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Abstract Patch-level features are essential for achieving

good performance in computer vision tasks. Besides well-

known pre-defined patch-level descriptors such as scalein-

variant feature transform (SIFT) and histogram of oriented

gradient (HOG), the kernel descriptor (KD) method [1] of-

fers a new way to “grow-up” features from a match-kernel

defined over image patch pairs using kernel principal compo-

nent analysis (KPCA) and yields impressive results.

In this paper, we present efficient kernel descriptor (EKD)

and efficient hierarchical kernel descriptor (EHKD), which

are built upon incomplete Cholesky decomposition. EKD au-

tomatically selects a small number of pivot features for gener-

ating patch-level features to achieve better computational effi-

ciency. EHKD recursively applies EKD to form image-level

features layer-by-layer. Perhaps due to parsimony, we find

surprisingly that the EKD and EHKD approaches achieved

competitive results on several public datasets compared with

other state-of-the-art methods, at an improved efficiency over

KD.
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1 Introduction

Designing good image features is a fundamental problem in

computer vision. As a key component in image classification,

indexing and retrieval systems, feature engineering is a chal-

lenging task since there are ubiquitous sources of image vari-

ations, e.g., scale/illumination changes and occlusion. Good

image features should be robust to these changes and being

as discriminative as possible.

As is noted in [2], researchers have proposed very pow-

erful low-level image features based on gradient orientation

histograms, e.g., scale-invariant feature transform (SIFT) [3]

or histogram of oriented gradient (HOG) [4]. Although such

features have achieved great successes in many tasks, it is

shown that intermediate feature representations [5], such as

Bag of Words (BoW) [6], is necessary for obtaining excel-

lent performance for classifying a large number of scene cat-

egories. Standard BoW pipeline firstly extracts low-level fea-

tures from images, then encoding them into a middle-level

representation through an over-complete dictionary, finally

an image is represented by the histogram of codewords oc-

currence frequencies. However, as BoW ignores information

about the spatial organization of local features, the descrip-

tive ability of this representation is not maximized. To over-

come this drawback, the spatial pyramid matching (SPM) ap-

proach [7] adds spatial information to the model by pooling

features over image sub-regions. However, the histogram in-
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tersection kernel used in SPM does not naturally correspond

to a low-dimensional image-level feature representation for

linear SVM classification. As such, the computational com-

plexity of this method is quadratic to the number of images

since it is necessary to calculate the Gram matrix explicitly.

To resolve this problem, the efficient match kernel (EMK) ap-

proach [8] constructs a low-dimensional feature space from

the pairwise codewords similarities, and averages the code-

words feature maps in this space for an image to obtain an

image-level feature representation for classification. The ker-

nel descriptor approach [1] extends the idea of EMK by deriv-

ing a patch-level feature representation from the similarities

computed from pixel attributes in different ways. It employs

kernel principal component analysis (KPCA) [9] to construct

the feature space from the pairwise similarities between large

numbers of joint basis vectors sampled from the support re-

gions of gradient/shape/color + position attributes. Then, for

each image patch, its feature representation can be obtained

by quantifying its similarities with all the joint basis vectors.

The key problem for the kernel descriptor approach is its high

computational complexity. In fact, during the offline kernel

principal component analysis (KPCA) step of [1], all the pair-

wise similarities between the joint basis vectors should be

computed, which is very expensive. More importantly, in the

online computation of the feature map for an image patch,

its similarities with all joint basis vectors should be evalu-

ated, which is not necessary. In the preliminary version of

this work [10], we successfully addressed this problem via

incomplete Cholesky decomposition instead of using KPCA.

However, both this work [10] and the original kernel descrip-

tor [1] used EMK algorithm [8] to generate the image-level

feature representation. Because spatial information is lost in

the match kernels [8], it limits the capacity of the image-level

feature representations in [1, 10]. Recently, Wang et al. [11]

propose supervised kernel descriptors. They employ image-

level label information to guide the design of low-level fea-

tures within the kernel descriptor approach. Although they

achieved competitive results, the image-level features are

learned from image labels based on the large margin criterion

with low-rank regularization, which requires large numbers

of labeled images and is not computationally efficient.

Another way to build an image-level representation from

low-level features is deep learning, which constructs high-

level feature representation hierarchically. For example, con-

volutional neural networks [12] learned multiple layers of

nonlinear features using feed-forward architecture. Parame-

ters in the network are jointly optimized using the back prop-

agation algorithm. Similarly, deep belief nets (DBNs) [13,14]

also learn a hierarchy of features one layer at a time, where

features learned by the current layer become input for train-

ing features in the next layer. Most recently, Krizhevsky et

al. [15] constructs a large, deep convolutional neural net-

work for the ImageNet recognition challenge and obtains the

best performance. This network contains a large number of

hidden units, which is computationally demanding and re-

quires a powerful multi-core architecture to run. Bo et al. [16]

applies kernel descriptors recursively to aggregate low-level

features into high-level features to obtain the hierarchical ker-

nel descriptor representation. But like the kernel descriptor

approach, KPCA is again used repeatedly in this work to re-

duce the dimensionality of feature representations, so it also

suffers the problems of the kernel descriptor approach [1].

In this work, to achieve the flexibility of the data-driven

kernel expansion approach [1] while alleviating the data-size

depend computational complexity to an acceptable level, we

propose efficient kernel descriptor (EKD) based on the in-

complete Cholesky decomposition, which not only avoids ex-

haustively computation of all the pair-wise similarities in the

offline stage, but also reduces the computational complexity

in the online stage of evaluating the similarities of an image

patch to a small set of pivot joint basis vectors. Moreover, we

can flexibly control the computational complexity by adap-

tively tuning the rank of the incomplete Cholesky decompo-

sition. Furthermore, inspired by [16], we also propose a new

approach for generating the image-level feature representa-

tion via iterative incomplete Cholesky decomposition, which

is termed as efficient hierarchical kernel descriptor (EHKD).

We found that combined with linear SVMs, EHKD outper-

forms many state-of-the-art algorithms in this vein.

In the remaining part of this paper, we first describe the

proposed EKD approach and compare it with the original ker-

nel descriptor (KD) [1] in Section 2. Then, we introduce the

EHKD approach and compare it with the hierarchical kernel

descriptor (HKD) [16] in Section 3. Detailed experimental re-

sults and discussions are presented in Section 4. Finally, we

conclude this paper in Section 5.

2 Efficient kernel descriptor

In this section, we introduce the technical details of the pro-

posed efficient kernel descriptor and highlight its connection

with the original kernel descriptor approach [1].

2.1 A brief introduction to the kernel descriptor approach

As described above, the kernel descriptor approach [1] em-



Bojun XIE et al. Efficient image representation for object recognition via pivots selection 385

ploy KPCA to empirically estimate finite-dimensional feature

maps based on a set of basis vectors sampled over the support

regions of pixel attributes. For simplicity, we only introduce

its key idea based on the gradient attribute.

First, define the gradient match kernel based on the gradi-

ent attribute of pixels:

Kgrad(P,Q) =
∑

z∈P

∑

z′∈Q
m̃zm̃z′ko(θ̃z, θ̃z′)kp(z, z′), (1)

where P and Q represent two different image patches, z is the

2D position of a pixel in the image patch, θ̃z and m̃z are the

orientation and magnitude of the intensity gradient at pixel

z, ko and kp are the orientation and position RBF kernels, re-

spectively.

Then, the low-dimensional feature map for image patch P

can be computed by

F̄t
grad(P) =

do∑

i=1

dp∑

j=1

αt
i j{
∑

z∈P
m̃(z)ko(θ̃(z), θ(xi))kp(z, y j)}, (2)

where {θ(xi)}do

i=1 and {y j}dp

j=1 are the gradient orientation and

position basis uniformly sampled from their respective sup-

port regions, do and dp are the sample sizes of the cor-

responding basis vectors and αt
i j are projection coefficients

computed by applying KPCA to the set of joint basis vec-

tors: {φo(θ(x1))
⊗
φp(y1), . . . , φo(θ(xdo ))

⊗
φp(ydp )} (

⊗
is

the Kronecker product).

The computational complexity of the feature map con-

struction approach shown in Eq. (2) is high. First, we have

to compute all the (dodp)2 pairwise similarities between the

joint basis vectors to obtain the Gram matrix. Second, eigen-

decomposition of the matrix usually takes O(d3
od3

p) time com-

plexity in KPCA. Third, since the projection coefficients are

not sparse, when online computing the feature map for the

image patch P, we should perform summation over the ker-

nel products ko(·, ·)kp(·, ·) dodp times and all the joint basis

vectors should be stored in memory.

2.2 Efficient kernel descriptor

To avoid this problem, we propose efficient kernel descriptor

(EKD), which is based on the incomplete Cholesky decom-

position of a Gram matrix [17, 18].

On the high level, this approach consists of two steps: i)

compute the incomplete Cholesky decomposition [18] of the

pairwise similarity matrix over the joint basis vectors. De-

note the rank of this decomposition as M, usually we have:

M � N, where N = dodp is the number of all joint basis

vectors. The merits of our approach are two-fold. First, we

only need to compute O(MN) elements of the Gram matrix

on demand. Second, performing the Cholesky decomposi-

tion of the matrix only has a O(M2N) time complexity rather

than the brute-force O(N3) complexity of KPCA; ii) based on

the M pivot joint basis vectors computed by the incomplete

Cholesky decomposition, we generate the feature map for im-

age patch P using only O(M) computations, as described be-

low.

2.2.1 Low-rank approximation of the Gram matrix

The positive semi-definite Gram matrix K can always be fac-

torized as GGT. The aim of incomplete Cholesky decompo-

sition is to find a matrix G̃ of size N × M, such that G̃G̃T is a

good approximation for K for small M.

During the computation of the incomplete Cholesky de-

composition, we have actually select M pivot basis vectors

such that all the pairwise similarities in K are approximated

by the similarities from all the basis vectors to these pivots.

Here, M is determined by the algorithm online, which is con-

trolled by a parameter ε that specifies the pre-defined accu-

racy of the approximation. See [18] for a more detailed de-

scription about incomplete Cholesky decomposition.

2.2.2 Construction of the feature maps

Once we obtain G̃ of size N × M, the new patch-level feature

can be constructed based on G̃. Algorithm 1 details the steps

for constructing efficient kernel descriptor.

2.3 Discussions

Note that the M pivot basis vectors selected by the EKD al-

gorithm can be seen as a set of non-linear feature extractors

for a new image patch. This is because one obtains the fea-

ture map of the image patch by computing the similarities

from the patch to the pivots. In other words, the proposed

EKD algorithm essentially learned how to extract a patch-
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level feature from the kernel functions. This is fundamentally

different with those procedurally-defined image descriptors

such as SIFT and HOGs. It is also different with the original

kernel descriptor approach [1], which has no built-in feature

selection mechanism. As a result, the EKD algorithm is the

most appropriate one to be viewed as “growing up” features

from scratch.

3 Efficient hierarchical kernel descriptor

In this section, we firstly introduce hierarchical kernel de-

scriptor [16], which is a hierarchical extension of the origi-

nal kernel descriptor [1]. Then, following the same idea, we

extend the proposed EKD to the corresponding image-level

representation EHKD.

3.1 An introduction to hierarchical kernel descriptor

The original kernel descriptors method [1] is a procedure for

generating patch-level features by operating on sets of pixels.

The HKD approach [16] is virtually a recursive application

of the kernel descriptors method to generate higher levels of

image features, which aggregates spatial neighboring patch-

level features iteratively to obtain features of larger image re-

gions and finally of the entire image.

Here, the match kernels used to aggregate patch-level fea-

tures have similar structure to those used to aggregate pixel

attributes in the kernel descriptor approach:

K(P̄, Q̄) =
∑

A∈P̄

∑

A′∈Q̄
W̃AW̃A′kF(FA, FA′)kC(CA,CA′), (3)

where P̄, Q̄ are sets of image patches and A, A′ are patches

in the corresponding sets; the image patch position kernel

kC(CA,CA′) = exp(−γC‖CA − CA′ ‖2) = ΦC(CA)TΦC(CA′)

describes the spatial relationship of two image patches, where

CA represents the center position of patch A (normalized to

[0, 1]); the image patch kernel kF (FA, FA′) = exp(−γF‖FA −
FA′ ‖2) = ΦF (FA)TΦF(FA′) gives the similarity of two

patch-level features, where FA represents gradient, shape or

color kernel descriptors; the linear kernel W̃AW̃A′ weighs

the contribution of each patch-level feature where W̃A =

WA/
√∑

A∈P̄ W2
A + εh, εh is a small positive constant. For gra-

dient kernel, WA is the average of gradient magnitudes; for

shape kernel, WA is the average of standard deviations and

WA is always set to 1 for color kernel.

Evaluating Eq. (3) is time consuming. In order to extract

compact low-dimensional features efficiently, HKD [16] used

KPCA method for dimensionality reduction, as the kernel de-

scriptor approach [1]. In particular, the inner product repre-

sentation of two kernels is given by:

kF(FA, FA′)kC(CA,CA′ )

= [ΦF(FA) ⊗ ΦC(CA)]T [ΦF(FA′) ⊗ ΦC(CA′)]. (4)

Following [1], compact features are obtained by projecting

the infinite-dimensional vector ΦC(CA)
⊗
ΦF(FA) to a set of

joint basis vectors {ΦC(CX1 ), . . . ,ΦC(CXdc
)}⊗{ΦF(FY1 ), . . . ,

ΦF(FYdF
)}.

The first set {ΦC(CX1 ), . . . ,ΦC(CXdc
)} is generated by

sampling C(position) on 5 × 5 regular grids. How-

ever, kernel descriptors obtained from the previous layer

FA(gradient/shape/color) are high-dimensional and it is in-

feasible to sample them on dense and uniform girds. Instead,

the basis set {ΦF(FY1 ), . . . ,ΦF(FYdF
)} is generated by clus-

tering patch-level gradient/shape/color features from training

images via the K-means algorithm.

The dimensionality of the current layer kernel

descriptors is the number of joint basis vectors

{ΦF (FY1 )
⊗
ΦC(CX1 ), . . . ,ΦF(FYdF

)
⊗
ΦC(CXdc

)}, which is

still not computationally manageable. To avoid the high di-

mensionality, [16] used KPCA to perform dimensionality

reduction. Then, kernel descriptors of the current layer can

be more compactly represented using the KPCA coefficients.

F̄t(P̄) =
dF∑

i=1

dc∑

j=1

βt
i j{
∑

A∈P̄
W̃AkF(FA, FYi)kC(CA,CX j )}, (5)

where βt
i j are also projection coefficients generated from

KPCA. By recursively applying the above method, low-level

features ‘growing up’ to form high-level features until the fi-

nal image-level feature is obtained.

3.2 Efficient hierarchical kernel descriptor

From the procedure of constructing HKD, the KPCA step,

which is computational intensive, has to be executed many

times, making it not an appropriate solution. Although [16]

gives a way to compute the eigenvectors of a huge Gram ma-

trix, the intrinsic computational problem in the original kernel

descriptor approach [1] is not avoided. To address this prob-

lem, the incomplete Cholesky decomposition of the Gram

matrix is used again as in the EKD approach described above,

but now it has been extended in the context of constructing

the hierarchical feature representation.

The efficiency of EKD has been shown in Section 2.2, but

it only generates patch-level feature. To obtain the image-

level representation, the EMK method [8] is used. Here,
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we propose the EHKD to derive image-level features. As

in HKD, the first problem is how to construct joint ba-

sis vectors from features of the previous layer. Like [16],

set {ΦC(CX1 ), . . . ,ΦC(CXdc
)} can be generated by sampling

X on 5 × 5 regular grids and set {ΦF (FY1), . . . ,ΦF(FYdF
)}

can be generated by clustering the previous layer EKD fea-

tures via the K-means algorithm. Then, joint basis vec-

tors {ΦF (FY1)
⊗
ΦC(CX1 ), . . . ,ΦF(FYdF

)
⊗
ΦC(CXdc

)} are

defined accordingly.

Next, EHKD can be generated in two steps, as discussed

in Section 2.2. i) Compute the incomplete Cholesky decom-

position of the pairwise similarity matrix over the joint basis

vectors; ii) based on the selected pivots in step i), we gen-

erate the feature map for next layer. By recursively applying

the above steps, we can obtain efficient kernel descriptors of

increasingly larger image patches. Below, we introduce some

technical details.

3.2.1 Selecting pivots from the Gram matrix

When the joint kernel is represented by the product of indi-

vidual kernels of distinct features (suppose K = KF

⊗
KC ,

where KF and KC represent the Gram matrix of set

{ΦF (FY1 ), . . . ,ΦF(FYdF
)} and set {ΦC(CX1 ), . . . ,ΦC(CXdc

)}),
[16] gives a solution about how to perform KPCA on the huge

Gram matrix. First, eigenvectors of the kernel matrices of KF

and KC are computed respectively. Then, the eigenvectors of

joint Gram matrix can be constructed from the Kronecker

product of the eigenvectors of Gram matrices for KF and KC .

Although this approach reduced the computing time, eigen-

decompostion of KF and KC via KPCA are nevertheless re-

quired. Moreover, when K does not have such a factorization,

there is no way to avoid performing eigen-decomposion of

the huge joint Gram matrix for K.

In order to avoid this general computational problem, we

again use incomplete Cholesky decomposition of the joint

Gram matrix for the current layer to select pivots. Specifi-

cally, our aim is to find a low-rank matrix G̃, such that G̃G̃T

is a good approximation for the Gram matrix of K, regard-

less whether it can be represented as the product of individ-

ual kernels. Fortunately, the computation scales linearly the

dimensionality of K, which is efficient enough.

Besides, the precision of incomplete Cholesky decompo-

sition can be monitored throughout the computation process.

Once the precision requirement (which can be specified by a

pre-defined parameter ε) is met, the selected pivots are suffi-

cient to characterize the pairwise similarities of the joint basis

vectors.

3.2.2 Construction of the feature map for the current layer

Once we obtained G̃, the new efficient kernel descriptor can

be constructed based on G̃. The algorithm for constructing

the feature map has been shown in Algorithm 1. But there is

slight difference in computing the similarities.

Specifically, the variable similarity in Algorithm 1 repre-

sents an M dimensional array of similarities from an image

patch to the pivots. All elements participating in the computa-

tion of similarity values are based on image pixels. In higher

levels of EHKD computation, the efficient kernel descriptor

and the relative position of the patches of the previous layer

are the basic elements for computing the similarity values,

rather than pixel for the first layer. The procedure of the con-

struction efficient hierarchical kernel descriptor is shown in

Fig. 1.

Fig. 1 An illustration for constructing EHKD. Supposing the image is di-
vided into 8×8 patches and number of layers is 3. a) Every grid represents
a patch-level efficient kernel descriptor, the 4×4 (tunable in the experiment)
grids (colored gray) aggregate into one efficient kernel descriptor for the next
layer; b) On the second layer, four (tunable in the experiment) efficient kernel
descriptors aggregate into one efficient kernel descriptor of the final layer; c)
Representing an image-level feature.

4 Experimental results

We use gradient, color and shape characterized by local bi-

nary pattem (LBP) descriptors attributes at the pixel-level for

constructing EKD based on gradient (EKD-G), color (EKD-

C) and shape (EKD-S) information. To test the performance

of the EKD approach, we perform image classification ex-

periments on four well-known datasets: Scene-15 [6, 7, 19],

Caltech-101 [20], UIUC-8 [21], and MIT Indoor-67 [22]. Be-

sides, we also construct EHKD to obtain the image-level fea-

ture representation and evaluate its performance on the CI-

FAR10 dataset [23].

In the following experiments for EKD, all images are re-

sized to be no larger than 300 × 300 pixels with preserved

ratio and they are further normalized into grayscale ([0, 1])

for computing EKD-G and EKD-S. Patch-level features are

extracted on dense regular grids with 8 pixels spacing. The

size of each patch is 16 × 16 pixels. The image-level features
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are constructed on the patch-level features by the EMK ap-

proach [8] with 1× 1, 2× 2, 4× 4 sub-regions and using 1000

visual words. EKD-All is the concatenation of the three effi-

cient kernel descriptors (EKD-G, EKD-C, and EKD-S). Af-

ter obtaining the image-level features, we train a linear SVM

classifier using LIBLINEAR [24]. All experiments are re-

peated 10 times with randomly selected training/test images

and the average/standard deviation of classification accura-

cies are recorded. Other hyper-parameters used in our experi-

ments are the same as [1] to make our comparison fair. In the

experiment about EHKD, we use the same parameter settings

as the EKD for the first layer of EHKD. Similar to EKD, we

focus on evaluating the performance of EHKD-All which is a

combination of the three efficient hierarchical kernel descrip-

tors (EHKD-G, EHKD-S, and EHKD-C) by concatenating

the Gradient/Shape/Color image-level feature vectors.

4.1 Experimental results for EKD

Scene-15 Scene-15 contains a total of 4 485 images in 15

categories, including indoor/outdoor scenes. Each category

contains 200 to 400 images. Following [1], we take 100 im-

ages per category for training and use the left images for test-

ing. We also select 200 pivots using the incomplete Cholesky

decomposition algorithm to construct 200d feature maps, as

in [1]. The results are shown in Table 1 and the EKD algo-

rithm achieved the best classification accuracy in this data set

(86.3%). Moreover, we can see the classification accuracy of

EKD is consistently better than the kernel descriptor (KD)

over all the 4 types of attributes (color, gradient, shape and

all the three above).

Table 1 A comparison of the classification accuracy of the kernel descrip-
tor (KD) vs. EKD on Scene-15 dataset

KD [1] vs. EKD

KD-C 38.5±0.4 EKD-C 49.1±1.2

KD-G 81.6±0.6 EKD-G 82.7±0.6

KD-S 79.8±0.5 EKD-S 81.0±0.5

KD-All 81.9±0.6 EKD-All 86.3±0.4

To our surprise, we find that the EKD algorithm can

achieve close-to-optimal classification accuracy even with as

small as 50 pivots, which firmly demonstrate its efficiency

and robustness. In fact, as shown in Table 2, increasing the

number of pivots from 50 to 300 only improved the perfor-

mance marginally. An explanation for this phenomenon is

that Gram matrices often have high accuracy low-rank ap-

proximations. Since the incomplete Cholesky decomposition

algorithm explicitly constructs such approximations through

matrix factorization K ≈ G̃G̃T , we believe the results in

Table 2 simply suggest that 50-dimensional low rank ap-

proximations are sufficient to represent the key information

in Gram matrices for scene classification. For efficiency and

without loss of generality, we always use 100 pivots in the

experiments below.

Table 2 The EKD classification accuracy on scene-15 dataset by changing
the number of pivots from 50 to 300

Method EKD-C EKD-G EKD-S

50d 48.9 ± 0.7 81.8 ± 0.5 78.9 ± 0.8

100d 49.1 ± 0.6 82.4 ± 0.4 79.6 ± 0.7

200d 49.1 ± 1.2 82.7 ± 0.6 81.0 ± 0.5

300d 49.1 ± 0.9 82.6 ± 0.6 81.2 ± 0.5

Caltech-101 Caltech-101 contains 9 144 images in 101 ob-

ject categories and in one background category. The number

of images per category varies from 31 to 800. In Table 3, we

compare the performance of EKD to other representative al-

gorithms. Following [25–27], we train on 30 images per cat-

egory and test on no more than 50 images per category. We

can see that the proposed EKD algorithm achieved the high-

est classification accuracy (EKD-All, with the classification

accuracy: 76.9%). Even with gradient features only, EKD-G

achieved a competitive classification accuracy of 73.4%.

Table 3 Comparing the classification accuracy of six algorithms on
Caltech-101 dataset

Method Classification accuracy

Shabou et al. [25] 73.23 ± 0.81

NBNN [28] 73.0

LLC [26] 73.4 ± 0.5

Jia et al. [27] 75.3 ± 0.7

KD-All [1] 74.5 ± 0.8

EKD-G 73.4 ± 0.6

EKD-All 76.9±0.5

UIUC-8 UIUC-8 contains 8 sport categories with 1 579 im-

ages. Each class has 137 to 250 images. Following [21, 29],

we randomly select 70 training images per category and 60

testing images per category. The results are shown in Table

4. We can see that the performance of EKD-All (87.1%) is

very close to the best classification accuracy achieved by [25]

(87.23%) on this dataset.

Table 4 Comparing the classification accuracy of three algorithms on
UIUC-8 dataset

Method Classification accuracy

Liu et al. [29] 84.56 ± 1.5

Shabou et al. [25] 87.23±1.14

EKD-All 87.1 ± 1.4

MIT Indoor-67 MIT Indoor-67 contains 15 620 images in

67 indoor scene categories. All images have a minimum res-



Bojun XIE et al. Efficient image representation for object recognition via pivots selection 389

olution of 200 pixels in the smallest axis. This dataset raises

a challenging classification problem, since yet some indoor

scenes can be well characterized by global spatial proper-

ties, others are only characterized by the object contained

in the image. Following the same training/test split strategy

as in [22], we randomly select 80 training images and 20

testing images in each category. The comparison results are

shown in Table 5. We can see that the performance of EKD-

All achieves the best classification accuracy (50.8%) on this

dataset.

Table 5 Comparing the classification accuracy of seven algorithms on MIT
Indoor-67 dataset

Method Classification accuracy

ROI+gist [22] 26.5

MM-scene [30] 28.0

CENTRIST [31] 36.9

Object Bank [32] 37.6

GIST-color+SP+DPM [33] 43.1

Mid-level Patches+GIST+SP+DPM [34] 49.4

EKD-All 50.8

Finally, we compare the computational efficiency of con-

structing efficient kernel descriptors vs. kernel descriptor. For

the most time consuming shape feature, EKD-S algorithm

takes about 2 seconds to compute in Matlab on a typical im-

age (300 × 300 resolution and 16 × 16 image patches over 8

pixel spacing), while the original KD-S algorithm takes about

2.5 seconds. For the gradient feature, EKD-G takes about

0.9 seconds while KD-G took 1.0 seconds. This comparison

is done in the context of generating 100-dimensional patch-

level features. If we further increase the feature dimensional-

ity, the advantage of EKD will be more obvious.

Robustness to hyper-parameter changes Recently, we

found that the authors of KD [1] suggested an alterna-

tive set of hyper-parameters on their demo after publica-

tion. To investigate the sensitivity of KD and EKD to the

hyper-parameter changes, we also compare our EKD ap-

proach to the original KD approach [1] with this alternative

parameter setting used in the gradient/shape/color/position

kernel and EMK’s [8] match kernel. The comparison re-

sults are shown in Table 6, where γo/γb/γc/γp represent the

hyper-parameters used in gradient/shape/color/position ker-

nel function for generating patch-level features, and kpara

represents the hyper-parameters used in EMK’s [8] gradi-

ent/shape/color match kernel function for generating image-

level features. For the three sets of hyper-parameters, both the

two approaches achieved roughly the same best performance

(86.9% and 86.8%) on the Scene-15 dataset, but EKD-All’s

performance is more consistent across the three repeats with

higher average classification accuracy (86.5% vs. 85.2%).

This result suggests our EKD approach is more robust to pa-

rameter changes than the original KD method [1].

Table 6 A comparison of the classification accuracy of KD-All vs. EKD-
All on the Scene-15 dataset with three sets of hyper-parameters. “Ave.” rep-
resents average classification accuracy

γo = 5 γo = 5 γo = 5

γb = 2 γb = 2 γb = 3

Method γc = 4 γc = 4 γc = 5 Ave.

γp = 3 γp = 3 γp = 3

kpara = kpara = kpara =

[1, 1, 1] [0.001, 0.01, 0.01] [0.001, 0.01, 0.01]

KD-All 81.9 ± 0.6 86.7 ± 0.7 86.9 ± 0.7 85.2

EKD-All 86.3 ± 0.4 86.4 ± 0.5 86.8 ± 0.7 86.5

3.1 Experimental results for EHKD

CIFAR10 CIFAR10 is a subset of a 80 million tiny im-

ages dataset. All images in this dataset are down-sampled to

32×32 pixels. For each category, there are 5 000 images in the

training set and 1 000 images in the test set. Following [16],

we use two-layer EHKD to obtain image-level feature and

the construction of first layer is the same as EKD. Since the

images here are small, EKDs (EKD-G, EKD-S, and EKD-

C) are extracted over 8 × 8 image patches over dense regu-

lar grids with 2 pixels spacing. On second layer, to enable

a fair comparison with [16], we also used 1 000 basis vec-

tors for the patch-level Gaussian kernel kF . The classification

accuracy of different algorithms on this data set is shown in

Table 7.

Table 7 Comparing the classification accuracy of seven algorithms on
CIFAR10 dataset (The first six classification accuracies marked with asterisk
are based on [16].)

Method Classification accuracy

(∗)mcRBM-DBN [35] 71.0

(∗)Tiled CNNs [36] 73.1

(∗)Improved LCC [37] 74.5

(∗)KDES+EMK+Linear SVMs [1] 76.0

(∗)Convolutional RBM [38] 78.9

(∗)HKDES+Linear SVMs [16] 80.0

EHKD-All 80.7

From Table 7, we can see the EHKD-All method outper-

forms the HKDES [16] 0.7% (80.7% vs. 80%) and is also

higher than all the other competing approaches.

5 Conclusion

In this paper, we propose EKD to derive patch-level fea-

tures and EHKD to obtain image-level features. Both the
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two approaches are built upon the incomplete Cholesky de-

composition technique. Under the EKD framework, the most

discriminative non-linear feature extractors can be learned

automatically from data, which reduced the computational

complexity of the kernel descriptor (KD) approach and im-

proved its performance. By recursively applying EKD, we

construct EHKD for extracting image-level features in a

bottom-up manner. Experimental results demonstrate EKD

outperforms KD and EHKD outperforms HKD, and both of

them are competitive with state-of-the-art algorithms on pub-

licly available image/scene data sets. In the future, we plan

to investigate better ways to pick the pivots more efficiently

for generating patch/image-level features, which are helpful

for object recognition.

Acknowledgements The authors acknowledge support from the Na-
tional Natural Science Foundation of China (Grant No. 61300072,
61033013), the Fundamental Research Funds for the Central Universities
(2014JBZ005), the Beijing Committee of Science and Technology, China
(Z131110002813118), Beijing Jiaotong University (K12RC00090) and Re-
search Foundation of Education Bureau of Hebei Province (Z2013124).

References

1. Bo L F, Ren X F, Fox D. Kernel descriptor for visual recognition. In:

Proceedings of the Annual Conference on Neural Information Process-

ing Systems. 2010, 244–252
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