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Abstract Canonical correlation analysis (CCA) is one of

the most well-known methods to extract features from multi-

view data and has attracted much attention in recent years.

However, classical CCA is unsupervised and does not take

discriminant information into account. In this paper, we add

discriminant information into CCA by using random cross-

view correlations between within-class samples and propose

a new method for multi-view dimensionality reduction called

canonical random correlation analysis (RCA). In RCA, two

approaches for randomly generating cross-view correlation

samples are developed on the basis of bootstrap technique.

Furthermore, kernel RCA (KRCA) is proposed to extract

nonlinear correlations between different views. Experiments

on several multi-view data sets show the effectiveness of the

proposed methods.

Keywords canonical correlation analysis, discriminant,

multi-view, dimensionality reduction

1 Introduction

Objects in the real world can be described by several sets of

features or views in some cases, and multiple representations

of objects can be easily obtained in many applications, such
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as images and their semantic descriptions, morphological fea-

tures of handwritten characters and their pixel information.

Earlier researches have shown that using complementary in-

formation contained in multiple views instead of simply com-

bining them into a big view could increase classification ac-

curacy [1, 2]. In multi-view setting, each view can be viewed

as a gross description of particular aspects of observations,

so the correlations between different views will contain fine

features for representing objects [3]. In recent years, many

extensions of multi-view learning techniques have been ex-

tended to different kinds of application fields, such as multi-

view distance metric learning methods for speaker identifica-

tion [4] and image processing [5, 6], multiple view cluster-

ing and multiple spectral dimensionality reduction [7], multi-

view sparse unsupervised dimensionality reduction [8]. In

Ref. [3], Xia et al. developed a multi-view spectral embed-

ding (MSE) algorithm to explore the complementary property

of different views. Furthermore, in Ref. [9], Xie et al. pro-

posed a multi-view stochastic neighbor embedding (m-SNE)

method to integrate heterogeneous features into a unified rep-

resentation based on probabilistic framework.

Intuitively, complementary information and correlation in-

formation between different views can be used for multi-

view learning. However, in traditional multi-view learning

methods, correlation information have not been well ex-

plored. Canonical correlation analysis (CCA), developed by

Hotelling [10], the most well-known two-view based method,

∗ These authors contributed equally to this work
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is often used to reveal correlation relationships between two

sets of features (or views). CCA can be seen as a two-view

extension of PCA [11]. Classical CCA works with only two

sets of variables and can only find linear relationships be-

tween them. So in the past years, many generalizations of

CCA are suggested to cope with problems emerging in dif-

ferent fields [12,13]. The generalization of extending two-set

CCA to multi-set CCA is encouraging. Vía et al. [13] refor-

mulated this generalization as a set of coupled least square

problems to develop a neural model for CCA. Kernel ex-

tension of CCA (KCCA) is first proposed by Akaho [12].

In Ref. [14], Hardoon et al. associated the images with its

semantic descriptions through KCCA and retrieved images

based on text queries. In Ref. [15], Yang et al. proposed a cen-

terized version of kernel feature with the kernels-as-features

idea for CCA. Sun et al. introduced local neighborhood infor-

mation into CCA and decomposed global nonlinear problem

into a set of local linear sub problems [16]. Blaschko et al.

proposed semi-supervised kernel canonical correlation anal-

ysis [17] and Laplacian regularized KCCA that can find the

directions for representing the structure of the data and in-

creasing class separation [18].

CCA is inherently an unsupervised method and the la-

bel information can not be utilized in CCA, which limits

its classification performance in practice. Intuitively, corre-

lations within the same classes should be superior to the cor-

relations between different classes. In order to make up this

shortcoming of classic CCA, label information is taken into

account in some supervised or semi-supervised extensions

of CCA methods, such as supervised regularized canonical

correlation analysis [19], supervised penalized canonical cor-

relation analysis [20], Intra-View and Inter-View Supervised

Correlation Analysis [21], 3CCA using for face recognition

[22], spectral supervised CCA for facial expression recogni-

tion [23], semi-supervised subspace learning for brain reso-

nance imaging data [24]. Recently, Sun et al. proposed an su-

pervised extension of CCA called discriminant CCA (DCCA)

[25] to maximize within-class correlations and minimize the

between-class correlations at the same time. In DCCA, not

only the correlation between two views of a sample but also

all the cross-view correlations between within-class samples

are used to increase class separation. Indeed, it is not neces-

sary to consider all the cross-view correlations between with-

class samples into DCCA, because there exist redundancy. In

this paper, following DCCA we attempt to incorporate dis-

criminant information into CCA and propose a simple feature

extraction method called canonical random correlation anal-

ysis (RCA). However, different from DCCA, in RCA we use

partial random cross-view correlations between within-class

examples. Also, it is worth noting that our proposed RCA

algorithm is different from recent random projections (RP)

for dimensionality reduction [26]. Although both methods

use randomness in dimensionality reduction, RP focuses on

single-view dimensionality reduction by generating a random

projection matrix independently on data, while RCA is for

multi-view dimensionality reduction by randomly generating

the within-class cross correlation samples from data. It is im-

portant in RCA to determine which within-class cross corre-

lation to be used. In this paper, two approaches are developed

to produce within-class cross correlations, called RCA-I and

RCA-II respectively. Both approaches generate cross correla-

tion randomly except that there are some constraints imposed

on RCA-II. Comparative experiments with other multi-view

dimensionality reduction methods including standard CCA,

locality-preserving CCA (LPCCA) [16], DCCA and partial

least square (PLS) [27] on several multi-view databases, val-

idate the effectiveness of RCA.

The rest of the paper is organized as follows. In Sec-

tion 2, we give the basic theory of CCA and some discussions

about CCA. We extend the standard cross correlation to sam-

ple cross correlation in Section 3, where the two approaches

RCA-I and RCA-II are developed, and the algorithm of RCA

is presented. The nonlinear extension of RCA based on ker-

nel methods is introduced in Section 4. Then experimental

results and relevant analysis are shown in Section 5. Finally,

we conclude this paper in Section 6.

2 Preliminaries

Canonical correlation analysis (CCA) deals with two sets of

input variables, each for one data view. CCA could provide

useful information about the implicit semantics of data sam-

ples by maximizing the correlations between the two variable

spaces. In this section, we will give a short review of CCA

and discuss the pros and cons of CCA.

2.1 Canonical correlation analysis

Suppose that the training data are described by two views

S = {(xi, yi)}ni=1, corresponding to two random vectors with

zero means x ∈ Rp and y ∈ Rq respectively, where n is the

size of data set. CCA attempts to find two sets of directions,

one set for each view, such that the two views would be max-

imally correlated when being projected onto the two sets of

directions respectively. The projections are called canonical

variables. Assume wx and wy denote a pair of directions for
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the respective view, the problem of CCA can be formulated

as

arg max
wx,wy

E[(wT
x x)(wT

y y)T]√
(E[(wT

x x)(wT
x x)T])(E[(wT

y y)(wT
y y)T])

= arg max
wx,wy

wT
x E[xyT]wy√

(wT
x E[xxT]wx)(wT

y E[yyT]wy)

= arg max
wx,wy

wT
x Cxywy√

(wT
x Cxxwx)(wT

y Cyywy)
, (1)

where E[·] denotes empirical expectation, Cxy denotes

between-sets covariance matrix and Cxx, Cyy denote within-

sets covariance matrices. Because both wx and wy are scale

independent, Eq. (1) is equivalent to

arg max
wx ,wy

wT
x Cxywy

s.t.

⎧⎪⎪⎨⎪⎪⎩
wT

x Cxxwx = 1,

wT
y Cyywy = 1.

(2)

Through applying Lagrangian equation to Eq. (2), the op-

timization problem of CCA can be converted to generalized

eigenvalue decomposition problem, see Eq. (3).

⎡⎢⎢⎢⎢⎢⎣
Cxy

CT
xy

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

wx

wy

⎤⎥⎥⎥⎥⎥⎦ = λ
⎡⎢⎢⎢⎢⎢⎣
Cxx

Cyy

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

wx

wy

⎤⎥⎥⎥⎥⎥⎦ . (3)

wx and wy can be solved by Eq. (3). The directions wx and

wy corresponding to the largest eigenvalue are called as the

first pair of canonical basis, then the second pair and so on.

Correlated features are extracted through projecting the two

sets of samples onto the two sets of directions respectively.

The dimension of canonical correlation subspace is equal to

the number of the pairs of canonical bases.

2.2 Discussion of CCA

Classical CCA works well to reveal the correlation relation-

ship between two sets of input variables. Correlated features

extracted by CCA characterize the implicit semantics of orig-

inal data. As illustrated in Section 2.1, CCA does not take

advantages of label information during dimensionality reduc-

tion. Figure 1 shows the classification results on a subset of

the Multiple Feature data set with two views Fac and Fou
(see Section 5.2). From Fig. 1(a) we can see the linear re-

lationships between the first pair of canonical variables out

of 207 pairs extracted by CCA. Figure 1(b) shows the two-

dimensional PCA representation of all of the canonical vari-

ables fused according to FFS-II (Eq. (12)). Although CCA

can reveal the hidden relationships between different views,

it does not retain any discriminative information after reduc-

ing dimensionality. Actually, CCA is an unsupervised method

and it can be regarded as a two-view extension of PCA [11].

Therefore, classification performance of CCA is limited. As-

sume that X = [x1x2 · · · xn], Y = [y1y2 · · · yn] are data ma-

trices for two views. CCA optimization can be rewritten as

Eq. (4), based on which the sample cross correlation will be

derived in Section 3.

arg max
wx,wy

wT
x XYTwy = arg max

wx,wy

wT
x (

n∑
i=1

xiy
T
i )wy

s.t.

⎧⎪⎪⎨⎪⎪⎩
wT

x XXTwx = wT
x (
∑n

i=1 xixT
i )wx = 1,

wT
y YYTwy = wT

y (
∑n

j=1 y jyT
j )wy = 1.

(4)

Fig. 1 Demonstration of CCA on a subset of the Multiple Feature data set
(digit 0–4). (a) The linear relationships between the first pair of canonical
variables out of 207 pairs extracted by CCA; (b) two-dimensional PCA rep-
resentation of all of the canonical variables fused according to FFS-II (Eq.
(12))

Since training samples may come from multiple cate-

gories, it is evident that the correlation relationship for one

category must be different from another category to some ex-

tent, which is ignored by classical CCA (see Eq. (4)). Canon-

ical correlation analysis uses correlations of each sample pair

from two views to estimate correlations of two sets of views.

Moreover, the differences of samples from different classes

are not noticed in CCA. Intuitively, correlations within the
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same class should be superior to the correlations between dif-

ferent classes. In order to make up this shortcoming of clas-

sic CCA, label information is taken into account in some su-

pervised extensions of CCA methods. In classification tasks,

it is intended that discriminative information among various

classes should be retained when being projected into canoni-

cal correlation subspaces. In Section 3.2, we show that class

separation can be increased through introducing cross corre-

lations to CCA. Classical CCA can only identify the linear

relationships between the two data views. Nonlinear corre-

lation relationships may be common in many real world ap-

plications, where classical CCA performs poorly. In the past,

some nonlinear methods such as kernel extension of CCA

(KCCA) [12] and local structure preserving CCA (LPCCA)

had been developed [16]. However, extra discussions about

them are beyond the scope of this paper.

3 Canonical random correlation analysis

In this section, we present our method canonical random cor-

relation analysis (RCA). As noted in the previous section,

correlated features extracted by CCA help discover the corre-

lation relationships hidden behind the two views of training

data, but important discriminative information for classifica-

tion might not be preserved. CCA performs dimensionality

reduction without considering the label information. RCA ex-

plores to introduce cross correlation to classical CCA to re-

tain as much useful discriminative information as possible,

see Fig. 2. From Fig. 2(a) we can see the linear relationships

between the first pair of canonical variables out of 20 pairs

extracted by RCA, and Fig. 2(b) shows the two-dimensional

PCA representation of all of the canonical variables fused ac-

cording to FFS-II (Eq. (12)).

3.1 Sample cross correlations

In other fields such as signal processing, cross correlation is

a standard method of measuring similarity of two time se-

ries [28]. It is also used to match pattern templates in pattern

recognition [29]. Suppose there are two series x(i) and y(i),

where i = 1, 2, . . . ,N, the standard cross correlation at delay

d is defined as

r(d) =

∑N
i=1(x(i) − mx)(y(i − d) − my)√∑N

i=1(x(i) − mx)2
√∑N

i=1(y(i) − my)2
, (5)

where d is the time delay, mx and my are the means of respec-

tive series.

Borrowing the idea from the standard cross correlation, not

rigorously, we define sample cross correlation as

Fig. 2 Demonstration of RCA on the same data as in Fig. 1. (a) The linear
relationships between the first pair of canonical variables out of 20 pairs ex-
tracted by RCA; (b) two-dimensional PCA representation of all of the canon-
ical variables fused according to FFS-II (Eq. (12))

R =

∑n
i=1
∑n

j=1 xiyT
j√∑n

i=1 xi xT
i

√∑n
j=1 y jyT

j

, (6)

where (xi, yi) ∈ S is centered observations, and each sum

term xiyT
j is referred to as a cross correlation term, or corre-

lation term for short.

From Eqs. (4) and (6), it can be found that CCA is a spe-

cial case of application of sample cross correlation. Now we

can extend the optimization of classical CCA based on the

notion of sample cross correlation to the new canonical cross-

correlation analysis as

arg max
wx ,wy

wT
x (

n∑
i=1

n∑
j=1

xiy
T
j )wy

s.t.

⎧⎪⎪⎨⎪⎪⎩
wT

x (
∑n

i=1 xixT
i )wx = 1,

wT
y (
∑n

j=1 y jyT
j )wy = 1.

(7)

The optimization problem can be solved similarly as

CCA. Considering that the samples may come from multi-

ple classes, if xi and y j are with the same class label, then

xiyT
j is called within-class correlation item, otherwise, it is

called between-class correlation term. To preserve effective
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discriminant information, only within-class correlation terms

are considered in our method.

3.2 Random sampling

In this section, we present our method RCA. In RCA, a par-

ticular set of weighted cross correlation terms are chosen

within every class. However, it is challenging to determine

the proper correlation term set. Different from DCCA where

all the cross-view correlations between within-class examples

are used, in RCA we use partial random cross-view corre-

lations between within-class examples because there exists

redundancy in the cross-view correlations of within-class ex-

amples and not all those cross-view correlations are required.

In RCA, we adopt a rather simple fashion to construct the cor-

relation term set, i.e., sampling examples with replacements

randomly within every class. Here, two approaches are pro-

posed to implement RCA. We show that through extra con-

straints, the number of correlation terms needed can be de-

creased further.

Suppose all samples in S fall into c classes {wk}ck=1, and

Xk, Yk are the jth subset of respective view of training data

S . And we assume that X̃k and Ỹk are the jth subset in final

correlation term set. Now two approaches, called RCA-I and

RCA-II respectively, are developed to determine the correla-

tion term sets X̃k and Ỹk.

In RCA-I, we sample Xk andYk with replacement to form

corresponding X̃k and Ỹk, and let X̃k and Ỹk have the same

size as Xk and Yk. In fact, X̃k and Ỹk can be seen as special

bootstrap samples of Xk and Yk, because the action is taken

over every class instead of the entire training set. In practice,

the process will be repeated multiple times, say t times. As

a result, t sets of bootstrap samples are generated, i.e., X̃(l)
k ,

Ỹ(l)
k , l = 1, 2, . . . , t, where the superscript l in parentheses

represents the lth bootstrap sample and

⎧⎪⎪⎨⎪⎪⎩
X̃(l)

k = {x̃(l)
i }nk

i=1, x̃
(l)
i ∈ Xk,

Ỹ(l)
k = {ỹ(l)

j }nk

j=1, ỹ
(l)
j ∈ Yk,

where k = 1, 2, . . . , c, and nk denotes the size of Xk and

Yk. Therefore, the size of final correlation term set would

be
∑c

k=1 tnk = tn. Some elements may occur several times

and the frequencies of correlation terms are defined as their

weights. For those correlation terms that have not been in the

final correlation term set, their weights are set to zero. RCA-I

can be formulated as

arg max
wx,wy

wT
x (

c∑
k=1

t∑
l=1

nk∑
i=1

x̃(l)
i ỹ(l)T

i )wy. (8)

In theory, Discriminant CCA can be viewed as a special ver-

sion of RCA. In DCCA, all the within-class correlation terms

are used and the weights are set to 1, while only partial ran-

dom with-class correlation terms are used in RCA.

RCA-II looks a bit like RCA-I except for some extra con-

straints. In RCA-II, only the second view Y is considered to

be sampled and the first view is kept unchanged. RCA-II can

be formulated as

arg max
wx,wy

wT
x (

c∑
k=1

t∑
l=1

nk∑
i=1

xiỹ
(l)T
i )wy. (9)

In RCA-I, samples in Xk and Yk may occur in X̃k and Ỹk

multiple times or not. It is clear that prior information about

the given sample data could not be fully utilized, so more

cross correlation terms are needed in RCA-I to achieve class

separation. RCA-II is designed to remain unchanged in the

first view and to make sampling only on the second view.

Thus prior information about the data can be made better use

of, and less cross correlation terms are required to achieve

good class separation. The subsequent experiments illustrate

the point.

3.3 The RCA algorithm

Now, we present the RCA algorithm (both I and II). Let

X = ⋃c
k=1Xk, Y = ⋃c

k=1Yk, and let X, Y still denote data

matrices ofX andY. A n×n weight matrix Rw ∈ Rn×n is con-

structed to store weight values of cross correlations, where n

is the size of X (or Y). The (i, j) entry of Rw corresponds to

the weight of the cross correlation term xiyT
j . So Rw can be

represented as a block diagonal matrix, and the kth block Rwk

corresponds to the kth class subset. Two examples of Rwk for

RCA-I and RCA-II may look as follows:

R(I)
wk
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 1

2 0 0 1 2

0 0 2 0 1

0 1 0 1 0

0 1 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R(II)
wk
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 2 0

0 1 2 0 0

2 0 0 0 1

1 1 1 0 0

0 1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where we assume that there are five samples in the kth class

subset and t is set to three. The superscripts I and II represent

the two approaches respectively. Sums of all elements in R(I)
wk
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and R(II)
wk

are equal to fifteen. According to RCA-II, the row

sums of R(II)
wk

is equal to the value of t, i.e., three. Figure 3

shows the differences between CCA and RCA from perspec-

tive of correlation terms. The points in 3-dimensional space

and the points in the bottom 2-d plane represent two views re-

spectively. Different marks (circle and triangle) indicate dif-

ferent classes (two classes). The dashed lines represent corre-

lation terms used in respective method and its widths denote

weights. CCA (Fig. 3(a)) only considers pair-wise correla-

tion terms. RCA randomly chooses within-class correlation

terms, so there may be points who are not contained by any

correlation term (the arrow pointing).

Fig. 3 Differences between (a) CCA and (b) RCA from perspective of cor-
relation terms

Now, RCA (both I and II) can be reformulated as

arg max
wx,wy

wT
x XRYTwy, (10)

where R = Rw+RT
w is set to guarantee symmetry of the corre-

lation relationships, which implies that all symmetric terms,

e.g., x jyT
i with respect to xiyT

j , are taken into account auto-

matically to reinforce correlated relation further. The above

optimization problem can be solved by the following gener-

alized eigenvalue decomposition according to Eq. (3):
⎡⎢⎢⎢⎢⎢⎣

XRYT

YRXT

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

wx

wy

⎤⎥⎥⎥⎥⎥⎦ = λ
⎡⎢⎢⎢⎢⎢⎣

XXT

YYT

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

wx

wy

⎤⎥⎥⎥⎥⎥⎦ . (11)

Similar to CCA, a sequence of canonical variable pairs can

be solved, and the dimension of canonical correlation sub-

space equals to the number of pair of canonical bases. Let

Wx = [wx1 wx2 · · ·wxd ] and Wy = [wy1 wy2 · · ·wyd ], where the

subscripts indicate the sequence of canonical variable pairs

and d is the number of canonical variable pairs. Wx and Wy

are called canonical projection matrixs. In Ref. [30], the au-

thors proposed to fuse features extracted by CCA via two fea-

ture fusion strategies (FFS). FFS-I adds the two groups of

canonical variables, and FFS-II combines them into a large

canonical vector. For any example in training set (xi, yi) ∈ S ,

we have

FFS-I : WT
x xi +WT

y yi,

FFS-II :

⎡⎢⎢⎢⎢⎢⎣
WT

x xi

WT
y yi

⎤⎥⎥⎥⎥⎥⎦ . (12)

The algorithm of RCA is summarized in Algorithm 1. The

whole algorithm can be divided into three phases. In the first

phase, a n by n matrix Rcorr is initialized to zero. In the sec-

ond phase, the correlation term set is constructed and is rep-

resented by the matrix Rcorr. In the third phase, we obtain the

two canonical projection matrices Wx and Wy with d columns

by solving the generalized eigenvalue decomposition

Algorithm 1 RCA

Inputs: Training data X = ⋃c
k=1Xk, Y = ⋃c

k=1Yk,

The size of correlation term set t,

The dimension of canonical subspace d,

Outputs: Two canonical projection matrices,

Wx = [wx1 wx2 · · ·wxd ] and Wy = [wy1 wy2 · · ·wyd ].

Initialize: Rw = (0)n×n;

1. For l = 1 To t Do

2. Let X̃(l) = ∅, Ỹ(l) = ∅;
3. for k = 1 To c Do

4. Construct bootstrap samples X̃(l)
k , Ỹ(l)

k from Xk and Yk through
the two approaches, RCA-I or RCA-II;

5. Set X̃(l) = X̃(l)⋃ X̃(l)
k , Ỹ(l) = Ỹ(l)⋃ Ỹ(l)

k ;

6. Loop

7. Fill Rcorr according to X̃(l) and Ỹ(l);

8. Loop

9. Set R = Rw + RT
w;

10. Obtain d pairs of canonical variable by solving Eq. (11);
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problem in Eq. (11). The process that constructs the special

bootstrap sample will be repeated t times during the second

phase. Bootstrap samples were formed over every class every

time, which is different from standard bootstrap sample.

4 Kernelization of RCA

RCA is a linear learning model and it can not cope with

complex non-linear problems. When dealing with those non-

linear problems, a common technique is using kernel func-

tions. In this section, we introduce the kernel gerneralization

of RCA, KRCA. Kernel methods firstly map data into high

dimensional feature spaces, then linear models are adapted.

In the past years, various kernel based methods have been

developed, such as KCCA [31], KPCA [32], KICA [33].

Suppose samples [x1, x2, . . . , xn], [y1, y2, . . . , yn] are

mapped into feature spaces by two non-linear mapping func-

tions φx, φy:

X̃ = [φx(x1), φx(x2), . . . , φx(xn)]

Ỹ = [φy(y1), φy(y2), . . . , φy(yn)]. (13)

The canonical basis of RCA in the feature spaces can be

expressed as w̃x = X̃α, w̃y = Ỹβ. RCA in the feature spaces

can be rewritten as

arg max
α,β
αTX̃TX̃RỸTỸβ

s.t.

⎧⎪⎪⎨⎪⎪⎩
αTX̃TX̃X̃TX̃α = 1,

βTỸTỸỸTỸβ = 1.
(14)

We have

⎧⎪⎪⎨⎪⎪⎩
X̃TX̃ = [φx(xi)Tφx(x j)]i, j ∈ Rn×n,

ỸTỸ = [φy(yi)Tφy(y j)]i, j ∈ Rn×n.
(15)

Defining kernel function in the feature spaces:

kx(xi, x j), ky(yi, y j), and replacing the inner products in the

above equation with kernel functions, we get

arg max
α,β
αTKxRKyβ

s.t.

⎧⎪⎪⎨⎪⎪⎩
αTK2

xα = 1,

βTK2
yβ = 1,

(16)

where Kx,Ky ∈ Rn×n are kernel matrices and Kxi j = kx(xi, x j),

Kyi j = ky(yi, y j).

The solution of Eq. (14) is similar to those of RCA. We

omit it here due to space limit. After obtaining linear combi-

nation coefficients (αi, βi) ∈ Rn × Rn, we can solve canonical

basis as follows:

Wφ = [ωφ1ωφ2 . . . ωφd ] = X̃[α1α2 . . . αd],

Wϕ = [ωϕ1ωϕ2 . . . ωϕd ] = Ỹ[β1β2 . . . βd], (17)

where d is the number of canonical basis.

5 Experiments

In this section, we evaluate the classification performances

of the methods RCA-I and RCA-II on Multiple Features data

set and Internet Advisements data set picked out from UCI

repository and three faces databases. The first data set used is

Multiple Features data set, which consists of 2 000 examples

of ten handwritten digits (’0-9’), 200 examples for each digit.

Each example is represented by six features sets. The six sets

of features and number of attributes are:

1) profile correlations (216 attributes and called Fac for

short);

2) Fourier coefficients of the character shapes (76, Fou);

3) Karhunen-Love coefficients (64, Kar);

4) morphological features (6, Mor);

5) pixel averages in 2 by 3 windows (240, Pix);

6) Zernike moments (47, Zer).

Any two of them can be used as two data views, so there will

be 15 possible combinations in total.

The second data set used is the Internet Advisements data

set ,which includes 3 279 web images (459 Ads and 2 820

Non-ads) with 1 558 attributes. Except four attributes with

missing value, the remaining 1 554 attributes can be divided

into five groups, which are used for describing image urls and

text descriptions. These attributes are as follows:

1) 472 attributes from ancurl terms, abbreviated as Anc;

2) 111 attributes from alt terms, abbreviated as Alt;

3) 19 attributes from caption terms, abbreviated as Cap;

4) 495 attributes from origurl terms, abbreviated as Org;

5) 457 attributes from url terms, abbreviated as Url.

We also use three face databases to perform face recog-

nition experiments: ORL, YALE, and CMU PIE database.

ORL, also called AT&T database, consists of 400 images of

40 subjects, 10 images for each subject. These images are

photographed in different times, with changing lightning, fa-

cial expressions. The size of each original image is 92 ×
112 pixels, with 256 gray levels per pixel. YALE database
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contains 165 gray scale images of 15 individuals. There are

11 images for each subject with different illumination condi-

tions and expressions: center/left/right-light, wearing glasses

or not, happy, normal, right-light, sad, sleepy, surprised, and

wink. The CMU PIE database contains a huge collection of

face images, under varying poses, illuminations and expres-

sions. There are 68 subjects in PIE database, each with 13

different poses, 43 different illumination conditions, and four

different expressions. A subset with frontal pose (C27) was

used in experiments.

5.1 Experiment settings

We compare our methods with several related algorithms,

e.g., classical CCA, partial least square (PLS) [27], locality

preserving CCA (LPCCA) [16], discriminant CCA (DCCA).

In face recognition experiments, two well-known techniques

Eigenfaces [34] and Fisherfaces [35] are also taken for com-

paring. Both FFS-I and FFS-II are adapted to fuse lower di-

mensional related features.

In subspace learning, one important thing is to determine

the dimension of subspace. Generally, performances might

vary with different dimensions. In the experiments on Inter-

net Advisements data set, the subspace dimensionality is set

automatically by sorting the canonical variables coefficients

in descending order, so that 95 percent correlation informa-

tion is preserved after dimensionality reduction. In other ex-

periments, we always set the subspace dimension to 30. For

the views with feature numbers less than 30, such as Mor
with six features in Multiple Features Data Set, we set the

subspace dimension to the feature number of the view. Be-

sides, we also study the differences and connections between

RCA-I and RCA-II, and the effects of the size of correlation

term set in RCA-I and RCA-II on them.

For kernel-based methods, the Gaussian is chosen as kernel

function, i.e., K(x1, x2) = e−(x1−x2)2/2σ2
. The kernel widths σ2

is determined through cross validation. The parameter space

is defined as {2−4, 2−3, . . . , 20, . . . , 23, 24} × σ2
0, where σ2

0 de-

notes the mean square distances of sample,

σ2
0 =

1
n(n − 1)

n∑
i=1

n∑
j=1

‖ xi − x j ‖2 . (18)

The parameter t is closely related with the performance of

RCA. The parameter was chosen empirically according to Ta-

ble 1.

Table 1 The settings of parameter t

Data set RCA-I RCA-II

Multiple features 100 20

Internet Ads 100 40

YALE 20 10

ORL 30 15

PIE(10) 20 10

PIE(15) 30 15

PIE(20) 40 20

Note: the numbers in the parentheses are the sizes of the training sets

5.2 Multiple features data set

In the experiment, half of the data set will be selected ran-

domly for learning canonical subspaces and the rest for test-

ing. Thus there are 1 000 training examples and 1 000 testing

examples in total, 100 for each class. The task is set to predict

the classes of the testing examples. Average recognition rates

over ten independent trials were recorded, shown in Tables 2

and 3. The two tables correspond to FFS-I and FFS-II respec-

tively. In the tables, the first column represents 15 possible

Table 2 Recognition rates on multiple features data set (FFS-I)

Data CCA PLS LPCCA DCCA RCA-I RCA-II KCCA KRCA-I KRCA-II

Fac and Fou 0.872 0 0.873 3 0.904 7 0.937 3 0.937 3 0.927 3 0.913 1 0.761 4 0.765 1

Fac and Kar 0.962 0 0.945 3 0.958 3 0.966 8 0.964 7 0.967 0 0.958 8 0.939 2 0.941 5

Fac and Mor 0.766 7 0.860 0 0.788 0 0.884 8 0.877 7 0.870 7 0.876 3 0.923 0 0.920 0

Fac and Pix 0.940 7 0.949 3 0.949 3 0.961 6 0.961 3 0.963 0 0.953 3 0.934 7 0.937 3

Fac and Zer 0.850 7 0.910 0 0.878 0 0.948 4 0.948 7 0.942 3 0.945 3 0.943 7 0.941 7

Fou and Kar 0.895 3 0.960 0 0.911 7 0.929 6 0.921 3 0.914 0 0.928 0 0.862 0 0.867 0

Fou and Mor 0.755 3 0.742 0 0.731 7 0.810 7 0.815 0 0.812 0 0.797 0 0.768 3 0.764 0

Fou and Pix 0.821 0 0.967 3 0.801 0 0.905 9 0.888 0 0.890 0 0.927 3 0.871 7 0.857 7

Fou and Zer 0.823 0 0.791 3 0.824 7 0.829 6 0.818 0 0.825 7 0.824 0 0.726 0 0.729 0

Kar and Mor 0.778 3 0.869 0 0.815 7 0.873 2 0.866 0 0.856 3 0.910 0 0.951 3 0.951 3

Kar and Pix 0.963 3 0.966 0 0.970 0 0.926 0.921 7 0.926 7 0.917 0 0.936 0 0.943 3

Kar and Zer 0.882 7 0.858 0 0.923 3 0.934 4 0.933 3 0.931 3 0.912 7 0.937 7 0.936 7

Mor and Pix 0.723 3 0.829 3 0.738 3 0.856 0.849 7 0.833 3 0.904 7 0.946 0 0.942 0

Mor and Zer 0.722 3 0.740 7 0.707 7 0.788 3 0.788 3 0.784 3 0.726 7 0.793 7 0.797 7

Pix and Zer 0.818 3 0.888 0 0.873 3 0.911 0.906 0 0.899 3 0.914 3 0.937 3 0.934 0
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Table 3 Recognition rates on multiple features data set (FFS-II)

Data CCA PLS LPCCA DCCA RCA-I RCA-II KCCA KRCA-I KRCA-II

Fac and Fou 0.897 8 0.921 8 0.932 2 0.969 3 0.969 4 0.968 2 0.925 6 0.844 6 0.856 8

Fac and Kar 0.962 8 0.970 6 0.960 8 0.972 6 0.971 8 0.974 4 0.954 2 0.948 2 0.948 2

Fac and Mor 0.773 0 0.885 2 0.825 6 0.935 6 0.928 0 0.910 4 0.899 2 0.930 0 0.930 6

Fac and Pix 0.945 4 0.967 8 0.949 2 0.962 0.967 2 0.971 2 0.964 6 0.946 2 0.945 2

Fac and Zer 0.868 6 0.966 0 0.925 4 0.970 0 0.971 2 0.969 6 0.959 8 0.938 2 0.938 6

Fou and Kar 0.930 0 0.958 8 0.960 2 0.961 0 0.958 4 0.958 8 0.932 0 0.868 2 0.861 2

Fou and Mor 0.773 0 0.637 2 0.777 2 0.822 0 0.822 2 0.822 8 0.816 2 0.785 0 0.783 2

Fou and Pix 0.846 6 0.966 4 0.850 8 0.946 0 0.936 0 0.934 4 0.930 6 0.799 6 0.805 2

Fou and Zer 0.846 4 0.810 0 0.845 6 0.840 9 0.842 4 0.846 2 0.844 2 0.784 2 0.779 0

Kar and Mor 0.815 8 0.919 6 0.858 8 0.936 0.939 4 0.914 8 0.938 2 0.956 8 0.956 6

Kar and Pix 0.965 0 0.966 2 0.969 4 0.937 7 0.943 2 0.938 2 0.968 6 0.944 0 0.943 8

Kar and Zer 0.919 8 0.918 2 0.962 6 0.958 8 0.957 4 0.955 2 0.917 2 0.940 8 0.944 2

Mor and Pix 0.755 4 0.911 0 0.754 4 0.920 5 0.907 4 0.880 0 0.938 4 0.948 2 0.946 0

Mor and Zer 0.748 6 0.790 0 0.735 8 0.819 9 0.820 6 0.819 4 0.757 6 0.810 8 0.809 2

Pix and Zer 0.845 6 0.920 6 0.919 8 0.936 6 0.937 8 0.931 4 0.919 2 0.941 0 0.936 0

view combinations in order, i.e., one for view Fac and view

Fou, fifteen for view Pix and view Zer and so on.

The recognition rates of CCA in Tables 2 and 3 can be seen

as base lines. Our methods RCA and their kernelizations have

better recognition performances in most cases, which im-

plies that better class separation can be achieved by including

within-class cross correlation terms into CCA process. Al-

though the results of DCCA are similar to RCA, fewer corre-

lation terms are needed in RCA. Besides, KCCA shows bet-

ter performances than CCA, while it is time-consuming for

kernelized methods to choose appropriate parameters. Mean-

while, different couples of views infect the classification per-

formance, for example, most methods perform poor on the

couples with Mor.

Figure 4 shows the influences of different sizes of correla-

tion term sets on the methods RCA-I and RCA-II on multiple

features data set. The top (Figs. 4(a) and 4(b)) and bottom

(Figs. 4(c) and 4(d)) rows correspond to the two feature fu-

sion strategies respectively. The horizontal axis represents the

size of correlation term sets, denoted by t (Eqs. (8) and (9)),

and the vertical axis represents classification accuracy. The

range of t is 1 to 120. From Fig. 4, we can see that with the

Fig. 4 Influences of correlation term set size on classification performances of the two methods RCA-I and RCA-II. (a) Fac and Fou (FFS-I);
(b) Fou and Pix (FFS-I); (c) Fac and Fou (FFS-II); (d) Fou and Pix (FFS-II)
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increasing size of the correlation term sets, RCA (both I and

II) accomplishs better recognition performances. It is partic-

ular significant when t is smaller (1–10). It implies that more

discriminant information can be retained when using more

correlation terms. However, when t continues to increase,

RCA tends to be more smooth. It is also clear that RCA-

II achieves better recognition results than RCA-I when t is

smaller. The reasons can be that RCA-II makes better use of

prior information about the data sets than RCA-I by imposing

extra constraints on the correlation term sets.

5.3 Internet Advisements data set

In this experiment, there are five experimental settings on In-

ternet Advisements. In each experimental setting, one of the

five attribute groups was picked out in turn as the first view,

and the remaining attribute groups as the second view. Mean-

while, 230 positive samples and 230 negative samples were

randomly chosen as training set, and the remaining 2 189

samples in the data set as testing set.

Due to the imbalance of the two classes and the huge num-

ber of attributes, we preprocessed the data using Principle

Component Analysis to preserve 95 percent variance infor-

mation in order to avoid small sample problem. From Tables

4 and 5, we can see that kernelized methods performed better

than non-kernelized methods in Internet Advisements Data

Set. Meanwhile, Kernelized RCA methods do better than

KCCA. Except Kernelized methods, we can see that PLS per-

forms a little better than others, and RCA methods perform a

little better than DCCA. In summary, better performance can

be achieved by including within-class cross correlation terms

into CCA process.

5.4 Face recognition experiments

Some preprocessing steps had been done for images in these

databases [36, 37]. Face area in each image was cropped and

the final size was set to 64× 64 pixels, which was considered

as the first view. Images with different resolutions can provide

information at different levels and can be regarded as another

view. We resize each image to 32× 32 pixels to form the sec-

ond view. Then double Daubechies wavelet transformation

is performed on original images, and the low-frequency im-

ages are used as the third view. We obtain the fourth view of

local binary pattern (LBP) histograms of each image, which

has been shown to be efficient patterns to represent face im-

ages [38]. In LBP setting, each image is divided into 4 × 4

local regions firstly, 16×16 pixels for each region. Then LBP

histograms were calculated over all sixteen regions for every

image [39].

Differing from previous experimental setting, we do not

exhaust all of six possible view combinations and only three

combinations of six are chosen. The original images (64×64)

are always taken as the first view and the other image views

will be taken in turn as the second view, because the original

images are easier to obtain than others and the other views

can be calculated from the original images.

For the YALE and ORL databases, the data sets were parti-

tioned into equal size training sets and testing sets randomly.

So there are seven training images for the YALE data set

and five images for the ORL data set. For the larger CMU

PIE database, three preconcerted partitions are provided. Ten,

fifteen and twenty images, respectively, are picked out ran-

domly to form training sets, and the remaining images are

for testing. Thus there are nine settings in total for the PIE

database. Experiments on the three database are repeated ten

times independently, and average recognition rates are for

comparing. The parameter t is set according to Table 1.

Two well-known face recognition techniques, Eigenfaces

[34] and Fisherfaces [35] were also adopted for comparing.

Table 4 Recognition rates on Internet Advisements data set (FFS-I)

Data CCA PLS LPCCA DCCA RCA-I RCA-II KCCA KRCA-I KRCA-II

Anc 0.733 2 0.757 1 0.731 9 0.735 9 0.734 5 0.735 3 0.865 8 0.893 3 0.895 4

Alt 0.763 0 0.765 3 0.764 0 0.752 9 0.761 2 0.761 7 0.900 1 0.907 4 0.911 9

Cap 0.728 4 0.768 7 0.734 3 0.744 4 0.768 3 0.762 4 0.857 9 0.904 6 0.904 2

Org 0.750 3 0.766 8 0.750 4 0.738 7 0.751 9 0.748 6 0.887 8 0.909 8 0.905 6

Url 0.759 6 0.773 9 0.757 4 0.763 7 0.768 1 0.766 9 0.904 8 0.913 4 0.917 1

Table 5 Recognition rates on Internet Advisements data set (FFS-II)

Data CCA PLS LPCCA DCCA RCA-I RCA-II KCCA KRCA-I KRCA-II

Anc 0.742 7 0.742 2 0.737 3 0.749 8 0.744 4 0.745 3 0.878 5 0.902 8 0.903 4

Alt 0.754 9 0.755 7 0.751 0 0.766 9 0.754 3 0.751 0 0.895 5 0.911 2 0.910 1

Cap 0.729 5 0.769 8 0.740 9 0.746 8 0.770 2 0.769 7 0.879 7 0.908 8 0.904 4

Org 0.754 2 0.756 4 0.753 5 0.747 8 0.749 5 0.746 3 0.893 9 0.906 1 0.906 3

Url 0.757 1 0.763 5 0.752 8 0.763 3 0.756 7 0.757 8 0.899 2 0.910 5 0.910 6
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For every view combination, we firstly extract 150 princi-

pal components using PCA from each view, then two low di-

mensional views are fused through FFS-I or FFS-II for face

recognition with Eigenfaces and Fisherfaces.

Tables 6 and 7 are the recognition rates of different meth-

ods on the three face databases. The first column indicates

the database. The sequential numbers after the names of

databases represent different view combination settings, i.e.,

one for original images (64×64) and scaled images (32×32),

two for original images and wavelet transformations of im-

ages, three for original images and LBP histograms of im-

ages. For PIE data set, the numbers in parenthesis denote the

sizes of training sets. PCA and LDA represent Eigenfaces and

Fisherfaces, respectively.

As shown in Tables 6 and 7, RCA achieves the best recog-

nition performance on all three databases under two feature

fusion strategies. The two implementations of RCA cannot

outperform each other on all databases, e.g., on YALE, RCA-

I gets better accuracies than RCA-II when adapting FFS-I and

RCA-II get better accuracies than RCA-I when adapting FFS-

II. DCCA also performs well on the three face databases, but

more correlation terms are needed in the experiments. Ker-

nelized methods still show unstable results due to difficulty

of choosing kernel parameters appropriately. Compared with

PCA and LDA, RCA can make full use of useful information

behind multiple views.

Also, Fig. 5 shows the effect of the size of the correla-

tion terms set on the two methods RCA-I and RCA-II on

the three face databases. The third view combination setting

of the three face databases is chosen in Fig. 5, i.e., origi-

nal images and LBP histograms. From Fig. 5, RCA-I and

RCA-II get better classification results with increasing size of

Table 6 Recognition rates on YALE, ORL and PIE data sets (FFS-I)

Data CCA PLS LPCCA DCCA RCA-I RCA-II KCCA KRCA-I KRCA-II PCA LDA

YALE1 0.423 3 0.448 9 0.177 8 0.872 2 0.880 0 0.847 8 0.263 3 0.746 7 0.738 9 0.407 8 0.440 0

YALE2 0.537 8 0.531 1 0.342 2 0.802 2 0.852 2 0.818 9 0.344 4 0.748 9 0.732 2 0.636 7 0.714 4

YALE3 0.588 9 0.585 6 0.331 1 0.892 2 0.877 8 0.882 2 0.373 3 0.808 9 0.767 8 0.518 9 0.668 9

ORL1 0.875 0 0.875 0 0.860 5 0.926 0.926 5 0.930 5 0.619 0 0.836 0 0.825 0 0.844 0 0.908 0

ORL2 0.887 0 0.887 0 0.813 5 0.93 0.927 0 0.932 5 0.610 5 0.831 0 0.842 0 0.842 5 0.917 0

ORL3 0.892 0 0.892 0 0.878 0 0.962 0.965 5 0.965 0 0.847 5 0.901 0 0.906 5 0.774 0 0.938 0

PIE1(10) 0.850 7 0.850 7 0.856 5 0.922 4 0.924 4 0.925 6 0.813 4 0.855 8 0.855 0 0.846 1 0.914 3

PIE1(15) 0.911 4 0.911 4 0.912 6 0.951 4 0.953 7 0.953 4 0.882 3 0.904 1 0.903 7 0.900 4 0.943 4

PIE1(20) 0.939 1 0.939 1 0.943 3 0.964 6 0.964 7 0.965 0 0.919 8 0.933 4 0.930 3 0.933 0 0.957 4

PIE2(10) 0.849 8 0.849 8 0.872 7 0.923 9 0.928 2 0.928 2 0.808 8 0.867 6 0.867 3 0.845 7 0.923 6

PIE2(15) 0.907 7 0.907 7 0.923 4 0.949 9 0.954 3 0.954 0 0.886 6 0.913 1 0.913 0 0.905 9 0.950 9

PIE2(20) 0.936 7 0.936 7 0.946 7 0.961 1 0.965 0 0.965 5 0.911 7 0.936 7 0.936 5 0.934 7 0.962 4

PIE3(10) 0.871 7 0.871 7 0.869 3 0.954 3 0.959 1 0.956 8 0.883 4 0.861 8 0.860 1 0.851 7 0.927 6

PIE3(15) 0.923 9 0.923 9 0.922 4 0.973 8 0.976 4 0.975 9 0.937 0 0.907 8 0.911 0 0.907 6 0.955 6

PIE3(20) 0.952 7 0.952 7 0.948 7 0.984 1 0.985 0 0.985 0 0.960 6 0.935 0 0.936 0 0.934 7 0.970 8

Table 7 Recognition rates on YALE, ORL and PIE data sets (FFS-II)

Data CCA PLS LPCCA DCCA RCA-I RCA-II KCCA KRCA-I KRCA-II PCA LDA

YALE1 0.418 9 0.447 8 0.173 3 0.868 8 0.886 7 0.887 8 0.263 3 0.831 1 0.820 0 0.411 1 0.584 4

YALE2 0.541 1 0.530 0 0.340 0 0.795 5 0.841 1 0.845 6 0.345 6 0.772 2 0.773 3 0.525 6 0.712 2

YALE3 0.588 9 0.583 3 0.338 9 0.887 7 0.882 2 0.897 8 0.376 7 0.843 3 0.847 8 0.573 3 0.701 1

ORL1 0.875 5 0.875 5 0.860 5 0.925 0.931 0 0.928 0 0.619 0 0.821 5 0.818 5 0.875 0 0.340 0

ORL2 0.887 0 0.887 0 0.814 0 0.929 0.925 5 0.931 0 0.608 0 0.841 0 0.840 0 0.887 0 0.148 0

ORL3 0.893 5 0.893 5 0.877 5 0.966 0.965 5 0.969 0 0.855 0 0.920 0 0.935 0 0.892 0 0.858 5

PIE1(10) 0.850 7 0.850 7 0.856 5 0.922 4 0.924 0 0.924 8 0.815 4 0.860 0 0.859 8 0.850 7 0.910 3

PIE1(15) 0.911 4 0.911 4 0.912 7 0.951 7 0.953 4 0.953 1 0.884 0 0.906 8 0.907 4 0.911 4 0.943 3

PIE1(20) 0.939 2 0.939 2 0.943 1 0.964 1 0.964 5 0.965 3 0.920 5 0.934 2 0.934 8 0.939 1 0.958 9

PIE2(10) 0.849 8 0.849 8 0.872 8 0.924 0 0.927 9 0.928 0 0.810 8 0.866 0 0.866 2 0.849 8 0.915 7

PIE2(15) 0.907 8 0.907 8 0.923 5 0.949 4 0.954 5 0.953 7 0.887 7 0.916 4 0.915 6 0.907 7 0.947 9

PIE2(20) 0.936 7 0.936 7 0.946 7 0.961 5 0.965 3 0.965 7 0.912 5 0.939 4 0.939 9 0.936 7 0.961 3

PIE3(10) 0.878 5 0.878 5 0.873 0 0.952 2 0.958 4 0.957 7 0.893 8 0.894 5 0.895 4 0.871 7 0.957 9

PIE3(15) 0.929 5 0.929 5 0.926 0 0.973 1 0.978 6 0.978 1 0.943 7 0.939 5 0.936 4 0.923 9 0.976 8

PIE3(20) 0.958 3 0.958 3 0.953 4 0.985 6 0.986 9 0.986 8 0.965 2 0.958 6 0.957 1 0.952 7 0.984 1
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Fig. 5 Effect of correlation term set size on classification performances of the two methods RCA-I and RCA-II in face recognition experiments.
(a) YALE3 (FFS-I); (b) ORL3 (FFS-I); (c) PIE3 (15) (FFS-I); (d) YALE3 (FFS-II); (e) ORL3 (FFS-II); (f) PIE3 (15) (FFS-II)

correlation term set and tend to be smooth when t is large

enough. It is worth noting that when t is smaller, RCA-II

could achieve better accuracies than RCA-I with the same

correlation term set size.

6 Conclusion

In this paper, we proposed a multi-view dimensionality re-

duction method called canonical random correlation analysis

(RCA), where not only the correlation between different

views of a sample but also the cross-view correlations be-

tween within-class samples are considered. Moreover, we

extended RCA to kernel RCA (KRCA) to extract the non-

linear correlations between different views. Experimental

results on several multi-view data sets have validated the ef-

ficacy of our proposed methods.
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Appendix

• S = {(xi, yi)}ni=1 observations with two views;

• X,Y the respective sample for two views;

• wx,wy a pair of direction for two views;

• E[·] empirical expectation;

• Cxy between-sets covariance matrix;

• Cxx,Cyy within-sets covariance matrices;

• X = [x1x2 . . . xn] data matrix for view X;

• xiyT
j (i = j) within-class correlation item;

• Xk,Yk the jth subset of respective view of S ;

• X̃k, Ỹk the jth subset in final correlation term set;

• X̃(l)
k , Ỹ(l)

k , l = 1, 2, . . . , t t sets of bootstrap samples;

• Rw ∈ Rn×n weight matrix;

• Kx,Ky ∈ Rn×n kernel matrices.

References

1. Duda R O, Hart P E, Stork D G, Pattern Classification. 2nd ed. New

York: Wiley-Interscience, 2000.

2. Yarowsky D. Unsupervised word sense disambiguation rivaling super-

vised methods. In: Proceedings of the 33rd Annual Meeting on Asso-

ciation for Computational Lingustics. 1995, 189–196

3. Xia T, Tao D, Mei T, Zhang Y. Multiview spectral embedding. IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,

2010, 40(6): 1438–1446

4. Zheng H, Wang M, Li Z. Audio-visual speaker identification with

multi-view distance metric learning. In: Proceedings of the 17th IEEE

International Conference on Image Processing. 2010, 4561–4564

5. Wang M, Li H, Tao D, Lu K, Wu X. Multimodal graph-based reranking

for Web image search. IEEE Transactions on Image Processing, 2012,

21(11): 4649–4661

6. Yu J, Wang M, Tao D. Semisupervised multiview distance metric learn-

ing for cartoon synthesis. IEEE Transactions on Image Processing,



868 Front. Comput. Sci., 2016, 10(5): 856–869

2012, 21(11): 4636–4648

7. Long B, Philip SY, Zhang Z. A general model for multiple view unsu-

pervised learning. In: Proceedings of the SIAM International Confer-

ence on Data Mining. 2008, 822–833

8. Han Y, Wu F, Tao D, Zhuang Y, Jiang J. Sparse unsupervised dimen-

sionality reduction for multiple view data. IEEE Transactions on Cir-

cuits and Systems for Video Technology. 2012, 22(10): 1485–1496

9. Xie B, Mu Y, Tao D, Huang K. m-SNE: multiview stochastic neigh-

bor embedding. IEEE Transactions on Systems, Man, and Cybernetics,

Part B: Cybernetics, 2011, 41(4): 1088–1096

10. Hotelling H. Relation between two sets of variates. Biometrica, 1936,

28: 321–377

11. Diethe T, Hardoon D R, Shawe-Taylor J. Multiview fisher discriminant

analysis. In: Proceedings of NIPS Workshop on Learning from Multi-

ple Sources. 2008

12. Akaho S. A kernel method for canonical correlation analysis. In: Pro-

ceedings of the International Meeting of the Psychometric Society.

2001

13. Vía J, Santamaría I, Pérez J. A learning algorithm for adaptive canon-

ical correlation analysis of several data sets. Neural Networks. 2007,

20(1): 139–152

14. Hardoon D R, Szedmak S, Shawe-Taylor J. Canonical correlation anal-

ysis: an overview with application to learning methods. Neural Com-

putation, 2004, 16(12): 2639–2664

15. Yang C, Wang L, Feng J. On feature extraction via kernels. IEEE Trans-

actions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008,

38(2): 553–557

16. Sun T, Chen S. Locality preserving CCA with applications to data vi-

sualization and pose estimation. Image and Vision Computing, 2007,

25(5): 531–543

17. Blaschko M B, Jacquelyn J A, Bartels A, Lampert C H, Gretton A.

Semi-supervised kernel canonical correlation analysis with application

to human fMRI. Pattern Recognition Letters, 2011, 32(11): 1572–1583

18. Blaschko M B, Lampert C H, Gretton A. Semi-supervised laplacian

regularization of kernel canonical correlation analysis. Lecture Notes

in Computer Science, 2008, 5211: 133–145

19. Golugula A, Lee G, Master S R, Feldman M D, Tomaszewski J E,

Speicher D W, Madabhushi A. Supervised regularized canonical cor-

relation analysis: integrating histologic and proteomic measurements

for predicting biochemical recurrence following prostate surgery. BMC

Bioinformatics, 2011, 12(1): 483

20. Thum A, Mönchgesang S, Westphal L, Lübken T, Rosahl S, Neu-

mann S, Posch S. Supervised Penalized Canonical Correlation Anal-

ysis. 2014, arXiv preprint arXiv:1405.1534

21. Jing X Y, Hu R M, Zhu Y P, Wu S S, Liang C, Yang J Y. Intra-view

and inter-view supervised correlation analysis for multi-view feature

learning. In: Proceedings of the 28th AAAI Conference on Artificial

Intelligence. 2014

22. Jing X, Sun J, Yao Y, Sui Z. Supervised and unsupervised face recog-

nition method base on 3CCA. In: Proceedings of International Con-

ference on Automatic Control and Artificial Intelligence. 2012, 2009–

2012

23. Guo S, Ruan Q, Wang Z, Liu S. Facial expression recognition using

spectral supervised canonical correlation analysis. Journal of Informa-

tion Science and Engineering, 2013, 29(5): 907–924

24. Shelton J A. Semi-supervised subspace learning and application to hu-

man functional magnetic brain resonance imaging data. Dissertation

for the Doctoral Degree. Oxford: University of Oxford, 2010

25. Sun T, Chen S, Yang J, Shi P. A novel method of combined feature ex-

traction for recognition. In: Proceedings of the 8th IEEE International

Conference on Data Mining. 2008, 1043–1048

26. Majumdar A, Ward R. Robust classifiers for data reduced via random

projections. IEEE Transactions on Systems, Man, and Cybernetics,

Part B: Cybernetics, 2010, 40(5): 1359–1371

27. Wegelin J A. A survey of partial least squares (PLS) methods, with

emphasis on the two-block case. Department of Statistics, University

of Washington, Technical Report. 2000, 371

28. Bourke P. Cross correlation. Auto Correlation–2D Pattern Identifica-

tion, 1996

29. Theodoridis S, Koutroumbas K. Pattern Recognition. 3rd ed. New

York: Academic Press, 2006

30. Sun Q, Zeng S, Liu Y, Heng P, Xia D. A new method of feature fusion

and its application in image recognition. Journal of Pattern Recogni-

tion, 2005, 38(12): 2437–2448

31. Melzer T, Reiter M, Bischof H. Appearance models based on kernel

canonical correlation analysis. Journal of Pattern Recognition, 2003,

36(9): 1961–1971

32. Shawe-Taylor J, Williams C K I, Cristianini N, Kandola J S. On

the eigenspectrum of the gram matrix and the generalization error of

kernel-PCA. IEEE Transactions on Information Theory, 2005, 51(7):

2510–2522

33. Bach F R, Jordan M I. Kernel independent component analysis. Journal

of Machine Learning Research, 2002, 3: 1–48

34. Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive

Neuro Science, 1991, 3(1): 71–86

35. Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. fisher-

faces: recognition using class-specific linear projection. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711–

720

36. He X, Cai D, Niyogi P. Lplacian score for feature selection. Advances

in Neural Information Processing Systems. 2005, 18: 507–514

37. Cai D, He X, Hu Y, Han J, Huang T. Learning a spatially smooth sub-

space for face recognition. In: Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition. 2007, 1–7

38. Ahonen T, Hadid A, Pietikainen M. Face recognition with local binary

patterns. In: Proceedings of the 8th European Conference on Computer

Vision. 2004, 469–481

39. Zhang J, Zhang D. A novel ensemble construction method for multi-

view data using random cross-view correlation between within-class

examples. Pattern Recognition, 2011, 44(6): 1162–1171

Yanyan Zhang received the MS degree

in computer science and application from

Nanjing University of Aeronautics and As-

tronautics, China in 2010. Now she is a

teaching assistant in PLA University of Sci-

ence and Technology, China. Her current

research interests include face recognition

and sparse learning.



Yanyan ZHANG et al. Multi-view dimensionality reduction via canonical random correlation analysis 869

Jianchun Zhang received the MS degree

in computer science and application from

Nanjing University of Aeronautics and As-

tronautics, China in 2010. His research in-

terests include pattern recognition and im-

age processing.

Zhisong Pan received the BS degree in

computer science and MS degree in com-

puter science and application from PLA In-

formation Engineering University, China,

in 1991 and 1994 respectively, and the PhD

degree in Department of Computer Sci-

ence and Engineering, Nanjing University

of Aeronautics and Astronautics, China in 2003. From July 2006 to

the present, he has led several key projects of intelligent data pro-

cessing for the network management. His current research interests

mainly include pattern recognition, machine learning and neural net-

works.

Daoqiang Zhang received the BS and PhD

degrees in computer science from Nanjing

University of Aeronautics and Astronautics

(NUAA), China in 1999 and 2004, respec-

tively. He is currently a professor in the

Department of Computer Science and En-

gineering of NUAA. His research interests

include machine learning, pattern recogni-

tion, data mining, and image processing. In these areas, he has pub-

lished over 40 technical papers in refereed international journals or

conference proceedings. He was nominated for the National Excel-

lent Doctoral Dissertation Award of China in 2006, and won the best

paper award at the 9th Pacific Rim International Conference on Ar-

tificial Intelligence (PRICAI’06). He has served as a program com-

mittee member for several international and native conferences. He

is also a member of Chinese Association of Artificial Intelligence

(CAAI) Machine Learning Society.


