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Abstract Radar emitter identification has been recognized

as an indispensable task for electronic intelligence system.

With the increasingly accumulated radar emitter intelligence

and information, one key issue is to rebuild the radar emitter

classifier efficiently with the newly-arrived information. Al-

though existing incremental learning algorithms are superior

in saving significant computational cost by incremental learn-

ing on continuously increasing training samples, they are not

adaptable enough yet when emitter types, features and sam-

ples are increasing dramatically. For instance, the intra-pulse

characters of emitter signals could be further extracted and

thus expand the feature dimension. The same goes for the

radar emitter type dimension when samples from new radar

emitter types are gathered. In addition, existing incremen-

tal classifiers are still problematic in terms of computational

cost, sensitivity to data input order, and difficulty in multi-

emitter type identification. To address the above problems,

we bring forward a three-way incremental learning algorithm

(TILA) for radar emitter identification which is adaptable for

the increase in emitter features, types and samples.

Keywords radar emitter identification, incremental learn-

ing, classification, data mining

1 Introduction

Radar emitter identification has been recognized as an
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indispensable task for electronic intelligence system. By

identifying radar emitter types, the potential platforms and

associate threat levels of the radar emitter could be inferred.

With the increasingly accumulated radar emitter intelligence

and information, one key issue is to rebuild the radar emit-

ter classifier efficiently using the newly-arrived information.

The batch learning classifiers need to re-process the whole

data whenever new training samples are available and thus

unable to finish the task in a reasonable amount of time and

memory space.

Incremental learning approaches are recognized as supe-
rior in saving significant computational cost by incremental
learning on continuously increasing training samples [1–3].
However, existing incremental data stream methods are still
problematic to be applied for three-way incremental emitter
identification.

Firstly, as for increment in the sample dimension, quite a
large number of benchmark incremental learning algorithms
[4–8] are mostly based on binary partitions and are not adapt-
able enough yet for radar emitter multi-class classification.
Besides, some incremental learning algorithms, such as in-
cremental decision tree [9] and neural network [10–12], are
based on a heuristic scheme due to complex model architec-
tures and very sensitive to the training sample input order.
Secondly, as for increment in the feature dimension, most
data stream methods [13–16] are restricted to discrete fea-

tures only, such as text streams where new words or phrases
are evolving. Finally, as for increment in the class dimen-
sion, some data stream class evolution algorithms [17] are
unsupervised and unable to apply for supervised multi-class
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classification. In addition, existing data stream class evolu-
tion methods [3,15,16,18] have not paid sufficient attention

to the minority class. In such a case, the information of the

minority class may be lost when the data chunk gets obsolete

and the cohesion of test samples in the minority class is hard

to be found.

In the practical application of incremental radar emitter

identification, emitter types and features as well as the sam-

ples are increasing. Majority of the emitter features are con-

tinuous. For example, for the same radar emitter sample,

intra-pulse characters of emitter signals, such as the wavelet

transformation characters, could be further extracted and thus

its continuous feature number increases. And so does the

number of radar emitter types when samples from new radar

emitter types are detected. Unfortunately, classic emitter

identification methods [19,20] have paid little attention to

the above problems yet. Even though a small number of in-

cremental radar emitter identification methods [21–24] have

been proposed, they are generally restrictive for sample in-

crement only.

Therefore, we bring forward a three-way incremental

learning algorithm (TILA) for radar emitter identification

which is adaptable for the increase in emitter features, types

and samples. Experimental results showed that TILA is ro-

bust to sample input order, superior in computational ef-

ficiency while yielding competitive identification accuracy

when compared with the peers. We make the following con-

tributions accordingly:

• TILA is able to adapt to the simultaneous increase in

radar emitter features, both discrete and continuous, and

types as well as the increase in radar emitter samples.

• TILA is much more robust to the training sample in-

put orders when compared with the incremental learn-

ing heuristics.

• The time complexity of TILA is low, approximately

linear w.r.t. the number of new emitter samples and

quadratic w.r.t. the number of new features.

The rest of paper is organized as follows. We review re-

lated work in Section 2. Our three-way incremental learning

algorithm (TILA) for radar emitter identification is formally

presented in Section 3. In Section 4, we present our experi-

mental results. Finally, We conclude in Section 5.

2 Related work

We partition the related work into three categories for incre-

ment in the sample, feature and class dimension respectively.

• Related work for increment in the sample dimension

Existing incremental learning algorithms are usually

heuristics and are very sensitive to the training data input or-

der.

Representatives of heuristic incremental learning algo-

rithms include incremental neural network [10–12,25,26] and

incremental decision tree [1,9,27]. Both algorithms suffer

from high complexity in architecture and uncertainty in out-

put during incremental learning. For instance, incremental

neural network typically leads to different adaptive weights

and different predictions for different orderings of the same

training data.

Binary incremental learning heuristics include online per-

ceptron [5], SVM [4,6,7], and maximum-margin [8] methods.

The corresponding representatives are margin-perceptron [5],

SGD-SVM [6], pegasos SVM [7] and ROMMA [8]. The per-

ceptron algorithm trains a linear classifier to separate the data

into two groups using a decision hyperplane. SGD SVM ap-

plies a stochastic gradient descent scheme [28,29] on SVM

and obtains numerical rate of convergence. Pegasos SVM,

on the other hand, alternates between stochastic gradient de-

scent and projection steps when optimizing SVM functions.

ROMMA is referred as the relaxed online maximum margin

algorithm. ROMMA works by maintaining a relatively sim-

ple relaxation of a number of linear constraints, and could

be viewed as an approximation to the online classifiers with

maximum margin. To optimize both preference ranking and

regression performance, efficient and effective combined re-

gression and ranking strategies, such as [30], would be ap-

plied simultaneously with the above online classification al-

gorithms.

As can be seen, the heuristic nature, constraint of binary

partition scheme, and sensitivity to data input order of the

above incremental learning algorithms make them unable to

meet the demands of accuracy and efficiency in practical

emitter identification.

• Related work for increment in the feature dimension

Most data stream feature evolution algorithms [13–16] are

restricted to discrete features. These methods generally cope

with text streams, in which new features of words or phrases

appear as the text stream progresses. For instance, when a

new document arrives, it would be checked whether there

is any new word in the document. The new word will be

added to a vocabulary, and the word statistics will be updated.

However, in the application of incremental emitter identifica-

tion, the majority of emitter features are continuous. In Refs.

[3,18], different feature spaces would be constructed for dif-
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ferent models in the ensemble. However, in that case, a global

feature ranking required in the practical application of emit-

ter identification would be difficult to obtain. In Ref. [31],

a novel online feature selection framework for streaming fea-

tures is constructed, whereas the number of training examples

has to remain fixed.

• Related work for increment in the class dimension

In order to detect the novel class, a “one class” data stream

method is proposed in Ref. [17] by building a normal model

of the data using clustering. However, the method is unsu-

pervised and unable to apply for multi-class emitter identi-

fication. Alternatively, to deal with the novel class discov-

ery for multi-class classification, “MineClass and XMiner”

[15] and DXMiner [16] build an ensemble of models to clas-

sify the unlabeled data and conduct outlier detection. Novel

classes could be inferred when strong cohesion is discovered

among outliers. Variants of [15,16] have been further brought

forward in Refs. [3,18] where a flexible decision boundary

for outlier detection is utilized to reduce the false alarm rate

and increase the detection rate. However, these algorithms are

not suitable for incremental emitter identification for minor-

ity emitter type identification. The information of minority

emitter types in the obsolete data chunks may be lost. Also,

due to the small sample size in test data, strong cohesion of

outliers would be hard to be found. An incremental learning

algorithm for new concept class discovery from unbalanced

datasets, Learn++.UDNC, has been studied in Ref. [32], but

it has not considered the unbalanced class distribution either.

In the field of incremental emitter identification, none of

the existing approaches [21–24] is able to update the clas-

sification models incrementally to make the best use of the

new features yet. For instance, besides the traditional radar

emitter signal parameters of radio frequency (RF), pulse rep-

etition interval (PRI) and pulse width (PW), suppose some

new intra-pulse fine features have been extracted by the auto-

correlation and inverse spectrum techniques in the time and

frequency fields respectively, all existing incremental emitter

identification approaches need to rebuild the classifier on all

the available features just like the batch ones.

As discussed above, existing incremental learning ap-

proaches in both areas of machine learning and emitter iden-

tification are problematic when applied for three-way incre-

mental learning in emitter identification.

3 Method

In this section, we formally present our incremental three-

way incremental learning algorithm for radar emitter type

identification (TILA). TILA deals with three basic cases of

incremental learning: 1) sample increment where the new

training samples all belong to the original radar emitter types,

2) type increment during which apart from the original radar

emitter types, some new training samples belong to some

new types, and 3) feature increment that new features for

the original training samples become available, such as ad-

ditional intra-pulse fine features. TILA would incrementally

update the data description variables, upon which, discrimi-

nating features would be selected and identification would be

made. Please note that the increment of radar emitter intelli-

gence could proceed in any combinations of the above three

basic ways.

3.1 Data description

Suppose the original radar emitter training data D is com-

posed of m samples from k different types, denoted as Ω

(|Ω| = m), each radar emitter sample with n features (n =

nc + nd, nc continuous and nd discrete). Each radar emit-

ter sample is denoted as xs = {xc(s, 1), xc(s, 2), ..., xc(s, nc),

xd(s, 1), xd(s, 2), ..., xd(s, nd), clss}, where 1 � s � m,

xc denotes the continuous features, xd the discrete features,

and clss indicates the type of the sth radar emitter sample.

Each radar emitter sample belongs to one of the k different

types {c1, c2, ..., ck}. Each type j, where 1 � j � k, has

m j (
∑k

j=1 m j = m) different samples, denoted as Ω j where

|Ω j| = m j and ∪k
j=1Ω j = Ω. The incrementally accumulated

radar emitter samples are independent from each other and

may taken from different radar emitters.

We construct four data description matrices for both con-

tinuous and discrete features. In this way, the discriminating

power of each feature could be evaluated, the best features

could be selected, and an optimal classifier could be built.

Below is the data description of continuous and discrete radar

emitter features respectively:

3.1.1 Description of continuous feature

For continuous radar emitter features such as the pulse de-

scription word of radio frequency, pulse width, pulse ampli-

tude, direction of arrival and time of arrival, we define the

feature-type sum matrix, feature-type square sum matrix and

feature-type pair matrix.

Definition 1 (feature-type sum matrix Σ(i, j)) We define

each matrix element Σ(i, j) as the sum of values of continu-

ous feature i on all the radar emitter training samples in type
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j, where 1 � i � nc and 1 � j � k. Mathematically speaking,

Σ(i, j) = Σs∈Ω j xc(s, i). (1)

Definition 2 (feature-type square matrix Σ2(i, j)) We de-

fine each matrix element Σ2(i, j) as the sum of square values

of continuous feature i on all the radar emitter training sam-

ples in type j, where 1 � i � nc and 1 � j � k. Mathemati-

cally speaking,

Σ2(i, j) = Σs∈Ω j xc(s, i)2. (2)

Definition 3 (feature-type pair matrix Σpair(p, q, j)) We

define each matrix element Σpair(p, q, j) as the sum of prod-

uct of values of continuous feature p and feature q on all the

radar emitter training samples in type j, where 1 � p, q � nc

and 1 � j � k.

Σpair(p, q, j) = Σs∈Ω j xc(s, p)xc(s, q). (3)

We calculate the Σ(i, j) and Σ2(i, j) for all the nc×k feature-

type combinations, thus forming a feature-type sum matrix

[Σ(i, j)]nc×k and a feature-type square matrix [Σ2(i, j)]nc×k.

Likewise, we calculate Σpair(p, q, j) for all the C2
nk feature

pair-type combinations and form a feature-type pair matrix

[Σpair(p, q, j)]nc×nc×k.

The mean value and sample standard deviation of each

continuous feature i on each radar emitter type j could be

finely calculated based on the above three matrices. The mean

value of continuous feature i on type j is equal to the ratio of

Σ(i, j) to the number of radar emitter samples in type j, m j,

as indicated in Eq. (4):

X ji = E(xc(s, i))s∈Ω j =
Σ(i, j)

m j
. (4)

The radar emitter sample standard deviation of each con-

tinuous feature i on each type j could also be inferred upon

the feature-type sum matrix and the feature-type square ma-

trix, as shown in Eq. (5).

stdev(X ji)

= stdev(xc(s, i))|s∈Ω j

=

√∑
s∈Ω j

(xc(s, i) − E(xc(s, i)))2

m j − 1

=

√∑
s∈Ω j

xc(s, i)2

m j − 1
− (
∑

s∈Ω j
xc(s, i))2

m j(m j − 1)

=

√

Σ2(i, j)
m j − 1

− (Σ(i, j))2

m j(m j − 1)
. (5)

The estimated radar emitter sample covariance coefficient

between feature p and q for type j is calculated by Eq. (6):

cov(p, q, j)

=

∑
s∈Ω j

(xc(s, p) − E(xc(s, p)))(xc(s, q) − E(xc(s, q)))

n j − 1

=
Σpair(p, q, j) − Σ(p, j)Σ(q, j)

mj

m j − 1
. (6)

As can be seen clearly, the radar emitter sample covari-

ance coefficient between any two continuous features p and

q, as well as the mean value and the standard deviation of

each continuous feature i, are determined by the three data

description matrices.

3.1.2 Description of discrete feature

Some radar emitter features, such as radio frequency type

and intra-pulse modulation type, are discrete or categorical.

To better accommodate the discrete radar emitter features for

radar emitter identification, we further define the feature-type

frequency matrix below:

Definition 4 (feature-type frequency matrix f req(i, j, v))

We define each matrix element f req(i, j, v) as the occurrence

frequency of each value v of discrete feature i on all the train-

ing samples from type j, where 1 � i � nd and 1 � j � k.

Mathematically speaking,

f req(i, j, v) = SUMs∈Ω j (xd(s, i) == v). (7)

Given the discrete value v of discrete feature i from a radar

emitter test sample, the membership probability of the dis-

crete value v to each type j could be inferred according to the

feature-type frequency matrix f req(i, j, v). The membership

probability of discrete value v of feature i to type j is com-

puted as the ratio of the occurrence frequency of each discrete

value v of discrete feature i on training samples in type j to

the occurrence frequency of each discrete value v of discrete

feature i on training samples in all the types, as denoted in

Eq. (8).

member(i, j, v) =
f req(i, j, v)
Σu f req(i, u, v)

. (8)

3.2 Feature evaluation and selection

Upon the four data description matrices for both continuous

and discrete features, we are able to evaluate and select the

top covering discriminating features.
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3.2.1 Feature evaluation

The discriminating power of continuous features for each

type pair cg − ch is evaluated by the welch t-test. In the

pairwise welch t-test, a t-statistics tghi is computed for each

type pair cg − ch on feature i, where 1 � g, h � k and

1 � i � nc, Xgi = {xc(s, i)}s∈Ωg denotes feature i in type g,

Xhi = {xc(s, i)}s∈Ωh denotes feature i in type h, mg is the num-

ber of samples in type cg and mh is the number of samples in

type ch.

tghi =
Xgi − Xhi

√
stdev2(Xgi)

mg
+

stdev2(Xhi)
mh

. (9)

The degree of freedom of tghi is computed as:

d f =

(
stdev2(Xgi)

mg
+

stdev2(Xhi)
mh

)2

stdev4(Xgi)

m2
g(mg − 1)

+
stdev4(Xhi)

m2
h(mh − 1)

. (10)

The two-tailed p-values are further adjusted by multiplying

the number of type pairs being compared. It can be inferred

that the inter-type t-statistics tghi and its degree of freedom

for type pair cg − ch on feature i are solely determined by

Σ(i, g), Σ2(i, g), Σ(i, h) and Σ2(i, h). If the associate p-value of

the welch t-statistic is below 0.05, the feature is assumed to

be discriminating for type pair cg − ch.

The welch t-test was adopted in our work to judge the dis-

criminating power of continuous features. This is because

in the field of emitter parameter analysis, the emitter pa-

rameter values are generally assumed to follow normal dis-

tributions. In the case of non-parametric analysis, such as

wilcoxon signed-ranks test, our incremental learning strate-

gies can be applied effectively, and other feature selection

strategies could probably be applied too.

The discriminating power of a discrete radar emitter fea-

ture i for each type pair cg − ch is evaluated, on the other

hand, by the sum of overlapping membership probabilities

overlap, as calculated in Eq. (11), where v is any possible

value of discrete feature i.

overlap =
∑

v

min(member(i, g, v),member(i, h, v)). (11)

Similar to the continuous radar emitter features, a threshold

of 0.05 is applied and only those discrete features whose sum

of overlapping membership probabilities overlap is below

0.05 would be considered discriminating for type pair cg−ch.

As we can see, the feature evaluation procedure traces

back to the data description matrices as well. The pairwise

welch t-test on continuous radar emitter features is solely

determined by the feature-type sum matrix and the feature-

type square matrix. The membership probability using dis-

crete radar emitter features could be finely calculated from

the feature-type frequency matrix.

3.2.2 Feature selection

Our feature selection strategy is specially designed to select

the top covering discriminating feature for each emitter type

pair. In this way, each type pair could be finely discrimi-

nated, and the “siren pitfall” problem could be finely avoided.

Our feature selection procedure is composed of the following

steps:

1) For each feature i, either continuous or discrete, calcu-

late the set of type pairs (denoted as CPS eti) that it is

discriminating for, and the average p-values obtained on

these type pairs (denoted as AvePi).

2) Rank all the n = nc+ nd features first in the descending

order of the size of discriminated type pair set and next

in the ascending order of average p-value, denoted as

ord = f1 ≺ f2 ≺ · · · ≺ fn.

3) Initialize the top covering discriminating feature of each

type pair cg − ch as NA, TopFcg−ch = NA.

4) Start from the first ranked feature a in ord onwards, re-

peat until no feature a could be located:

• Find all redundant features given a whose dis-

criminated type pair set is a subset of a, ∀b � a

and CPS eta ⊇ CPS etb and prune them;

• Assign a as the top covering discriminating fea-

ture for the type pair in its discriminated type pair

set: ∀cg − ch ∈ CPS eta we set TopFcg−ch = a if

TopFcg−ch = NA;

• Set a as the next ranked feature in ord in the re-

maining features.

5) Output the top covering discriminating features in

TopFS = {TopFcg−ch }∀cg−ch .

At Step 1, for any feature, continuous or discrete, as long

as it passes the type pair evaluation test for type pair cg − ch,

cg − ch would be included in its discriminated type pair set,

cg − ch ∈ CPS eti. The ord order at Step 2 makes sure that the

features are ranked by the discriminating power. We assume

that the more type pairs the feature is able to discriminate,

the more discriminating it is. When the number of type pairs

discriminated by two or more features is the same, we as-

sume the feature with lower average p-value is more discrim-
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inating. The ord order helps flexibly locate the top covering

discriminating feature for each type pair.

We define the top covering discriminating feature of each

type pair cg−ch as the top ranked feature in ord which is able

to discriminate cg − ch. At Step 3, the top covering discrim-

inating feature of each type pair cg − ch is initialized as NA.

We define a feature b as redundant given another feature a,

if the type pairs feature b discriminates could all be discrim-

inated by feature a and feature a ranks before feature b. At

Step 4, the top covering discriminating features are identified

and redundant features pruned iteratively.

At Step 5, the identified top covering discriminating fea-

tures would be output for classifier construction.

3.3 Classifier construction

Upon the identified top covering discriminating features

TopFS , a fuzzy classifier is constructed in line upon the data

description matrices. Suppose among the original nc contin-

uous and nd discrete radar emitter features, sc continuous

and sd discrete features have been selected into TopFS , de-

noted as Ψc (|Ψc| = sc) and Ψd (|Ψd| = sd) respectively,

TopFS = Ψc ∪Ψd.

A prototype classifier would be constructed based on Ma-

halanobis distance and the geometric mean of the member-

ship probability, because it is generally assumed that the

emitter parameter values comply with normal distributions

approximately. Another reason to adopt such a prototype

classifier is that the simplicity and high flexibility make it

adaptable to the simultaneous expansion in all the three di-

mensions of sample, class and feature. The similarity of a

radar emitter test sample to each radar emitter type is esti-

mated by Mahalanobis distance and membership probability.

We denote the sc number of selected continuous features

of the radar emitter test sample t as tc = (t1, t2, ..., tsc) and

the mean vector of each existing radar emitter type j on the

sc number of selected continuous features as

mean j = [Σ(i, j)]i∈Ψc/m j. (12)

Then, the Mahalanobis distance [33] between test sample t

and radar emitter type j is calculated as shown in Eq. (13).

MDt, j = ((tc − mean j)
TC−1(tc − mean j))

1
2 , (13)

where C is the estimated radar emitter sample covariance ma-

trix. For multivariate normally distributed data, the values are

approximately chi-square distributed with sc degrees of free-

dom (χ2
sc). Note that the radar emitter sample covariance co-

efficient between selected continuous feature p and q for type

j is calculated according to Eq. (6). We denote the p-value of

the Mahalanobis distance MDt, j as pvalt, j.

Meanwhile, for the sd number of selected discrete radar

emitter features, we denote the corresponding value of radar

emitter test sample t of each selected discrete feature i as

v(t, i).We calculate the geometric mean of the membership

probability of the test sample t to type j, denoted as gmt, j, as

illustrated in Eq. (14).

gmt, j = (
∏

i∈Ψd

member(i, j, v(t, i)))
1
sd . (14)

The radar emitter test sample is classified according to Eq.

(15) as follows:

cls(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Null, ∀ j pvalt, j � 0.05;

Null, ∀ j gmt, j � 0.05;

argmax j
pvalt, j · sc + gmt, j · sd

sc + sd
, otherwise.

(15)

When either the continuous features or the discrete features

of a radar emitter test sample are significantly different from

those of all the emitter classes, the test sample would be clas-

sified to none existing emitter types. In that case, a label of

“Null” would be output instead.

Again, the classifier construction procedure traces back

to the data description matrices. The Mahalanobis distance

between the test sample and each radar emitter type is de-

termined by the feature-type sum matrix [Σ(i, j)] and the

feature-type pair matrix [Σpair(p, q, j)], while the geometric

mean of the membership probability of the test sample to

each type is calculated from the feature-type frequency ma-

trix [ f req(i, j, v)].

3.4 Incremental learning

Suppose the original radar emitter training samples consist of

m emitter samples and each sample has n features (nc con-

tinuous and nd discrete) from k types. After incorporating

new radar emitter intelligence and information, the new radar

emitter training data set is expanded to m′ (m′ � m) radar

emitter training samples, each with n′ features, nc′ (nc′ � nc)

continuous and nd′ (nd′ � nd) discrete, from k′ (k′ � k)

types, as shown in Table 1. The newly-arrived information is

highlighted in light gray.

During the incremental update of the data description ma-

trices, we keep a buffer of size L to record up to L/k latest

training samples for each of the k existing emitter types in-

stead of keeping the whole available data set. In addition,

when an emitter feature is convinced undiscriminating, it

would not be stored in the buffer. The set of latest training
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samples for each emitter type j is denoted as Ωl
j, |Ωl

j| � L/k.

The newly-arrived training samples for type j are denoted as

ΔΩ j.

3.4.1 Incremental update of data description matrices

According to the study in previous sections, it can be inferred

that the selected features and the resulted classification model

all derive from the data description matrices. It can be further

inferred that as long as the data description matrices are in-

crementally updated in time, the radar emitter classification

model can be updated incrementally in line.

The incremental update of radar emitter data description

matrices proceeds in three dimensions iteratively as below:

• Update of feature dimension

In the first step, we check whether some new radar emit-

ter features are available, i.e., nc′ > nc or nd′ > nd. If

so, the feature dimension of the feature-type sum matrix

[Σ(i, j)]nc×k, the feature-type square matrix [Σ2(i, j)]nc×k and

the feature-type pair matrix [Σpair(p, q, j)]nc×nc×k for the con-

tinuous radar emitter features and the feature-type frequency

matrix [ f req(i, j, v)]nd×k×V for the discrete radar emitter fea-

tures would be expanded. During the update of feature dimen-

sion, the information of new features for the original radar

emitter training samples would be extracted and incorporated

into the new data description matrices.

For each newly-arrived continuous radar emitter feature p,

one at a time, the corresponding new matrix element Σ(p, j),

Σ2(p, j) and Σpair(p, q, j) are updated iteratively, where nc <

p � nc′ and q (1 � q < p) is one of the existing continuous

radar emitter features, as indicated in Eqs. (16)–(18):

Σ(p, j) =
∑

s∈Ωl
j

xc(s, p), (16)

Σ2(p, j) =
∑

s∈Ωl
j

xc(s, p)2, (17)

Σpair(p, q, j) =
∑

s∈Ωl
j

xc(s, p)xc(s, q) (18)

Eqs. (16) and (17) indicate the expansion of the feature

dimension for the feature-type sum matrix and feature-type

square matrix. Eq. (18) illustrates that whenever a new con-

tinuous radar emitter feature p arrives, the product of the new

feature p and one existing feature q in the buffer will be com-

puted and incorporated into the feature-type pair matrix.

For each newly-arrived discrete radar emitter feature i

(nd+1 � i � nd′), the elements of the feature-type frequency

matrix f req(i, j, v) for new feature i on each discrete value v

is updated as below:

f req(i, j, v) = SUMs∈Ωl
j
(xd(s, i) == v), (19)

where j is the radar emitter type that existing radar emitter

sample s belongs to.

• Update of sample and type dimension

The next update is in sample and type dimension. There

are two different cases of update in sample and type dimen-

sion. In one case, the new radar emitter samples all belong to

the original k types. In the other case, the new radar emitter

samples belong to the k′ − k new types.

In case one, the elements of feature-type sum matrixΣ(i, j),

feature-type square matrix Σ2(i, j) and feature-type pair ma-

trix Σpair(p, q, j) for features i, p, q and type j, where 1 �
i, p, q � nc′ and 1 � j � k, are updated respectively as shown

in Eqs. (20)–(22):

Σ(i, j) = Σ(i, j) +
∑

s∈ΔΩ j

xc(s, i), (20)

Σ2(i, j) = Σ2(i, j) +
∑

s∈ΔΩ j

xc(s, i)2, (21)

Σpair(p, q, j) = Σpair(p, q, j) +
∑

s∈ΔΩ j

xc(s, p)xc(s, q). (22)

Similarly, for each newly-arrived radar emitter sample be-

longing to each existing type j, the elements of the feature-

type frequency matrix f req(i, j, v) for the discrete value v of

discrete feature i and associated type j are updated as below:

f req(i, j, v) = f req(i, j, v) + SUMs∈ΔΩ j (xd(s, i) == v), (23)

where j is any radar emitter type that the radar emitter sam-

ple s belongs to, and ΔΩ j indicates the new samples of radar

emitter type j.

In case two, the elements of feature-type sum matrix

Σ(i, j), feature-type square matrix Σ2(i, j) and feature-type

pair matrix Σpair(p, q, j) for each new type j, where k + 1 �
j � k + Δk, are updated respectively as illustrated in Eqs.

(24)–(26):

Σ(i, j) =
∑

s∈ΔΩ j

xc(s, i), (24)
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Σ2(i, j) =
∑

s∈ΔΩ j

xc(s, i)2, (25)

Σpair(p, q, j) =
∑

s∈ΔΩ j

xc(s, p)xc(s, q). (26)

For the newly-arrived radar emitter samples of new types,

the elements of the feature-type frequency matrix f req(i, j, v)

on the discrete value v of discrete feature i for new type j are

updated as below:

f req(i, j, v) = SUMs∈ΔΩ j (xd(s, i) == v). (27)

Similarly, the data description matrices would be updated

when a training sample is obsolete and taken out of the buffer.

After the incremental update of data description matrices, the

latest information of radar emitter features, samples and types

would be extracted efficiently into the data description matri-

ces for the later classification model building.

3.4.2 Incremental update of classifier

As discussed above, the updated data description matrices

include the feature-type sum matrix [Σ(i, j)], the feature-

type square matrix [Σ2(i, j)] and the feature-type pair ma-

trix [Σpair(p, q, j)] for continuous emitter features, and the

feature-type frequency matrix [ f req(i, j, v)] for discrete emit-

ter features. Based on these updated data description ma-

trices, all available radar emitter features are re-evaluated,

the top covering discriminating features are updated and our

fuzzy classifier is incrementally updated all along with the

updated top covering discriminating features. Specifically,

the procedure of incremental update of the fuzzy classifier in-

cludes three major steps: description variable update, feature

update and classifier update.

• Description variable update

1) Update the mean value of each continuous fea-

ture i on each radar emitter type j, X ji, with the

feature-type sum matrix [Σ(i, j)], as indicated in

Eq. (4);

2) Update the radar emitter sample standard de-

viation stdev(X ji) of each continuous feature i

on each type j with the feature-type sum ma-

trix [Σ(i, j)] and the feature-type square matrix

[Σ2(i, j)], as indicated in Eq. (5);

3) Update the estimated radar emitter sample co-

variance coefficient cov(p, q, j) between continu-

ous feature p and q for each emitter type j with

the feature-type pair matrix [Σpair(p, q, j)] and the

feature-type sum matrix [Σ(i, j)], as indicated in

Eq. (6);

4) Update the membership probability member(i, j, v)

of value v for discrete feature i on emitter type j

with the feature-type frequency matrix [ f req(i, j,

v)], as indicated in Eq. (8).

• Feature update

1) Update the t-statistics tghi for each type pair cg−ch

on feature i based on the updated mean value of

each continuous feature i on each radar emitter

type j, X ji, and radar emitter sample standard de-

viation stdev(X ji) of each continuous feature i on

each type j, as indicated in Eq. (9);

2) Update the associated degree of freedom d f of

statistic tghi for each type pair cg − ch on feature

i with the updated radar emitter sample standard

deviation stdev(X ji), as indicated in Eq. (10);

3) Update the resulted two-tailed p-values of the

welch t-test and re-judge whether continuous fea-

ture i is discriminating for type-pair cg − ch;

4) Update the sum of overlapping membership prob-

abilities, overlap, upon the updated membership

probability member(i, j, v) of value v for discrete

feature i on emitter type j, and re-judge whether

discrete feature i is discriminating for type-pair

cg − ch, as indicated in Eq. (11);

5) Update the top covering discriminating features

TopFS , either continuous or discrete, as illus-

trated in Section 2;

• Classifier update

1) Update the structure and parameter values of

mean vector mean j of each existing radar emit-

ter type j in Mahalanobis distance calculation

(Eq. (13)) upon the selected continuous features in

the updated top covering discriminating features

TopFS with the updated X ji;

2) Update the structure and parameter values of the

estimated radar emitter sample covariance ma-

trix C in Mahalanobis distance calculation (Eq.

(13)) upon the selected continuous features in

the updated top covering discriminating features

TopFS with the updated estimated radar emitter

sample covariance coefficient cov(p, q, j);

3) Update the structure and parameter values of the

geometric mean of the membership probability of

the test sample t to type j, gmt, j, with the updated
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membership probability member(i, j, v) of value v

for selected discrete feature i to emitter type j, as

indicated in Eq. (14).

The above incremental update order between the matrices,

variables for the fuzzy classifier is illustrated in Fig. 1. The

involved incremental update relationships could be summa-

rized with a network of arrows, pointing from the variables

or matrices first updated to the variables or matrices updated

afterwards. There are accordingly four layers of variables and

matrices corresponding to the incremental update of descrip-

tion matrices, description variables, features and the final

fuzzy classifier respectively. The arrows in solid lines indicate

incremental update of variables or matrices within the same

or between adjacent layers, while the arrows in dash lines

indicate incremental update of variables or matrices across

unadjacent layers.

Fig. 1 Incremental update order of TILA

3.4.3 Time complexity analysis

Assume initially, there are m training samples, nc number

of continuous features, nd number of discrete features and

k different types in the original radar emitter training data,

and later Δm number of new samples, Δnc number of new

continuous features, Δnd number of new discrete features

and Δk number of new types become available. In this way,

the radar emitter training data is expanded to m′ = m + Δm

samples, each with nc′ = nc + Δnc continuous features and

nd′ = nd + Δnd discrete features, from k′ = k + Δk different

types.

To cope with the expanded radar emitter training data set,

we need to update the data description matrices in feature,

sample and type dimensions at the first step. To update the

feature-type sum matrix Σ(i, j) and feature-type square ma-

trix Σ2(i, j), it takes a time complexity of O(mΔnc) for the

update on the Δnc new continuous features of the existing m

training samples and a time complexity of O(Δm(nc + Δnc))

for the update on all the nc + Δnc continuous features of Δm

new training samples. The update of feature-type pair matrix

Σpair(p, q, j) on the Δnc new continuous features on the up-

dated m + Δm training samples takes a time complexity of

O((nc+Δnc)2(m+Δm)−nc2m). Similarly, the time complex-

ity of incremental update of the feature-type frequency matrix

f req(i, j, v) is O(mΔnd + Δm(nd + Δnd)). So, the time com-

plexity of data description matrix update is O(mΔnc+Δm(nc+

Δnc)+ (nc+Δnc)2(m+Δm)−nc2m+mΔnd+Δm(nd+Δnd))

= O(nc2Δm + ncΔnc(m + Δm) + Δnc2(m + Δm) + Δm(nd +

Δnd) + mΔnd).

Upon the updated data description matrices, the discrimi-

nating power of nc + Δnc continuous features and nd + Δnd

discrete features would be evaluated for each of the (k +

Δk)(k + Δk − 1)/2 type pairs. The time complexity of fea-

ture evaluation is O((nc + Δnc + nd + Δnd)(k + Δk)2). The

time complexity of top covering discriminating feature selec-

tion is within O((nc+Δnc+ nd +Δnd)2). Therefore, the time

complexity of incremental feature evaluation and selection is

O((nc+Δnc+ nd +Δnd)(k+Δk)2 + (nc+Δnc+ nd +Δnd)2).

The final step is the update of classification model upon

the selected sc′ continuous features and sd′ discrete features.

The time complexity of the update of Mahalanobis distance

model on the sc′ selected continuous features for each type

is O(sc′2(k + Δk)), and that of the update of the geometric

mean model on the sd′ selected discrete features for each

type is O(sd′(k + Δk)). As sc′ � nc′ and sd′ � nd′, the time

complexity of classification model update would be within

O(((nc + Δnc)2 + nd + Δnd)(k + Δk)).

Please note that when the numbers of continuous features,

discrete features and types are fixed, i.e., Δnc = Δnd =

Δk = 0, and the number of newly-arrived radar emitter

sample is positive, Δm > 0, the total time complexity is

O(Δm(nc2 + nd) + (nc + nd)k2 + (nc + nd)2 + nc2k), which

is proportional to the number of new radar emitter samples

Δm and irrelevant with the original training data set size m.

Likewise, when the numbers of samples, discrete features and

types are fixed, i.e., Δm = Δnd = Δk = 0, and the number

of newly-arrived continuous features is positive, Δnc > 0,

then the total time complexity would be approximately in the

second order of the number of new continuous features Δnc.

4 Results

We evaluated TILA on two dynamically accumulated real-

life radar emitter data sets, airborne radar emitter data set and

ground radar emitter data set. The sizes of the two real-life
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data sets double in every six months approximately.

The radar emitter samples of the two real-life data sets

were collected from the observatory stations periodically.

Some new emitter samples might come from a new emit-

ter type different from existing ones. Meanwhile, all existing

emitter samples and newly collected samples were being an-

alyzed in the information centers and some new features may

become available from time to time. In this way, there would

be a simultaneous increment in all the three dimensions of

sample, type and feature.

The airborne radar emitter data set had 13194 training sam-

ples, coming from six different radar emitter types, “I”, “F”,

“M”, “C”, “G1” and “G2”. Accordingly, an independent test

data set of 2400 samples was provided. The ground radar

emitter data set had 40 000 training samples and 8 000 inde-

pendent test samples from six different emitter types, “U1”,

“U2”, “U3”, “FP”, “B1” and “B2”.

On each real-life radar emitter data set, there were eight

continuous features and three discrete features. The eight

continuous radar emitter features were the minimum car-

rier frequency “minCF”, the maximum carrier frequency

“maxCF”, the minimum repetitive frequency “minRF”, the

maximum repetitive frequency “maxRF”, the minimum pulse

width “minPW”, the maximum pulse width “maxPW”, the

minimum pulse interval “minPI” and the maximum pulse in-

terval “maxPI”. The three discrete radar emitter features were

“carrier frequency type”, “repetitive frequency type” and

“intra-pulse modulation type”. These eleven features were

contributed to the incremental update of data description ma-

trices during expansions of feature, sample and type dimen-

sions as discussed in Section 3.4.1.

The parameter L for buffer size was set as 20k. The ex-

periments were conducted on a Dell PC running Microsoft

Windows XP with a Pentium dual-core CPU of 2.6GHz and

a 4G RAM.

We designed three experimental series on purpose for eval-

uation of both three-way feature selection and three-way in-

cremental learning ability, as indicated in Table 2. Experi-

mental series 1 was designed for sample and type dimension

expansion, during which the number of features was fixed

at eleven while the number of training samples and emitter

types increased incrementally. During experimental series 2,

all the three dimensions of feature, sample and type expanded

randomly. Experimental series 3 was specifically designed

for feature dimension expansion during which the number

of training samples was fixed while the number of features

increased by about three at each time.

4.1 Evaluation of three-way incremental feature selection

We evaluated the incremental feature selection ability of

TILA by the three experimental series in Table 2. We com-

pared the discovered top covering emitter features against the

ground-truth discriminating ones given by the information

centers. These globally discriminating features could guide

the information centers to extract more discriminating emit-

ter features in the future.

We reported the hamming distance between the set of se-

lected features and the ground-truth ones at each time point

for each experimental series, as presented in Fig. 2. For each

feature, a boolean value of TRUE would be assigned when

the feature was selected and a value of FALSE would be

given otherwise. In this way, a vector of length eleven was

Table 2 Three experimental series

Airborne Ground

Series Time #Sample #Feature Expansion #Sample #Feature Expansion

1 0 500 11 Initial 2 000 11 Initial

1 4 000 11 Sample & type 10 000 11 Sample & type

2 7 500 11 Sample & type 20 000 11 Sample & type

3 11 000 11 Sample 30 000 11 Sample

4 13 194 11 Sample 40 000 11 Sample

2 0 0 0 Initial 0 0 Initial

1 3 500 6 Feature & sample & type 10 000 6 Feature & sample & type

2 7 500 9 Feature & sample & type 20 000 9 Feature & sample & type

3 11 000 11 Feature & sample 30 000 11 Feature & sample

4 13 194 11 Sample 40 000 11 Sample

3 0 13 194 1 Initial 40 000 1 Initial

1 13 194 3 Feature 40 000 3 Feature

2 13 194 6 Feature 40 000 6 Feature

3 13 194 9 Feature 40 000 9 Feature

4 13 194 11 Feature 40 000 11 Feature
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generated for each set of selected features and the ground-

truth discriminating features. As can be seen, the hamming

distances between the top covering features discovered by

TILA and the ground-truth discriminating features within

the three experimental series all converged to zero. This in-

dicates that the top covering features were consistent with

the ground-truth ones. We shuffled the input data orders, re-

peated the experiments dozens of times, and the conclusion

still holds.

Fig. 2 Evaluation of three-way incremental feature selection. (a) Airborne
emitter data set; (b) ground emitter data set

Most benchmark incremental learning algorithms [1,4,6–

8] deal with a static feature space. Though some data stream

feature evolution algorithms [13,14,16] are able to conduct

feature selection on a dynamic feature space, their feature

selection strategies are only applicable for discrete text fea-

tures and thus are inappropriate for our continuous emitter

features. Other benchmark data stream feature evolution al-

gorithms [3,18] build an ensemble of models on different fea-

ture space but are incapable of evaluating the global discrim-

inating power of emitter features. Therefore, none of the ex-

isting incremental learning algorithms is able to discover the

ground-truth discriminating emitter features.

4.2 Evaluation of three-way incremental learning

We evaluated the incremental learning ability of TILA on the

three experimental series as well. TILA was first trained in-

crementally with the newly arriving training samples and then

evaluated on the independent test samples.

It is well-known that “Siren pitfall” is a common prob-

lem in multi-class classification [23], i.e., the majority classes

are predicted well while the minority classes are predicted

poorly. To better address the above “Siren pitfall” problem,

average true positive rate (AveT PR), instead of classification

accuracy, was chosen for evaluation of the incremental learn-

ing ability. As another benefit, AveT PR is adaptable for eval-

uation of both multi-class classification and binary classifica-

tion problems. Comparatively, other evaluation metrics such

as ROC and F-measure are restricted to evaluation of binary

classification only. The calculation of AveT PR is given be-

low:

AveT PR = Average(
SUMs∈Ωc(predict(s) = c)

|Ωc| )∀c. (28)

When the predicted class of a test sample was Null and

the true class label of the test sample was c, the true positive

rate for class c would decrease while the true positive rates of

other classes would not be affected. Therefore, the AveT PR

would decrease.

4.2.1 Comparison against benchmark batch algorithms

We compared the AveT PR of TILA against those of five tra-

ditional batch machine learning algorithms, gray relational

analysis algorithm (GRA), neural network (NN), support vec-

tor machine with polynomial kernel (SVM-poly), support

vector machine with Gaussian kernel (SVM-Gaussian) and

Random Forest on the two real-life radar emitter data sets

during sample dimension expansion. We varied the number

of training samples as indicated in experimental series 1 in

Table 2. During each expansion, 3 500 and 10 000 new train-

ing samples were obtained respectively for the airborne and

ground emitter data.

We only reported the AveT PRs when the corresponding

algorithm was able to finish training within ten minutes and

did not run out of memory. We did not report the AveT PRs of

GRA, NN, SVM-poly and SVM-Gaussian for all the training

sizes due to the training time constraint, and also did not re-

port that of Random Forest due to the memory problem. As

can be seen from Fig. 3, TILA has outperformed these batch

algorithms in term of either classification true positive rate or

computational cost.
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Fig. 3 Comparison of TILA against benchmark batch algorithms. (a) Airborne emitter data; (b) ground emitter data

4.2.2 Comparison against benchmark binary incremental

learning algorithms

In addition, we compared the incremental learning ability

of TILA against four benchmark binary incremental learn-

ing algorithms implemented in R package “RSofia”1) , in-

cluding margin-perceptron [5], SGD-SVM [6], pegasos SVM

[7] and ROMMA [8] on the two real-life data sets. The four

benchmark binary incremental learning algorithms were eval-

uated under the default parameter settings: the numeric scalar

lambda was set as 0.1, the number of iterations was set as

100 000, the type of sampling loop to use for training was set

as “stochastic”, the probability to take a rank step (as opposed

to a standard stochastic gradient step) in a combined ranking

or combined ROC loop was set as 0.5 and the size of buffer to

use in reading/writing to files was set as 40MB. We specified

the type of sampling loop for training as “combined-ranking”

(combined regression and ranking) [30].

Please note that these four incremental learning algorithms

are all restricted to binary class partition as discussed in Sec-

tion 2, and unable to cope with a dynamic feature space.

As a result, they could not apply for multi-type radar emit-

ter identification directly. Furthermore, the heuristic nature

of the four incremental learning algorithms may take a risk

by sacrificing the prediction accuracy due to the bias to the

ground-truth distribution. For example, the SGD-SVM algo-

rithm directly minimizes the empirical risk with the randomly

sampled examples in each iteration, rather than with the ex-

pected risk using the whole set of examples.

For fair comparison, we reported the AveTPRs of the four

incremental learning algorithms in binary partitions of one

versus other types while reporting the AveTPR of TILA on

the partition on all the six emitter types, as indicated in Figs.

4 and 5 respectively. We shuffled the data input orders ten

times for each partition and calculated the AveTPR of each

algorithm two times for each data input order. The AveTPR

of a binary partition was computed as the average proportion

of emitter samples correctly ascribed to the associate partition

in the two partitions, while that of “All Six” was calculated as

the average proportion of emitter samples correctly ascribed

to the associate partition in all the six partitions.

As can be seen from Figs. 4 and 5, it turned out that the

output of TILA was rather stable. On the contrary, the perfor-

mance of margin-perceptron, SGD-SVM, pegasos SVM and

ROMMA was significantly unstable and the AveTPRs var-

ied abruptly even given the same input data set. Specifically,

the AveTPRs of TILA were fixed around 92.4% and 91.8%

respectively on the airborne and ground emitter data while

those of margin-perceptron, SGD-SVM, pegasos SVM and

ROMMA varied around a median value of only 50% − 60%.

The whiskers in boxplots of the four binary algorithms were

long, while no whiskers were found in boxplots of TILA. Ob-

viously, TILA outperformed margin-perceptron, SGD-SVM,

pegasos SVM and ROMMA in terms of both classification

accuracy and insensitivity to data input orders.

4.2.3 Comparison against benchmark data stream algo-

rithms

We compared the AveTPRs of TILA against those of the

benchmark data stream algorithms during the three experi-

mental series. The data stream methods in Refs. [15,16] were

inappropriate for our emitter data sets, as their feature se-

lection strategy was designed for discrete features only. The

“one class” data stream method [17] was inappropriate either,

as it is unable to deal with multi-class classification. As a re-

sult, we only compared TILA against the latest data stream

approach introduced in Refs. [3,18], denoted as DStream.

1) http://code.google.com/p/sofia-ml/
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Fig. 4 Comparison of TILA against benchmark binary incremental algorithms on airborne emitter data. (a) Margin-perceptron; (b) Pegasos;
(c) ROMMA; (d) SGD-SVM

In DStream, the latest L data samples in the buffer were

divided into four equal-sized data chunks. With each data

chunk, a model would be built using a semi-supervised K-

means clustering. In this way, there were exactly four models

in the ensemble at any given point of time.

Figure 6 indicates the AveTPR averaged on all the radar

emitter types at each point of the three experimental se-

ries. Although the expansion paths of the three series were

quite different, the AveTPRs of the three series all con-

verged around 92.4% and 91.8% respectively on the air-

borne and ground emitter data. Comparatively, the AveTPRs

of DStream on the ground emitter data were getting lower.

This is because the training samples from minority emitter

types were discarded with the update of data chunks, and the

cohesion among the test samples in minority classes was also

hard to be found. As a result, DStream obtained a relatively

low true positive rate for the minority emitter types.

As can be observed, TILA has adapted well to the expan-

sion of either samples, types or features.

4.3 Evaluation of computational efficiency

We compared the runtime of TILA against that of the five

benchmark batch algorithms (GRA, NN, SVM-poly, SVM-

Gaussian and Random Forest), the benchmark binary incre-

mental learning algorithms and the data stream algorithm

DStream on the two real-life radar emitter data sets dur-

ing sample dimension expansion. As the runtimes of the

four benchmark binary incremental learning algorithms were

quite similar to each other, we only reported the training time

of margin-perceptron for space limitation.

During experiments, we incrementally varied the number

of training samples from 4 000 to 13 000 for the airborne

emitter data and from 10 000 to 40 000 for the ground emit-

ter data. During each sample increment, approximately 3 500

and 10 000 new emitter training samples were obtained re-

spectively. We reported the corresponding training time if the

algorithm was able to finish within ten minutes and had no

memory problems.

As can be seen from Fig. 7, the incremental learning
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Fig. 5 Comparison of TILA against benchmark binary incremental algorithms on ground emitter data. (a) Margin-perceptron; (b) Pegasos;
(c) ROMMA; (d) SGD-SVM

Fig. 6 Comparison of TILA against benchmark data stream algorithms. (a) Airborne emitter data; (b) ground emitter data

time of TILA, margin-perceptron and DStream was approx-

imately fixed during each sample increment. TILA has out-

performed DStream and was also competitive with the bench-

mark binary incremental learning peers. This is because when

no new features are available (Δnc = Δnd = 0), the time

complexity of TILA was proportional to the number of new

training samples Δm, as discussed in Section 3. On the con-

trary, the runtime of the batch GRA, NN, SVM-poly, SVM-

Gaussian and Random Forest increased substantially with the

increase of training samples.

5 Conclusion

In this paper, we have proposed a three-way incremen-

tal learning algorithm for radar emitter type identification

(TILA). Rather than restricted to the expansion in sample

and type dimensions as most incremental learning algorithms

do, TILA is able to adapt to all expansions in features, sam-

ples and types simultaneously. Unlike previous heuristic clas-

sifiers such as neural network and support vector machine,
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Fig. 7 Comparison of runtime with varying number of samples. (a) Airborne emitter data; (b) ground emitter data

TILA is insensitive to the data input order. Compared with

the batch peers, TILA is superior in terms of computational

efficiency, whose training time is approximately linear w.r.t.

the number of newly-arrived training samples. Also, TILA

outperforms the data stream peers in discovering a set of

globally discriminating features and coping with unbalanced

class distribution.
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