
Front. Comput. Sci., 2016, 10(1): 37–53

DOI 10.1007/s11704-015-4364-y

Towards a verified compiler prototype for the synchronous
language SIGNAL

Zhibin YANG1,2,3, Jean-Paul BODEVEIX2, Mamoun FILALI2,
Kai HU 3, Yongwang ZHAO3, Dianfu MA3

1 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,

Nanjing 210016, China

2 IRIT-CNRS, Université de Toulouse, Toulouse 31062, France

3 State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Abstract SIGNAL belongs to the synchronous languages

family which are widely used in the design of safety-critical

real-time systems such as avionics, space systems, and nu-

clear power plants. This paper reports a compiler prototype

for SIGNAL. Compared with the existing SIGNAL com-

piler, we propose a new intermediate representation (named

S-CGA, a variant of clocked guarded actions), to integrate

more synchronous programs into our compiler prototype in

the future. The front-end of the compiler, i.e., the transla-

tion from SIGNAL to S-CGA, is presented. As well, the

proof of semantics preservation is mechanized in the theo-

rem prover Coq. Moreover, we present the back-end of the

compiler, including sequential code generation and multi-

threaded code generation with time-predictable properties.

With the rising importance of multi-core processors in safety-

critical embedded systems or cyber-physical systems (CPS),

there is a growing need for model-driven generation of multi-

threaded code and thus mapping on multi-core. We propose

a time-predictable multi-core architecture model in archi-

tecture analysis and design language (AADL), and map the

multi-threaded code to this model.

Keywords synchronous languages, SIGNAL, guarded ac-

tions, verified compiler, Coq, architecture analysis and design

language (AADL)

Received August 14, 2014; accepted August 2, 2015

E-mail: hukai@buaa.edu.cn

1 Introduction

Safety-critical real-time systems such as avionics, space sys-

tems and nuclear power plants, are considered as reactive

systems, because they always interact with their environ-

ment continuously. The environment can be some physical

devices to be controlled, a human operator, or other reac-

tive systems. These systems receive from the environment

input events, and compute the output information, which

is eventually sent to the environment. The synchronous ap-

proach is an important choice for the design of these sys-

tems, which relies on the synchronous hypothesis [1]: a

synchronous program reacts to its environment in a se-

quence of discrete instants. At each instant, the system does

input-computation/communication-output, which takes zero

time. Even if the physical time is abstracted, the inher-

ent functional properties are not changed, so we can say

this method focuses on functional behaviors at a platform-

independent level. In contrast to asynchronous concurrency,

synchronous languages avoid the introduction of nondeter-

minism by interleaving. Namely, the execution of two inde-

pendent, atomic parallel tasks is simultaneous. This allows

deterministic semantics, thereby making synchronous pro-

gramming amenable to predictable system design.

There are several synchronous languages, such as ES-

TEREL [2], LUSTRE [3], and QUARTZ [4] based on the

38 Front. Comput. Sci., 2016, 10(1): 37–53

perfect synchrony paradigm, and SIGNAL [5] based on the

polychrony paradigm. Synchronous languages can be consid-

ered as different implementations of the synchronous hypoth-

esis. As a main difference from other synchronous languages,

SIGNAL naturally considers a mathematical time model, in

term of a partial order relation, to describe multi-clocked sys-

tems without the necessity of a global clock. This feature

permits the description of globally asynchronous locally syn-

chronous systems (GALS) conveniently, where components

based on different clock domains are integrated at the system

level.

This paper reports a new compiler prototype for the SIG-

NAL language, including sequential code generation and

multi-threaded code generation with time-predictable prop-

erties.

1) Intermediate representation

Guarded commands [6], also called asynchronous guarded

actions by Brandt et al. [7], are a well-established concept

for the description of concurrent systems. In the spirit of

the guarded commands, Brandt et al. propose synchronous

guarded actions [8] as an intermediate representation for their

QUARTZ compiler. As the name suggests, it follows the syn-

chronous model. Hence, the behavior (control flow as well

as data flow) is basically described by sets of guarded ac-

tions of the form 〈γ⇒ A〉. The boolean condition γ is called

the guard and A is called the action. To support the integra-

tion of synchronous, polychronous and asynchronous models

(such as CAOS [9] or SHIM [10]), they propose an extended

intermediate representation, that is, clocked guarded actions

[7,11] where one can declare explicitly a set of clocks. They

also show how clocked guarded actions can be used for ver-

ification by symbolic model checking (SMV) and simulation

by SystemC.

Compared with the existing SIGNAL compiler-

Polychrony1), we use clocked guarded actions as the in-

termediate representation, to integrate more synchronous

languages such as QUARTZ, AIF2) [7] into our compiler

prototype in the future. However, in contrast to the SIGNAL

language, clocked guarded actions can evaluate a variable

even if its clock does not hold. We also mention that the DC+

[12] intermediate format has been proposed as an intermedi-

ate format for compiling multiclock synchronous languages

(ESTEREL, LUSTRE and SIGNAL). However, DC+ is in-

troduced as a layer on top of DC which is a monoclock inter-

mediate language. DC+ is characterized by a rich kernel with

a monoclock guarded assignment (named at) and the equiva-

lent of SIGNAL when and default constructs. Thus, we pro-

pose a variant of Clocked Guarded Actions, namely S-CGA,

which constrains variable accesses as done by SIGNAL, and

guarded assignments are multiclocked. Compared to DC+,

the SIGNAL when and default are not part of S-CGA, ac-

tually, they are compiled. More generally, to conform with

the revised semantics of clocked guarded actions, we also do

some adjustments on the translation rules from SIGNAL to

clocked guarded actions (which are given by [7,11]).

2) Code generation

The sequential code generation from SIGNAL programs

is adapted to the S-CGA context. We also consider enhance-

ments of the compiler and their insertion in the compilation

chain. Moreover, we propose an appropriate modular archi-

tecture for our prototype.

With the advent of multi-core processors, automated syn-

thesis of multi-threaded code from polychronous models is

an attractive option for embedded system designers [13–

17]. However, we would like to consider the multi-threaded

code generation with time-predictable properties. Time pre-

dictability means that the program timing can be foreseen

statically, such as worst-case execution time (WCET). In or-

der to measure WCET in a compositional way, strong ar-

chitectural hypotheses must be done, and this is the goal of

the time-predictable architecture. In this paper, we propose

a time-predictable multi-core architecture model in architec-

ture analysis and design language (AADL) [18], and then we

map the multi-threaded code to this model.

3) Verification of the compilation

For a safety-critical system, it is naturally required that the

compiler must be verified to ensure that the source program

semantics is preserved. There are many approaches to gain

assurance that the transformation or the translation of a spec-

ification or a program is semantic-preserving. This can be

done by directly building a theorem-prover-verified compiler

[19], by using translation validation [20], etc. The existing

formal verification techniques around SIGNAL are mainly

based on translation validation [20,21]. However, translation

validation treats the compiler as a “black box”, namely it

just checks the input and output of each program transforma-

tion to validate the semantics preservation, so it yields that

one needs to redo the validation when the source program is

changed. We would like to extract a verified SIGNAL com-

piler from a correctness proof developed within the theorem

prover Coq, as it has been done in the GENEAUTO project

for a part of the SIMULINK compiler [22].

1) http://www.irisa.fr/espresso/Polychrony
2) Averest Intermediate Format

Zhibin YANG et al. Towards a verified compiler prototype for the synchronous language SIGNAL 39

Firstly, formal semantics is an important basis for the com-

piler verification. There exist several semantics for SIGNAL,

such as denotational semantics based on traces (called trace

semantics) [23–25], denotational semantics based on tags

which puts forward a partial order view of time (called tagged

model semantics) [24,26], structural operational semantics

defining inductively a set of possible transitions [5,24], oper-

ational semantics defined by synchronous transition systems

(STS) [20]. In Ref. [27], we have studied the equivalence be-

tween the trace semantics and the tagged model semantics,

to assert a determined and precise semantics of the SIGNAL

language.

Secondly, verifying a compiler is always a long-term work.

The front-end of our compiler prototype has been proven.

However, there already exists a mechanized semantics of

a subset of C language in Coq [19], and we have already

worked on the mechanized semantics of different AADL sub-

sets such as [28]. Thus we can envision to validate semanti-

cally the mapping from the S-CGA level to the targets such

as sequential code in C and multi-threaded code in AADL.

To summarize, the relation between our work and related

work is shown in Fig. 1 (which extends the figure given in

Ref. [7]).

The rest of this paper is structured as follows. Section 2 in-

troduces the basic concepts of the SIGNAL language. The

abstract syntax of SIGNAL and its denotational semantics

based on the trace model are also given. Section 3 presents

the abstract syntax and the denotational semantics of S-CGA.

Section 4 gives the front-end of the compiler, i.e., the trans-

lation from SIGNAL to S-CGA. The proof of the seman-

tics preservation of the transformation is also presented in

Section 4. Section 5 and Section 6 present the sequential

code generation and the multi-threaded code generation re-

spectively. Section 7 discusses the related work, and Section

8 gives some concluding remarks.

2 An introduction to SIGNAL

In the SIGNAL language, the variables can be evaluated only

at some instants which define their so-called clocks. More-

over, since SIGNAL is polychronous, each variable can have

its own clock. In this section, we first introduce the basic con-

cepts and the abstract syntax of the SIGNAL language, and

then we present the semantics domain and the trace semantics

of SIGNAL.

2.1 Basic concepts and abstract syntax of SIGNAL

• Signals In the synchronous hypothesis, the behaviors of

a reactive system are divided into a discrete sequence of in-

stants. At each instant, the system does input-computation-

output, which takes zero time. Thus, the inputs and outputs

are sequences of values, each value of the sequence being

present at some instants. Such a sequence is called a signal.

Consequently, at each instant, a signal may be present or ab-

sent (denoted by ⊥). In SIGNAL, signals must be declared

before being used, with an identifer (i.e., signal variable or

the name of signal) and an associated type for their values

such as integer, real, complex, boolean, event, string.

Example 1 Three signals named input1, input2, output are

shown as follows. Here a logical time reference is denoted as

Fig. 1 A global view of the relation between our work and related work

40 Front. Comput. Sci., 2016, 10(1): 37–53

(tk)k∈N.
t t1 t2 t3 t4 · · ·

input1 1 ⊥ 3 ⊥ · · ·
input2 ⊥ 5 7 9 · · ·
output ⊥ ⊥ 10 ⊥ · · ·

• Abstract clock The set of instants where a signal takes a

value is the abstract clock of the signal. Two signals are syn-

chronous if they are always present and absent at the same

instants, which means they have the same abstract clock.

In the example given above, the abstract clocks of input1,

input2 and output, denoted respectively ̂input1, ̂input2, and
̂output, are defined by different sets of logical instants. For

instance, the abstract clock associated with input1 is the set

{t1, t3, ...}.
Moreover, SIGNAL can specify the relations between the

abstract clocks of signals in two ways: implicitly or explic-

itly.

• Primitive constructs SIGNAL uses several primitive con-

structs to express the relations between signals, including re-

lations between values, and relations between abstract clocks.

Moreover, the primitive constructs can be classified into two

families: monoclock operators (for which all signals involved

have the same abstract clock) and multiclock operators (for

which the signals involved may have different clocks).

1) Monoclock operators, including instantaneous func-

tion and delay. The instantaneous function x :=

f (x1, x2, . . . , xn) applied on a set of inputs x1, x2, . . . , xn

will produce the output x, while the delay operator

x := x1 $ init c sends the previous non-absent value

of the input to the output with an initial value c.

2) Multiclock operators, including undersampling and de-

terministic merging. The undersampling operator x :=

x1 when x2 is used to get the output of an input at the

true occurrence of another input, while the determin-

istic merging operator x := x1 de f ault x2 is used to

select between two inputs to be sent as the output, with

a higher priority to the first input.

Note that, these operators specify the relations between the

abstract clocks of the signals in an implicit way.

In the SIGNAL language, the relations between values and

the relations between abstract clocks of the signals are de-

fined as equations, and a process consists of a set of equa-

tions. Two basic operators apply to processes. The first one

is the composition of different processes, and the other one

is the local declaration in which the scope of a signal is re-

stricted to a process.

• Extended constructs SIGNAL also provides some opera-

tors to express control-related properties by specifying clock

relations explicitly, such as clock synchronization, set op-

erators on clocks (union, intersection, difference) and clock

comparison.

1) Clock synchronization, the equation x1 ˆ= x2 ˆ= · · · ˆ=

xn specifies that signals x1, x2, . . . , xn are synchronous.

2) Set operators on clocks, such as the equation x := x1 ˆ+

x2 defines the clock of x as the union of the clocks of

signals x1 and x2, the equation x := x1 ˆ* x2 defines the

clock of x as the intersection of the clocks of signals x1

and x2, and the equation x := x1 ˆ– x2 defines the clock

of x as the difference of the clocks of signals x1 and x2.

3) Clock comparison, such as the statement x1 ˆ< x2 spec-

ifies a set inclusion relation between the clocks of sig-

nals x1 and x2, and the statement x1 ˆ> x2 specifies a

set containment relation between the clocks of signals

x1 and x2.

The semantics of each of the extended constructs is defined

in term of the primitive constructs [24], so we just consider

the primitive constructs, that is kernel SIGNAL (kSIGNAL

for short). Its abstract syntax is presented as follows:

P ::= x := f (x1, x2, . . . , xn) (instantaneous function)

|x := x1 $ init c (delay)

|x := x1 when x2 (undersampling)

|x := x1 de f ault x2 (deterministic merging)

|P|P′ (composition).

We can use both primitive constructs and extended con-

structs in the programming. However, the compiler will trans-

late it into kSIGNAL (just use primitive constructs). Thus, in

the proof of semantics preservation, we consider kSIGNAL

and S-CGA.

In order to get the simplest criterion for the proof of seman-

tics equivalence, local variables are supposed to be moved to

the top level, so that the corresponding signals can be con-

trolled from the outside. It means that non-deterministic be-

haviors are excluded, but our goal is to generate executable

code, not specifications.

2.2 Trace model

There exist several semantics for SIGNAL, such as trace se-

mantics (which is used in the reference manual for SIGNAL

Version 4), tagged model semantics (based on tags which puts

forward a partial order view of time), structural operational

semantics. This paper considers the trace semantics. In the

Zhibin YANG et al. Towards a verified compiler prototype for the synchronous language SIGNAL 41

following paragraphs, we summarize the trace model [23,34]

which is used to define the trace semantics of SIGNAL.

Let X be a set of variables, and let V be the set of values

that can be taken by the variables. For a variable x ∈ X, and

a non-empty subset X of variables in X, we consider Vx the

domain of values that may be taken by x, andVX =
⋃

x∈X
Vx.

The symbol⊥ (⊥ �V) is introduced to express the absence

of valuation of a variable. Then we denote:

V⊥ = V∪ {⊥},

V⊥X =VX ∪ {⊥}.

The basic objects manipulated by the SIGNAL language

are signals. The length of a signal can be either finite or infi-

nite.

Definition 1 (signal) A signal s is a sequence (si)i∈I of

typed values (ofV⊥), where I is the set of natural numbersN

or an initial segment of N, including the empty segment.

The definition of a trace will be given later. Note that, a

signal is just a sequence of values corresponding to a signal

variable, while a trace defines the synchronized sequences of

values of a set of signal variables.

Definition 2 (event) Considering X a non-empty subset of

X, we call event on X any application

e : X →V⊥X .

• e(x) = ⊥ indicates that variable x has no value in the

event.

• e(x) = v indicates, for v ∈ Vx, that variable x takes the

value v in the event.

The absent event on X (X → {⊥}), where all the signals are

absent at a logical instant, is denoted ⊥e(X). Moreover, the

set of events on X (X → V⊥X) is denotedεX .

A trace is a sequence of events. For any subset X of X, we

consider the following definition of the set ΦX of traces onX.

Definition 3 (traces) ΦX is the set of traces on X, defined

as the set of applicationsN→εX where N is the set of natu-

ral numbers.

Similarly, a trace can be finite. However, we can extend the

finite sequence with infinite absent events, to get an infinite

trace.

The absent trace on X (N → {⊥e(X)}), i.e., the infinite se-

quence formed by the infinite repetition of ⊥e(X), is denoted

⊥X .

Definition 4 (process) Given a SIGNAL process, its trace

semantics, denoted SProcess, includes a set of signal vari-

ables defining the domain of the process and a set of traces.

Definition 5 (trace equivalence) Two traces are equiva-

lent, if and only if they have the same set of signal variables

and the same set of signals.

2.3 Trace semantics of SIGNAL

Based on the trace model, the trace semantics of SIGNAL is

presented as follows. It defines the set of traces associated to

each primitive construct of SIGNAL.

Trace Semantics 1 The trace semantics of the instantaneous

function x := f (x1, . . . , xn) is defined as follows:

∀t ∈ N,
xt =

⎧
⎪⎪⎨
⎪⎪⎩

⊥, if x1t = · · · = xnt = ⊥;

f (x1t, . . . , xnt), if x1t � ⊥ ∧ · · · ∧ xnt � ⊥.
At each instant t, the signals are either all present or all ab-

sent, i.e., they are synchronous, denoted x ˆ = x1 ˆ = · · · ˆ =

xn. xt gets the value of f (x1t, . . . , xnt) when the signals are all

present. The function f includes different mathematical oper-

ations, such as arithmetic operations and boolean operations.

Trace Semantics 2 The trace semantics of the delay con-

struct x := x1 $ init c is defined as follows:

− (∀t ∈ N) x1t = ⊥ ⇔ xt = ⊥
− {k | x1k � ⊥} � ∅ ⇒ xmin{k|x1k�⊥} = c

− (∀t ∈ N) x1t � ⊥ ∧ {k > t | x1k � ⊥} � ∅
⇒ xmin{k>t|x1k�⊥} = x1t.

Here, min(X) denotes the minimum of a non-empty set of

naturals. Similarly to the instantaneous function, the delay

construct also requires signals x and x1 have the same clock,

denoted x ˆ= x1. Given a logical instant t, x takes the most re-

cent value of x1 except the one at t. Initially, x takes the value

c.

Trace Semantics 3 The trace semantics of the undersam-

pling construct x := x1 when x2 is defined as follows:

∀t ∈ N,
xt =

⎧
⎪⎪⎨
⎪⎪⎩

x1t, if x2t = true;

⊥, otherwise.

Here, x and x1 have the same type, and x2 is a boolean

signal. The clock of x is the intersection of the clock of x1

and the true occurrences of x2, denoted x=x1 ˆ* [x2], where

[x2] = x̂2 ∧ x2 represents the true occurrences of x2.

42 Front. Comput. Sci., 2016, 10(1): 37–53

Trace Semantics 4 The trace semantics of the deterministic

merging construct x := x1 de f ault x2 is defined as follows:

∀t ∈ N,
xt =

⎧
⎪⎪⎨
⎪⎪⎩

x1t, if x1t � ⊥;

x2t, otherwise.

Here, signals x, x1 and x2 have the same type. The clock of

x is the union of the clocks of x1 and x2, denoted x = x1 ˆ+

x2. Given a logical instant t, xt gets the merge of the values

of x1t and x2t, and the value of x1t has a higher priority.

Finally, the semantics of parallel composition is defined as

the intersection of the semantics of the components. We apply

these semantics rules to a SIGNAL process, to get a complete

semantics of the process, that is SProcess (Definition 4).

3 Synchronous clocked guarded actions for
SIGNAL

In papers such as [11], clocked guarded actions have been de-

fined as a common representation for synchronous (via syn-

chronous guarded actions), polychronous and asynchronous

(via asynchronous guarded actions) models. It has a multi-

clocked feature. However, in contrast to the SIGNAL lan-

guage, clocked guarded actions can evaluate a variable even

if its clock does not hold [11,29], in this case the read value

is the most recently written value, while in SIGNAL read

and writes can be simultaneous provided the causality is re-

spected. As a consequence, we introduce S-CGA, which is a

variant of clocked guarded actions. S-CGA constrains vari-

able accesses as done by SIGNAL. We remark that the SIG-

NAL compiler has introduced intermediate representations to

manage guards and dependencies such as hierarchized con-

ditional dependency graph (HCDG) [26]. The proposed in-

termediate language is not at the same level: S-CGA does

not resolve dependencies. Actually, HCDG could be reused

in the next stages of the compilation process. In this section,

we first present the syntax of S-CGA, and then we give the

denotational semantics of S-CGA based on the trace model.

S-CGA has the same structure as clocked guarded actions,

but they have different semantics.

Definition 6 (S-CGA) An S-CGA system is represented

by a set of guarded actions of the form 〈γ ⇒ A〉 defined over

a set of variables X. The Boolean condition γ is called the

guard and A is called the action. Guarded actions can be of

the following forms:

(1) γ⇒ x = τ (immediate),

(2) γ⇒ next(x) = τ (delayed),

(3) γ⇒ assume(σ) (assumption),

where

• the guard γ is a Boolean condition over the variables of

X, and their respective clocks. For a variable x ∈ X, we

denote:

– its clock x̂,

– its initial clock init(x̂) as the clock which ticks the

first time (if any) where x̂ ticks.

• τ is an expression over X.

• σ is a Boolean expression over the variables of X and

their clocks.

An immediate assignment x = τ writes the value of τ im-

mediately to the variable x. The form (1) implicitly imposes

that if γ is defined3) and its value is true, then x is present and

τ is defined.

A delayed assignment next(x) = τ evaluates τ in the given

instant, but changes the value of the variable x at next time

clock x̂ ticks.

The form (3) defines a constraint. It determines a Boolean

condition which has to hold when γ is defined and true. All

the execution traces must satisfy this constraint. Otherwise,

they are ignored.

Guarded actions are composed by using the parallel oper-

ator ‖.

Definition 7 (Trace semantics of S-CGA) The trace se-

mantics of an S-CGA system is defined as a set of traces, that

is �S CGA� = {S | ∀scga ∈ S CGA, �scga�S = true}. We

have the following semantics rules,

(1) �γ⇒ x = τ�S =

∀t ∈ N, �̂γ�S ,t ∧ �γ�S ,t

→ (�̂x�S ,t ∧ �̂τ�S ,t ∧ �x�S ,t = �τ�S ,t),

(2) �γ⇒ next(x) = τ�S =

∀t1 < t2 ∈ N,
((∀t′ ∈ N, t1 < t′ < t2 → ¬�̂x�S ,t′) ∧ �̂γ�S ,t1 ∧ �γ�S ,t1)

→ (�̂x�S ,t1 ∧ �̂τ�S ,t1 ∧ (�̂x�S ,t2 → �x�S ,t2 = �τ�S ,t1)),

(3) �γ⇒ assume(σ)�S =

∀t ∈ N, �̂γ�S ,t ∧ �γ�S ,t → �̂σ�S ,t ∧ �σ�S ,t,

3) An expression is said to be defined if all the variables it contains are present

Zhibin YANG et al. Towards a verified compiler prototype for the synchronous language SIGNAL 43

where �̂e�S ,t defines the domain of e: it is true if all the vari-

ables of e are present in trace S at the instant t; �e�S ,t is a

partial function defined over the domain �̂e�S ,t whose value

is the valuation of e on trace S at the instant t.

• Rule (1): when γ is present, and the value of γ is true, x

and τ are both present, and the value of x is that of τ.

• Rule (2): when γ is present and the value of γ is true at

instant t1, x and τ are present at t1, and if t2 is the next

instant where x is present, then the value of x at t2 is

that of τ at instant t1.

• Rule (3): when γ is present, and the value of γ is true,

σ is present and true.

The semantics of S-CGA composition is defined as

�scga1 ‖ scga2�S = �scga1�S ∧ �scga2�S .

4 From kSIGNAL to S-CGA and its seman-
tics preservation

In this section, we present the front-end of the compiler, that

is, the translation from kSIGNAL to S-CGA. We envision the

extraction of a complete verified-compiler prototype from the

theorem proof. Thus, we would like to use the theorem prover

Coq, to express and verify the translation from kSIGNAL to

S-CGA.

4.1 Translation rules

kSIGNAL can be structurally translated to S-CGA by trans-
lating each construct separately. The translation rules are
close to the ones which have been given in Ref. [7]. How-
ever, to conform with the semantics of S-CGA (i.e., the re-
vised semantics of clocked guarded actions), we have done
some adjustments.

kSIGNAL S-CGA

(1) x := f (x1, . . . , xn) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂⇒ x = f (x1, . . . , xn)

‖ x̂1 ⇒ assume(x̂)

‖ ...
‖ x̂n ⇒ assume(x̂)

(2) x := x1 $ init c �

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

init(x̂)⇒ x = c

‖ x̂⇒ next(x) = x1

‖ true ⇒ assume(x̂ = x̂1)

(3) x := x1 when x2 �

⎧
⎪⎪⎨
⎪⎪⎩

x̂1 ∧ x2 ⇒ x = x1

‖ x̂⇒ assume(x̂1 ∧ x2)

(4) x := x1 de f ault x2 �

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x̂1 ⇒ x = x1

‖ x̂2 ∧ ¬x̂1 ⇒ x = x2

‖ x̂⇒ assume(x̂1 ∨ x̂2)

• Translation (1): The instantaneous function is applied

to the inputs and produces the output. Note that the im-

mediate assignment x̂ ⇒ x = f (x1, . . . , xn) implicitly

imposes x̂ ⇒ x̂1, . . . , x̂ ⇒ x̂n, so in the assumption

we only assert x̂1 ⇒ assume(x̂), . . . , x̂n ⇒ assume(x̂).

Thus all variables have the same clock as required by

the semantics of SIGNAL.

• Translation (2): The translation of the delay construct

is split up in two cases. a) The first value that is pro-

duced by this construct is the constant c at the first in-

stant when x is present. b) In all other instants, the value

of x is assigned by the value of x1 evaluated at the last

non-absent instant of x̂1. The assumption ensures that

both variables have the same clock.

• Translation (3): The undersampling construct trans-

fers the value of x1 to x whenever it is needed. The

clock assumption ensures that x̂ only holds when both

inputs (i.e., x1 and x2) are present and x2 is true.

Thanks to the assume semantics (Rule(3) of Definition

7), assume(x̂1 ∧ x2) implies x̂1 ∧ x̂2 ∧ x2.

• Translation (4): The deterministic merging construct

merges two signals with priority for the first one. There-

fore, if the first input is present, it is passed to x. If it is

not present, but the second one is, then the second one

is passed to x. The clock assumption ensures that x̂ only

holds when at least one of the inputs is present.

Remark Compared with the translation rules given in Ref.

[7], the main change is in the Translation (3). Namely,

true ⇒ assume(x̂ = x̂1 ∧ x̂2 ∧ x2) has been changed into

x̂ ⇒ assume(x̂1 ∧ x2). According to the Rule (3) (Defini-

tion 7): when γ is present, and the value of γ is true, σ must

be present, and the value of σ is true. true ⇒ assume(x̂ =

x̂1 ∧ x̂2 ∧ x2) implies x2 is always present and always true.

Thus, to conform with the semantics of S-CGA, we change it

into x̂⇒ assume(x̂1∧ x2). It means when x is present, x̂1∧ x2

is present and true, i.e., x1 is present and x2 is present and

true.

Example 2 A translation from kSIGNAL to S-CGA4) is

given as follows.

4) If two guarded actions update the same variables, the guards must be exclusive

44 Front. Comput. Sci., 2016, 10(1): 37–53

(|y1 := x$ init 1

|y2 := x$ init 2

|z := x > 0

|s1 := f (y1) when z

|s2 := s1 + 1

|s3 := f (y2) when (not z)

|s4 := s3 + 2

|)

�

true⇒ assume(ŷ1 = x̂)

init(ŷ1)⇒ y1 = 1

ŷ1 ⇒ next(y1) = x

true⇒ assume(ŷ2 = x̂)

init(ŷ2)⇒ y2 = 2

ŷ2 ⇒ next(y2) = x

true⇒ assume(x̂ = ẑ)

ẑ⇒ z = (x > 0)

ŝ1 ⇒ assume(ẑ ∧ z)

ẑ ∧ z⇒ s1 = f (y1)

ŝ2 ⇒ s2 = s1 + 1

ŝ1 ⇒ assume(ŝ2)

ŝ3 ⇒ assume(ẑ ∧ (not z))

ẑ ∧ (not z)⇒ s3 = f (y2)

ŝ4 ⇒ s4 = s3 + 2

ŝ3 ⇒ assume(ŝ4)

4.2 The proof of semantics preservation

As shown in Fig. 2, the Coq mechanization includes seven

modules (about 1300 lines of Coq code), i.e., the abstract

syntax of kSIGNAL, the trace model, the trace semantics of

kSIGNAL, the abstract syntax of S-CGA, the trace semantics

of S-CGA, the translation rules, and the proof of the seman-

tics preservation. Here, the semantics preservation is defined

as a trace equivalence between two trace semantics models

related to kSIGNAL and its translation into S-CGA respec-

tively.

Fig. 2 The global view of the semantics preservation

All the definitions given above have been mechanized in

Coq. Here, we just present the main idea of the proof.

Firstly, we prove each semantics rule of the trace seman-

tics of kSIGNAL is trace equivalent with its translation into

S-CGA. For each semantics rule, there are two Lemmas to be

proven (in two directions).

• Instantaneous function 1) Its trace semantics is defined

as Sassignment. 2) As defined in Section 4.1, its translated

guarded actions are x̂ ⇒ x = f (x1, . . . , xn), x̂1 ⇒ assume(x̂),

. . . , and x̂n ⇒ assume(x̂). Applying the semantics of S-

CGA (scgaSimm is the semantics of immediate assignment),

we can get the semantics of instantaneous function construct

translated into S-CGA. Then, we prove the trace equivalence

between 1) and 2).

Lemma 1 signal2scga_ass1: ∀ f x xi tr,

Sassignment x f xi tr→
(scgaSimm ˆx x {|exp_fun:=f;exp_args:=xi|} tr

ˆ strModel.straces

(scga2Sprocess(GA_ipar (fun i: FctAr f

⇒ ˆ(xi i) =⇒ assume(ˆx))))tr).

Lemma 2 signal2scga_ass2: ∀ f x xi tr,

scgaSimm ˆx x {|exp_fun:=f;exp_args:=xi|} tr
→ strModel.straces

scga2Sprocess (GA_ipar (fun i: FctAr f⇒
ˆ(xi i) =⇒ assume(ˆx))))tr

→ Sassignment x f xi tr.

• Delay 1) Its trace semantics is defined as Sdelay. 2) There

are three translated guarded actions, i.e., init(x̂) ⇒ x = c,

x̂ ⇒ next(x) = x1, and true ⇒ assume(x̂ = x̂1). Apply-

ing the semantics of S-CGA (getFirst0 is used to get the first

instant when x is present, that is init(x̂), scgaSnext is the se-

mantics of delayed assignment, and scgaSctr is the semantics

of assumption), we can get the semantics of delay construct

translated into S-CGA. Then, we prove the trace equivalence

between 1) and 2). In the Lemmas, x̂ = x̂1 is denoted x̂ ˆ= x̂1

(as clock synchronization operator in SIGNAL).

Lemma 3 signal2scga_delay1: ∀ x x1 v tr,

Sdelay x x1 v tr→
((scgaSimm init(x) x v tr (getFirst0 tr))

ˆ (∃ c:Value,

scgaSnext gTrue x x1 c tr (getFirst0 tr)))

ˆ scgaSct rgTrue (ˆx ˆ= ˆx1) tr (getFirst0 tr).

Lemma 4 signal2scga_delay2: ∀ x x1 v tr,

scgaSimm init(x) x v tr (getFirst0 tr)

→ (∃ c: Value,

scgaSnext gTrue x x1 c tr (getFirst0 tr))

→ scgaSctr gTrue (ˆx ˆ= ˆx1) tr (getFirst0 tr)

→ Sdelay x x1 v tr.

•Undersampling 1) Its trace semantics is defined as Swhen.

2) There are two translated guarded actions, i.e., x̂1 ∧ x2 ⇒
x = x1 and x̂ ⇒ assume(x̂1 ∧ x2). Applying the semantics of

S-CGA, we can get the semantics of undersampling construct

translated into S-CGA. Then, we prove the trace equivalence

Zhibin YANG et al. Towards a verified compiler prototype for the synchronous language SIGNAL 45

between 1) and 2). In the Lemmas, x̂1∧ x2 is denoted x̂1 ˆ∗ x2

(reusing the clock intersection operator of SIGNAL).

Lemma 5 signal2scga_when1: ∀ x x1 x2 tr,

Swhen x x1 x2 tr→
scgaSimm (ˆx1 ˆ* x2) x x1 tr

∧ scgaSctr ˆx (ˆx1 ˆ* x2) tr.

Lemma 6 signal2scga_when2: ∀ x x1 x2 tr,

scgaSimm (ˆx1 ˆ* x2) x x1 tr

→ scgaSctr ˆx (ˆx1 ˆ* x2) tr

→ Swhen x x1 x2 tr.

• Deterministic merging 1) Its trace semantics is defined

as Sdefault. 2) There are three translated guarded actions, i.e.,

x̂1 ⇒ x = x1, x̂2 ∧ ¬x̂1 ⇒ x = x2, and x̂ ⇒ assume(x̂1 ∨ x̂2).

Applying the semantics of S-CGA, we can get the semantics

of deterministic merging construct translated into S-CGA.

Then, we prove the trace equivalence between 1) and 2). In

the Lemmas, x̂2 ∧ ¬x̂1 is denoted x̂2 ˆ− x̂1 (clock difference

operator of SIGNAL), and x̂1 ∨ x̂2 is denoted x̂1 ˆ+ x̂2 (clock

union operator of SIGNAL).

Lemma 7 signal2scga_default1: ∀ x x1 x2 tr,

Sdefault x x1 x2 tr→
(scgaSimm ˆx1 x x1 tr

∧ scgaSimm (ˆx2 ˆ– ˆx1) x x2 tr)

∧ scgaSctr ˆx (ˆx1 ˆ+ ˆx2) tr.

Lemma 8 signal2scga_default2: ∀ x x1 x2 tr,

scgaSimm ˆx1 x x1 tr

→ scgaSimm (ˆx2 ˆ– ˆx1) x x2 tr

→ scgaSctr ˆx (ˆx1 ˆ+ ˆx2) tr

→ Sdefault x x1 x2 tr.

Secondly, based on these Lemmas, we prove the follow-

ing Theorem 1, that the two semantics models, i.e., (Pro-

cess2Sprocess P) and (scga2Sprocess(signal2scga P)) are

trace equivalent (they have the same set of signal variables

and the same set of traces). This property concerns infinite

objects and cannot generally be proved automatically. This is

why we use the proof assistant which verifies a user-assisted

proof.

Record SPeq (p1p2: Sprocess): Prop:=

{

SPd: ∀ y, sdom p1 y↔ sdom p2 y;

SPs: ∀ tr, straces p1 tr↔ straces p2 tr

}.

Theorem 1 signal2scga_check: ∀ p,

SPeq(Process2Sprocess p)

(scga2Sprocess(signal2scga p)).

Finally, we can extract the corresponding CAML code to

synthesize the first stage of the verified compiler prototype.

5 Sequential code generation

The compilation process of synchronous languages is not

limited to code generation: some analyses are first applied to

determine if the specification is indeed executable. The SIG-

NAL compilation process contains one major analysis called

clock calculus from which code generation directly follows.

Moreover the clock calculus contains several steps [26], such

as construction of an equation system over clocks, resolution

of the system of clock equations, construction of a clock hier-

archy on which the automatic code generation strongly relies.

For a safety-critical system, it is important to optimize the

control structure of the generated code. In the SIGNAL com-

piler, the control flow expressed by abstract clocks serves to

derive a control structure in automatic code generation. Thus,

the quality of clock calculus has a strong impact on the cor-

rectness and efficiency of implementations. In Ref. [30], the

authors have shown that there is a limitation of the clock cal-

culus of the SIGNAL compiler. For example, for the under-

sampling construct x = x1 when x2, the clock of the Boolean

expression x2 is partitioned into [x2] and [¬x2], which are re-

ferred to as condition-clocks. If x2 is defined by a numerical

expression such as an integer comparison, [x2] and [¬x2] are

seen as black boxes. This has a strong impact on the analysis

precision and the quality of generated code. Thus, the authors

propose a new clock abstraction, i.e., combined numerical-

Boolean abstraction, to eliminate this problem. They also

use an SMT solver to reason on the new abstraction. With

the same purpose, in Ref. [31], an interval-based data struc-

ture referred to as interval-decision diagram (IDD) is con-

sidered for the analysis of numerical properties in SIGNAL

programs.

As shown in Fig. 3, in our compiler prototype (sequential

code generation): 1) We have considered the main compo-

nents of the clock calculus, such as construction of an equa-

tion system over clocks, resolution of a system of clock equa-

tions, and construction of a clock hierarchy. 2) To integrate

more synchronous languages, such as QUARTZ and AIF, into

our prototype in the future, we introduce S-CGA as the inter-

mediate representation, and we adapt the clock calculus to

S-CGA. 3) We propose an appropriate modular architecture

for our prototype. One benefit of this approach is that we just

need to redo a part of proof when some modules of the com-

pilation process are changed. 4) We have considered existing

46 Front. Comput. Sci., 2016, 10(1): 37–53

Fig. 3 The architecture of the verified compiler prototype

enhancements such as [30,31], namely we can use both BDD

and SMT in the resolution of the system of clock equations.

Specifically, the compilation process is mainly structured

as five modules. At each module, there are several submod-

ules.

• Module 1: Beyond the usual lexical analysis, parsing

and type checking, the compiler will transform the user

program (using the subset of SIGNAL) whose state-

ments all expressed with both primitive constructs and

extended constructs to the normalized program (using

kSIGNAL) whose statements are all expressed with

primitive constructs.

• Module 2: Different from the existing SIGNAL com-

piler, we construct S-CGA from the normalized pro-

gram. S-CGA contains control flow (a system of clock

equations) as well as data flow. As mentioned above, for

the under-sampling construct, the SIGNAL compiler

consider the condition-clocks [x2] and [¬x2] as black

boxes if x2 is defined by a numerical expression. When

x2 is defined by a complex boolean function, we have

[x2] = x̂2 ∧ x2 and [¬x2] = x̂2 ∧ ¬x2. Based on this

abstraction, we can get more precise clock analysis.

• Module 3: If the system of clock equations contains

more than one equation with the same clock, the exe-

cution of the generated code will check the same con-

trol condition several times, which is inefficient. This

is why we need to resolve it. All the clock equations

are considered as predicates. We can use BDD or SMT

technology to check the equivalence of two predicates,

and put the corresponding clock variables into the same

equivalence class. We also check the endochrony prop-

erty at this step, namely there is just one master clock.

• Module 4: The code generation is based on both the

clock hierarchy and the data dependencies. However,

there may be clock-to-data cycles. To reduce these cy-

cles, we first sort all the guarded actions. It will be eas-

ier to construct a clock hierarchy based on determinis-

tic sorting, and we consider the sorting as a depth first

search (DFS) order.

• Module 5: The basic idea of code generation is the

same as that in the SIGNAL compiler. Furthermore,

we do some optimizations based on clock inclusions.

Given two equations such as y = x when x1, and z = x

when (x1 and x2), there is a clock-inclusion relation:

[x1 ∧ x2] → [x1], i.e., the clock of [x1 ∧ x2] is a subset

of the clock of [x1]. Consequently, we can do the code

optimization illustrated as follows. If control condition

x1 holds, we do not need to check x1 again in x1&&x2.

We just need to check if x2 holds or not.

if (x1){
do actions

...

if (x1&&x2){
do actions

...}
}

�

if (x1){
do actions

...

if (x2){
do actions

...}
}

Actually, the first version of the compiler prototype has

Zhibin YANG et al. Towards a verified compiler prototype for the synchronous language SIGNAL 47

been implemented in CAML directly. It is a good way to

provide a basis for the Coq mechanization of the prototype.

Finally, we envision the extraction of a complete prototype

from the mechanization.

6 Multi-threaded code generation with time-
predictable properties

Safety-critical embedded systems or cyber-physical systems
(CPS) distinguish themselves from general purpose comput-
ing systems by several characteristics, such as failure to meet
deadlines may cause a catastrophic or at least highly undesir-
able system failure. Time-predictable system design [32–34]
is concerned with the challenge of building systems in such
a way that timing requirements can be guaranteed from the
design. This means we can predict the system timing stat-

ically. The widespread advent of multi-core processors fur-
ther aggravates the complexity of timing analysis. We would
like to consider the multi-threaded code generation with time-
predictable properties. At the modeling level, synchronous
programming is a good choice for time-predictable system
design. At the compiler level, we give the verified compiler
from SIGNAL to our intermediate representation S-CGA
and thus to multi-threaded code. At the platform level, we
propose a time-predictable multi-core architecture model in

architecture analysis and design language (AADL) [18], and
then we map the multi-threaded code to this model. There-
fore, our method integrates time predictability across several
design layers.

6.1 From S-CGA to multi-threaded code

The SIGNAL compilation process contains one major analy-
sis called clock calculus from which code generation directly
follows. Moreover, the clock calculus contains several steps
[26], such as construction of an equation system of relations
over clocks, resolution of the system of clock equations, and
construction of a clock hierarchy. Our goal here is to adapt
the clock calculus to S-CGA. Moreover, in the multi-threaded
code generation scheme, the data-dependency graph (DDG)
should also be constructed to find more parallelism.

Based on the semantics of S-CGA, we can get the equation

system over clocks. The general rules are given as follows.

S-CGA Clock equations

γ⇒ x = τ γ̂ ∧ γ→ x̂ ∧ τ̂
γ⇒ next(x) = τ γ̂ ∧ γ→ x̂ ∧ τ̂
γ⇒ assume(σ) γ̂ ∧ γ→ σ̂ ∧ σ

init(x̂)→ x̂ (∀x ∈ X)

As the first step, we just consider endochrony property5),

namely we can construct a clock hierarchy based on the res-

olution of the system of clock equations. The clock hierarchy

of Example 2 (with three clock equivalence classes, i.e., C0,

C1, and C2) is shown in Fig. 4. For instance, the signals x,

y1, y2, and z are synchronous, thus they are in the same clock

equivalence class (C0).

Fig. 4 Clock hierarchy

The properties of the clock hierarchy are presented as fol-

lows [36].

• Each node is a clock equivalence class.

• There is just one master clock equivalence class, here is

C0 in the clock hierarchy.

• There is a clock implication relation (checked by BDD

or SMT) between a son node and its father node, for

instance, ẑ ∧ z → ẑ. Thus, all the clocks in the clock

hierarchy can be defined from the master clock.

In the sequential code generation scheme, we associate

guarded actions to each clock equivalence class of the clock

hierarchy, then the deterministic sequential code will be gen-

erated [29]. In the multi-threaded code generation schema,

the DDG should also be constructed to find more parallelism.

We construct the DDG, as shown in Fig. 5, based on the vari-

ables reading and writing.

Fig. 5 Data dependency graph

5) Weak endochrony [35] property will be considered in the future

48 Front. Comput. Sci., 2016, 10(1): 37–53

Definition 8 (reading and writing dependencies) [37] Let

FV(τ) denote the free variables occurring in the expression

τ. The dependencies from guarded actions to variables are

defined as follows:

RdVars(γ⇒ x = τ) := FV(γ) ∪ FV(τ);

RdVars(γ⇒ next(x) = τ) := FV(γ) ∪ FV(τ);

WrVars(γ ⇒ x = τ) := {x};
WrVars(γ ⇒ next(x) = τ) := {next(x)}.

Then, the dependencies from variables to guarded actions

are defined as follows:

RdActs(x) := {γ ⇒ A | x ∈ RdVars(γ⇒ A)};
WrActs(x) := {γ ⇒ A | x ∈ WrVars(γ⇒ A)}.

Note that, γ ⇒ assume(σ) is used in the construction of

the clock hierarchy. We expect that it is not needed to as-

sociate some actions to assume inside the DDG. This leads

to proof obligations that should be checked to guarantee the

correctness of the generated code.

An action can only be executed if all read variables are

known. Similarly, a variable is only known if all actions writ-

ing it in the current step have been evaluated before.

The multi-threaded code generation depends on the data

dependency graph which has been associated with the clock

hierarchy. We first need to find partitions. As presented in

Fig. 6, we would like to treat the partition methods in general,

which means different partition methods (such as the vertical

way [38] for a concurrent execution and the horizontal way

[39] for a pipelined execution) do not affect the proof. Our

approach is general and it only requires a legal partition, here

we reuse the definition of [37].

Fig. 6 The proof idea

Definition 9 (legal partition) Let P be a partition, A1 and

A2 be guarded actions of P, and � be the reflexive and transi-

tive closure of the following relation R ⊆ A ×A : (A1, A2) ∈
R ⇔ WrVars(A1) ∩ RdVars(A2) � {}. P is legal if and only

if � is a partial order.

Note that, the intersection of WrVars(A1) and RdVars(A2)

is empty, if A1 is a delayed action for a reading variable in A2.

Based on the Definition 9, a partition scheme of Example

2 (with four partitions) is given in Fig. 5. The basic principle

of our partition method is described as follows.

• Consider one partition (i.e., one thread) for each vertex

of the data-dependency graph.

• Merge two partitions for example P1 and P2, if P2 is the

only son of P1, and P1 is the only father of P2.

• In each partition, we organize the guarded actions based

on the clock equivalence classes. For example, the two

guards in Thread2 belong to the same clock equivalence

class, so they will be merged inside the same control

condition in the generated code.

Finally, we add wait/notify synchronization among the

threads. A code fragment of Thread2 is given as follows.

/ ∗ Thread 2 ∗ /
void step()

{
wait(Thread1);

if(C1){
s1 = f (y1);

s2 = s1 + 1; }
noti f y(Thread4);

}

6.2 Mapping multi-threaded code to multi-core

To allow for static prediction of the system timing, we need

time-predictable processor architectures, thus we know all

the architecture details such as the pipeline and the memory

hierarchy to analyze the execution time of programs. Further-

more, the mapping from multi-threaded code to multi-core

architectures should be also static and deterministic.

6.2.1 A time-predictable multi-core architecture model

With the advent of multi-core architectures, interference be-

tween threads on shared resources further complicates anal-

ysis. There are some recommendations from Wilhelm et al.

[33,34], i.e., the better way is to reduce the time interfer-

ence: (1) pipeline with static branch prediction and with in-

order execution; (2) separation of caches (instruction and data

caches); (3) LRU (Least Recently Used) cache replace pol-

icy; and (4) access of main memory via a time division mul-

6) Time-predictable Multi-Core Architecture for Embedded Systems

Zhibin YANG et al. Towards a verified compiler prototype for the synchronous language SIGNAL 49

tiple access (TDMA) scheme. In the EC funded project T-

CREST6) , Schoeberl et al. [40, 41] propose a new form of

organization for the instruction cache, named method cache

(MC). They split data caches (including stack cache (SC),

static data cache (SDC), constants data cache (CDC), and

heap allocated data cache (HC)), to increase the time pre-

dictability and to tighten the WCET. The method cache stores

complete methods, and cache misses occur only on method

invocation and return. They split the data cache for different

data areas, thus data cache analysis can be performed individ-

ually for the different areas. In our work, heap is avoided to

be used because we do not use dynamic memory allocation

in our multi-threaded code.

Based on the existing work, we would like to model a time-

predictable multi-core architecture in AADL. AADL is an

SAE (society of automotive engineers) architecture descrip-

tion language standard for embedded real-time systems, and

supports several kinds of system analysis such as schedula-

bility analysis. Moreover, we have already worked on the se-

mantics of different AADL subsets such as Ref. [28]. So we

envision how to validate semantically the mapping from the

language level to the architecture level.

Our multi-core architecture model is illustrated in Fig. 7.

Inside the core, we consider static branch prediction and

in-order execution in the pipeline. A simplified instruction

set (get_instruction, compute, write_data, and read_data) is

used. As the first step, we just consider first level cache (i.e.,

without L2 and L3). Each core is associated with a method

cache, a stack cache, a static data cache, and a constants data

cache. However, the same principle of cache splitting can

be applied to L2 and L3 caches. The extension of the tim-

ing analysis for a cache hierarchy is straightforward. More-

over, TDMA-based resource arbitration allocates statically-

computed slots to the cores.

Fig. 7 A time-predictable multi-core architecture model

As proposed by Ref. [42], a core is associated with an

AADL processor component and a multi-core processor with

an AADL system component containing multiple AADL pro-

cessor subcomponents, each one representing a separate core.

This modeling approach provides flexibility: an AADL sys-

tem can contain other components to represent cache, and

shared bus, etc. For that purpose, we define specific mod-

eling patterns with new properties such as MC_Properties.

TDMA_Window denotes a Slot to an access connection. For

a bus, there will be a list of allocations of slots, that is

TDMA_Schedule. For instance, for N access connections, the

TDMA period of the bus is T=Slot * N. Here, we consider all

the access connections have the same slot duration.

property set MC_Properties is

TDMA_Window : type record (

AccessPoint : list o f re f erence (access connection);

Slot : time;

);

TDMA_Schedule : list o f MC_Properties

:: TDMA_Window applies to (bus);

...

end MC_Properties;

6.2.2 The mapping method

To preserve the time predictability, we consider static map-

ping and scheduling. Example 2 generates a configuration file

(such as num_of_threads=4) in multi-threaded code genera-

tion. Moreover, we have a manual configuration file for the

time-predictable multi-core architecture model, for example

num_of_cores=4. Thus, we can generate a static mapping and

scheduling, for instance:

• Thread1 �→ Core1, Thread2 �→ Core2, Thread3 �→
Core3, and Thread4 �→ Core4.

• Thread1: notify(Thread2), notify(Thread3);

Thread2: wait(Thread1), notify(Thread4);

Thread3: wait(Thread1), notify(Thread4);

Thread4: wait(Thread2), wait(Thread3).

Thanks to the mechanizations such as method cache, split

data caches, TDMA and static scheduling, the execution time

of the multi-threaded code can be bounded.

7 Related work

In this section, we discuss some related work about two as-

pects: verification of the SIGNAL compilation (mainly fo-

50 Front. Comput. Sci., 2016, 10(1): 37–53

cuses on sequential code generation) and multi-threaded code

generation from SIGNAL.

7.1 Verification of the SIGNAL compilation

For a safety-critical system, it is naturally required that the

compiler must be verified to ensure that the source program

semantics is preserved. For example, the SCADE Suite KCG

automatic C code generator has been qualified as a develop-

ment tool at DO-178B level A. Moreover, one of the supple-

ments to DO-178C, the DO-330 (software tool qualification

considerations), provides a guidance to qualify tools. This

means a tool, e.g., a development tool or a verification tool,

also needs to be qualified. There are many approaches to gain

assurance that the transformation or the translation of a spec-

ification or a program is semantic-preserving. This can be

done by directly building a theorem-prover-verified compiler

[19], by using translation validation [20], etc.

Pnueli et al. [20] propose the notion of translation valida-

tion to verify the code generator of SIGNAL. In that work,

the authors define a language of symbolic models to repre-

sent both the source and target programs, called synchronous

transition systems (STS). An STS is a set of logic formulas

which describe the functional and temporal constraints of the

whole program and its generated C code. Then they use BDD

representations to implement the symbolic STS models, and

their proof method uses a SAT-solver to reason on the signal

constraints.

In Ref. [21], the authors adopt translation validation to for-

mally verify that the clock semantics and data dependence are

preserved during the compilation of the SIGNAL compiler.

They represent the clock semantics, the data dependence of

a program and its transformed counterpart as first-order for-

mulas which are called Clock Models and synchronous de-

pendence graphs (SDGs) respectively. Then they introduce

clock refinement and dependence refinement relations which

express the preservations of clock semantics and dependence,

as a relation on clock models and SDGs respectively. Finally,

an SMT-solver is used for checking the existence of the cor-

rect transformation relations.

In Ref. [43], the authors encode the source SIGNAL pro-

grams and their transformations with polynomial dynami-

cal systems (PDSs), and prove that the transformations pre-

serve the abstract clocks and clock relations of the source

programs. By using the simulation in model checking tech-

niques, their approach suffers from the increasing of the state-

space when it deals with large programs.

These existing researches mainly use the method of trans-

lation validation. However, translation validation treats the

compiler as a “black box”, namely it just checks the input

and output of each program transformation to validate the

semantics preservation. Therefore, it yields that one needs

to redo the validation when the source program is changed.

We would like to extract a verified SIGNAL compiler which

considers a subset of the SIGNAL language, based on the

theorem-prover-verifiedcompiler method [19]. Moreover, the

challenge is to be modular enough to make proof composi-

tional, and to be able to update the proof when we need to do

more optimization.

7.2 Multi-threaded code generation from SIGNAL

The report [13] describes all code generation strategies avail-

able in the Polychrony toolset. In the multi-threaded code

generation scheme, it uses micro-level threading which cre-

ates a large number of threads and equally large number of

semaphores, leading to inefficiency. Thus, Jose et al. [14]

propose a process-oriented and non-invasive multi-threaded

code generation using the sequential code generators. It

means that instead of changing the compiler, they use the

existing sequential code generator and separately synthesize

some programming glue to generate multi-threaded code. Pa-

pailiopoulou et al. [16] define a full design flow starting

from high level domain specific languages (e.g., Simulink,

SCADE, AADL, SysML, MARTE, and SystemC), trans-

forming to polychronous specifications, and going to the

generation of deterministic concurrent (multi-threaded) ex-

ecutable code for simulation or (possibly distributed) imple-

mentation. The multi-threaded code generation in Refs. [14]

and [16] are both based on the weak endochrony property.

There are also some work about multi-threaded code gen-

eration from the guarded actions. Baudisch et al. [38] present

a compilation of synchronous programs to multi-threaded

OpenMP-based C programs. They start at the level of syn-

chronous guarded actions. In addition to the explicit paral-

lelism given in the source program, their method also exploits

the implicit parallelism which is due to the underlying syn-

chronous model of computation and the data dependencies

of the guarded actions. To speedup the execution of multi-

threaded code, Baudisch et al. [39] propose an automatic syn-

thesis procedure that translates synchronous guarded actions

to software pipelines. The synchronous guarded actions are

analyzed in terms of their data-dependencies to define legal

partitions into pipeline stages. Given such a legal partition-

ing into pipeline stages, the presented synthesis procedure

automatically identifies potential pipeline conflicts and im-

Zhibin YANG et al. Towards a verified compiler prototype for the synchronous language SIGNAL 51

plements code for forwarding (if possible) while stalling is

implicitly given by the FIFO buffers. Finally, the sequential

threads for the conflict-free pipeline stages are implemented

in OpenMP-based C-code.

However, these researches have not considered time-

predictable properties. The mapping from their multi-

threaded code to multi-core platforms is handled by the un-

derlying system. In addition, architectural aspects are not

addressed, and consequently architectural based properties,

e.g., time determinism, cannot be explicitly controlled in or-

der to have precise and safe timing properties.

8 Conclusions and future work

This paper reports a SIGNAL compiler prototype based on

the intermediate representation S-CGA. Since SIGNAL is

polychronous, each variable can have its own clock. More-

over, the variables can be evaluated only at some instants

which define their so-called clocks. In contrast to the SIG-

NAL language, clocked guarded actions can evaluate a vari-

able even if its clock does not hold. As a consequence, we

propose a variant of clocked guarded actions, namely S-CGA,

which constrains variable accesses as done by SIGNAL. S-

CGA has the same structure as clocked guarded actions, but

they have different semantics. The front-end of the compiler,

i.e., the translation from SIGNAL to S-CGA, is presented.

The proof of semantics preservation mechanized in the the-

orem prover Coq is also given. Moreover, we present the

back-end of the compiler, including sequential code genera-

tion and multi-threaded code generation. Concerned with the

sequential code generation, we adapt the code generation to

the S-CGA context. Meanwhile, we also consider enhance-

ments of the compiler and their insertion in the compilation

chain. Moreover, we propose an appropriate modular archi-

tecture for our prototype. One benefit of this approach is that

we just need to redo a part of proof when some modules of

the compilation process are changed. The widespread advent

of multi-core processors further aggravates the complexity of

timing analysis. This paper proposes the multi-threaded code

generation by considering time-predictable properties. Our

method integrates time predictability across several design

layers, i.e., synchronous programming, verified compiler, and

time-predictable multi-core architecture model.

Interaction among cores might also jeopardize software

isolation layers, such as the one defined in ARINC653. There

are some existing work, such as [42,44–46], about AADL

modeling on multi-core architectures and their association

with ARINC653.
Again, for us, the challenge will be to specify formally

such a platform, with respect to space and time isolation, and

to prove the satisfaction of timing properties at the applica-

tion level.

Acknowledgements This work was partially supported by the National
Natural Science Foundation of China (Grant No. 61502231), the Natural Sci-
ence Foundation of Jiangsu Province (BK20150753), the National Key Basic
Research Program of China (973 plan) (2014CB744904), Project of the State
Key Laboratory of Software Development Environment of China (SKLSDE-
2015KF-04), the Avionics Science Foundation of China (2015ZC52027),
China Postdoctoral Science Foundation, the Collaborative Innovation Center
of Novel Software Technology and Industrialization, and the RTRA STAE
Foundation in France (http://www.fondation-stae.net/).

References

1. Potop-Butucaru D, de Simone R, Talpin J P. The synchronous hypoth-

esis and synchronous languages. The Embedded Systems Handbook,

2005: 1–21

2. Boussinot F, de Simone R. The ESTEREL language. Proceedings of

the IEEE, 1991, 79(9): 1293–1304

3. Halbwachs N, Caspi P, Raymond P, Pilaud D. The synchronous data

flow programming language LUSTRE. Proceedings of the IEEE, 1991,

79(9): 1305–1320

4. Schneider K. The synchronous programming language QUARTZ. In-

ternal Report 375. Kaiserslautern: University of Kaiserslautern, 2010

5. Benveniste A, Le Guernic P, Jacquemot C. Synchronous programming

with events and relations: the SIGNAL language and its semantics.

Science of Computer Programming, 1991, 16(2): 103–149

6. Dijkstra E W. Guarded commands, nondeterminacy and formal deriva-

tion of programs. Communications of the ACM, 1975, 18(8): 453–457

7. Brandt J, Gemünde M, Schneider K, Shukla S K, Talpin J P. Integrat-

ing system descriptions by clocked guarded actions. In: Proceedings of

2011 IEEE Forum on Specification and Design Languages. 2011, 1–8

8. Brandt J, Schneider K. Separate translation of synchronous programs

to guarded actions. Technische Universität Kaiserslautern. Fachbereich

Informatik, 2011

9. Brandt J, Schneider K, Shukla S K. Translating concurrent action ori-

ented specifications to synchronous guarded actions. ACM SIGPLAN

Notices, 2010, 45(4): 47–56

10. Edwards S, Tardieu O. SHIM: a deterministic model for heterogeneous

embedded systems. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 2006, 14(8): 854–867

11. Brandt J, Gemünde M, Schneider K, Shukla S K, Talpin J P. Represen-

tation of synchronous, asynchronous, and polychronous components

by clocked guarded actions. Design Automation for Embedded Sys-

tems, 2012, 18(1–2): 63–97

12. SACRES consortium. The declarative code DC+, version 1.4. Esprit

Project EP 20897: Sacres. 1997

13. Besnard L, Gautier T, Talpin J P. Code generation strategies in the Poly-

chrony environment. Research Report RR-6894. 2009

14. Jose B A, Patel H D, Shukla S K, Talpin J P. Generating multi-threaded

code from polychronous specifications. Electronic Notes in Theoretical

Computer Science, 2009, 238(1): 57–69

52 Front. Comput. Sci., 2016, 10(1): 37–53

15. Jose B, Shukla S K, Patel H D, Talpin J P. On the deterministic multi-

threaded software synthesis from polychronous specifications. In: Pro-

ceedings of the 6th ACM & IEEE International Conference on Formal

Methods and Models for Co-Design. 2008, 129–138

16. Papailiopoulou V, Potop-Butucaru D, Sorel Y, De Simone R, Besnard

L, Talpin J P. From design-time concurrency to effective implemen-

tation parallelism: the multi-clock reactive case. In: Proceedings of

Electronic System Level Synthesis Conference. 2011, 1–6

17. Hu K, Zhang T, Yang Z B. Multi-threaded code generation from Sig-

nal program to OpenMP. Frontiers of Computer Science, 2013,7(5):

617–626

18. SAE. AS5506A: Architecture Analysis and Design Language (AADL)

Version 2.0. 2009

19. Leroy X. Mechanized semantics for compiler verification. Lecture

Notes in Computer Science, 2012, 7679: 4–6

20. Pnueli A, Siegel M, Singerman E. Translation validation. In: Proceed-

ings of the 4th International Conference on Tools and Algorithms for

the Construction and Analysis of Systems. 1998, 151–166

21. Ngo V C, Talpin J P, Gautier T, Le Guernic P. Besnard L. Formal veri-

fication of synchronous data-flow program transformations toward cer-

tified compilers. Frontiers of Computer Science, 2013, 7(5): 598–616

22. Izerrouken N, Pantel M, Thirioux X. Machine-checked sequencer for

critical embedded code generator. In: Proceedings of the 11th Inter-

national Conference on Formal Methods and Software Engineering.

2009, 521–540

23. Besnard L, Gautier T, Le Guernic P. SIGNAL V4 Reference Manual.

http: //www.irisa.fr/espresso/Polychrony/document/V4 def.pdf. 2010

24. Gamatié A. Designing Embedded Systems with the Signal Program-

ming Language: Synchronous, Reactive Specification. Springer Sci-

ence & Business Media. 2009

25. Le Guernic P, Gautier T. Data-flow to von Neumann: the Signal ap-

proach. Advanced Topics in Data-Flow Computing, 1991, 413–438,

26. Le Guernic P, Talpin J P, Le Lann J C. Polychrony for system design.

Journal of Circuits, Systems, and Computers, 2003, 12(03): 261–303

27. Yang Z B, Bodeveix J P, Filali M. A comparative study of two formal

semantics of the SIGNAL language. Frontiers of Computer Science,

2013, 7(5): 673–693

28. Yang Z B, Hu K, Ma D F, Bodeveix J P, Pi L, Talpin J P. From AADL to

timed abstract state machines: a verified model transformation. Journal

of Systems and Software, 2014, 93: 42–68

29. Yang Z B, Bodeveix J P, Filali M, Hu K, Ma D F. A verified transfor-

mation: from polychronous programs to a variant of clocked guarded

actions. In: Proceedings of the 17th ACM International Workshop on

Software and Compilers for Embedded Systems. 2014, 128–137

30. Feautrier P, Gamatié A, Gonnord L. Enhancing the compilation of syn-

chronous dataflow programs with a combined numerical-boolean ab-

straction. CSI Journal of Computing, 2012, 1(4): 86–99

31. Gamatié A, Gautier T, Le Guernic P. Toward static analysis of SIGNAL

programs using interval techniques. In: Proceedings of Synchronous

Languages, Applications, and Programming. 2006.

32. Axer P, Ernst R, Falk H, Girault A, Grund D, Guan N, Jonsson B, Mar-

wedel P, Reineke J, Rochange C, Sebastian M, Von Hanxleden R, Wil-

helm R, Yi W. Building timing predictable embedded systems. ACM

Transactions on Embedded Computing Systems, 2014, 13(4): 82

33. Wilhelm R, Engblom J, Ermedahl A, Holsti N, Thesing S, Whalley

D, Bernat G, Ferdinand C, Heckmann R, Mitra T, Mueller F, Puaut I,

Puschner P, Staschulat J, Stenström P. The worst-case execution-time

problem-overview of methods and survey of tools. ACM Transactions

on Embedded Computing Systems, 2008, 7(3): 36

34. Thiele L, Wilhelm R. Design for timing predictability. Real-Time Sys-

tems, 2004, 28(2–3): 157–177

35. Potop-Butucaru D, Caillaud B, Benveniste A. Concurrency in syn-

chronous systems. Formal Methods in System Design, 2006, 28(2):

111–130

36. Besnard L, Gautier T, Le Guernic P, Talpin J P. Compilation of poly-

chronous data flow equations. In: Shukla S K, Talpin J P, eds. Synthesis

of Embedded Software. Springer US, 2010

37. Baudisch D, Brandt J, Schneider K. Dependency-driven distribution of

synchronous programs. IFIP Advances in Information and Communi-

cation Technology, 2010, 329: 169–180

38. Baudisch D, Brandt J, Schneider K. Multithreaded code from syn-

chronous programs: extracting independent threads for OpenMP. In:

Proceedings of the Conference on Design, Automation and Test in Eu-

rope. 2010, 949–952

39. Baudisch D, Brandt J, Schneider K. Multithreaded code from syn-

chronous programs: generating software pipelines for OpenMP.

In: Proceedings of Workshop Methoden und Beschreibungssprachen

zur Modellierung und Verifikation von Schaltungen und Systemen

(MBMV). 2010, 11–20

40. Schoeberl M, Huber B, Puffitsch W. Data cache organization for accu-

rate timing analysis. Real-Time Systems, 2013, 49(1): 1–28

41. Schoeberl M. A time predictable instruction cache for a Java processor.

Lecture Notes in Computer Science, 2004, 3292: 371–382

42. Delange J, Feiler P. Design and analysis of multi-core architecture for

cyber-physical systems. In: Proceedings of the 7th European Congress

Embedded Real Time Software and Systems (ERTSS). 2014.

43. Ngo V C, Talpin J P, Gautier T, Le Guernic P, Besnard L. Formal verifi-

cation of compiler transformations on polychronous equations. Lecture

Notes in Computer Science, 2012, 7321: 113–127

44. Hugues J. AADLib, a library of reusable AADL models. SAE Techni-

cal Paper, 2013

45. Gamatié A, Gautier T. Synchronous modeling of avionics applica-

tions using the SIGNAL language. In: Proceedings of the 9th IEEE

Real-Time and Embedded Technology and Applications Symposium

(RTAS). 2003, 144–151

46. Gamatié A, Gautier T, Guernic P L, Talpin J P. Polychronous design of

embedded real-time applications. Transactions on Software Engineer-

ing and Methodology, 2007, 16(2): 9

Zhibin Yang is an assistant professor at

Nanjing University of Aeronautics and

Astronautics, China. He received his

PhD degree in computer science from

Beihang University, China in 2012.

From 2012 to 2014, he was a Postdoc in

IRIT of University of Toulouse, France.

His research interests include safety-

critical real-time system, formal verifi-

cation, AADL, and synchronous languages.

Zhibin YANG et al. Towards a verified compiler prototype for the synchronous language SIGNAL 53

Jean-Paul Bodeveix received his PhD

in computer science from University

of Paris-Sud 11, France in 1989. He

has been an assistant professor at Uni-

versity of Toulouse III, France since

1989, and is a professor in computer

science since 2003. His main research

interests concern formal specifications,

automated and assisted verification of

protocols as well as of proof environments. He has participated in

European and national projects related to these domains. His current

activities are linked to real time modeling and verification either via

model checking techniques or at the semantics level.

Mamoun Filali is a full time researcher

at Centre National de la Recherche Sci-

entifique (CNRS), France. His main

research interests concern the certi-

fied development of embedded sys-

tems, formal methods, model check-

ing and theorem proving. During the

last years, he has been mainly involved

in the French nationwide TOPCASED

project where he was concerned by the verification topic. He has also

participated in the proposal of the AADL behavioral annex which

has been adopted as part of the AADL SAE standard.

Kai Hu is an associate professor in Bei-

hang University (BUAA), China. He

received his PhD from Beihang Univer-

sity in 2001. From 2001 to 2004, he did

his post-doctoral research at Nanyang

Technological University, Singapore.

Since 2004, he is the leader of the

team of LDMC in the Institute of Com-

puter Architecture (ICA), BUAA. His

research interests concern embedded real time systems and high per-

formance computing.

Yongwang Zhao is an assistant pro-

fessor at Beihang University (BUAA),

China. He received his PhD degree in

computer science from BUAA in 2009.

His research interests include formal

methods, real-time operating systems,

and AADL.

Dianfu Ma is a professor at Beihang

University, China. He was the execu-

tive director of Chinese Computer Fed-

eration, the secretary of the steering

committee of Computer Science and

Technology Education in Ministry of

Education of China. He is the vice di-

rector of SOA standards working group

under the steering committee of China

National Information Technology Standardization. He took charge

of the National Basic Research Program (also called 973 Program),

National High-tech 863 Program, National Natural Science Foun-

dation of China, Key Technologies Research and Development Pro-

gram, etc. He has published more than 50 academic papers in inter-

national journals or conferences. He received the 3rd prize of Sci-

ence and Technology Innovation Award from Ministry of Education

of China in 2003, and 1st prize of Science and Technology Inno-

vation Award of Beijing in 2011. His research interesting includes

services computing, real-time systems, and high dependable soft-

ware.

