
Front. Comput. Sci., 2015, 9(6): 846–859

DOI 10.1007/s11704-015-4064-7

Hierarchical caches in content-centric networks:
modeling and analysis

Zixiao JIA1,2, Jiwei HUANG1, Chuang LIN 1

1 Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

2 National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing 100029, China

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Abstract Content-centric network (CCN) is a new Inter-

net architecture in which content is treated as the primitive

of communication. In CCN, routers are equipped with con-

tent stores at the content level, which act as caches for fre-

quently requested content. Based on this design, the Internet

is available to provide content distribution services without

any application-layer support. In addition, as caches are inte-

grated into routers, the overall performance of CCN will be

deeply affected by the caching efficiency.

In this paper, our aim is to gain some insights on how

caches should be designed to maintain a high performance in

a cost-efficient way. We try to model the two-layer cache hi-

erarchy composed of CCN routers using a two-dimensional

discrete-time Markov chain, and develop an efficient algo-

rithm to calculate the hit ratios of these caches. Simulations

validate the accuracy of our modeling method, and convey

some meaningful information which can help us better un-

derstand the caching mechanism of CCN.

Keywords CCN, cache, model, analysis

1 Introduction

With the flourishing of Internet application and the develop-

ment of computing techniques, the concise pattern of current

IP-based network contributes to the most noticeable scalabil-

ity, but also becomes a shackle for the further development

of Internet services. Under such background, reforming the

Received February 17, 2014; accepted April 1, 2014

E-mail: chlin@tsinghua.edu.cn

Internet architecture has become one of the most popular is-

sues in the study field of computer network.

Nowadays, many researchers pay much attention to the

Content Network, and more significant projects focusing on

the future Internet architecture design have been funded in

recent years. Content-centric network [1] (CCN) provides a

clean-slate design for the Internet, where content becomes the

primitive of communications. In CCN, each piece of content

contains a name that uniquely identifies it, and is transmit-

ted in a receiver-driven way. When the requested content is

returned from the source, it is remembered/cached by inter-

mediate routers (termed as content routers). Accordingly, the

subsequent requests for the same content can be served later

by these content routers without resorting to the source again.

CCN becomes a good alternative for Internet service

providers (ISPs) to offload their IP backbone traffics, which

are currently overwhelmed by over-the-top (OTT) content

like Internet videos. Figure 1 shows a possible deployment

of CCN in an ISP’s network, where content routers are or-

ganized in layers, with the lowest layer accepting requests

from customers and the topmost layer connecting to the IP

backbone. In virtue of the built-in caching capability, CCN

enables the Internet to support content distribution services

directly in its network layer, without any application-layer

solutions, e.g., CDN.

As caches will be integrated into routers, the network per-

formance will be influenced by the caching efficiency. Thus,

the deployment of CCN in ISPs’ networks is not that straight-

forward. For instance, the benefits of employing CCN can

even be offset if the storage volumes of these caches are too

Zixiao JIA et al. Hierarchical caches in content-centric networks: modeling and analysis 847

Fig. 1 The hierarchical structure of content routers in CCN

small. On the other hand, due to their high demand on both

data access speed and storage volume, caches stand as a ma-

jor infrastructure investment for ISPs. Therefore, how these

caches should be designed cost-efficiently, while still main-

taining a high performance is a problem to be examined.

The caching problem in the area of web caching has

been extensively studied. However, caches in CCNs are ac-

tually different from web caches in the following respects.

Firstly, web caches are application-specific (for web brows-

ing), while CCN caches are for general content distribu-

tion services. Secondly, Web caches use single-path routing,

while CCN allows content to be retrieved and distributed

along multiple paths. Thirdly, web caching is based on ob-

jects/files, while caching in CCN is based on chunks/packets.

Some efforts have also been made on studying the caching

performance in CCN. Nevertheless, most of them are based

on trace-driven simulations or experiments. Existing model-

ing methods for CCN caches are either complicated to be

solved or fall short in giving valuable guidance on how to

design the caches.

This paper studies the performance issues of caches in

CCN. The layers of content routers are treated as a cache hi-

erarchy (Fig. 1), and we contrive to develop models to guide

the design of caches at different layers. Specifically, we use

discrete-time Markov chains (DTMC) to capture the dynam-

ics of content occupancy in hierarchical caches, which can be

used to efficiently calculate the cache hit ratios. Additionally,

the variables used in our model, which convey some mean-

ingful information, can help us better understand the caching

mechanism of CCN. The main contributions of this paper are

as follows:

1) We propose probability models for two-layer cache hi-

erarchy. These models are based on two-dimensional Markov

chains, each of which contains a relatively large number of

states. To obtain analytical solutions, we introduce a key vari-

able R to decompose the two-dimensional Markov chain into

a series of one-dimensional Markov chains, which can be it-

eratively solved.

2) Based on our models, we develop an efficient algorithm

to calculate the hit ratio for each cache. Simulations show that

the results are accurate with error less than 5%.

3) By analyzing the numerical results obtained from our

models, we gain some understanding on (a) the impact of

cache size on hit ratio, (b) the contribution of each cache parts

to the hit ratio of root node, (c) size requirements for different

layers of caches in CCN, etc.

4) We also present some interesting findings through the

variables used in our model: (a) the caching characteristics

for content of different popularities, (b) the relation between

two adjacent layers of nodes to explain the “filter effect” im-

posed by lower-layer caches.

The rest of this paper is organized as follows. In Sec-

tion 2, we briefly introduce the background of CCN and make

some assumptions. Section 3 presents the leaf node model,

the layer-1 node model and the extended layer-1 model, re-

spectively. Section 4 validates our models in terms of simula-

tions, and reports some numerical results obtained from our

models. Section 5 surveys some related work and Section 6

concludes this paper.

2 Background and assumptions

2.1 Background

In CCN, there are two types of packets: interest and data. A

data packet contains not only the content, but also the name

that identifies the content. A user who is interested in a data

packet broadcasts an interest packet over its connections.

Having received the interest request, the router (termed

as content router) will check its content store, which is a

cache of data packets, according to its content name. If the re-

quested data packet is already cached in the content store, the

data packet would be returned directly by that router. On the

other hand, if the data packet is not found, the content router

will look up in its forwarding information base (FIB), and

forward the interest request to a list of outgoing interfaces.

Here, FIB is a data structure similar to the routing table in a

traditional IP router, with the difference that the FIB lookup

is based on content name rather than IP address. The router

also keeps track of the pending request by inserting a record

to its pending interest table (PIT).

When the corresponding data packet is returned, the router

checks its PIT to decide which interface to forward this data

packet. After forwarding, the router also keeps a replica of the

848 Front. Comput. Sci., 2015, 9(6): 846–859

data packet in its content store. Then, if interest packets for

the same content arrive again, the router can directly return

the content.

As seen above, data requests are not constrained to flow

along a single path as in IP networks, but can be routed in a

multi-path fashion. In addition, interest packets for the same

content will be aggregated as a single PIT entry containing

a list of interfaces. When the content is returned, it will be

sent over all these interfaces. This enables CCN to inherently

support multicast transmission.

In CCN, all contents are first splitted into packet-

sized chunks (4KB as specified in current CCNx

implementation1)). To request a file, users send out a se-

quence of interest packets, one for each chunk. Note that

these interest packets can be pipelined to reduce the response

time.

Because of the limited capacity, cache need to discard the

old chunk when inserting a newer content, and how to choose

the discarded chunk causes the cache replacement policy.

2.2 Assumptions

In our model, the system consists of three components: con-

tent servers, content routers and end hosts. Content routers

are equipped with content stores (caches), and are organized

in layers, as shown in Fig. 1. We term routers of lowest

layer as leaf routers or leaf nodes2). Leaf routers can accept

data requests from end hosts that are directly connected to

them. If data requests cannot be satisfied locally, they would

be forwarded to the upper-layer routers, which we term as

layer-1 routers. The key notations of our model are shown in

Table 1.

• Content popularity Let C be the collection of all chunks

in the system, and these chunks are classified into K ranks of

popularity. Chunks in lower ranks will be requested by end

hosts with higher probabilities. For each leaf node vi, let C i
k

be the set of rank-k chunks that can be requested by its end

hosts, and define the request ratio α i
k as the probability that a

requested chunk belongs to rank k.

• Request arrival We assume that the arrival of chunk re-

quests at any leaf node conforms to the independent reference

model (IRM), which is widely adopted to model cache ac-

cesses [2, 3]. Specifically, let random variable X j be the rank

of the jth requested chunk at a leaf router vi, then X1, X2, . . .

are independent and identically distributed (i.i.d.). According

to the request ratio defined above, we have P(X j = k) = α i
k.

Table 1 Summary of key notations.

Term Description

IA Indictor function which takes 1 if predicate A is true, and 0
otherwise

C Set of all chunks in the system

K Number of popularity ranks

Ci
k Set of rank-k chunks requested by end hosts connected to vi

αi
k(βi

k) Request ratio of rank-k chunks (a specific chunk) at node vi

gi
k Size of set Ci

k

S i Cache size of node vi

p i
k(j) Probability that any rank-k chunk is stored at the jth slot of vi

b i
k(j) Expected number of rank-k chunks stored in the first j slots of

vi

hi(h i
k) Cache hit ratio of node vi (for a specific rank k)

σm,n Probability that node vm forwards missed chunk requests to
node vn

δi Probability that when a request comes to the system, it arrives
at vi

Rm,n
k (j) Probability that a chunk c of rank k is not present in the cache

of vn condition that it is present in the jth slot of vm

Dm,n
k (j) Expected number of rank-k chunks in the first j positions of vm

but not existing in node vn

Px(i, j) Transition probability used in the (extended) layer-1 node
model

P+x (i, j) Transition probability used in the extended layer-1 node model
contributed by the node itself

P−x (i, j) Transition probability used in the extended layer-1 node model
triggered by other nodes

P ′x(i) Alias for transition probability defined in the leaf node model

P′′x (i, j) Alias for Px(i, j) defined in the layer-1 node model

•Multi-path routing We assume that the routing policy for

chunk requests is multi-path. Formally, let N be the number

of nodes in the system, then the routing policy can be charac-

terized using a matrix F = (σi, j)N×N , where σi, j ∈ [0, 1] is the

probability that node vi forwards missed requests to node v j.

Since a request can be forwarded to multiple nodes,
∑

j σi, j

can be larger than 1.

• Node cache We consider the cache of a router as a se-

quence of slots, and each slot can only contain one chunk. To

simplify the model analysis, we use slot as the unit to depict

the cache size in the following modeling and experiments.

•Cache replacement We assume a simple LRU strategy for

cache replacement. If a requested chunk is not in the cache,

it would be brought from other routers and placed at the first

slot of the cache. All other chunks in the cache are pushed

down one position, and the chunk in the last slot is discarded.

On the other hand, if the requested chunk is already in the

cache, it would be brought to the top slot, and all chunks that

are previously ahead of it will be pushed down to one posi-

tion.

1) CCNx project: http://www.ccnx.org
2) In our model, we would use routers and nodes interchangeably.

Zixiao JIA et al. Hierarchical caches in content-centric networks: modeling and analysis 849

3 Model analysis

This section presents models to evaluate the performance of

hierarchical caches in CCN. We characterize the caching per-

formance with overall hit ratio hi, defined as the probability

that a requested chunk is stored in the cache of node vi. In

addition, we are also interested in evaluating rank-k hit ratio

hi
k, defined as the probability that a requested chunk of rank-

k is stored in the cache of node vi. Before moving on to the

models, we introduce some more notations that will be used

later.

Let S i be the number of slots in node vi’s cache. Then, for

any j ∈ [1, S i], define p i
k(j) as the probability that any rank-

k chunk is stored at the jth slot of vi. It easily follows that

b i
k(j) =

∑ j
t=1 p i

k(t) is the expected number of rank-k chunks

stored in the first j slots of vi. For simplicity of notation, let

g i
k = |C i

k |, and define β i
k = α

i
k/g

i
k as the request arrival ratio of

a specific rank-k chunk at node vi.

3.1 Leaf node model

Let us consider the caching model for a single leaf node v1,

and develop an expression of hit ratios h1 and h1
k.

By the definitions of p i
k(j) and b i

k(j), the rank-k hit ratio is:

h1
k =

S 1∑

j=1

p1
k(j)

M∑

j=1

p1
k(j)

=
b1

k(S 1)

g1
k

, (1)

and the overall cache hit ratio is:

h1 =

K∑

k=1

h1
k · α1

k

K∑

k=1

α1
k

. (2)

To determine b1
k(j), we construct a discrete-time Markov

chain (DTMC), which captures the dynamics for a specific

chunk c ∈ C1
k in the cache of v1, as shown in Fig. 2. In this

Markov chain, each state represents the slot that c occupies:

state j means that c is in the jth slot; state M = S 1 + 1 means

that c is outside of the cache. A transition is triggered when a

request arrives to node v1. Let Pi→ j be the transition probabil-

ity from state i to state j. In the following, we will determine

all these transition probabilities.

Pi→i, i ∈ [2, S 1] corresponds to the probability that any

chunk in the first i − 1 slots is requested:

Fig. 2 The Markov chain of the leaf node model

Pi→i =

K∑

t=1

β1
t · b1

t (i − 1),

and PM→M is the probability that c is not requested:

PM→M = 1 − β1
k .

Pi−1→i, i ∈ [2,M] corresponds to the probability that nei-

ther c nor any other chunk in the first i − 2 slot is requested:

Pi−1→i = 1 −
K∑

t=1

β1
t ·
[
b1

t (i − 2) + It=k

]
,

where IA is a indictor function which takes 1 if predicate A is

true, and 0 otherwise.

Pi→1, i ∈ [1,M] is the probability that c is requested:

Pi→1 = β
1
k .

Let �π = [π(1), π(2), . . . , π(M)] be the steady state distribu-

tion, then the balance equations are as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

π(1) = β1
k ·
∑M

i=1 π(i),

π(i) = Pi−1→i · π(i − 1) + Pi→i · π(i), i ∈ [2,M],
M∑

i=1

π(i) = 1.

According to our definition, p1
k(j) = g1

kπ(j). Combining

the above results, we have the following recursive equations:

p1
k(j) = p1

k(j − 1) ·
1 −

K∑

t=1

β1
t ·
[
b1

t (j − 2) + It=k

]

1 −
K∑

t=1

β1
t · b1

t (j − 1)

, i ∈ [2,M],

(3)

with the initial value p1
k(1) = α1

k .

Using Eq. (3), we can solve p1
k(j) for j ∈ [1, S 1], and ob-

tain b1
k(S 1). Then, h1

k and h1 can be calculated using Eq. (1)

and Eq. (2), respectively.

3.2 Layer-1 node model

Let us consider the caching model for a single layer-1 node

v0, which is connected with one leaf node v1. We aim to eval-

uate the values of h0 and h0
k .

Different from the previous leaf node model, a cache hit of

chunk c at node v0 requires not only that c is in the cache of

850 Front. Comput. Sci., 2015, 9(6): 846–859

v0, but also that c is not in the cache of v1. In other words, the

hit ratio of v0 not only depends on its own state, but also de-

pends on v1’s state. To this end, we introduce another variable

to express hit ratios of node v0.

Let Ci(c) = j be the event that the chunk c is present in the

jth slot of node vi; Ci(c) = 0 when c is not present in node

vi. Define Rm,n
k (j) as the probability that a chunk c of rank k

is not present in the cache of vn condition that it is present in

the jth cache slot of vm.

Rm,n
k (j) = Pr

{
Cn(c) = 0 | Cm(c) = j

}
, j ∈ [1, S m].

The variable R defined above characterizes the relation be-

tween two nodes. Specifically, Rm,n
k (j) reflects how useful a

rank-k chunk stored in the jth slot of node vm is for node vm.

Using R, we can express the rank-k hit ratio of node v0 as:

h0
k =

S 0∑

j=1

p0
k(j) · R0,1

k (j)

g0
k

. (4)

The overall hit ratio of node v0 can be derived in the similar

way as the leaf node model using Eq. (2), with α0
k expressed

as:

α0
k =

α1
k(1 − h1

k)
K∑

t=1

α1
t (1 − h1

t)

.

Then, we define Dm,n
k (j) as the expected number of rank-k

chunks present at the first jth slots of vm, but not present in

vn’s cache. Dm,n
k (j) would be expressed as:

Dm,n
k (j) =

∑ j
i=1 pm

k (i) · Rm,n
k (i). (5)

By modeling the cache of v0 using a one-dimensional

Markov chain, we can derive the following recursive equa-

tion in a similar way as the leaf node model:

p0
k(j) = p0

k(j − 1)·

1 −
K∑

t=1

β1
k ·
[
b1

t (S 1) + D0,1
t (j − 2) + R0,1

k (j − 1)It=k

]

1 −
K∑

t=1

β1
t ·
[
b1

t (S 1) + D0,1
t (j − 1)

]
, (6)

where p0
k(1) = α0

k .

To determine R0,1
k (j), we construct a two-dimensional

discrete-time Markov chain, as shown in Fig. 3. In

this Markov chain, state (i, j) means that c is present

in the ith slot of node v1 and jth slot of node v0,

where i ∈ {1, 2, . . . , S 1,M}, j ∈ {1, 2, . . . , S 0,M}. Let

�π = [π(1, 1), π(1, 2), . . . , π(1,M), π(2, 1), . . . , π(M,M)] be the

steady state probabilities. Then, R0,1
k (j) can be expressed as:

R0,1
k (j) =

π(M, j)
S 1∑

i=1

π(i, j) + π(M, j)

. (7)

Fig. 3 The two-dimensional Markov chain of the layer-1 node model. On
the right side, we list two states (i, j) and (M, j) to illustrate different state
transitions

The remaining problem is how to solve this Markov chain

(please refer to Appendixes A and B for the transition proba-

bilities and balance equations). Since the number of states in

this Markov chain is (S 0+1)×(S 1+1), solving it numerically

can be difficult when the cache sizes are very large. Even

worse, the computation will become more difficult when

there are multiple leaf nodes, as to be seen in Section 3. On

the other hand, analytical solutions are more desirable since

they allow more efficient computation, and can be extended.

Solving this Markov chain analytically is also tricky since

the transition probabilities contain variables R0,1
k (j), which

are functions of �π. This causes a loop which prevents a

straightforward solution. To address this problem, we first

transform the balance equations (see Appendix C), and de-

fine �π j = [π(1, j), π(2, j), . . . , π(M, j)] which corresponds to

the steady state probabilities of the jth vertical chain. Then,

we have the following observations:

1) �π j, j > 1 can be solved once �π j−1 is determined;

2) The value of R0,1
k (j) only depends on the ratio of ele-

ments in �π j.

Based on the first observation, we can solve this

two-dimensional Markov chain by iteratively solving

�π1, �π2, . . . , �πM in sequence. The second observation allows us

to bootstrap this iteration by setting the right side of the first

transformed balanced equation (see Appendix C) to 1. In the

Zixiao JIA et al. Hierarchical caches in content-centric networks: modeling and analysis 851

following, we will give details of this solution.

First, we vertically divide this two-dimensional Markov

chain into S 0 + 1 one-dimensional Markov chains

{MC1,MC2, . . . ,MCS 0 ,MCM}. Figure 4 shows the transi-

tion graph for MC j, where state i means that c is in the ith

slot of v1; state M means that c is not in v1. We add an ab-

sorbing state O to aggregate all the other states that c is not

present in the jth slot of v0. Once the system reaches state

O, the probability of moving out of O is 0. The transition

probabilities of this Markov chain can be derived easily.

Fig. 4 MC j , the jth vertical Markov chain

Then, we show how to iteratively solve Markov chains

from MC1 to MCS 0 . As seen in Fig. 4, the Markov chain has

no steady state, since there is an absorbing state. Here, we

adopt the approach given in Ref. [4] as follows.

Let ϕ i
j denote the average number of times that state i is

visited before the chain reaches the absorbing state O. Then,

we have:

ϕ i
j = q i

j +
∑

u

ϕu
j Pui, i, u ∈ {1, . . . , S 1,M}, (8)

where q i
j is the probability that MC j starts at state i, and

P is the transition probability matrix of MC j. Let �q j =

{q1
j , q

2
j , . . . , q

M
j } represent the initial state distribution of MC j.

In our case, the initial-state distribution of MC1 is �q1 =

{1, 0, . . . , 0}; �q j(j > 1) can be calculated using the steady state

probability of MC j−1 and the transition probabilities from

MC j−1 to MC j:

q i
j =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, i = 1;

ϕ i−1
j−1 · P1(i − 1, j − 1), i ∈ [2, S 1];

ϕ S 1

j−1 · P1(S 1, j − 1) + ϕM
j−1 · P4(M, j − 1), i = M.

(9)

Thus, we can determine ϕ1
j , . . . , ϕ

S 1
j , ϕ

M
j , and solve R0,1

k (j)

using:

R0,1
k (j) =

ϕM
j

S 1∑

i=1

ϕ i
j + ϕ

M
j

. (10)

With R0,1
k (j), we can calculate p0

k(j) according to Eq. (6).

Repeat this process until we have all the values of R0,1
k (j) and

p0
k(j). Finally, we can obtain h0

k and h0 according to Eq. (4)

and Eq. (2).

3.3 Extended layer-1 node model

This subsection extends the previous layer-1 node model by

considering the case that v0 is connected to multiple leaf

nodes v1, v2, . . . , vn. In addition, we also incorporate multi-

path routing in our model, using variables σm,n defined in

Section 2.

As there are multiple leaf nodes, we need to specify their

request arrival rates. Let λi be the request arrival rate at leaf

node vi, and define δi = λi/(
∑n

j=1 λ j) as the probability that

when a request comes to the system, it arrives at node vi.

Now, we introduce the equation for cache hit ratio of rank-

k chunks at v0:

h0
k =

n∑

l=1

D0,l
k (S l)

g l
k − b l

k

· g l
k

g0
k

· α l
k · (1 − h l

k)

n∑

l=1

α l
k · (1 − h l

k)

. (11)

Similar to previous models, we have the following recur-

sive relation for the calculation of p0
k(j), j ∈ [1, S 0]:

p0
k(j) = p0

k(j − 1)
n∑

l=1

δl

1 −
K∑

t=1

βl
t

[
bl

t(S l) + D0,l
t (j − 2) + R0,l

k (j − 1)It=k

]

1
σl,0
−

K∑

t=1

βl
t

[
bl

t(S l) + D0,l
t (j − 1)

]
,

with p0
k(1) = α0

k defined as:

α0
k =

n∑

l=1

σl,0 · αl
k(1 − hl

k)

n∑

l=1

K∑

t=1

σl,0 · αl
t(1 − hl

t)

.

Note that σl,0 > 0, otherwise, it is not necessary to include vl

in this model.

As seen above, we need to calculate R0,i
k (j) and p i

k(j) for

each node i and slot j, and use the above recursive rela-

tion to compute p0
k(·). That is, we need to solve n two-

dimensional Markov chains for (v0, v1), (v0, v2), . . . , (v0, vn)

respectively. Each chain is similar in structure to the layer-

1 node model, but with different transition probabilities. The

difference comes from the fact that each chain, say (v0, vi)

would be affected by all leaf nodes other than vi.

To illustrate, we consider one such Markov chain for

(v0, v1). To capture the influences from other leaf nodes,

852 Front. Comput. Sci., 2015, 9(6): 846–859

we express the transition probabilities Px(i, j) for x ∈
{0, 1, . . . , 6} in the following form, with x represents seven

transition probabilities out of its current state in the two-

dimensional Markov chain, as shown in the right of Fig. 3.

Px(i, j) = δ1P+x (i, j) +
n∑

l=2

δlP
−
x (i, j),

where P+x (i, j) corresponds to the transition triggered by a re-

quest at v1 itself, and P−x (i, j) corresponds to the transition

triggered by a request at node other than v1.

First, for P+x (i, j), if we do not consider multi-path routing,

they are the same with Px(i, j) in our layer-1 model. When

we consider multi-path routing, they would be defined as:

P+x (i, j) = σ1,0 · P ′′x (i, j) + (1 − σ1,0) · P ′x(i), x ∈ {0, 3, 6};
P+x (i, j) = σ1,0 · P ′′x (i, j), x ∈ {1, 4, 5},

where P ′′x (i, j) takes the same value as Px(i, j) (x ∈
{0, 1, . . . , 6}) defined in the previous layer-1 node model, and

P ′x(i) is the alias of the transition probability in the leaf model,

expressed as follows:

P ′x(i) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Pi→i, x = 0;

Pi→i+1, x = 3;

Pi→1, x = 6.

(12)

Apart from the above cases, we have another new transi-

tion P2(M, j) from (M, j) to (1, j), which is 0 in the previous

model. Here P2(M, j) is defined as:

P+2 (M, j) = β1
k · (1 − σ1,0).

Then, let us determine the P−x (i, j) for each x:

1) For P1(i, j), P2(i, j), P3(i, j), and P6(i, j), the position

of chunk c at node v1 is changed, therefore the corre-

sponding events only taken place when content requests

arrive at node v1. Thus, we have:

P−1 (i, j) = P−2 (i, j) = P−3 (i, j) = P−6 (i, j) = 0.

2) For P0(i, j), P4(M, j), and P5(M, j), we have:

P−0 (i, j) = σl,0 ·
K∑

t=1

βl
t ·
[
bl

t(S l) + D0,l
t (j − 1)

]
+ (1 − σl,0),

P−4 (i, j) = σl,0

{

1−
K∑

t=1

βl
t ·
[
bl

t(S l) + D0,l
t (j−1)+R0,l

t (j)It=k

]}

,

P−5 (i, j) = σl,0 · β l
k · R0,l

k (j).

Unlike the previous layer-1 node model, this model has

more states other than (1, 1) which have incoming transitions

from other chains. Thus, we cannot simply assign (1, 0, . . . , 0)

to the initial state of MC1. Through estimating, we found that

ϕ i
1, i ∈ [2, S 1] are negligible compared to ϕ1

1 and ϕM
1 . Thus,

we only need to determine R0,1
k (1), and set ϕM

1 = R0,1
k (1),

ϕ1
1 = 1 − R0,1

k (1). To solve R0,1
k (1), we utilize an important

property of the R value: independence of the cache size of

the level-1 node. That is, the probability that chunk c is not

present in the cache of v1 condition c is present in the jth

slot of v0 is irrelevant to the cache size of v0. Thus, we can

assume the cache size of v0 is 1, and construct a simplified

two-dimensional Markov chain with 2 × (S 1 + 1) states, as

shown in Fig. 5.

In this Markov chain, the transition probability P4(i, j) and

P5(i, j) contain undetermined R variables, but we can express

them as:

Fig. 5 The simplified Markov chain for solving R0,1
k (1)

Zixiao JIA et al. Hierarchical caches in content-centric networks: modeling and analysis 853

P4(i, 1) = 1 − P0(i, 1) − P1(i, 1) − P3(i, 1) − P6(i, 1),

P5(i,M) = 1 − P0(i,M) − P2(i,M) − P3(i,M) − P6(i,M).

We sum up the procedure of calculating h0
k and h0 in Algo-

rithm 1.

4 Numerical results

In this section, we present numerical results obtained based

on our models. We aim to show the accuracy of our model

with simulations, and provide some understanding to guide

the design of hierarchical caches in CCN. Since we are only

studying the two-layer hierarchical cache model, we will term

the layer-1 node as root node.

4.1 Experiment setup

We use the OMNeT++3) , a discrete-event simulation pack-

age, to construct the content-centric networking environment

[1]. Rather than implementing a full-fledged one, we only in-

clude the basic functions of CCN: multi-path routing, chunk-

based caching and receiver-driven transport protocol. The

forwarding table of each node is computed using the CCNd

method introduced in the CCNx project.

We developed a simplified version of ProWGen [5] to gen-

erate a large pool of data chunks4). Then, we partition these

trunks into ten popularity ranks from 1 to 10. For each leaf

router, we randomly sample 500 chunks from the chunk pool.

The topology to be used in our experiments is shown in Fig.

6, where each node represents a content router. Nodes at level

1 and level 2 correspond to leaf nodes and root nodes in our

model; the node at level 5 acts as the source of all the con-

tents; nodes in levels 3 and 4 are used to simulate the network

backbone.

Fig. 6 The router topology used in our experiments

4.2 Model verification

In order to verify the accuracy of our models, we calculate

hit ratios for different cache sizes, and compare them to the

simulation results. To verify our three models, we consider

three different kinds of nodes: single leaf node, root node

connected with one leaf node, and root node connected with

multiple leaf nodes. For each case, we repeat the simulations

for ten times to cover the randomness of chunk requests.

Figure 7(a) reports the hit ratios of a leaf node with cache

size ranging from 10 to 150. The error bars reflect the result

variance of the ten simulation runs. Note that our modeling

results are quite close to the simulative results, with differ-

3) OMNeT++ Network Simulation Framework: http://www.omnetpp.org
4) It is shown that ProWGen can generate workloads that are similar to empirical traces [6]

854 Front. Comput. Sci., 2015, 9(6): 846–859

ence less than 2.5%.

Fig. 7 The relation between hit ratio and cache size for (a) single leaf node,
and (b) root node connected with one leaf node

Figure 7(b) shows the relationship between hit ratio and

cache size for a root node connected with one leaf node. We

observe that: 1) the hit ratio is close to 0 when the cache size

is below 21. The reason is that the chunks stored at the first

j � 21 slots are also stored in the leaf node with a high prob-

ability. As a result, R0
k(j) is negligible for these small j, and

the hit ratio is thus very low according to Eq. (4); 2) after

the cache size of the root node becomes larger than 21, the

hit ratio climbs quickly, but will not increase much after the

size exceeds 130. This is because these slots at the rear of the

cache are mostly occupied by cold contents which are seldom

requested (see the next experiment for details). These content

contributes little to the overall hit ratio according to Eq. (2).

By the above two observations, our model can be em-

ployed to find the two threshold values s1 and s2 (here s1 =

21, s2 = 130). With the cache size of root node set between

s1 and s2, we can expect a quick growth of overall hit ratio.

It is also seen that the shape of curves in Figs. 7(a) and

7(b) are remarkably different, owing to the fact their request

arrival patterns are different. For the leaf node, requests arrive

at it according to the IRM assumption (see Section 2); while

the root node is fed with non-IRM requests. This confirms

the “filter effect” previously studied in Ref. [7]: lower-level

nodes selectively filter out chunk requests, and the resultant

requests are no longer independent of each other.

We continue to consider the scenarios of multiple leaf

nodes. Figure 8 plots the hit ratio of the root node when the

leaf node number n = 2, 3, 4, 5. As we apply approximation

in the calculation (see Section 3), the accuracy drops a little,

but the error is still bounded by 5%. Note that the hit ratios

in these cases are all above 0 even when the cache size is

very small. This is due to the independence of chunk requests

from leaf nodes, i.e., the chunk recently requested by node

v1 can still be requested by v2 within a short period. Another

interesting observation is that as the number of leaf nodes in-

creases, the shapes of curves become more and more similar

to that of the leaf node in Fig. 7(a). This may imply that the

request arrival at root node tends to follow IRM again, i.e.,

the “filter effect” becomes less noticeable with the increase

of leaf node number.

Fig. 8 The relation between hit ratio and cache size of a root node, when
the number of leaf nodes is (a) n = 2, (b) n = 3, (c) n = 4, and (d) n = 5

4.3 Which parts of the cache are mostly valuable?

In the previous experiments, we already see that the hit ratio

increases as the cache size becomes larger. Also, we locate

thresholds s1 and s2 within which the increase of hit ratio

is the most remarkable. That is to say, investment on cache

slots between s1 and s2 may be a good strategy, as they con-

tribute a lot to the overall hit ratio. For better illustration, Fig.

9 provides a more fined-grained view of how much each slot

contributes to the overall hit ratio of the root node connected

with two leaf nodes.

Fig. 9 The contribution of each slot to the hit ratio of the root node, which
is connected with two leaf nodes

In Fig. 9, we see that the slots from 55 to 145 contribute

most to the cache hit ratio, which agrees with Fig. 8(a). By

increasing the memory access speed of these slots, we may

expect a better performance for the content router.

Zixiao JIA et al. Hierarchical caches in content-centric networks: modeling and analysis 855

Owing the scale of y-axis is not sensitive to different con-

tent popularities in Fig. 9, each rank seems to have almost

equal contribution to the overall hit ratio. If independently

drawing the absolute contribution of these ranks, we can eas-

ily find their difference.

4.4 The relation between content popularity and its location

— a study of value p

In this experiment, we study the relationship between a

chunk’s popularity and its location in the cache, by analyz-

ing the value of p i
k(j). Figure 10 shows the cache occupancy

statistics reflected by p i
k(j), in scenarios of one leaf node, root

node connected with one leaf node and two leaf nodes, re-

spectively. Based on Fig. 10, we have the following two ma-

jor observations:

1) Different ranks of chunks tend to occupy different parts

of the cache: higher ranks of chunks tend to occupy around

the head of the cache, while lower ranks of chunks tend to

occupy near the tail of the cache. Take Fig. 10(a) as an ex-

ample, rank-1 chunks which are the most popular have the

peak probability of 0.32 to be located in the first slot; while

rank-10 chunks are most likely (with probability around 0.3)

to be located in the last slot of the cache. By this observation,

we can design location-aware caching strategies to provide

differentiated service according to content popularity.

2) Compared to the leaf node, the distribution of p i
k(j) for

each k is more stable for the root node. This again illustrates

the “filter effect” which we mentioned in previous experi-

ments. Here, the leaf nodes filter out many requests for popu-

lar content. The more popular the content is, the more it will

be filtered by nodes of lower layers. As a result of the filter ef-

fect, requests arrived at the root node are more likely for cold

content. Thus, we conclude that root node needs more capac-

ity to hold cold content in order to maintain a relatively high

performance. As for how much capacity is needed, please re-

fer to Section 6.

Finally, a phenomenon that needs further explanation is in

Figs. 10(a) and 10(b), p i
k(j) drops to 0 when the slot number

j = 160. This is because in our experiment setting, the total

number of chunks that may be requested to each leaf node

vi (
∑10

k=1 g i
k) is set to 160. When there are two leaf nodes, as

the case for Fig. 10(c), the total number of unique chunks that

may be requested to these two nodes exceeds 180. That’s why

we do not see p i
k(j) drops to 0 when j = 180.

4.5 Uncovering the relation between two adjacent layers of

nodes — a study of value R

In this experiment, we aim to uncover the relation between

two adjacent layers of nodes, by studying the value of R de-

fined in Section 2. Specifically, we calculate R0,1
1 (j) for the

root node v0, by fixing the cache size of leaf nodes to be 30,

and varying the number of leaf nodes from 1 to 5. The results

are given in Fig. 11.

As seen in Fig. 11, the values of R0,1
1 (j) are relatively small

for the first few slots. This is due to the fact that these slots

store the most recently requested chunks, which are very

likely to be cached by one or more leaf nodes too. For ex-

ample, when there is only one leaf node, the most recently

requested chunks are definitely stored at the leaf node. As a

result, the values of R0,1
1 (j) at the first 21 slots is 0. This ex-

plains why the hit ratio of leaf node is 0 when its cache size

is below 21, as seen in Fig. 8(b).

Note that the initial value R0,1
1 (1) becomes larger as the

number of leaf nodes increases. This is easy to understand

since a chunk request from any of the leaf nodes will bring

the requested chunk to the front of root node’s cache. Thus,

the chunks stored at the first few slots of the root node may

have been requested by leaf nodes other than v1. The more

the leaf nodes, the more likely this will happen.

The value of R0,1
1 (j) will reach 1 as the number of slots ex-

ceeds a threshold. However, it does not mean that the slots

whose numbers are bigger than this threshold are still useful.

The reason is that R is a condition probability, and the value

of p0
k(j) already reaches 0 for these slots since the number of

chunks in our system is limited.

Fig. 10 The value of pi
k(j) for different slot j in (a) leaf-node vi , (b) root node vi connected with one leaf node, (c) root node vi connected

with two leaf nodes

856 Front. Comput. Sci., 2015, 9(6): 846–859

Fig. 11 The values of R0,1
1 (j) at different slots j of the root node v0, when

connected with n = 1, 2, 3, 4, 5 leaf nodes

4.6 How large cache do we need for the root node?

In the previous experiments, we have mentioned the “filter

effect” imposed by leaf nodes, and gained the intuition that

the root node should have a relatively large cache to main-

tain a relatively high hit ratio. In this experiment, we justify

this claim by studying the minimum cache size for the root

node to maintain a hit ratio above 0.5. We vary the number

of leaf nodes connected to the root node from 1 to 6, and the

results are shown in Fig. 12. Note that each point is averaged

over ten runs by varying the input (randomly generated chunk

requests). We have the following two observations:

Fig. 12 The cache size requirements for root node when connected with
different number of leaf nodes

1) The root node requires a much larger cache size than the

leaf nodes. As shown in Fig. 12, The ratio is 3× when there

is only one leaf node, and 2× when there are six leaf nodes.

This may indicate that using the same replacement policy in

hierarchical caches without any cooperations is inefficient. If

the root node employs a different replacement policy, we may

be able to reduce the required cache size for the root node.

2) The requirement for cache size is lower when there are

more leaf nodes. This is because different nodes have differ-

ent popularity assignment (α i
k) in our model, and the requests

for chunks of different popularity tend to be distributed more

uniformly with the increase of leaf nodes.

5 Related work

CCN has received a lot of attention since it was proposed in

Ref. [1]. It has been gradually proving its great potentiality

in Internet telephony [8], autonomous driving [9], and ad hoc

networks [10, 11]. Topics which are still under study include

security [12], content router [13], transport protocol [14], etc.

Content caching has been extensively studied in the re-

search area of web cache. Similar to caches in CCN, web

caches can store the recently requested file for a short time

so that subsequent requests can be satisfied locally. Dan et

al. [15] study the LRU and FIFO cache replacement strate-

gies for a single cache node which is fed with IRM file re-

quests. As the computation complexity of directly calculat-

ing cache hit probability is very high, they develop an ap-

proximated approach to estimate the hit probability. Che et

al. [2] propose another approximation approach to evaluate

the performance of two-level caches by assuming LRU re-

placement policy and IRM request arrival. They approximate

the evaluation by assuming a constant value for inter-arrival

times between two consecutive requests for a same docu-

ment without cache misses. This assumption is claimed to

be good when they are a large number of files. Based on [15],

Rosensweig et al. [3] analyze a more general cache network

where there is no fixed topology. The problem of multi-cache

problem is decomposed into a set of single-cache problems,

which can be solved independently. However, they assume

that the cache miss stream to be IRM, which would affect

the accuracy of their model. Through trace-drive simulations,

Williamson [7] examines the filter effect observed in caching

hierarchies: caches at one level will filter the data request,

and change the workload pattern at its next levels.

There are some efforts on analyzing the caching perfor-

mance in Content-Centric Networks, but they are mostly

based on simulations or experiments [16–19]. However, for

a fundamental understanding of the performance of CCN

caches, some analytical models are still needed. Towards this

goal, Psaras et al. [20] try to use Continuous-Time Markov

Chain (CTMC) to capture the caching dynamics. They first

introduce a simple model for one node, and then extend the

model to multiple nodes. However, as the time is continuous,

the model is not easy to solve, and not much results are given.

Zixiao JIA et al. Hierarchical caches in content-centric networks: modeling and analysis 857

Carofiglio et al. [21] take another approach by assuming the

requests arrivals conform to Markov modulated rate process

(MMRP). But to make the chunks misses independent (sim-

ilar to IRM), they assume the file size to be “memoryless”,

i.e., geometrically distributed.

To sum up, though web cache has been extensively studied,

they can not be directly applied to CCN hierarchical caching

systems due to features including chunk-based caching and

multi-path request routing. In addition, existing continuous

models are complicated and are short in giving valuable guid-

ance for cache design.

This paper is an extension of the work presented in ICCCN

2013 [22]. The additional contributions include two aspects.

Firstly, we generalize the root-node model to the extended

layer-1 node model by considering the case where one con-

tent router is connected to more than one leaf nodes, while the

multi-path routing feature of CCN is incorporated. Secondly,

we conduct more experiments to get deeper understanding of

the cache performance, including 1) which parts of the cache

are mostly valuable; 2) the relation between content popular-

ity and its location; and 3) uncovering the relation between

two adjacent layers of node. Those additional findings can

give more valuable guidance about the caches designed in

CCN.

6 Conclusion

This paper models and evaluates the performance of hierar-

chical caches formed by CCN content routers. The main char-

acteristic that we study is cache hit ratio, including overall hit

ratio and rank-k hit ratio. Our models can be used to effi-

ciently calculate the hit ratio for up to two layers of caches

in CCN. The accuracy of our models is validated through ex-

tensive experiments.

We also present five findings by analyzing the variables

numerical results obtained from our models: 1) “filter ef-

fect” makes the Size-Hit Ratio curves remarkably different in

CCN, and this effect becomes less remarkable when the num-

ber of caches at the lower layer increases; 2) each cache part

contributes differently to the hit ratio of root node; 3) contents

of different popularity tends to gather at different cache slots

of CCN nodes; 4) reflect the differentiation-distribution of the

contents cached between two adjacent layers of nodes; 5) root

node requires much larger cache size to maintain higher hit

ratio, and the size required is lower when connected by more

leaf nodes.

Our future work includes: 1) conduct more experiments

on real NDN networks, which may be deployed in the future;

2) extend our models to consider more than two layers of

caches.

Acknowledgements This work was supported by the National Natural Sci-
ence Foundation of China (Grant No. 61472199) and the Fundamental Re-
search Funds for the Central Universities (2015RC22).

Appendixes

Appendix A Transition probabilities

i) For 1 � i � S 1, 1 � j � S 0,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P0(i, j) =
K∑

t=1

β1
t ·
[
b1

t (i − 1) + Ii=1
]
,

P1(i, j) = 1 −
K∑

t=1

β1
t ·
[
D0,1

t (j − 1) + b1
t (S 1) − p1

t (i) + It=k
]
,

P3(i, j) =
K∑

t=1

β1
t ·
[
D0,1

t (j − 1) + b1
t (S 1) − b1

t (i)
]
,

P6(i, j) = β1
t ,

P2(i, j) = P4(i, j) = P5(i, j) = 0.

ii) For i = M, 1 � j � S 0,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P0(M, j) =
K∑

t=1

β1
t ·
[
b1

t (S 1) + D0,1
t (j − 1)

]
,

P4(M, j) = 1 −
K∑

k=1

β1
t ·
[
b1

t (S 1) + D0,1
t (j − 1) + It=k

]
.

iii) For j = M,

P3(i,M) = 1 −
K∑

t=1

β1
t ·
[
b1

t (i − 1) + It=k
]
.

iv) For i = M, j = M,

P0(M,M) = 1 − β1
k .

Appendix B Balance equations
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π(1, 1) =
S 1∑

u=2

P6(u, 1)π(u, 1)+
M∑

u=1

P6(M, u)π(M, u)

+P0(1, 1)π(1, 1);

π(i, 1) = P3(i − 1, 1)π(i − 1, 1) + P0(i, 1)π(i, 1), i ∈ [2, S 1];

π(M, 1) = P0(M, 1)π(M, 1);

π(1, j) =
M∑

u=2

P6(u, j)π(u, j) + P0(1, j)π(1, j), j ∈ [2,M];

π(i, j) = P3(i − 1, j)π(i − 1, j) + P0(i, j)π(i, j)

+P1(i − 1, j − 1)π(i − 1, j − 1), i, j ∈ [2, S 0];

π(M, j) = P1(S 1, j−1)π(S 1, j−1)+P4(M, j − 1)π(M, j − 1)

+P3(S 1, j)π(S 1, j) + P0(M, j)π(M, j), j ∈ [2,M];
M∑

i=1

M∑

j=1

π(i, j) = 1.

858 Front. Comput. Sci., 2015, 9(6): 846–859

Appendix C Transformed balance equations

With π(i, j) changed to π i
j,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − P0(1, 1))π1
1 −

S 1∑

u=2

P6(u, 1)πu
1 =

M∑

u=1

P6(M, u)πM
u ;

(1 − P0(i, 1))π i
1 − P3(i − 1, 1)πi−1

1 = 0, i ∈ [2, S 1];

(1 − P0(M, 1))πM
1 = 0.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − P0(1, j))π1
j −

M∑

u=2

P6(u, j)πu
j = 0, j ∈ [2,M];

(1 − P0(i, j))π i
j − P3(i − 1, j)πi−1

j

= P1(i − 1, j − 1)πi−1
j−1, i, j ∈ [2, S 0];

(1 − P0(M, j))πM
j − P3(S 1, j)πS 1

j

= P1(S 1, j − 1)πS 1

j−1 + P4(M, j − 1)πM
j−1, j ∈ [2,M].

References

1. Jacobson V, Smetters D K, Thornton J D, Plass M F, Briggs N H, Bray-
nard R L. Networking named content. In: Proceedings of the 5th ACM
International Conference on Emerging Networking Experiments and
Technologies. 2009, 1–12

2. Che H, Tung Y, Wang Z. Hierarchical web caching systems: model-
ing, design and experimental results. IEEE Journal on Selected Areas
in Communications, 2002, 20(7): 1305–1314

3. Rosensweig E J, Kurose J, Towsley D. Approximate models for gen-
eral cache networks. In: Proceedings of IEEE International Conference
on INFOCOM. 2010, 1–9

4. Trivedi K S. Probability and Statistics with Reliability, Queuing, and
Computer Science Applications. 2nd ed. New York: John Wiley &
Sons, 2001

5. Busari M, Williamson C. ProWGen: A synthetic workload generation
tool for simulation evaluation of web proxy caches. Computer Net-
works, 2002, 38(6): 779–794

6. Saleh O, Hefeeda M. Modeling and caching of peer-to-peer traffic. In:
Proceedings of the 14th IEEE International Conference on Network
Protocols. 2006, 249–258

7. Williamson C. On filter effects in web caching hierarchies. ACM Trans-
actions on Internet Technology, 2002, 2(1): 47–77

8. Jacobson V, Smetters D K, Briggs N H, Plass M F, Stewart P, Thornton
J D, Braynard R L. VoCCN: voice-over content-centric networks. In:
Proceedings of the Workshop on Re-architecting the Internet. 2009,
1–6

9. Kumar S, Shi L, Ahmed N, Gil S, Katabi D, Rus D. Carspeak: a
content-centric network for autonomous driving. ACM SIGCOMM
Computer Communication Review. 2012, 42(4): 259–270

10. Oh S Y, Lau D, Gerla M. Content centric networking in tactical and
emergency MANETs. In: Proceedings of IEEE International Federa-
tion for Information Processing Wireless Days. 2010, 1–5

11. Meisel M, Pappas V, Zhang L. Ad hoc networking via named data. In:
Proceedings of the 5th ACM International Workshop on Mobility in
the Evolving Internet Architecture. 2010, 3–8

12. Wong W, Nikander P. Secure naming in information-centric networks.
In: Proceedings of the Re-Architecting the Internet Workshop. 2010,
1–6

13. Arianfar S, Nikander P, Ott J. On content-centric router design and im-

plications. In: Proceedings of the Re-Architecting the Internet Work-
shop. 2010, 5

14. Tarkoma S, Kuptsov D, Savolainen P, Sarolahti P. CAT: a last mile
protocol for content-centric networks. In: Proceedings of IEEE Inter-
national Conference on Communications Workshops. 2011, 1–5

15. Dan A, Towsley D. An approximate analysis of the LRU and FIFO
buffer replacement schemes. ACM SIGMETRICS Performance Eval-
uation Review, 1990, 18(1): 143–152

16. Carofiglio G, Gehlen V, Perino D. Experimental evaluation of memory
management in content-centric networking. In: Proceedings of IEEE
International Conference on Communications. 2011, 1–6

17. Rossi D, Rossini G. Caching performance of content centric networks
under multi-path routing. Relatório téconico, Telecom ParisTech, 2011

18. Rossi D, Rossini G. On sizing CCN content stores by exploiting topo-
logical information. In: Proceedings of INFCOM Workshops. 2012,
280–285

19. Fricker C, Robert P, Roberts J, Sbihi N. Impact of traffic mix on caching
performance in a content-centric network. In: Proceedings of IEEE
Conference on Computer Communications Workshops. 2012, 310–315

20. Psaras I, Clegg R G, Landa R, Chai W K, Pavlou G. Modelling and
evaluation of CCN-caching trees. In: Proceedings of the 10th Interna-
tional IFIP TC 6 Conference on Networking. 2011, 78–91

21. Carofiglio G, Gallo M, Muscariello L, Perino D. Modeling data trans-
fer in content-centric networking. In: Proceedings of the 23rd Interna-
tional Teletraffic Congress. 2011, 111–118

22. Jia Z, Zhang P, Huang J, Lin C, Lui J C S. Modeling hierarchical caches
in content-centric networks. In: Proceedings of the 22nd International
Conference on Computer Communications and Networks. 2013, 1–7

Zixiao Jia received his ME from In-

stitute of Computing Technology, Chi-

nese Academy of Sciences, China

in 2010, and obtained his PhD in

the Department of Computer Science

and Technology at Tsinghua Univer-

sity, China. He is currently an engi-

neer of the National Computer Net-

work Emergency Response Technical

Team/Coordination Center of China, China. His research interests

include performance evaluation and next generation Internet.

Jiwei Huang received his BE and PhD

in computer science and technology

from Tsinghua University, China in

2009 and 2014, respectively. He is an

assistant professor in the State Key

Laboratory of Networking and Switch-

ing Technology at Beijing University of

Posts and Telecommunications, China.

He was a visiting scholar at Georgia In-

stitute of Technology, USA. His research interests include services

computing and performance evaluation.

Zixiao JIA et al. Hierarchical caches in content-centric networks: modeling and analysis 859

Chuang Lin received his PhD degree in

computer science from Tsinghua Uni-

versity, China in 1994. He is now a

professor of the Department of Com-

puter Science and Technology, Ts-

inghua University, China, and he is

also an honorary visiting professor of

University of Bradford, UK. His re-

search interests include computer net-

works, performance evaluation, network security analysis, and Petri

net theory and its applications.

