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Abstract Link-based similarity measures play a significant

role in many graph based applications. Consequently, mea-

suring node similarity in a graph is a fundamental problem of

graph data mining. Personalized PageRank (PPR) and Sim-

Rank (SR) have emerged as the most popular and influen-

tial link-based similarity measures. Recently, a novel link-

based similarity measure, penetrating rank (P-Rank), which

enriches SR, was proposed. In practice, PPR, SR and P-Rank

scores are calculated by iterative methods. As the number

of iterations increases so does the overhead of the calcula-

tion. The ideal solution is that computing similarity within

the minimum number of iterations is sufficient to guaran-

tee a desired accuracy. However, the existing upper bounds

are too coarse to be useful in general. Therefore, we focus

on designing an accurate and tight upper bounds for PPR,

SR, and P-Rank in the paper. Our upper bounds are designed

based on the following intuition: the smaller the difference

between the two consecutive iteration steps is, the smaller

the difference between the theoretical and iterative similar-

ity scores becomes. Furthermore, we demonstrate the effec-

tiveness of our upper bounds in the scenario of top-k similar

nodes queries, where our upper bounds helps accelerate the

speed of the query. We also run a comprehensive set of exper-

iments on real world data sets to verify the effectiveness and

efficiency of our upper bounds.
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1 Introduction

On the Internet, graphs are ubiquitous; the use of graphs in

the Web, social networks, bibliographic graphs, and entity-

relationship graphs, calls for solutions to measure similarity

between nodes. Measures of similarity between objects play a

significant role in many graph applications, e.g., recommen-

dation systems [1], link prediction [2], fraud detection [3],

and collaborative filtering [4].

Many link-based similarity measures have been proposed,

such as personalized PageRank (PPR) [5], SimRank (SR) [6],

hitting time [7] and commute time [8]. Among them, both

PPR and SR have emerged as the most popular and influ-

ential link-based similarity measures due to their effective-

ness and solid theoretical foundation. Recently, a novel link-

based similarity measure, penetrating rank (P-Rank) [9], was

proposed. P-Rank enriches SR: it measures node similarity

considering both the in- and out-link relationships of nodes,

where SR neglects the effect of out-link relationships.

Although iterative similarity scores of PPR, SR, and P-

Rank are convergent [5, 6, 9], in practice the corresponding

computations naturally involve performing a finite number

of iterations. PPR, SR, and P-Rank computations are time-

consuming. As the number of iterations increases, the com-
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putations cause significant overhead, especially on a large

graph. In Ref. [10], given a graph which consists of 10 000

nodes, Lizorkin et al run the original iterative SR on a 2.1

GHz Intel Pentium processor with 1 GB RAM. After 5 iter-

ations, it took 46 hours and 5 minutes for the algorithm to

obtain all node pairs similarities. Because P-Rank enriches

SR, in theory the overhead of P-Rank computations is much

higher than the that of SR.

However, the existing upper bounds are too coarse to be

useful in general. It has been advised that to choose the de-

cay factor c = 0.8 and total iterations K = 5 to compute it-

erative SR similarity [6], and, according to proposition 1 in

Ref. [10], the corresponding difference between theoretical

and computed similarity scores is 0.26. Based on the Lemma

2 in Ref. [11], the difference between theoretical and iterative

PPR scores is also 0.26, when c = 0.8 and the total iterations

K = 5. The existing upper bounds of PPR and SR are rela-

tively large because the interval of the theoretical scores is

[0,1]. For P-Rank, there is not much work that focuses on

accuracy estimation of its iterative computation.

Accordingly, an accurate difference between iterative sim-

ilarity scores and theoretical scores remains an open ques-

tion. The ideal solution is that computing similarity within

the minimum number of iterations is sufficient to guarantee a

desired accuracy.

At the ith iteration, if the iterative score is Pi and the dif-

ference between theoretical and computed similarity score is

P − Pi � δi, then the corresponding upper bound is Pi + δi,

and symmetrically, if the upper bound of Pi is Pi + δi, then

the difference is δi. Given this relationship we use the terms

upper bound and difference interchangeably.

In summary, it is important to design an accurate and tight

upper bounds, both in theory and in practice. Given a desired

accuracy, we should terminate the iteration as soon as possi-

ble to reduce overhead by leveraging the tight upper bound.

Furthermore we can accelerate graph-based queries such as

link-based similarity join [11] and top-k similarity search by

utilizing a tight upper bound.

We say that the difference between iterative and theoretical

similarity scores is good if the following properties hold:

• Accurate: the difference is very close to the true differ-

ence. For example, if the difference between theoretical

and computed similarity score δi and δ j are respectively

estimated by methods A and B, if δi < δ j, we say that

δi is closer to the true difference than δ j’s and δi is an

accurate difference.

• Fast: we can obtain the difference quickly with minimal

computation cost.

So, if the above holds, our differences are accurate and can

be obtained quickly.

In this paper we focus on designing an accurate and tight

upper bounds for PPR, SR, and P-Rank. Our upper bounds

are designed based on following the intuition that the smaller

the difference between two consecutive iteration steps is, the

smaller the difference between iterative and theoretical simi-

larity scores becomes.

This article is an extended version of our conference pa-

per [12]. In this article, we add two types upper bound for P-

Rank. First we give a concise upper bound of P-Rank. Then

we propose a second upper bound based on key iteration in-

tuition mentioned above. The two upper bounds are proved

mathematically.

In Section 2, we introduce the necessary notations and for-

mulas. In Section 3, we propose an accurate and tight upper

bounds of PPR, SR, and P-Rank. In Section 4, we tailor our

upper bounds to accelerate the top-k similar nodes query. In

Section 5 experimental results are presented. Section 6 gives

an overview of the related work. Our conclusion is given in

Section 7.

2 Preliminary

Given a directed graph G = (V, E) where nodes in V repre-

sent objects, and edges in E represent relationships between

objects. For any v ∈ V , Set I(v) and O(v) respectively denote

in-neighbors and out-neighbors of v. Ii(v) or O j(v) is an in-

dividual member of I(v), for 1 � i � |I(v)|, or of O(v), for

1 � j � |O(v)|.

2.1 PPR

The Web can be viewed as a directed graph of pages con-

nected by hyperlinks. A random web surfer starts from an ar-

bitrary page and simply keeps clicking on successive links at

random, bouncing from page to page. Like PageRank, PPR is

the steady-state probabilities of random walks; at each step,

a web surfer randomly walks along an out link with proba-

bility c, and with probability 1-c return to a random node of

the set of preferred nodes. If the preferred set contains only

one node, PPR actually is random walk with restart (RWR).

RWR is a special case of PPR. In this paper we only consider

the situation that the preferred set contains one node (a query

node).
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According to [5, 11], the equation of PPR is

r(q, v) = (1 − c)
∑

τ:q→v

P(τ)cl(τ), (1)

where τ is the unidirectional path from q to v:

(q,w1, . . . ,wn, v), l(τ) is the length of the path τ, P(τ) =
1
|O(q)|
∏n

i=1
1

|O(wi)| is the probability of traversing the τ, and

r(q, v) is the similarity between q and v from q’s personalized

view. In practice

rk(q, v) = (1 − c)
∑

τ:q∼v
l(τ)�k

P(τ)cl(τ), (2)

is used to estimate r(q, v).

2.2 SR

SR measures the similarity of nodes based on following hu-

man intuition: “two objects are similar if they are related to

similar objects” [6]. So the SR score (a, b) is the average SR

score between in-neighbors of a and in-neighbors of b:

s(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, if a = b;
c
∑|I(a)|

i

∑|I(b)|
i s(Ii(a),I j(b))
|I(a)||I(b)| , I(a) and I(b) � ∅;

0, otherwise.

(3)

Correspondingly, as shown in [6] the iterative formula is:

sk+1(a, b) =
c

|I(a)||I(b)|
|I(a)∑

i

|I(b)|∑

j

sk(Ii(a), I j(b)),

k = 0, 1, 2, . . . (4)

The SR score measures how soon two random surfers are

expected to meet at the same node if they started at nodes a

and b and randomly walked the graph backwards [6]. Accord-

ing to Ref. [6], the formula of SR can be written as follows:

s(a, b) =
∑

τ:(a,b)→(x,x)

P(τ)cl(τ), (5)

where τ is a tour (paths may have cycles) along which two

random suffers walk backwards starting at nodes a and b, re-

spectively, until they first for the first and only time at any

node x, l(τ) is the length of tour τ.

Based on Ref. [13], the corresponding iterative formula is:

sk(a, b) =
∑

τ:(a,b)→(x,x)
l(τ)�k

P(τ)cl(τ). (6)

2.3 P-Rank

In contrast to SR, P-Rank considers both in- and out-link re-

lationships of node pairs. As discussed in Ref. [9], the key

concepts of of P-Rank are

1) Two objects are similar if they are referenced by similar

objects.

2) Two objects are similar if they reference similar objects

P-Rank is defined as follows, when a � b

w(a, b) = δ × c
|I(a)||I(b)|

|I(a)|∑

i=1

|I(b)|∑

j=1

w(Ii(a), I j(b)) + (1 − δ)

× c
|O(a)||O(b)|

|O(a)|∑

i=1

|O(b)|∑

j=1

w(Oi(a),O j(b)). (7)

otherwise,

w(a, b) = 1. (8)

In the above equation, δ ∈ [0, 1] is used to balance the rel-

ative weight of in- and out-link directions, and c ∈ [0, 1] is a

damping factor.

The iterative form of P-Rank is as follows

w0(a, b) =

⎧⎪⎪⎨⎪⎪⎩
0, if a � b;

1, if a = b,
(9)

and

wk+1(a, b) = δ × c
|I(a)||I(b)|

|I(a)|∑

i=1

|I(b)|∑

j=1

wk(Ii(a), I j(b)) + (1 − δ)

× c
|O(a)||O(b)|

|O(a)|∑

i=1

|O(b)|∑

j=1

wk(Oi(a),O j(b)), (10)

where wk(a, b) denotes the P-Rank score between a and b on

iteration k, for a � b and wk(a, b) = 1 for a = b.

2.4 Problem of top-k similar nodes query

We focus on designing an accurate and tight upper bounds of

PPR, SR, and P-Rank. By leveraging the tight upper bound,

we can terminate the iteration as soon as possible to reduce

overhead. Furthermore, we also can accelerate graph-based

queries by utilizing a tighter upper bound. Here we give the

definition of the top-k query, using which we will later eval-

uate the performance of our approach.

In this paper, we use P(a, b) and Pw(a, b) to respectively

denote the similarity score and corresponding iterative score

of (a,b) for any one of these measures: PPR, SR, and P-Rank.

Problem statement (top-k similar nodes query) Given a

query node q, a required number of results k, and ε, the result

of query, the top-k similarity nodes of q, is Tk(q) = {t1, . . . , tk}
if similarity score Pw(q, ti) � Pw(q, t) (∀t ∈ V(G(V))/Tk(q))

on the graph G(V).
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3 Bounds of link-based similarity measures

The existing upper bounds of PPR and SR are too coarse to

be useful in general. For P-Rank, not much work focuses on

accuracy estimation of its iterative computation. In this sec-

tion we introduce a novel upper bounds of these link-based

measures. Our upper bounds are designed based on the fol-

lowing intuition: the smaller the difference between the two

consecutive iteration steps is, the smaller the difference be-

tween the theoretical and iterative similarity scores becomes.

The intuition is based on the following analysis. Given a

specific node pair (a, b), its iterative values of PPR (or SR or

P-Rank) consist of a convergent sequence [5, 6, 9]. In other

words, with the increase in number of iterations k, the cor-

responding iterative value gets very close to the limit: theo-

retical value of similarity. As a result, two consecutive itera-

tion step results are very close to each other. This coincides

with well-known Cauchy sequence1): A sequence {an} of real

numbers has a finite limit if and only if for every ε > 0 there

is an N such that |an − am| < ε for every n,m � N. Therefore,

the intuition is reasonable.

In this section, these novel upper bounds are strictly

proven. The procedures of the proofs also shed light on the

essence of these link-based similarity measures.

3.1 Bounding of PPR

Along any path τ from q to v: (q,Oi(q), . . . ,wn, v), a surfer

walks one step beforehand from node q to its out-neighbor

Oi(q) with equal probability
1
|O(q)| , and P(τ) = P(τ′)/|O(q)|

where τ′ is the path: (Oi(q), . . . ,wn, v), therefore Eq. (1) can

be transformed as:

r(q, v) = (1 − c)
∑

τ:q→v

P(τ)cl(τ)

=
(1 − c)c
|O(q)|

|O(q)|∑

i=1

∑

τ′:Oi(q)→v

P(τ′)cl(τ′)

=
c
|O(q)|

|O(q)|∑

i=1

r(Oi(q), v).

Similar, we have:

rk+1(q, v) =
c
|O(q)|

|O(q)|∑

i=1

rk(Oi(q), v). (11)

At mth iteration, let δm = max
∀a∈V,b∈V

{(rm(a, b) − rm−1(a, b))},
we have following theorem:

Theorem 1 The difference between theoretical and itera-

tive PPR scores is

r(q, v) − rm(q, v) � δm
c

1 − c
. (12)

Proof According to Eq. (2),

rm+1(q, v) − rm(q, v) = (1 − c)
∑

t:q∼v
l(t)=m+1

P(τ)cl(τ).

Thus

r(q, v) − rm(q, v) = (1 − c)
∞∑

t:q∼v
l(t)=m+1

P(τ)cl(τ)

=

∞∑

i=1

(rm+i(q, v) − rm+i−1(q, v)).

Based on Eq. (11) and δm = maxa∈V,b∈V {(rm(a, b) −
rm−1(a, b))}, ∀a, b ∈ V

rm+1(a, b) − rm(a, b)

=
c
|O(a)|

|O(a)|∑

i=1

(rm(Oi(a), v) − rm−1(Oi(a), v))

�
c
|O(a)|

|O(a)|∑

i=1

δm

= cδm.

Likewise, rm+k(a, b) − rm+k−1(a, b) � ckδm. Therefore

r(q, v) − rm(q, v)

=

∞∑

i=1

(rm+i(q, v) − rm+i−1(q, v))

�
∞∑

i=1

ciδm = δm
c − c∞

1 − c

= δm
c

1 − c
.

Theorem 1 gives the lower and upper bounds of PPR at

the mth iteration: rm(q, v) � r(q, v) � rm(q, v) + δmc/1 − c.

At the (m + k)th iteration, we update δm+k as follows δm+k =

min( max
a∈V,b∈V

{(rm+k(a, b) − rm+k−1(a, b))}, δm+k−1).

Lemma 2 in Ref. [11] gives an upper bound of PPR, cm+1,

at the mth iteration. The following proposition states our up-

per bound is better (lower) than that in Ref. [11].

Proposition 1 At mth iteration, δm
c

1 − c
� cm+1.

Proof

δm � maxa∈V,b∈V {(rm(a, b) − rm−1(a, b))}
1) http://www. encyclopediaofmath.org/index.php?title=Cauchy_criteria&oldid=30908
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= maxa∈V,b∈V {(1 − c)
∑

t:a∼b
l(t)=m

P(τ)cl(t)}

� (1 − c)cm

because
∑

t:a∼b
l(t)=m

P(τ) � 1.

Proposition 1 guarantees that our upper bound is supe-

rior to that in Ref. [11] in theory. Our upper bound reduces

dramatically as the number of iterations increases because

δm
c

1−c � cm+1.

3.2 Bounding of SR

At the mth iteration, let δm = max
∀a∈V,b∈V

{sm(a, b) − sm−1(a, b)},
we have following theorem:

Theorem 2 The difference between theoretical and itera-

tive SR scores is

s(a, b) − sm(a, b) � δm
c

1 − c
. (13)

Proof Based on Eq. (4),

S m+1(a, b) − S m(a, b)

=
c

|I(a)||I(b)|
|I(a)|∑

i=1

|I(b)|∑

j=1

(S m(Ii(a), I j(b)) − S m−1(Ii(a), I j(b)))

�
c

|I(a)||I(b)|
|I(a)|∑

i=1

|I(b)|∑

j=1

δm = cδm

as δm = max{sm(a, b) − sm−1(a, b)} (∀a, b ∈ V). Accordingly,

S m+2(a, b) − S m+1(a, b)

=
c

|I(a)||I(b)|
|I(a)|∑

i=1

|I(b)|∑

j=1

(S m+1(Ii(a), I j(b)) − S m(Ii(a), I j(b)))

�
c

|I(a)||I(b)|
|I(a)|∑

i=1

|I(b)|∑

j=1

cδm = c2δm

likewise: sm+k(a, b) − sm+k−1(a, b) � ckδm.

On the other hand, according to Eqs. (6) and (5),

sm+1(a, b) − sm(a, b) =
∑

τ:(a,b)→(x,x)
l(τ)=m+1

P(τ)cl(τ),

and s(a, b) − sm(a, b) =
∞∑

τ:(a,b)→(x,x)
l(τ)=m+1

P(τ)cl(τ)

=

∞∑

k=1

sm+k(a, b) − sm+k−1(a, b)

=

∞∑

k=1

ckδm = δm

∞∑

k=1

c − c∞

1 − c
= δm

c
1 − c

.

Theorem 2 gives the lower and upper bounds of SR at the

mth iteration. As soon as the difference δm
c

1−c satisfies the

given precision, we can stop. According to the result of ex-

periments, when m � 3, the difference is largely less than

the difference cm+1, which is proposed in Ref. [10], although

we can not prove it in theory. In order to obtain better re-

sult, min{δm
c

1−c , c
m+1} is the same as the SR difference when

m < 3.

3.3 Bounding of P-Rank

First we give a concise upper bound of P-Rank, inspired by

Ref. [14]. Then we propose another upper bound based on

our intuition.

Theorem 3 The difference between theoretical and itera-

tive P-Rank scores is

w(a, b) − wm(a, b) � cm+1. (14)

Proof For the general case a � b, we prove the theorem by

mathematical induction.

• Induction Basis. We first prove that Eq. (14) holds when

m = 0: Due to the definition of P-Rank, w0(a, b) = 0, and

w(a, b) − wm(a, b) = w(a, b)

= δ
c

|I(a)||I(b)|
|I(a)|∑

i=1

|I(b)|∑

j=1

w(Ii(a), I j(b))

+(1 − δ) c
|O(a)||O(b)|

|O(a)|∑

i=1

|O(b)|∑

j=1

w(Oi(a),O j(b))

�
c

|I(a)||I(b)|
|I(a)|∑

i=1

|I(b)|∑

j=1

1 + (1 − δ) c
|O(a)||O(b)|

|O(a)|∑

i=1

|O(b)|∑

j=1

1

= δc + (1 − δ)c = c

• Inductive step. Assume that Eq. (14) holds for m for all

node pairs, then we prove that Eq. (14) also holds for (m+1):

w(a, b) − wm+1(a, b)

= δ
c

|I(a)||I(b)|
|I(a)|∑

i=1

|I(b)|∑

j=1

w(Ii(a), I j(b))

+(1 − δ) c
|O(a)||O(b)|

|O(a)|∑

i=1

|O(b)|∑

j=1

w(Oi(a),O j(b))

−[
c

|I(a)||I(b)|
|I(a)|∑

i=1

|I(b)|∑

j=1

wm(Ii(a), I j(b))

+(1 − δ) c
|O(a)||O(b)|

|O(a)|∑

i=1

|O(b)|∑

j=1

wm(Oi(a),O j(b))]
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=
δc

|I(a)||I(b)|
|I(a)|∑

i=1

|I(b)|∑

j=1

[w(Ii(a), I j(b)) − wm(Ii(a), I j(b))]

+
(1 − δ)c
|O(a)||O(b)|

|O(a)|∑

i=1

|O(b)|∑

j=1

[w(Oi(a),O j(b))

−wm(Oi(a),O j(b))]

�
δc

|I(a)||I(b)|
|I(a)|∑

i=1

|I(b)|∑

j=1

ck+1 +
(1 − δ)c
|O(a)||O(b)|

|O(a)|∑

i=1

|O(b)|∑

j=1

ck+1

= δck+1 + (1 − δ)ck+1 = ck+1.

Theorem 3 gives a concise upper bound of P-Rank. We

now propose a further upper bound, based on our aforemen-

tioned intuition.

At mth iteration, let δm = max∀a∈V,b∈V {wm(a, b) −
wm−1(a, b)}, we have following theorem:

Theorem 4 The difference between theoretical and itera-

tive P-Rank scores is

w(a, b) − wm(a, b) � δm
c

1 − c
. (15)

Proof From Eq. (10),

wk+1 − wk

= δ × c
|I(a)||I(b)|

|I(a)|∑

i=1

|I(b)|∑

j=1

(wk(Ii(a), I j(b)) − wk−1(Ii(a), I j(b)))

+(1 − δ) × c
|O(a)||O(b)|

|O(a)|∑

i=1

|O(b)|∑

j=1

×(wk(Oi(a),O j(b)) − wk−1(Oi(a),O j(b)))

� δ × c
|I(a)||I(b)|

|I(a)|∑

i=1

|I(b)|∑

j=1

δm

+(1 − δ) × c
|O(a)||O(b)|

|O(a)|∑

i=1

|O(b)|∑

j=1

δk

= δ × c × δk + (1 − δ) × c × δk

= cδk = δk+1

Similarly, wk+n(a, b) − wk+n−1(a, b) � δk+n = cnδk

According to [9], w(a, b) = limn→∞wk(a, b). Thus w(a, b)−
wk(a, b) =

∑∞
m=1 wm+k(a, b) − wm+k−1(a, b)) =

∑∞
k=1 ckδk =

c
1−cδk

In this section, the three novel upper bounds are obtained

based on based our aforementioned intuition. For fully di-

gesting and understanding aforementioned results, we further

give following explanation. When δm, which is the maximum

value among the differences between the two consecutive it-

eration step results, is very small, it means that previous it-

erative value is very close to the theoretic value according

to the theory of Cauchy sequence. Observing Eqs. (4), (10)

and (11), we find that the current iterative value of the three

measures is the weighted sum of some last iterative values.

Therefore the current iterative value is close to the theoretical

value when the δm is small enough.

3.4 Obtain upper bounds

We do not need to spend extra overhead to obtain our upper

bounds by incrementally updating similarity scores.

Equation (2) can be rewritten as

rk+1(q, v) = (1 − c)
∑

τ:q∼v
l(τ)�k+1

P(τ)cl(τ)

= rk(q, v) + (1 − c)
∑

τ:q∼v
l(τ)=k+1

P(τ)cl(τ). (16)

Likewise, Eq. (6) can be transformed into

sk+1(a, b) = sk(a, b) +
∑

τ:(a,b)→(x,x)
l(τ)=k+1

P(τ)cl(τ). (17)

The above two equations state that the current similarity

score is the sum of previous score plus the increment. At each

iteration we actually compute the increment to obtain the sim-

ilarity score. And δm in Eq. (12) (or Eq. (13)) is the maximal

increment. Optimization of PPR in Ref. [15] and SR in [13]

are based on Eq. (16) and Eq. (17) respectively.

For P-Rank, the concise upper bound in Eq. (14) can be

easily obtained without any overhead. Furthermore, the opti-

mization technologies in Ref. [13] can be applied to compute

the P-Rank scores. The corresponding maximal increment is

the δm in Eq. (15).

Consequently, we do not need to spend extra overhead to

obtain upper bounds.

4 Top-k similar nodes query

In this section, we demonstrate the effectiveness of our novel

upper bounds in the scenario of top-k similar nodes query.

Observe from Eqs. (2) and (5) that P(a, b) involves an in-

finite number of random walks (similar to SR, P-Rank also

involves an infinite number of random walks). Consequently,

it is infeasible to achieve an accurate P(a, b). It is effective to

compute Pw(a, b) instead:

|P(a, b) − Pw(a, b)| � ε, (18)

where ε controls the accuracy of Pw(a, b) in estimating

P(a, b), and w is the minimum value that satisfies the inequal-

ity.
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General framework of top-k similar nodes query: Starting

at a query node q, we do a breadth-first traverse to visit re-

maining nodes. At the mth iteration, when a node v is visited,

we compute Pm(q, v). After the mth iteration, we obtain its

upper bound value ̂Pm(q, v) and εm (εm is the difference be-

tween theoretical and iterative similarity scores at the current

iteration), then find a set of k nodes with the highest scores of

lower bounds. Let Tk be the kth largest score. We terminate

the query and obtain the final result of the top-k query if one

of following conditions is true:

• εm � ε
• Tk � ̂Pm(q, t) (∀t ∈ V(G(V))/Tk(q)).

With the help of our upper bound, we can obtain top-k

nodes via local expansion around the query node. The local

top-k similarity search method avoids accessing the whole

graph.

The local top-k similar nodes search method effectively

handles similarity search because it does not need to access

the whole graph, especially, when the graph is very large.

While, the upper bounds, are obtained based on the whole

graph. Therefore, the upper bounds cannot be directly ap-

plied to the top-k query when only the local information of the

query node is available. Furthermore, we tailor upper bounds

based on theory mentioned in Section 3.

We customize upper bounds based on local information.

At each iteration, we obtain the similarity scores between the

query node and accessed nodes, which belong to the neigh-

borhood of the query node. The average difference between

the two consecutive iteration step results can be used to esti-

mate δm in Eqs. (12), (13), and (15). As a result, we obtain

variants of the upper bounds based on the local information.

Although the accuracy of our three upper bounds cannot be

theoretically proven, they are reasonable: the average differ-

ence is very close to the true difference due to the principle

of locality.

Algorithm 1 is a top-k similar nodes query method based

on PPR. A top-k method based on SR or P-Rank is similar to

the Algorithm 1 in Ref. [16] and is not listed in this paper.

It is worth mentioning that although top-k queries are ex-

ploited to demonstrate effectiveness of the upper bounds, they

are not our target. From the above analysis, the upper bounds

play a key role in the algorithm. The upper bounds accelerate

the query speed and avoid accessing the whole graph.

5 Experiments

We implemented all experiments on a PC with an I3-550

CPU, 4 G main memory, running Windows 7 64 bit oper-

ating system. All code is written in C++. In the experiment,

the damping factor c = 0.8; for P-Rank, the relative weight λ

is set to 0.5; ε = 106.

The data sets used in the experiments are shown in Table

1. Cora2) is a citation graph. Graphs FaceBook, Hamster (so-

cial graph), and Subelj (E-road network) can be visited at

KONECT3) . The remaining data can be visited at SNAP4) .

For the first 5 data sets in Table 1, we use their maximum

graph components instead of the original graphs (the corre-

sponding information in Table 1 is that of their maximum

components).

The state-of-the-art upper bounds, PPR upper bound in

Ref. [11] and SR upper bound in Ref. [10], are used as base-

2) http://www.cs.umd.edu/projects/linqs/projects/lbc/index.html
3) http://konect.uni-koblenz.de/networks/
4) http://snap.stanford.edu/data/index.html
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Table 1 Data sets

Cora FaceBook Hamster Subelj P2P-Gnutella06 Ego-Twitter Web-Stanford

Nodes 2 485 2 887 1 999 1 039 8 717 81 306 281 903

Edges 5 209 5 388 31 676 2 484 31 525 1 768 149 2 312 497

lines to compare with our upper bounds in experiments. For

P-Rank, Eq. (14) is used as the baseline to compare with the

upper bound in Eq. (15).

When δm is estimated by the average of top-100 largest dif-

ferences between the two consecutive iteration step results,

the corresponding upper bounds are denoted as approximate

and achieve a very high precision (� 99%) in the scenario of

top-k similar nodes query.

Figures 1–6 show the results of our accurate and approx-

imate upper bounds compared with the baselines on 5 real

data sets. It is worth mentioning that P-Rank only applies

to a directed graph. Therefore the upper bound of P-Rank is

only tested on the three directed graphs: P2P, FaceBook, and

Cora. When m � 3, our SR difference is mostly less than the

baseline although the rate of SR convergence is different on

Fig. 1 Our SR difference vs. Baseline difference with iteration number (a)
< 11 on Subelj; (b) > 10 on Subelj; (c) < 11 on Cora; (d) > 10 on Cora

Fig. 2 Our SR difference vs. Baseline difference with iteration number (a)
< 11 on P2P; (b) > 10 on P2P; (c) < 11 on Facebook; (d) > 10 on Facebook

Fig. 3 Our difference vs. Baseline difference with iteration number (a) < 11
on Petster-hamster for SR; (b) > 10 on Petster-hamster for SR; (c) < 8 on
P2P for PPR; (d) > 7 on P2P for PPR

Fig. 4 Our PPR difference vs. Baseline difference. (a) Subelj; (b) Cora; (c)
Facebook; (d) Petster-hamster

Fig. 5 Our P-Rank difference vs. Baseline difference with iteration number
(a) < 7 on P2P; (b) > 6 on P2P; (c) < 11 on Facebook; (d) > 10 on Facebook

different real data sets. Our approximate PPR upper bound is
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superior to the baseline: our approximate PPR difference is

lower. And our accurate PPR difference is less than the base-

line in some data sets. In the worst case, our accurate PPR

difference is equal to the baseline. Also, our P-Rank differ-

ence is largely less than the baseline.

Fig. 6 Our P-Rank difference vs. Baseline difference with iteration number
(a) < 11 on Cora; (b) > 10 on Cora

Then we test efficiency of our bounds in the scenario of

a top-k node query on two large real data sets (Figs. 7–10).

All the top-k queries are repeated 200 times and the reported

values are the averages. Our SR bound is 1.5–2.3 times faster

than the baseline while it achieves a high precision (� 96%).

Our PPR bound is 200–400 times faster than the baseline and

it achieves a very high precision (� 97%). Our P-Rank bound

is 1–10 times faster than the baseline and it achieves a very

high precision (� 98.8%).

Fig. 7 Runtime of top-k query. (a) SR on Ego-Twitter; (b) SR on Web-
Stanford; (c) PPR on Ego-Twitter; (d) PPR on Web-Stanford

Fig. 8 Accuracy of top-k query. (a) SR bound accuray; (b) PPR bound ac-
curay

Our bounds significantly outperform the state-of-the-art

upper bounds.

Fig. 9 Runtime of top-k query. (a) P-Rank on Web-Stanford; (b) P-Rank
on Ego-Twitter

Fig. 10 Accuracy of top-k query

6 Related work

Recently, link-based similarity measures have attracted the

attention of many researchers.

Optimization computation The Personalized PageR-

ank (PPR), SimRank (SR) and Penetrating Rank (P-Rank)

involve an infinite number of random walks. This naturally

incurs heavy overhead of computation.

• SR Lizorkin et al. proposed three excellent optimization

methods that improve the time cost from O(kn4) to O(knl)

where k is the number of iterations, n is the number of nodes,

and l is the number of edges [14]. They also give a precise

accuracy estimate for SR iterative computation, which we

discussed in Section 1. Observe that computations of differ-

ent partial sums may have duplicate redundancy [14]. There-

fore, Yu et al. eliminate partial sum redundancy using an

adaptive clustering strategy [17]. In their work they also pro-

posed a variant of SR and gave a corresponding difference

between theoretical and iterative scores. In contrast, we fo-

cus on the upper bound of original SR. Based on Eqs. (6) and

(17), Zhang et al presented an optimization algorithm that im-

proves the time cost from O(kn4) to O(knl) [13]. According

to their results, the optimization algorithm outperforms the

partial sums method.

• PPR Computing and storing all possible personalized

views in advance is impractical [5]. Jeh et al. suggested a

scalable solution for PPR based on the observation that PPR
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vectors are a linear combination of basis vectors and con-

sider hub-pivoted paths that pass through some important

“hub” nodes [5]. Based on Eq. (16), Zhu et al proposed

FastPPV, an approximate PPV computation algorithm that is

incremental [15]. They proposed L1 error to control accu-

racy of PPR at query time. The L1 error is defined as fol-

lows φk = 1 −∑p∈V rk(q, p): L1 error measures overall error,

whereas we give PPR an upper bound of any specific node

pairs.

• P-Rank Zhao et al introduced a fixed point algorithm for

computing P-Rank [9]. Furthermore, they proposed two effi-

cient pruning techniques to reduce space and time complex-

ity: the radius- and category-based pruning techniques. Li et

al. proposed an estimation of iterative P-Rank that is defined

a general form: the damping factors for in- and out-link di-

rections are different [18]. Our upper bound in Eq. (14) (the

base line) is its special case when cout = cin. In practice, it is

challenging to determine the different values for cout and cin.

Therefore, in general the in- and out-link are considered to

have the same effect when measuring the similarity. We use

the same damping factor as in Ref. [9]: cout = cin = 0.8. Yu

et al. proposed a probabilistic framework to rapidly compute

P-Rank scores [19].

Application of link-based Measure By utilizing up-

per/lower relevance estimations, the speed of the query, com-

puting top-k relevant nodes w.r.t. a query node, can be accel-

erated [16, 20].

Considering a general situation where the average in/out-

degree is D (D � 1), Li defined a new average SR/P-Rank

upper bound as a function of D [16]. However, networks,

such as the Internet, the world wide web, and some social

networks, are found to have degree distributions that approx-

imately follow a power law [21]. In other words, these net-

works are highly right-skewed, meaning that a large ma-

jority of nodes have low degree but a small number have

high degree. On the other hand, the top-k similarity search

method only accesses the local neighborhood of the query

node. Therefore, the average SR/P-Rank upper bound does

not reflect the true local information.

Fujiwara et al. suggested an approach to find the top-k

nodes so as to support interactive similarity search based on

PPR [20]. To compute the upper similarity bound, they uti-

lized Ri, the set of nodes that is reachable by any node in

S i for which they would update lower and upper similarity

bounds. However, according to the work of Jin et al., the

method that tells whether a vertex u can reach another ver-

tex v is time-consuming [22]. In contrast, our upper bound

has comparatively low overhead.

Sun et al. proposed a link-based similarity join (LS-join)

that extends the similarity join operator to link-based mea-

sures [11]. They accelerated the speed of the join query by

utilizing an upper bounds of PPR and SR. The upper bounds

in [11] are used as a baseline to compare with our upper

bounds.
Zheng et al. proposed an estimated shortest-path distance

based upper bound for SR [23]. However, it is expensive

to compute the shortest path between two vertices on the

fly. Furthermore, as with the upper bound in Ref. [10], the

shortest-path distance based upper bound is also coarse.

7 Conclusion

We proposed upper bounds of PPR, SR, and P-Rank that are

based on the following intuition: the smaller the difference

between the two consecutive iteration steps is, the smaller

the difference between the theoretical and iterative similar-

ity scores becomes. Our upper bounds are accurate and can

easily be achieved. Furthermore, we customize our bounds to

accelerate top-k similar nodes query. Our experiments show

that our upper bounds significantly outperforms the state-of-

the-art upper bounds.
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