
Front. Comput. Sci., 2015, 9(6): 860–874

DOI 10.1007/s11704-015-4483-5

Compound graph based hybrid data center topologies

Lailong LUO1, Deke GUO 1, Wenxin LI2, Tian ZHANG3, Junjie XIE1, Xiaolei ZHOU1

1 Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology,

Changsha 410073, China

2 Network and Cloud Computing Laboratory, Dalian University of Technology, Dalian 116024, China

3 School of Information Management, Wuhan University, Wuhan 430070, China

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Abstract In large-scale data centers, many servers are in-

terconnected via a dedicated networking structure, so as to

satisfy specific design goals, such as the low equipment cost,

the high network capacity, and the incremental expansion.

The topological properties of a networking structure are criti-

cal factors that dominate the performance of the entire data

center. The existing networking structures are either fully

random or completely structured. Although such networking

structures exhibit advantages on given aspects, they suffer ob-

vious shortcomings in other essential fields. In this paper, we

aim to design a hybrid topology, called R3, which is the com-

pound graph of structured and random topology. It employs

random regular graph as a unit cluster and connects many

such clusters by means of a structured topology, i.e., the gen-

eralized hypercube. Consequently, the hybrid topology com-

bines the advantages of structured as well as random topolo-

gies seamlessly. Meanwhile, a coloring-based algorithm is

proposed for R3 to enable fast and accurate routing. R3 pos-

sesses many attractive characteristics, such as the modularity

and expansibility at the cost of only increasing the degree of

any node by one. Comprehensive evaluation results show that

our hybrid topology possesses excellent topology properties

and network performance.

Keywords data center networking, compound graph, hy-

brid topology, routing design

Received October 30, 2014; accepted March 27, 2015

E-mail: guodeke@gmail.com

1 Introduction

Data centers are the dominant infrastructure of cloud com-

puting and network applications. Inside a data center, large

number of servers and switches are interconnected using a

specific data center networking (DCN). That is, all switches

are interconnected to form a given networking structure, and

those switches use their remaining ports to connect large-

scale servers. Recently, some novel networking structures

were proposed for future data centers. Such proposals can

be roughly divided into two categories. The first is structured

topologies, each of which organizes switches into structured

networks with strict interconnection rules on components in

a data center. Fat-Tree [1], VL2 [2] and BCN [3] fall into

this category. On the contrary, random topologies break strict

interconnection rules by introducing random links among

switches, e.g., SMDC [4], Jellyfish [5] and Scafida [6]. Such

structured topologies exhibit high throughput but are not in-

cremental expansion. Those random topologies are incremen-

tal expansion; however, they suffer complex cabling and rout-

ing processes. On the other hand, the superiority of structured

and random topologies is complementary. In this paper, the

following two fundamental problems motivate us to design

new networking structures that can tightly integrate the supe-

riority together and abandon the weakness.

Can existing structured topologies of data centers satisfy

the requirements of today’s applications perfectly? For struc-

tured topologies, the strict interconnection rules simplify the

construction of DCNs; however, they limit the incremental



Lailong LUO et al. Compound graph based hybrid data center topologies 861

expansion of deployed data centers. In reality, a production

data center needs to be gradually extended along with the in-

creasing demands of applications and users. But the struc-

tured DCNs fail to support the incremental expansion.

Can random topologies truly improve the performance of

DCNs? Random DCNs, such as Jellyfish [5] and Scafida [6],

support the incremental expansion naturally. Meanwhile, ran-

dom links decrease the network diameter by connecting re-

mote nodes together. Furthermore, random DCNs can in-

tegrate heterogeneous devices during the expansion process

[7]. However, beside the cabling cost due to remote random

links, routing and maintenance in random DCNs are essential

issues. First, the Dijkstra or Floyd algorithm, whose compu-

tation complexity is O(n2) or even O(n3), is used to search the

shortest paths between any pair of nodes in random DCNs.

It is clear that routing in random DCNs is time-consuming.

Second, disordered and unsystematic link distribution incurs

nontrivial maintain cost. That is, running a random DCN is

relative expensive.

Fortunately, the superiorities of structured DCNs and ran-

dom DCNs are complementary. This motivates us to seek new

topologies which can integrate their superiorities together and

avoid their weakness. For this reason, we propose a family

of hybrid topologies, which are compound graphs of given

structured and random topologies. That is, given number of

random structures are unit clusters, which are then intercon-

nected by means of a structured structure. In this way, a

family of hybrid DCNs is built when utilizing different ran-

dom and structured graph. Consequently, the resulting hybrid

DCNs can naturally integrate the characteristics of incremen-

tal expansion and fast routing via compound graph theory.

Note that any of such hybrid topologies is a structured topol-

ogy from the global viewpoint, while is a random topology

from a local viewpoint.

To fully exploit the benefits of our hybrid topologies, a

coloring-based routing algorithm is proposed to derive the

routing path between any pair of nodes in the hybrid DCNs.

Typically, a unique identifier, which consists of two parts,

i.e., the inter-identifier and the inner-identifier, is assigned to

each node. The inter-identifier locates the random cluster the

nodes reside in and the inner-identifier locates the node in-

side random clusters. The structured links are colored with

different colors, the two endpoints of each colored link are

assigned with the same inner-identifier. In this way, coupled

with the color of structured links, the inter-identifiers can de-

rive the random cluster level path, then the paths inner each

random cluster can be calculated with shortest path algorithm

like Dijkstra. Then, we build an integer programming model

to minimize the average path length (APL) problem in our hy-

brid structures with given number of servers and port count

per switch. Furthermore, a random cluster level expansion al-

gorithm is designed for realizing the incremental expansion.

The major contributions of this paper are summarized as

follows.

• We propose the design methodology of hybrid DCNs,

which embeds some random clusters into a given struc-

tured topology. We further design a nonlinear inte-

ger programming model to derive an optimized hybrid

topology.

• We design an edge coloring based routing algorithm,

whose routing cost is much lower than traditional algo-

rithms. The associated incremental expansion methods

are designed in different levels.

• We conduct extensive experiments. The results demon-

strate that, compared with Jellyfish, our hybrid struc-

tures bring less routing time and cabling cost. Com-

pared with the generalized hypercube, our hybrid struc-

tures process better network order and throughput.

The rest of this paper is organized as follows. Section 2

summarizes the related preliminaries. Section 3 proposes the

structures of hybrid DCNs, and Section 4 designs the associ-

ated routing algorithm. Section 5 tries to optimize the design

of hybrid DCNs. Section 6 discusses the issue of incremental

expansion. Section 7 evaluates the performance of our pro-

posal. Section 8 introduces the related work, and Section 9

concludes this paper.

2 Preliminaries

To clearly present our proposal, we first introduce the back-

ground and preliminary knowledge. We summarize the defi-

nitions and properties of generalized hypercube and random

regular graph, which are representing structured and random

topologies, respectively.

2.1 Generalized hypercube

Generalized hypercube (GHC) [8] is defined as follows. Let

G(ms,ms−1, . . . ,m2,m1) denote a generalized hypercube of N

node, where N = ms × ms−1 × · · · × m2 × m1 and mi � 2

for all 1 � i � s. Each node has a unique r-digit identifier

xsxs−1 · · · x2x1, where xi ∈ [0,mi − 1] for all 1 � i � s. Two

nodes are adjacent if and only if their identifiers are different

in one dimension, i.e., the hamming distance between two



862 Front. Comput. Sci., 2015, 9(6): 860–874

identifiers is exactly 1.

GHC is more flexible than standard hypercube. Hypercube

can only accommodate 2i nodes, for i � 0, while GHC can

accommodate any number of nodes via careful configuration.

For example, we can not construct a hypercube with N = 24,

but can derive several GHCs with different configurations

since 24 = 2 × 2 × 2 × 3 = 2 × 3 × 4 = 4 × 6 = 3 × 8.

Among such GHCs, there is a trade-off between the network

diameter and the node degree since larger node degree con-

tributes to shorter network diameter.

GHC is a representative structured topology, where the

construction and routing rules are deterministic. Furthermore,

GHC is very flexible such that designers could configure the

network structure based on their demand.

2.2 Random regular graph

A random r-regular graph (r-RRG) is a graph selected from

Gn,r, which denotes the probability space of all r-regular

graphs on n vertices, where 3 � r < n and n × r is even

[9]. Generally, a RRG has excellent topology characteristics.

First, all nodes have the same degree. Second, given r and

n, a RRG has a lower bound on the network diameter. That

is, for the same n, the network diameter of different RRGs is

roughly logr−1 n.

r-RRGs have excellent properties such as coloring and

Hamiltonian cycle. Most importantly, RRGs support the in-

cremental expansion properly by adding racks one by one

without changing the existing network too much. Because of

these outstanding characteristics, RRGs were introduced into

data center topologies.

2.3 Compound graph

Definition 1 Given two structured graphs G and G1, a level-

1 compound graph G(G1) is obtained by replacing each node

of G with a copy of G1, and then replacing each link of G by

a link, which connects two corresponding copies of G1 [3].

A compound graph is usually visualized as a node-link-

diagram using the nested box metaphor [10]. If the node de-

gree of G is equal to the number of nodes in G1, the resultant

graph is a complete compound graph. Otherwise, it is an in-

complete compound graph. In fact, higher level compound

graphs can be derived from lower level ones, recursively.

G(G1) maintains the topological characteristic of G and G1.

In other words, the compound graph combines the advantages

of both parts efficiently. For this reason, the use of compound

graphs has become more important in recent years. For exam-

ple, in social network analysis large networks are transformed

in a so-called block model in order to cope with the huge

amount of data. From a graphtheoretical point of view these

block models are compound graphs [10]. Also, for DCNs,

several proposals are designed based on the compound graph,

e.g., BCN [3], DCell [11], KCube [12], DCube [13] and so

on.

3 Hybrid topology design

In this paper, we aim to combine the advantage of both struc-

tured topologies and random ones via designing a family of

hybrid topologies for data centers. Compound graphs (ei-

ther complete or incomplete) are introduced as the medium

between random and structured graphs. More precisely, we

combine the generalized hypercube with the random regular

graph to derive a hybrid topology called R3. Table 1 counts

the important symbols and notations in this paper.

3.1 Overview of topologies

The existing wired DCNs topologies are mostly belong to

two categories, i.e., random ones and structured ones. Struc-

tured topologies lack scalability and incremental expansion,

while the random ones suffer considerable routing overhead.

For example, the routing in hypercube is easy to implement

since the hamming distance between two node identifiers will

judge the existence of a direct link between any pair of nodes.

When a hypercube based data center needs to be extended,

the data center has to double the amount of servers. For

Scafida [6], the topology can be incrementally expanded by

adding any number of servers, but routing is very tough due

to large number of random links and the lack of topology in-

formation. In this paper, we pursue hybrid topologies for data

centers, which can combine the superiorities of both random

and structured topologies. The resultant hybrid topologies are

both random and structured at different viewpoints.

Table 1 Symbols and notations

Term Definition

G A simple graph
N The total number of node in a graph
G(G1) A compound graph based on G and G1

mi Order of the ith dimension in GHC
Δ Maximum node degree in a simple graph
x′(G) Rdge chromatic number of G
T Total number of servers in R3
p Port count of each switch in R3
t Total switch that used in R3
α Number of switch ports that link with switches
β Number of switch ports that link with servers



Lailong LUO et al. Compound graph based hybrid data center topologies 863

• Available structured topologies Tree, Hypercube, Gen-

eralized Hypercube, Torus, and other structured topologies

are permitted to appear at our hybrid topologies.

• Available random topologies Small-word network,

scale-free network and random regular graph of random

topologies are potential choices. Each random cluster plays

as a node in the selected structured topology.

• Design principle of hybrid topologies We first choose

one structured topology and single or multiple random

topologies, and then combine them together with the princi-

ple of compound graph. In the resultant topology, the links

derived from structured graph are called structured links,

while the links inside a random clusters are called random

links. In our design, only one structured topology can be used

since it is the container of random clusters, but heterogeneous

random clusters can be used. The incremental expansion and

routing will be demonstrated later in Sections 4 and 6, respec-

tively.

Without loss of generality, in our hybrid topologies, each

switch is viewed as an intelligent node, whose partial ports in-

terconnect with other switches, while the rest ports are used

to connect servers inside a rack.

3.2 R3: compound graph theory based hybrid topology

As depicted in Section 2, compound graph is a powerful

method to integrate two kinds of topologies while remain-

ing their superiorities. This motivates us to use the compound

graph theory to construct our hybrid topologies. Different

combinations of structured and random topologies result in

different hybrid topologies. This will enlarge the design space

and increase the design flexibility. In this way, our hybrid

topologies enable designers to construct their data center net-

works on demand.

To construct a hybrid topology correctly based on the com-

pound graph theory, three constraints must be satisfied.

Constraint 1 All random clusters must be interconnected

via a structured topology.

Constraint 2 The number of random clusters must equal to

the number of chosen nodes in the structured topology G.

Constraint 3 The lower bound on the amount of nodes in

each random cluster cannot be less than the maximum degree

plus one in the structured topology.

We describe the basic process of building a hybrid topol-

ogy in Algorithm 1. In Algorithm 1, given the number of links

that has been linked to each node in G, the adjacent matrix

determine whether current nodes need to be linked. If ith and

jth random clusters are connected, a link will be added to

connect one random node in each cluster. If the number of

nodes in a random cluster is less than the degree of node in

the structured topology then the degree of some nodes will be

increased by more than one. Each proposed hybrid topology

is the generalization of the involved random and structured

topologies under specific settings. This design methodology

has two extreme cases. If the random clusters have only one

node, the resultant topology is just the structured graph we

used (depicted in Fig. 1(a)). If the structured graph is just a

single node, as shown in Fig. 1(c), then the hybrid topologies

degrade into a fully random cluster.

Algorithm 1 Building hybrid topology, H

Require: Given a structured topology G, r denotes the number of nodes in
G. Let Ad jacent[r][r] denote the adjacent matrix of G and Ri denote
the random clusters.

1: Initialize each random cluster;

2: Let Link[x] count all links already connected to the xth node in G;

3: Let Degree[x] be the degree of the xth node in G;

4: for i = 0 to r do

5: for j = i to r do

6: if Ad jacent[i][ j] == 1 and Link[a] < Degree[a], a = i, j then

7: add a link between ith and jth random clusters;

8: Link[i]++;

9: Link[ j]++;

10: return The hybrid topology H.

Figure 1(b) depicts an example of hybrid topology con-

structed with the Torus and random topologies. If each ran-

dom cluster is viewed as a node in Torus, then the topology

Fig. 1 Structured and random topologies are extremes. Between them, lies an example of our design, which is a compound graph with 2D-
Torus as the structured part and different types of random clusters. The solid nodes in each random cluster are chosen to connect with other
random clusters. (a) 2D torus; (b) our hybrid design; (c) random graph



864 Front. Comput. Sci., 2015, 9(6): 860–874

is structured, and hence easy-routing. While, in each ran-

dom cluster, the topology is random and incremental expand-

able. In our hybrid topology, different random clusters are al-

lowed to be embedded; meanwhile, it is not necessary that the

amount of nodes in such random clusters are the same. That

is, our methodology can derive all hybrid topologies that lie

between structured and random topologies.

As aforementioned, the vast design space results in vari-

able hybrid topologies with diverse randomness. To simplify

the presentation, we focus on a representative hybrid topol-

ogy, called R3. R3 employs the generalized hypercube as its

structured part and the random regular graph as the unit of

random clusters. Generalized hypercube and random regu-

lar graph are two representative topologies, which are widely

used for designing network structures for data centers.

Definition 2 R3(G(ms,ms−1, . . . ,m1), r-RRGs) denotes a

kind of hybrid topologies, each of which is the compound

graph of a random regular graph r-RRG and a GHC, whose

dimensions are ms,ms−1, . . . ,m1, respectively.

Definition 3 In a R3 topology, the selected nodes from each

random cluster for linking with other random clusters are

called Boundary Nodes.

Therefore, according to Definitions 2 and 3, a R3 topology

contains number of ms×mr−1×· · ·×m1 RRGs and the amount

of boundary nodes is
∑

(mi−1), where 1 < i < s. Figure 2 de-

picts a 2×4 dimension topology, where eight random clusters

of 3-RRGs are embedded and each cluster accommodates 8

nodes. These structured links across random clusters form a

2× 4 generalized hypercube. Every cluster is assigned a two-

dimensional identifier (the two digit red number in Fig. 2).

Similarly, each node in a random cluster also owns its iden-

tifier, the allocation rules will be discussed later in Section 4.

All boundary nodes are chosen randomly, while, the amount

of nodes in a random cluster can be an arbitrary value, which

is not less than the node degree in GHCs. In R3, all parame-

ters are adjustable. Due to the flexibility of parameter setting,

R3s with different scales can be easily built according to its

definition.

3.3 Deployment strategy for hybrid based data center

To put the hybrid topologies into real deployment, we investi-

gate that both top-down wiring strategy and down-top wiring

strategy are feasible.

The top-down deployment strategy mainly includes two

steps. At the first step, we build the structured topology since

it is the main skeleton of our hybrid topology. Having selected

an appropriate structured topology, we deploy the boundary

nodes of each cluster and interconnect these boundary nodes

with structured links. When all structured links have been ca-

bled, the first step will be terminated. At the second step, we

fill the random clusters via adding nodes into the clusters in

a way the random topologies require. In this way, the hybrid

topology will be constructed successfully.

Fig. 2 A 2 × 4 R3 topology

Unlike the top-down strategy, the down-top deployment

strategy establishes the random clusters at the first step so

that all random blocks are prepared for later interconnection.

However, how to establish the random clusters depends on

which topology the designer utilized. Note that the number

of random clusters must be equal to the number of nodes in

the structured topology we employed according to the com-

pound graph theory. At the second step, we chose the bound-

ary nodes from each random cluster and interconnect them

together via structured links in a way the structured topology

requires. When all links have been cabled, the construction

process will be terminated.

4 Efficient routing methods of R3

Routing in our hybrid topologies needs a dedicated design

method because of the coexistence of random links and struc-

tured links. In our hybrid topologies, the major challenge of

routing comes from the embedded random clusters. In ran-

dom topologies, like Scafida or Jellyfish, the shortest routing

path between any pair of nodes can be decided only by Di-

jkstra like methods, which incur considerable searching cost

in large-scale data centers. In structured topologies, the topo-

logical characteristics can significantly ease the computation

process of the shortest routing path.

Unlike BCube, where regularity and symmetry of the

topology supports fast routing under differen flow patterns

[14], the routing in R3, however, turns to be complicated



Lailong LUO et al. Compound graph based hybrid data center topologies 865

in each of our hybrid topologies due to the following two

challenges. First, the unstructured topology of each random

cluster denies the possibility to improve the efficiency of ex-

isting routing algorithms. Second, the associated nodes of

each structured links cannot be located precisely since they

are chosen randomly. In this paper, we focus on addressing

the second challenging issue. It is clear that the obstacle of

routing results from all of random nodes. We thus regularize

those random nodes by coloring all of structured links and

make routing just like in a totally structured topology.

Definition 4 An edge coloring of a graph is an assignment

of colors to the edges of the graph so that no two adjacent

edges have the same color. The least amount of employed

colors is called the edge chromatic number, denoted as x′(G)

[15].

Theorem 1 Let Δ denote the maximum node degree in a

simple graph G, where Δ � x′(G) � Δ + 1. If x′(G) = Δ, the

graph is called class 1 graph, else, class 2 graph [15].

Theorem 2 Let Kn be the n-regular graph [15], then

x′(G) =

⎧
⎪⎪⎨
⎪⎪⎩

n − 1, if n is oven;

n, if n is odd.
(1)

Theorems 1 and 2 have been proved in Ref. [15]. These

theorems bring us an insight to identify boundary nodes in

each random cluster.

Observation Structured topologies, e.g., ring, Torus, hyper-

cube, generalized hypercube and cayley graph are all struc-

tured graphs.

Coupled with Theorem 1 and Theorem 2, the observa-

tion manifests that structured topologies that used in today’s

DCNs are colorable. Figure 2 depicts the coloring result on

R3(G(2, 4, 3-RRGs)). To enable the success of edge coloring,

the proposed Constraint 3 in Section 2 must be satisfied. After

coloring each structured link, we assign each boundary node

an inner-identifier according to the color of associated link

so that the nodes, which linked by the same link, will have

the same inner-identifier. In this novel way, the random clus-

ter level paths will be calculated easily. So, the used inner-

identifier of boundary nodes can significantly reduce the rout-

ing complexity.

4.1 Edge coloring based identifier allocation

To efficiently enable the routing, an identifier is usually in-

troduced to identify each node in existing DCNs. In our hy-

brid topologies, the identifier consists of two parts. The inter-

identifier contains the construction information of structured

topology, while the inner-identifier locates nodes in each ran-

dom cluster.

The inter-identifier is determined by the behind structured

topology. For example, if the structured topology is a Tesser-

act (4-dimension hypercube) that accommodates 8 nodes,

then a three binary digit identifier can identify each node. If

the structured topology is a 3 × 4 × 5 GHC, then a three digit

identifier from 000 to 234 will work. Based on the rules how

the structured topologies are built, we can always design an

identifier system which we can refer to find their neighbors,

thus result in convenience in routing. So, the inter-identifier

not only identifies the random cluster each node resides in,

but also eases the design of routing scheme at the level of

structured topology.

The inner-identifier is the most challenging part since

boundary nodes are chosen randomly. In the edge coloring

theory, whether a graph is class 1 is a typical NP-complete

problem, which cannot be solved in polynomial time. We

employ DSATUR [16], the best known heuristic algorithm

in this area, to approximate the optimal solution. Such an al-

gorithm usually generates multiple coloring strategies, one of

which will be randomly selected. Basically, each color iden-

tifies a specific inner-identifier. As shown in Fig. 2, the struc-

tured links are colored with four colors, i.e., black, purple,

orange and blackish green, which represent inner-identifier

000, 011, 010 and 001, respectively. Furthermore, the inner-

identifier of each boundary node in a random cluster is as-

signed with the identifier of the associated structured link. As

shown in Fig. 2, all boundary nodes are assigned the inner-

identifier with 000, 011, 010 and 001, respectively. As for

the rest nodes in the random cluster, we calculate the inner-

identifier interval according to the binary system. For exam-

ple, if there are 9 nodes in a random cluster, a 4-digit bi-

nary range from 0000 to 1000 will identify all of them. Then

the identifiers in the interval, except those used as boundary

nodes, are assigned to the non-boundary nodes randomly.

4.2 Identifier-based routing algorithm

According to allocated identifiers of all nodes, especially

those boundary nodes, we derive a routing algorithm for our

hybrid topologies. Generally, the transmission of data flows

between any pair of nodes can be usually divided into a se-

ries of inter-cluster and intra-cluster routing. Such two kinds

of routing are totally different because of the lack of struc-

tured links inside each random cluster. We can distinguish

such two kinds of routing just according to the introduced

identifier. From the global viewpoint, given a pair of nodes,



866 Front. Comput. Sci., 2015, 9(6): 860–874

if their inter-identifiers are the same, they need to involve the

intra-cluster routing method, otherwise, the inter-cluster rout-

ing method should be employed.

The intra-cluster routing is just the same as routing in a ran-

dom graph like Jellyfish [5] or Scafida [6]. But in our cases,

routing can be simpler since the number of nodes in our ran-

dom cluster is much less than that of Jellyfish or Scafida. Typ-

ically, we employ the shortest k-path algorithm to search the

paths between any pair of nodes, furthermore, ECMP proto-

col can be used to control data transmission and avoid con-

gestion.

The inter-cluster routing aims at finding the shortest path

from the source to destination on the random cluster level.

To be specific, we need to determine the relay random clus-

ters and all boundary nodes on the way. Inter-cluster routing

consists of two steps. First, calculate the relay random clus-

ters from the source cluster where the source node locates,

to the destination cluster where the destination node locates.

Since the inter-identifiers contain the topology information of

the structured graph, which the hybrid topology utilizes, the

relay random clusters can be easily derived from the inter-

identifiers of source node and destination node. Second, de-

termine the boundary nodes of all related random clusters

that have been derived from the first step. According to the

colors of structured links we have allocated in Section 4.1,

the inner-identifiers of each boundary node along the random

cluster level path will be gained. This work is straightforward

since the inner-identifiers of the two endpoints, which con-

nects with the same structured link, share the same identifier

with the colored link. In this special way, the random cluster

level path can be derived based on the structured link colors

and the identifier system we have established before.

From the global viewpoint, given a pair of source node

and destination node, first of all, the routing algorithm judges

whether they belong to the same random cluster according to

their inter-identifiers. If yes, then the intra-cluster routing al-

gorithm will be employed to find the path. On the contrary,

then inter-cluster routing will provide the random cluster

level path; hence, all relay random clusters and relay bound-

ary nodes are determined. Then, the path need to be speci-

fied at a finer level. That is, each relay random cluster along

the random cluster level path will employ intra-cluster rout-

ing to find the relay nodes inside them. With the relay nodes

and links inside each relay random cluster and the structured

links added into the path, the whole routing process is accom-

plished.

As explained in Algorithm 2, given two nodes, we first

judge whether they belong to the same random cluster ac-

cording to their inter-identifiers. If it is true, K∗ Algorithm

[17], the most effective heuristic search algorithm so far, is

adopted to search k shortest routing paths. If they resides in

different random clusters, Algorithm 2 identifies the struc-

tured links and their colors, and find those boundary nodes

in each relay cluster. We then add links to the path itera-

tively by invoking the Dijkstra algorithm in each cluster. In

Fig. 2, a source node with the red color in the cluster 00

needs to communicate with a destination node with the yel-

low color in the cluster 13. Their identifier are given as 00101

and 13100, respectively. Obviously, they belong to different

random clusters, and there exist two routing paths between

clusters 00 and 13, i.e., 00→03→13 and 00→10→13. We

use the first path as an example, 03 is a relay cluster on the

random cluster level. The purple and orange links associated

with inner-identifiers 011 and 010 are two inter-cluster links.

Furthermore, the boundary nodes can be located, i.e., 00001

in cluster 00, 03011 and 03010 in cluster 03, and 13010 in

13 cluster. Then, the Dijkstra algorithm is utilized to derive

a path of added links inside each random cluster, e.g., the

shortest path from 00101 to 00011 in cluster 00, from 03011

to 3010 in cluster 03, and from 13010 to 13100 in cluster 13.

In this way, any pair of nodes can finally achieve the routing

path inside our hybrid topologies.

Algorithm 2 Routing in hybrid topologies

Require: The Hybrid topology, H; The source node src, and its identi-
fier iden-src; The destination node dst, and its identifier iden-dst; The
path number k; the number of digit in inter-identifier x.

1: Coloring the links and allocate identifiers;

2: Let tem be a integer with default value 0;

3: Let iden1 and iden2 be a identifier respectively;

4: if GetInterIden(iden-src,x) == GetInterIden(iden-dst,x) then

5: path = kStar(iden-src,iden-dst,k);

6: else

7: Get the inter-identifier of clusters, denoted as inter-iden;

8: Get structured links needed, denoted as structured;

9: Get color of links needed;

10: Get inner-identifier of boundary nodes, denote as iden-color;

11: while tem < iden-color.size do

12: iden1← iden-src;

13: iden2← inter-iden[tem]+iden-color[tem];

14: path += Dijkstra(iden1,iden2);

15: path += inter-iden[tem]);

16: tem++;

17: path += Dijkstra(iden2, dst);

18: return The routing path path.

19: function GetInterIden(iden, x)

20: for i = 1 to x do

21: inter-iden += coor[i];

return inter-iden.



Lailong LUO et al. Compound graph based hybrid data center topologies 867

When nodes are added or eliminated from R3, the routing

tables need to be updated. Note that, unlike other topologies

where addition or deletion of a node may affect the global

routing, R3 suffers the least since it limits the influence of

topology alteration into the specific random cluster. Here is

an example, for Fat-Tree, if one of the core switches break-

downs, then the routing tables of all nodes that belong to the

subtree rooted from the failed switch will be updated to suit

the new topology. On the contrary, when 00001 fails in Fig.

2, only those nodes of 00 cluster may need to update routing

table, thus will never impact nodes in other random clusters.

5 Topology optimization

Given the number of servers in a data center, a typical ques-

tion is how to allocate the ports of each switch when es-

tablishing the data center networking structure. That is, how

many ports each switch should be allocated to connect with

servers? Note that the remained ports of each switch are

utilized to form a networking structure among all switches.

There lies a trade-off between the amount of switches and the

network diameter, since the increasing number of switches

leads to decreased network diameter at the cost of incurring

more investment [18]. Meanwhile, the ratio of node degree to

the network diameter is a classical problem for topology de-

sign. How much randomness is optimal for both routing and

networking? In the design of our hybrid topologies, more

structured links can ease the routing. On the contrary, net-

working can benefit from more randomness, since random

topologies can naturally support the incremental expansion

with low diameter. Therefore, the proposed hybrid topolo-

gies, i.e., R3, need further optimization.

5.1 Related factors

Given the number of servers and that of ports at each switch,

how many ports each switch should be allocated to connect

with servers and other switches, respectively, so as to realize

the minimum APL with an acceptable amount of switches?

In R3, to minimize average path length, we must concern

at least three impact factors. As a hybrid topology combine

r-RRGs and GHC via the compound graph theory, the di-

ameter of R3 is decided by three factors. That is the dimen-

sion of GHC, m1,m2, . . . ,ms, the node degree of RRGs, r,

and the number of nodes in each RRG, n1, n2, . . . , nt, where

N = ms × ms−1 × · · · × m1. The dimension influences the re-

dundancy of routing path and the amount of structured links

in routing paths. Moreover, it dominates the hamming dis-

tance between any pair of nodes, x and y, in terms of number

of hops between them [8]. The other two factors determine

the number of relay nodes inside each cluster along the path.

APL is a network level measurement, so we calculate it and

integrate such factors to reveal their influence on the network

diameter.

5.2 Optimization strategy of topologies

In our hybrid topology, each routing path consists of two

parts, the structured links and some random links in random

clusters on the path.

Theorem 3 In R3, let APLghc, APLrrg, and APLr3 denote

the average length of routing in GHC, RRGs and R3, respec-

tively. Then we have APLr3 = APLghc+(APLghc+1)×APLrrg.

Proof In such a routing path, there exist APLghc struc-

tured links, and APLghc + 1 random clusters among which

APLghc − 1 random clusters are relay. In each of such clus-

ters, the path length is APLrrg on average. Thus, Theorem 3

is proved.

Theorem 4 For a G(ms,ms−1, . . . ,m1), N = ms × ms−1 ×
· · · × m1 denotes the number of nodes, xl denotes the number

of node pairs, each of which exhibits the distance of l. We

then have

xl = (N/2)
s−l+1∑

i1=1

· · ·
s−l+ j∑

i j= j

· · ·
s∑

il=l

[(mi1 − 1) · · · (mil − 1)].

APLghc = (2
s∑

l=1

l × xl)/(N(N − 1).

Proof Consider a node A, denoted as ysys−1 · · · y1, in this

GHC, If another node B is l hops away from node A, the

coordinates just differ in l dimensions. Thus, APLghc can be

calculated naturally based on xl. Thus Theorem 4 is proved.

Note that different structures exhibit varied APLrrg when

the node degree and number of nodes do not change [9]. The

default value of APLrrg is set to logr−1 n, where n and r de-

note the amount of nodes and the degree of each node, re-

spectively. Theorems 3 and 4 derive a model of the network

diameter for R3. We consider a special case that n1 = n2 =

· · · = nt = n. We build this optimal model with the total server

number T , the port count of each switch p as input. α and β

denote the number of ports each switch allocates to connect

with other switches and servers, respectively. Let t ∈ [1, T ] be

the total number of used switches. The topology optimization



868 Front. Comput. Sci., 2015, 9(6): 860–874

can be modeled as follows:

min APLr3. (2)

s.t. ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T � s × β,
t � n ×∏mi,
∑s

i=1(mi − 1) + 1 � n,

2 � α + β � p,

1 � r � α − 1.

(3)

In this model, the minimum APL is searched in the domain

of feasible solution with five constraints satisfied. The first

inequality promises that the number of servers that our topol-

ogy can accommodate is not less than the input T . The sec-

ond inequality constraints the number of switches the topol-

ogy can accommodate is more than the number of switches

that actually used. The third inequality guarantees that our

routing algorithm can be built successfully. While, the last

constraint reveals that each switch should leave at least one

port for structured links. In fact, this model is a nonlinear in-

teger programming problem, which is NP-hard. According

to the gradient optimal algorithm, we utilize an associated

tool (ModelCenter1)) to search the minimum result. Figure

3(a) shows that the optimized APL of R3 increases when T

varies from 1 000 to 6 000. This result is reasonable because

more servers need to be accommodated. It, however, fluc-

tuates at 4 500 and 5 500 because there are more switches

and less ports link with servers in these two cases. For this

reason, the topology exhibits lower APL at the cost of in-

creasing the investment due to more switches. The gradient

optimal algorithm searches towards the fastest decline direc-

tion and find the minimal value. Figure 3(b) indicates that,

given T = 2 000 and p = 48, the search process terminates

when β = 15, and the minimum APL is 3.71. Furthermore,

we evaluate the amount of switches after APL is optimized.

Figures 3(b) and 3(c) demonstrate the marginal effect around

the extreme point. When s = 62, APL = 3.78 is a little bit

higher than 3.71. However, 138 switches are required so as to

reach the extreme point. This will double the investment and

obviously not cost-effective. So, whether the minimum APL

is the best choice depends on designers.

6 Incremental expansion of topology

Incremental expansion is essential to data centers since they

are usually required to accommodate arbitrary number of

servers on demand. For data centers based on our hybrid

topologies, two methods can be employed to realize the in-

cremental expansion, i.e., expansion by adding nodes in an

existing random cluster and expansion by inserting a new ran-

dom cluster.

6.1 Expansion within an existing random cluster

Recall that random topologies like RRG and scale-free net-

work support the incremental expansion naturally, new nodes

can be added one by one. For RRG, when a new node is added

in, several existing nodes break up their links and connect to

the new one [5]. For a scale-free network, according to its

generation algorithm, a new node will be linked with m ex-

isting nodes, which are selected based on the preferential at-

tachment principle [6]. To keep from the unbalance and bot-

tleneck, those random clusters with the minimum number of

nodes are chosen to host new nodes. As more and more nodes

are added into those selected clusters, the length of inner-

identifier needs to be increased to maintain consistency in the

whole network. In other words, the length of inner-identifier

is decided by the maximum number of node in random clus-

ters. In Fig. 2, the number of nodes in each cluster is no more

than 8, a 3-digit inner-identifier is feasible. Once a new node

is added into cluster 00, the maximum number of node is

9. Thus, the existing 3-digit inner-identifier is replaced by a

4-digit inner-identifier. That is, existing inner-identifiers are

updated by adding a new digit in the front of them. Theo-

retically, the number of node that each random cluster can

accommodate is unlimited. However, if the random clusters

Fig. 3 (a) The APL of R3 when T varies; (b) the APL of R3 when β varies; (c) the number of switches in R3 when β varies

1) http://www.phoenix-int.com/software/phx-modelcenter.php/



Lailong LUO et al. Compound graph based hybrid data center topologies 869

have too many nodes, the structured links may be bandwidth

bottleneck since these random clusters are interconnected

with structured links only.

6.2 Expansion by extra random cluster

When all random clusters in the existing topology are satu-

rated, a new cluster is required to accommodate upcoming

new servers. Existing structured topologies are usually ex-

tended level by level, we propose a novel expansion strategy

to implement the incremental expansion. More precisely, we

expand an existing hybrid topology just like the way hyper-

cube does, but in an incremental way.

Definition 5 In a n-dimensional hypercube, a n − 1-

dimensional coordinate system can be established to identify

each node according to its building rule. We call a pair of

nodes are corresponding nodes if their coordinates are differ-

ent only at the first digit.

As shown in Fig. 4(b), a new cluster 10 and an existing

cluster 00 are called a pair of corresponding clusters. Al-

gorithm 3 depicts a framework of cluster level expansion.

When we need to add a new cluster, a function COOREX-

TEND judges whether the coordinate system requires more

digits, then a function ADDREGULARLINK(G,New[i])

adds structured links to the new cluster, according to G′s
construction rules. Then those unnecessary links are deleted

by a DELETE function. In ADDRESTLINK(G, New[i]),

those links, whose destination endpoints do not exist yet are

linked to New[i]′s corresponding clusters to ensure the par-

tial regularity of G. In this especial way, structured topologies

can be incrementally expanded while remaining their funda-

mental characteristics via using corresponding clusters. We

depict an example in Fig. 4(a), when a new cluster wants

to add into a quadrangle, the coordinate of existing clusters

are increased one digit. The new cluster is identified as 10,

whose corresponding cluster is 00. Thus, cluster 10 is linked

with cluster 00. According to the quadrangle rule, cluster 10

should connect with clusters 11 and 13. Such two clusters,

however, do not exist yet; hence, cluster 10 connects with the

Fig. 4 An example of expansion by adding extra clusters

corresponding clusters of 11 and 13, i.e., 01 and 03 instead.

When other three clusters arrive, we just repeat these opera-

tions and finally extend the quadrangle to a cube.

Algorithm 3 Expansion with extra random clusters, G

Require: The regular topology, G; The amount of new random clusters,
n.

1: Let New[n] be those n new clusters that will be added;

2: for i = 0 to n do

3: if COOREXTEND(G) then

4: Each inter-identifier is added a digit in the front;

5: Assign prefix to New[i];

6: ADDREGULARLINK(G, New[i]);

7: DELETE(G, New[i]);

8: ADDRESTLINK(G, New[i]);

9: return The new structured topology G.

10: function COOREXTEND (G)

11: if r + 1 > the amount the existing pre f ix can identi f y then

12: Return True;

13: else

14: Return False;

15: function DELETE(G, New)

16: Let neighbor be the neighbors of New;

17: Let corespd be the corresponding node of New;

18: for j = 0 to New.neighboramount do

19: if corespd linked with neighbor[ j] then

20: Delete this link;

return G;

21: function ADDREGULARLINK (G, New)

22: Let corespd be the corresponding node of New;

23: Add link from New to corespd;

24: Calculate New′s neighbors denoted as reg;

25: for s = 0 to reg.size do

26: Add link from New to reg[s];

return G;

27: function ADDRESTLINK(G, New)

28: Calculate New′s rest neighbors denoted as rest;

29: Let corespd[e] be the corresponding node of rest[e];

30: for a = 0 to rest.size do

31: Add link from New to corespd[a];

return G;

7 Performance evaluation

In this section, we simulate our hybrid topologies to evaluate

the routing flexibility, cabling cost and network performance.

Typically, we compare R3 with a fully structured GHC and

a fully random Jellyfish topology, respectively. Note that we

report all the average result over 100 rounds of simulations

for each performance metric.

7.1 Routing flexibility

Building routing table in a large-scale data center is a tough



870 Front. Comput. Sci., 2015, 9(6): 860–874

work for those fully or partially random DCNs, due to huge

number of links and potential paths between any pair of

switches. To measure the time consumption due to find the

shortest path between each switch pair, we conduct a series

of experiments with different settings of switches.

We constructs R3 with different amount of switches, rang-

ing from 200 to 900. In each of these R3s, 20 switches

form a 8-RRG random cluster, and such random clusters are

connected via structured links. Since our routing method is

coloring-based, the time consumption of routing consists of

two parts, i.e., the coloring time and the routing time. Dur-

ing the coloring period, each structured link is colored with

one color to record the nodes used to link each pair of ran-

dom clusters. Additionally, the process of finding the shortest

paths between every switch pairs also brings additional time

consumption. As demonstrated in Fig. 5(a), compared with

the coloring time, the routing time contributes most of the

total time. Figure 5(b) reports that our routing method out-

performs the traditional Dijkstra algorithm in R3. More pre-

cisely, the coloring-based routing algorithm reduces half of

time consumption compared to the Dijkstra algorithm on av-

erage. The reason is that, compared with traditional Dijkstra

algorithm which is time-consuming, the coloring-based rout-

ing algorithm limits the Dijkstra algorithm inside each ran-

dom cluster only. Furthermore, as reported in Fig. 5(c), R3

consumes much less time compared to the Jellyfish topology.

Note that the building clusters of our hybrid R3 topology are

8-RRGs. After introducing structured links into the topology,

the total number of links in R3 is between that of 8-RRG

Jellyfish and that of 9-RRG Jellyfish. The evaluation result,

however, demonstrates that the routing time of R3 is less than

that of 8-RRG and 9-RRG Jellyfish in many times.

Additionally, the routing flexibility is important in DCNs

where failures of commodity devices are very common. In

R3, once a switch breaks down, the coloring-based routing

algorithm will immediately derive another available path and

update involved routing table, dynamically.

7.2 Cabling cost

In DCNs, huge number of links are utilized to interconnect

large-scale switches and servers to form a designed topol-

ogy. For each of our hybrid topologies, those long-distance

random links will significantly increase the cabling cost and

complexity. In this section, we calculate the total length of all

cables in R3 and Jellyfish to evaluate the cabling cost.

Racks in a data center are placed as a matrix for cool-

ing and maintaining purpose. To minimize the total length

of all cables, we suppose that racks are placed as a quadrate

or quadrate-like structure. Given the amount of switches, we

calculate the length and width according to the quadrate-like

location strategy first. Then, we calculate the total length of

all links via the Pythagorean Theorem. Meanwhile, we as-

sume that links between racks are underground distribution

such that the geographical distance can be calculated as the

link distance.

Reasonably, we use the distance between any pair of racks

as the metric of cabling cost. Figure 6(a) depicts the cabling

cost of our hybrid topology compared to that of Jellyfish. For

fairness, we compare R3 with 8-RRG Jellyfish and 9-RRG

based Jellyfish, respectively. R3 causes much less cabling

cost than 8-RRG as well as 9-RRG based Jellyfish. This result

is reasonable since with the increasing number of switches,

more remote links are introduced into Jellyfish. The distance

between any pair of switches in R3, however, is predictable

and less than that in Jellyfish.

7.3 Network performance

We compare R3 with two extreme topologies, the general-

ized hypercube and Jellyfish, which are representative ones

of fully structured and random topologies, respectively. To

evaluate their performance, we vary the amount of 24-ports

switches from n = 8 to 360. We calculate the maximal

amount of servers they can accommodate, i.e., network order,

and evaluate the throughput under all-to-all traffic. At the best

Fig. 5 Time consumption of (a) routing and coloring; (b) R3 and Dijkstra algorithm; (c) R3 and Jellyfish



Lailong LUO et al. Compound graph based hybrid data center topologies 871

Fig. 6 Performance comparison between R3, RRG (Jellyfish) and GHC. (a) Cabling cost comparison with Jellyfish; (b) network order; (c) all
to all throughput

case, each switch inside a random cluster has a structured

edge to connect with another switch in other clusters. So, R3

has the same network order with RRG. But for GHCs, the

network order depends on its dimensions. Consider n = 200

as an example and there is 200 = 2 × 2 × 2 × 5 × 5. Each

switch should reserve at least 11 ports for linking with other

switches, the remainder 13 ports link with servers. Conse-

quently, the network order is at most 200 × 13 = 2 600. To

construct the densest R3, we use 5 × 5 GHC and 7-RRG,

which lead to a hybrid topology, which can accommodate

16 × 200 = 3 200 servers and the maximal node degree is 8.

For fairness, a 8-degree Jellyfish is built as a reference. Figure

6(b) depicts the resulting network order. It is clear that both

R3 and Jellyfish can accommodate large number of servers.

This is reasonable because both R3 and Jellyfish have larger

design space than GHC.

Indeed, the throughput of DCNs is affected by not only the

topology, but also the bandwidth allocation strategy [19, 20].

For a given DCN, different bandwidth allocation strategies

result in different network performance. In this paper, to com-

prehensively reveal the impact of topologies, our experiments

focus on the topologies under the same bandwidth allocation

strategy. We first verify the network performance of R3 under

different amount of switches, and then compare the network

throughput with Jellyfish and GHC under all-to-all traffics.

Typically, the bandwidth of each link is set to be 1 000 Mbps,

and the data rate of each server is 100 Kbps. We monitor each

flow via the flow monitor function in NS3, and obtain the total

throughput by summing up the data rate of each flow. Figure

6(c) plots that the network throughput of R3 is always a little

bit less than that of Jellyfish but much more than that of GHC.

Thus R3 integrates the advantages of both GHC and Jellyfish

while abandoning their weakness.

8 Discussion

In this paper, we investigate a family of hybrid topologies,

which combine structured topologies with random topologies

seamlessly via the compound graph. To fully understand the

hybrid designing methodology, we discuss the following is-

sues further.

• Rethinking the routing algorithm

An edge-coloring based routing algorithm in Section 4.2 is

designed for fast and accurate routing tables. In effect, such

a routing algorithm is propagable since Theorem 1 guaran-

tees that at most Δ + 1 kind of colors are sufficient to color

all edges. Namely, the novel routing algorithm works well

even though R3 selects different structured topology. Let m

denotes the average number of nodes in random clusters, |E|
and |V | denote the number of edges and vertex in the cho-

sen structured topology, respectively. Then the time complex-

ity of our routing algorithm is O(|E| × |V |)) + O(|V | × m2),

where O(|E| × |V |)) is the time complexity of coloring [21]

and O(|V | × m2) is the time complexity of routing inner ran-

dom clusters.

• Dedicated integer programming model

Note that, the integer programming model in Section 5.2

is used to find the best parameter setting of a given struc-

tured topology, the number of servers and amount of ports per

switch. So, different structured topologies result in different

integer programming models to describe the hybrid topolo-

gies precisely.

• Incremental expansion of our hybrid topologies

As for the expansion issues for hybrid topologies, we pro-

pose two appropriate methods, i.e., the expansion within an

existing random cluster and the expansion by adding an ex-

tra random cluster in Section 6. The new added servers ought

to be allocated into the existing random clusters evenly other

than embed them into one or several clusters in bathes. Be-

sides, which expansion strategy should be employed remains

an open problem for the designers so that the flexibility and

design space will be guaranteed.

• The experiment methodology

Our experiments concentrate on evaluating the perfor-



872 Front. Comput. Sci., 2015, 9(6): 860–874

mance of R3, RRG and GHC, since R3 is constructed via

combining RRG and GHC seamlessly. Different selections of

structured and random topologies will definitely result in dif-

ferent performance. The performance of each of other hybrid

topologies is similar with R3, i.e., its performance falls be-

tween that of used structured topology and that of the utilized

random topology. Thus, the major motivation of our experi-

ment is to prove that the proposed hybrid designing method-

ology combines the benefits of both structured and random

topologies together while avoid their weakness successfully.

Additionally, we leave the comparison with other topologies

as one of our future work.

• Constraints of hybrid DCNs

Besides the aforementioned benefits, the proposed hybrid

DCNs also face a few potential limitations. First of all, three

constraints must be satisfied to achieve a hybrid topology

as elaborated in Section 3.2, i.e., the structured and random

topologies need careful selection. Second, if there exist too

many nodes in a random cluster, the boundary nodes of that

cluster may be overloaded and thus may result in conges-

tion. In other words, the designer must concern the capac-

ity of each boundary node when building or upgrading the

hybrid data center network. At last, even though there are

parallel paths between any pair of nodes, large number of

long-distance flows may lead to bottleneck at those structured

links. Thus, more bandwidth should be allocated to these

structured links.

9 Related work

Existing DCNs networking topologies can be roughly clas-

sified into five categories, i.e., switch-centric data centers,

server-centric data centers, modular data centers, random

data centers and wireless data centers.

In switch-centric data centers, routing and interconnection

are realized by switches, which form dedicated structured

topology, such as generalized hypercube, Torus, compound

graph, tree and so on. Fat-Tree [1], F10 [22], VL2 [2] belong

to this category. With the development of optical communica-

tion, optical packaging technology is introduced into switch-

centric DCNs [23]. These optical links improve bandwidth

greatly, but the associated control strategy becomes complex.

Note that switches and routers are expensive, while com-

modity server and mini-switch are cheap; hence, it is cost-

saving to build a DCN just with servers and mini-switches.

In server-centric data centers, routing and interconnection are

realized by servers since servers are competent to cache and

forward flows. Usually, server-centric DCNs are recursively

defined and extended level by level. BCube [24], DCell [11]

are all server-centric DCNs, but their network capacity are

limited by the count of NIC ports at each server.

To ease the development of data centers, module has re-

placed racks as the basic building block of large-scale data

centers. These modules integrate the power system, cool sys-

tem and thousand servers inside a container. By further inter-

connecting a given number of such modules via a dedicated

topology, an efficient, controllable, and elastic data center can

be built. MDCube [25] and uFix [26] are two representative

proposals. They utilize the remaining NICs at servers to in-

terconnect those modules systematically.

For random DCNs, random links interconnect remote

nodes together, hence, they shorten the network diameter.

Typically, Jellyfish [5] and Scafida [6] are proposed based

on the random regular graph and scale-free network, respec-

tively. The advantage of random DCN is the characteristic of

incremental expansion, which means that we can add servers

one by one other than level by level. Routing in such random

topologies, however, is difficult and time-consuming.

Recently, wireless communication technologies are intro-

duced into DCNs. Therefore, the cabling cost will be con-

siderably eliminated and the network bandwidth will be in-

creased. In Ref. [27], a remote wireless channel between any

pair of racks can be established by reflecting wireless signals

via a mirror from source to destination. FireFly [28] goes fur-

ther, it forecasts the traffic demand and adjust the topology

dynamically in a short time period. Wireless DCNs support

unicast transmission well, but fail to accomplish other trans-

mission models such as broadcast, multicast and shuffle.

10 Conclusion

In this paper, we investigate a family of compound graph

based hybrid topologies for data centers, which combine

the advantages of both structured topologies and random

topologies. We propose a coloring-based routing algorithm

to enable the shortest path and shorten the routing time-

consumption effectively. Meanwhile, we propose an integer

programming model to derive the optimal R3 topology, with

given number of servers and amount of ports per switch. To

enable the incremental expansion, besides adding servers one

by one inside a random cluster, we propose to extend the net-

work scale by adding new random clusters one by one. The

evaluation results indicate that our hybrid topologies con-

sume much less routing time and incur less cabling-cost than



Lailong LUO et al. Compound graph based hybrid data center topologies 873

Jellyfish, and achieve better throughput than GHCs. In sum-

mary, our proposal achieves the easy-routing, incremental

expansible and high throughput, simultaneously. Thus, our

hybrid topologies are competent to large-scale data centers.

Acknowledgements The authors would like to thank anonymous reviewers
for their constructive comments. This work was supported in part by the Na-
tional Natural Science Foundation for Outstanding Youth (61422214), the
National 973 Basic Research Program (2014CB347800), the Program for
New Century Excellent Talents in University, and the Distinguished Young
Scholars of National University of Defense Technology (JQ14-05-02).

References

1. Al-Fares M, Loukissas A, Vahdat A. A scalable, commodity data cen-

ter network architecture. ACM SIGCOMM Computer Communication

Review, 2008, 38(4): 63–74

2. Greenberg A, Hamilton J, Jain N, Kandula S, Kim C, Lahiri P, Maltz D,

Patel P, Sengupta S. VL2: a scalable and flexible data center network.

ACM SIGCOMM Computer Communication Review, 2009, 39(4):

51–62

3. Guo D, Chen T, Li D, Li M, Liu Y, Chen G. Expandable and cost-

effective network structures for data centers using dual-port servers.

IEEE Transactions on Computers, 2013, 62(7): 1303–1317

4. Shin J Y, Wong B, Sirer E G. Small-world datacenters. In: Proceedings

of the 2nd ACM Symposium on Cloud Computing. 2011, 2

5. Singla A, Hong C, Popa L, Godfrey P B. Jellyfish: networking data

centers randomly. In: Proceedings of USENIX Symposium on Net-

worked Systems Design and Implementation. 2012, 12: 17

6. Gyarmati L, Trinh T A. Scafida: a scale-free network inspired data cen-

ter architecture. ACM SIGCOMM Computer Communication Review,

2010, 40(5): 4–12

7. Singla A, Godfrey P B, Kolla A. High throughput data center topol-

ogy design. In: Proceedings of the 11th USENIX Symposium on Net-

worked Systems Design and Implementation. 2014, 29–41

8. Bhuyan L N, Agrawal D P. Generalized hypercube and hyperbus struc-

tures for a computer network. IEEE Transactions on Computers, 1984,

100(4): 323–333

9. Bollobás, B. Random Graphs. New York: Springer, 1998

10. Reitz F, Pohl M, Diehl S. Focused animation of dynamic compound

graphs. In: Proceedings of the 13th IEEE International Conference on

Information Visualisation. 2009, 679–684

11. Guo C, Wu H, Tan K, Shi L, Zhang Y. Lu, S. Dcell: a scalable and fault-

tolerant network structure for data centers. ACM SIGCOMM Com-

puter Communication Review, 2008, 38(4): 75–86

12. Guo D, Chen H, He Y, Jin H, Chen C, Chen H, Shu Z, Huang, G.

KCube: a novel architecture for interconnection networks. Information

Processing Letters, 2010, 110(18): 821–825

13. Guo D, Li C, Wu J, Zhou X. DCube: a family of high performance

modular data centers using dual-Port servers. Elsevier Journal of Com-

puter Communication, 2013, 53: 13–25

14. Xie J, Guo D, Xu J, Luo L, Teng X. Efficient multicast routing on

BCube-based data centers. KSII Transactions on Internet and Informa-

tion Systems, 2014, 8(12): 4343–4355

15. Bondy J A, Murty U S R. Graph Theory with Applications. London:

Macmillan, 1976

16. Brélaz D. New methods to color the vertices of a graph. Communica-

tions of the ACM, 1979, 22(4): 251–256

17. Aljazzar H, Leue S. K∗: a heuristic search algorithm for finding the K

shortest paths. Artificial Intelligence, 2011, 175(18): 2129–2154

18. Giannini E, Botta F, Borro P, Risso D, Romagnoli P, Fasoli A, Mele M

R, Testa E, Mansi C, Savarino V. Platelet count/spleen diameter ratio:

proposal and validation of a non-invasive parameter to predict the pres-

ence of oesophageal varices in patients with liver cirrhosis. Gut, 2003,

52(8): 1200–1205

19. Guo J, Liu F, Zeng D, Lui J, Jin, H. A cooperative game based alloca-

tion for sharing data center networks. In: Proceedings of IEEE Interna-

tional Conference on Computer Commnication. 2013, 2139–2147

20. Guo J, Liu F, Huang X, Lui, J. On efficient bandwidth allocation for

traffic variability in datacenters. In: Proceedings of IEEE International

Conference on Computer Commnication. 2014, 1572–1580

21. Misra J, Gries D. A constructive proof of Vizing’s theorem. Informa-

tion Processing Letters, 1992, 41(3): 131–133

22. Liu V, Halperin D, Krishnamurthy A, Thomas E A. F10: A fault-

tolerant engineered network. In: Proceedings of USENIX Symposium

on Networked Systems Design and Implementation. 2013, 399–412

23. Chen K, Singla A, Singh A, Ramachandran K, Xu L, Zhang Y, Wen

X, Chen Y. OSA: an optical switching architecture for data center net-

works with unprecedented flexibility. IEEE/ACM Transactions on Net-

working, 2014, 22(2): 498–511

24. Guo C, Lu G, Li D, Wu H, Zhang X, Shi Y, Tian C, Zhang Y, Lu

S. BCube: a high performance, server-centric network architecture

for modular data centers. ACM SIGCOMM Computer Communication

Review, 2009, 39(4): 63–74

25. Wu H, Lu G, Li D, Guo C, Zhang Y. MDCube: a high performance

network structure for modular data center interconnection. In: Proceed-

ings of the 5th ACM International Conference on Emerging Network-

ing Experiments and Technologies. 2009, 25–36

26. Li D, Xu M, Zhao H, Fu X. Building mega data center from heteroge-

neous containers. In: Proceedings of the 19th IEEE International Con-

ference on Network Protocols. 2011, 256–265

27. Zhou X, Zhang Z, Zhu Y, Li Y, Kumar S, Vahdat A, Zhao B Y, Zheng,

H. Mirror mirror on the ceiling: flexible wireless links for data centers.

ACM SIGCOMM Computer Communication Review, 2012, 42(4):

443–454

28. Hamedazimi N, Qazi Z, Gupta H, Vyas S, Samir R D, Jon P L, Himan-

shu S, Ashish T. FireFly: a reconfigurable wireless data center fab-

ric using free-space optics. In: Proceedings of ACM Special Interest

Group on Data Communication. 2014, 319–330

Lailong Luo received his BS in School

of Information System and Manage-

ment from National University of De-

fence Technology (NUDT), China in

2013. He is currently working for his

MS in College of Information System

and Management, NUDT. His research

interests include data centers and soft-

ware defined networks.



874 Front. Comput. Sci., 2015, 9(6): 860–874

Deke Guo received his BS in industry

engineering from Beihang University,

China in 2001, and PhD in manage-

ment science and engineering from Na-

tional University of Defense Technol-

ogy (NUDT), China in 2008. He is an

associate professor with the College of

Information System and Management,

NUDT. His research interests include

distributed systems, software-defined networking, data center net-

working.

Wenxin Li received his BE from the

School of Computer Science and Tech-

nology, Dalian University of Technol-

ogy (DUT), China in 2012. Currently,

he is a PhD candidate in the School

of Computer Science and Technology,

DUT. His research interests include

data center networks and cloud com-

puting.

Tian Zhang is an undergraduate from

School of Information Management of

Wuhan University, China. His major is

Information Management and Informa-

tion System, and his research interest

is mainly on wireless sensor networks

and data center networking.

Junjie Xie received his BS in com-

puter science and technology from Bei-

jing Institute of Technology, China in

2013. He is currently working for his

MS in College of Information System

and Management, National University

of Defense Technology, China. His re-

search interests include distributed sys-

tems, data centers, software defined

networks and interconnection networks.

Xiaolei Zhou received his BA from the

Information Management Department,

Nanjing University, China in 2009, and

his MS in military science from the

National University of Defense Tech-

nology (NUDT), China in 2011. He

is currently working for his PhD in

the School of Information System and

Management, NUDT. His current re-

search interests include indoor localization, wireless sensor net-

works and data center networking.


