Search modeling

Search modeling relies on analysis modeling and index

modeling, and defines the evaluation process of data search

and display. A search model definition contains three parts:

• Search strategy: depict the strategy used to search, e.g.,

preference to different conditions, and search order.

• Ranking of search result: define how to order the search

results, e.g., when ordering the results with conditions

of full-text and properties, which is difficult in unstruc-

tured data search.

• Relevance feedback: model the users’ evaluation of the

search results.

5) Environment modeling

Environment modeling describes the execution environ-

ment and execution process of the above four models. The

execution environment mainly focuses on data processing of

analysis and index tasks, such as the processing mode, like in-

cremental or batch, and degrees of parallelism. For batch pro-

cessing, the partial collection of UObjects can be skipped by

specifying the start point in time. The execution process in-

dicates the processing phases on storage, analysis and index.

For example, raw data may be abandoned and only analyzed

or cleaned data is stored in D-Ocean. The index process may

be executed immediately after the analysis process or done
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later in a batch mode.

5 Experimental evaluation

In this section, we study the performance of D-Ocean in three

parts: storage, analysis and search. The first part is to evaluate

the scalability and performance of the unified storage frame-

work in terms of data loading, the methodology of which

is similar to the methodology in Ref. [30]. The second part

measures the performance of our self-developed incremen-

tal data processing component, showing the throughput in

terms of different number of workers when analyzing three

typical types of unstructured data. Following that, we com-

pared the processing time of the incremental mode with the

integrate batch mode. The last part gives the experimental re-

sults of different queries on a image data set, including sim-

ple queries and compound queries. The data set has been an-

alyzed and indexed using SH and inverted index on corre-

sponding features. More design details are given later in cor-

responding subsections. For each experiment in this section,

we performed 3–10 runs.

• Cluster setup We evaluate the D-Ocean on our two sepa-

rated clusters: 1) Cluster-I, which consists of 24 nodes. Each

node is equipped with quad-core Intel Xeon 3.10GHz CPU,

7GB memory, 250GB SATA disks. The storage experiments

were executed in Cluster-I. 2) Cluster-II, which has ten nodes.

Each node is Intel Xeon CPU (2.80GHz, 8 cores) with 48 GB

memory and 2TB SATA disks. We conducted analysis tasks

and queries in Cluster-II. Each of cluster nodes is connected

with 1Gbps Ethernet network and running Ubuntu Linux

12.04. We use Hadoop version 1.2.1 and HBase version

0.94.13 running on Java 1.6.0, and FastDFS version 4.05. Re-

gionservers, Datanodes, StorageTrackers, TaskTrackers and

D-Ocean servers were co-deployed on the same machines,

while masters were run on one node in the cluster. To en-

sure data availability, we set the replication factor of three

for HDFS and configure three storage trackers in each group

for FastDFS. Hadoop was set to run two map slots and two

reduce slots per node in Cluster-I, while 6 map slots and 2 re-

duce slots in Cluster-II. However, degrees of parallelism are

configured by the number of workers in incremental mode

or that of partitions in batch mode. Other configurations are

used default settings.

• Datasets We adopt three ubiquitous and representative

types of unstructured data: 1) Document dataset SogouP,

which is from SogouPic10), and the total number of doc-

uments is 130 million (2.13TB). 2) Image dataset SogouT,

also from SogouPic, contains the million images(625GB). 3)

Video dataset crawled form Youtube, is 1 665GB. We con-

structed partial data sets chosen randomly for storage and

analysis experiments according to the experiment design, and

use the whole data set to evaluate the search performance.

5.1 Storage performance

In this experiment, we evaluate the storage performance of

D-Ocean by loading different kinds of data sets via the APIs

from the clients’ local files into D-Ocean. These datasets aim

to cover major types of unstructured data, including images,

videos, and a mixed data set consisting of the two types. We

choose Hadoop’s distributed file system as a baseline and

compare it with our unified storage framework. Note that

there are two ways to load data into Hadoop, the command-

line file utility and the internal I/O API. We employ the java

API for fairness. In both Hadoop and D-Ocean, each data ob-

ject is stored with a replication factor of three.

We adopt two approaches for data loading according to the

methodology in Ref. [30]. The first one fixes the size of data

per node to be the same and only varies the number of nodes

from 3, 6, 12 to 24. The second fixes the total dataset size to

be the same and evenly divides the data amongst a variable

number of nodes. These experiments not only measure how

well each system scales as the number of available nodes is

increased, but allow us to compare the hybrid multistore sys-

tem to the single big data store.

The results for loading images and videos are shown in

Figs. 10(a) and 10(b), while the size of data per node is fixed

to be 500MB and 10GB, respectively. It can be observed that

for storage of small files like images, D-Ocean outperforms

Hadoop by a factor of 3.2x to 6.7x since the unified storage

framework employs suitable data stores. However, as shown

in Fig. 10(b), D-Ocean takes more time to load large video

files than Hadoop. The overhead is generated by several ad-

ditional operations in D-Ocean, e.g., UObject construction,

storage mapping, and blob location recording. Nevertheless,

the overhead is about 13%, which is acceptable. What’s more,

we load different kinds of data simultaneously in each node

since workloads are always mixed. The results are depicted in

Fig. 10(c). It shows that D-Ocean also outperforms Hadoop

up to 1.9x, which attributes to the appropriate storage deci-

sions of the hybrid storage system.

We also evaluate the scalability of two systems by fixing

the total dataset size at 252GB and dividing the data evenly

10) http://www.sogou.com/labs/resources.html
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amongst nodes. Figure 10(d) shows the results on the mixed

data set. It can be seen that as the number of nodes increases,

the loading times of D-Ocean and Hadoop both decrease,

which demonstrates the scalability of D-Ocean.

Fig. 10 Load times: (a) Image set (500MB/node); (b) video set
(10GB/node); (c) mixed set (500MB images + 10GB videos, per node); and
(d) mixed set (252GB/cluster)

5.2 Analysis performance

In this experiment, we investigate the analysis performance of

D-Ocean. As mentioned before, D-Ocean provides two kinds

of data processing mechanisms: incremental mode and batch

mode. We configure each node of cluster-II to be able to exe-

cute both incremental tasks and batch tasks. The tasks in our

experiments are to analyze several typical types of unstruc-

tured data, including Name-Entity extraction on the Docu-

ment dataset, CEDD feature extraction on the Image dataset

and keyframe extraction on the Video dataset. We first mea-

sure the throughput of incremental mode in terms of different

number of workers, and then compare the two modes under

certain degrees of parallelism.

Figure 11 shows the throughput (number of processed

UObjects per minute) of incremental tasks in terms of dif-

ferent number of workers from 1 to 28. The throughput

of Name-Entity extraction tasks is highest, because docu-

ments are very small to obtain fast upload and the compu-

tation is simplest. In contrast, the computation of extracting

keyframes on videos takes much time, resulting in the lowest

throughput shown in Fig. 11(b). For three tasks, the through-

put increases as more workers are utilized. However, the

throughput increases slowly after a threshold, due to the bot-

tleneck of single processing node. The results provide hints

to configure the number of workers.

Table 1 shows the processing time of the two modes. Both

incremental tasks and batch tasks employed the same ana-

Fig. 11 Throughput of incremental processing tasks. (a) CEDD feature
extraction and Name-Entity extraction (document and image analysis); (b)
keyframe extraction (video analysis)

lyzer plugin to extract cedd features on a new collection of

images. We fixed the number of loading clients in two modes

to be 10 and varied the number of workers from 5 to 20.

The processing time of incremental tasks is measured as the

time is elapsed since the first image was uploaded and the

last one was finished. The processing time of batch tasks has

two parts: the time of loading data into D-Ocean and the job

execution time. Note that batch tasks can be executed repeat-

edly after the data is loaded. In our experiments, it took 26

minutes to load all images for batch mode. As shown in Ta-

ble 1, the processing time of the two modes decreases as the

number of workers increases. The incremental tasks take less

time than batch tasks, which benefits from the overlap of in-

sertion and computation. However, the processing time of in-

cremental mode decreases slightly when the parallelism be-

comes higher. The reason is that the number of loading clients

is fixed, which makes workers under-utilized when the num-

ber of workers exceeds a certain value.

Table 1 Processing time of incremental and batch tasks /min

Parallelism (Number of workers) Incremental Batch

5 56.9 63.9

10 40.2 49.4

20 38.1 38.2

5.3 Search performance

In this experiment, we evaluate the search performance of D-

Ocean by performing a series of queries on the Image data

set. We model the data set as a UType WebImage with the

following features: feature image is Blob type and stores

web images; feature description is String type and stores sur-

rounding texts of web images; feature size is Integer type and

stores image size of web images; feature people is Link type

and links to the feature person of another UType, which im-

plies who appears in the surrounding text. We build SH index

on feature image, inverted index on feature description. There

is no index on the features size and people.
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Table 2 Average response time of different types of queries

Search Tasks Sample UQL
Average

times/s

Image

(with SH index)

Select from WebImage where

image like @“path”
0.148

Keywords (with

inverted index)

Select from WebImage where

description contain “word”
0.056

Image+Keywords

Select from WebImage where

image like @“path” and

description contain “word”

0.273

Image+Properties

Select from WebImage where

image like @“path” and

size>100

0.377

Image+Keywords

+Properties

Select from WebImage where

image like @“path” and

description contain “word”

size>100

0.175

Link
Select from WebImage where

people− >person = “name”
0.839

Image+Keywords

+Link

Select from WebImage where

image like @“path” and

description contain “word”

people− >person = “name”

0.232

After the ten million records are stored and indexed in

D-Ocean, we test compound queries that consist of two or

three individual simple sub-queries. We also test some simple

queries for comparison. To demonstrate the effect of the opti-

mization on compound query, we perform all the queries with

simple queries under the same environment. Each query task

is executed with ten different queries of the same type and

disabled query cache. The average response time is shown in

Table 2. We find that all the queries are accomplished within

one second, which suggests that the efficiency of different

types of queries is acceptable.

Figure 12(a) presents the average response time of a sim-

ple image query with SH index, a simple keyword query with

Inverted index, and a compound query of them, under differ-

ent values of query parameter top N. From Fig. 12(a), we find

that the compound query of two simple sub-queries with in-

dices uses more time than each simple query takes. This fact

owes to the effect of merging strategy. The merging overhead

of the compound query is very small when top N is smaller

than 1 000. It means that merge strategy might be efficient

when all the sub-queries of a compound query have efficient

index and top N is small.

Figure 12(b) presents the average response time of a com-

pound query that consists of one index-assisted sub-query

and a property filter without any index, and another com-

Fig. 12 Average response time of queries. (a) Merging strategy; (b) filter-
ing strategy

pound query that consists of two index-assisted sub-queries

and a property filter without any index, under different val-

ues of query parameter top N. From Fig. 12(b), we find that

with more index-assisted sub-queries executed before prop-

erty filter, the compound query takes less time than that with

less index-assisted sub-queries. This is because property filter

without index costs very much. This finding suggests that fil-

ter strategy might fit for compound queries that consist of at

least one time-consuming property sub-query and some other

index-assisted sub-queries. More index-assisted sub-queries

a compound query has, the least time it costs, and this trend

is more obvious while top N is large.

6 D-Ocean in production

Nowadays, many running systems in several domains, such

as Digital Library, Digital Media, e-Government, have de-

ployed D-Ocean to manage their unstructured data.

Taking china academic digital associate library

(CADAL)11) as an example, which is one of the largest digital

libraries in China, it is facing several challenges now. It has

digitized more than 2.5 million books and other multimedia

resources such as Chinese calligraphy, painting, audio, video,

etc. In addition, the traditional services such as browsing and

reading services in the digital library are not satisfying. More

smart services are needed to discover values in these large

volumes of data, and more personalized services are needed

to meet different people’s needs.

However, data in CADAL is in an unstructured form,

and smart services depend on complex analysis and mining,

which would be a big obstacle to develop CADAL further.

Besides, the lack of an easy-to-use UI and interactive tools

makes it difficult to develop different application services.

In order to address these challenges, D-Ocean has been

deployed as an infrastructure in CADAL since 2013, where

D-Ocean is layered under the Digital Library Engine [31] to

support the entire digital library. So various types of data in-

11) http://www.cadal.zju.edu.cn
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cluding small files like images, paintings, calligraphy char-

acters and book pages, large files like video, semi-structured

data like metadata and catalog of books, entities extracted

from books and the relationships between entities are all

modeled with D-Ocean Data Model and stored in D-Ocean.

Several smart services were developed as OSGI bundles,

where the actual analysis and mining were executed in the

generalized data processing framework. Take Chinese callig-

raphy service, Chinese traditional medicine service and Chi-

nese literature chronicle service as examples.

• In Chinese calligraphy service, calligraphy works, char-

acters, radicals and strokes are extracted sequentially,

and then low-level features such as shape feature, stroke

feature and high-level features such as writing style

feature are extracted and mined for each calligraphic

character. Then, low-level features and high-level fea-

tures are indexed in D-Ocean. After that, several ser-

vices such as calligraphy retrieval, calligraphic charac-

ter recognition are developed.

• In Chinese traditional medicine service, entities such as

herb, prescription and symptom, and illustrations about

herbs are extracted from books. All extraction methods

are implemented as plugins in D-Ocean. Then, prescrip-

tion comparative analysis, compatibility analysis for

herbs by mining the frequent set and property-similar

herbs by clustering on the complex graph of herbs are

provided through the plugins in D-Ocean.

• In Chinese literature chronicle service, entities such as

people, works, office, location, etc., are extracted and

annotated in the historical literature documents. So the

literature document is organized with four dimension-

alities of time, location, people and events.

Figure 13 shows the data model for calligraphy word, con-

tent, author and dynasty, where some links exist between en-

tities for entity relationships modeling. A character Analyzer

is implemented for feature extraction. Through the GUI Ad-

min tool of D-Ocean, a task is defined to analyze characters in

picture field and store the extracted feature to histogram field,

as shown in Fig. 14. The extraction task could be executed in

a batch mode or triggered by inserting new characters.

Once the feature is extracted, it could be indexed by adding

index definition, which can be executed in the same way as

the analysis task. After that, a UQL “select from calligra-

phy:calligraphyword where picture like @‘d:\TEMP\1.jpg’

on histogram” is used to search similar characters with the

query image on histogram feature, as shown in Fig. 15.

Fig. 13 Data model for calligraphy service

Fig. 14 Data analysis definition for calligraphic character

With the help of Link Type, the following UQLs are used

to search more complex results. For examples,

• search someone’s calligraphy works: select from callig-

raphy:content where authorlink->authorname=“��
�”;

• search all calligraphy characters of someone and they

are also similar with the uploaded image: select

from calligraphy:calligraphyword where contentlink-

>authorlink->authorname=“���” and picture like

@‘d:\TEMP\1.jpg’.

Besides, lots of users’ behavior logs are generated in
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Fig. 15 Data search for calligraphic character

CADAL every day, which are used for recommendation ser-

vice by exploiting incremental processing and batch process-

ing in D-Ocean. Specifically, logs are gathered and then pre-

processed on incremental processing framework. Finally, all

logs are mined through collaborative filtering recommenda-

tion algorithms on batch processing framework.

The D-Ocean in digital library application shows: 1) Built-

in data model and plugins make data management and ser-

vice development more convenient. 2) The unified storage

and processing framework ensures the high performance of

CADAL digital library. 3) The RAISE model, which provides

storage, analysis, index, search and environment modeling,

can simplify application development.

7 Conclusion

This paper presents D-Ocean, an unstructured data man-

agement system for data ocean environment. D-Ocean has

an open and scalable architecture to support extensible data

types, storage infrastructures, and process elements. It inte-

grates batch and incremental processing modes to process

unstructured data, and provides a combined search engine to

conduct compound queries. It provides the RAISE process

modeling method to define the whole process of Reposi-

tory, Analysis, Index, Search, and Environment, which can

greatly simplify application development. The experimental

results demonstrate that D-Ocean can perform unstructured

data storage, analysis, and search efficiently. Use cases in a

digital library application show the ease of use of D-Ocean.

The design and implementation of D-Ocean give insights to

an easy way to construct Data Ocean which will boost big

data applications and smart services.
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